

Test Report

Report No.:	MTi230620017-01E1
Date of issue:	2023-07-26
Applicant:	Shenzhen ZFX Technology CO.,Ltd
Product:	Wireless headphone
Model(s):	ZP-BHP-M, BSBTH22WH
FCC ID:	2AMLDBTM

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumn	nary of Test Result	8
3	Test F	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	f test equipment	10
5	Evalu	ation Results (Evaluation)	13
	5.1	Antenna requirement	13
6	Radio	Spectrum Matter Test Results (RF)	13
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Conducted Emission at AC power line Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time Emissions in non-restricted frequency bands Band edge emissions (Radiated) Emissions in restricted frequency bands (below 1GHz) Emissions in restricted frequency bands (above 1GHz)	17 19 21 23 25 27 29 34 38
	-	phs of the test setup	
	-	phs of the EUT	
		A: 20dB Emission Bandwidth	
		B: Maximum conducted output power	
		C: Carrier frequency separation	
		D: Time of occupancy	
		E: Number of hopping channels	
		F: Band edge measurements	
Арр	pendix	G: Conducted Spurious Emission	65

Test Result Certification						
Applicant:	Shenzhen ZFX Technology CO.,Ltd					
Address:	2ND FL, BLDG B, YICHENG INDUSTRIAL PARK, XIXIANG TOWN, BAOAN DISTRICT, SHENZHEN, GUANDONG, China, 518110					
Manufacturer:	Shenzhen ZFX Technology CO.,Ltd					
Address:	2ND FL, BLDG B, YICHENG INDUSTRIAL PARK, XIXIANG TOWN, BAOAN DISTRICT, SHENZHEN, GUANDONG, China, 518110					
Product description						
Product name:	Wireless headphone					
Trademark:	ARTELEC,Brookstone					
Model name:	ZP-BHP-M					
Series Model:	BSBTH22WH					
Standards:	FCC 47 CFR Part 15 Subpart C					
Test method:	ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02					
Date of Test	Date of Test					
Date of test:	2023-06- 29 to 2023-07-26					
Test result:	Pass					

Test Engineer	:	Marleen Davy		
		(Maleah Deng)		
Reviewed By	••	leon chen		
		(Leon Chen)		
Approved By	:	Tom Kue		
		(Tom Xue)		

1 General Description

1.1 Description of the EUT

-	
Product name:	Wireless headphone
Model name:	ZP-BHP-M
Series Model:	BSBTH22WH
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: DC 5V 1A Battery: DC 3.7V 400mAh
Accessories:	Cable: USB-A to USB-C cable 1m
Hardware version:	1.0
Software version:	1.0
Test sample(s) number:	MTi230620017-01S1001
RF specification	
Bluetooth version:	V5.3
Operating frequency range:	2402-2480
Channel number:	79
Modulation type:	GFSK, π/4-DQPSK
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	-0.68dBi

1.2 Description of test modes

No.	Emission test modes			
Mode1	TX- GFSK(CH00, CH39, CH78)			
Mode2	TX-π/4-DQPSK (CH00, CH39, CH78)			

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471

Page 6 of 70

Report No.: MTi230620017-01E1

10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	4	4	4
π/4-DQPSK	4	4	4

Capture of the test softeare:

FCC Assist 1.0.2.2			-	×
皆助(H)				
申口设置 申口 COM4 (USB-SERIA) 波特率 115200 数据位 8 校验位 None 停止位 1 流 控 NoFlow 文団	CH340) • rep retu	备[COM4]打开成功 ly data: 04 0E 04 01 01 FC urn code: 0x0 重数据发送成功!	00	
MODE TX Channel 78 Transmit_Power 4 Packet_Type 2-DH5 Hopping 0FF Data_Types Pn9	•			
Send configur	ation	清除日志		

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list								
DescriptionModelSerial No.Manufacturer								
HUAWEI CHARGE (10W)	$H_{M_{-}050200C02} = K95212K\Delta103561 = H_{L}\Delta_{M}E_{L}$							
Support cable list	Support cable list							
Description	Length (m)	From	То					
/	1	1	1					

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (1GHz~25GHz)	5.3dB
Radiated spurious emissions (9kHz~30MHz)	4.3dB
Radiated spurious emissions (30MHz~1GHz)	4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	Pass
3	§ 15.247(d), 15.209, 15.205	Radiated spurious emissions	Pass
4	§ 15.247(a)(1)	20dB emission bandwidth	Pass
5	§ 15.247(b)(1)	Maximum conducted output power	Pass
6	§ 15.247(a)(1)	Carrier Frequencies Separation	Pass
7	§ 15.247(a)(1)	Time of occupancy	Pass
8	§ 15.247(a)(1)	Number of hopping channels	Pass
9	§ 15.247(d)	Band edge (Conducted)	Pass
10	§ 15.247(d)	Conducted spurious emissions	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
	Conducted Emission at AC power line								
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2023-04-26	2024-04-25			
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2023-05-05	2024-05-04			
3	Artificial Mains Network	Schwarzbeck	NSLK 8127	1001	2023-05-06	2024-05-05			
		Occuj	pied Bandwidth						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24			
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04			
		Maximum Co	nducted Output	Power	I				
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24			
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04			
		Chan	nel Separation						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04
		Number of I	Hopping Freque	ncies		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04
		[Dwell Time			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04
		Emissions in non-	-restricted freque	ency bands		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04
		Band edge	emissions (Radi	ated)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-05-26	2024-05-25
3	Amplifier	Agilent	8449B	3008A01120	2023-05-26	2024-05-25
4	Multi-device Controller	TuoPu	TPMDC	1	/	/
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-05-05	2024-05-04
	Em	issions in restricted	frequency band	ls (below 1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-26	2024-04-25
4	Multi-device Controller	TuoPu	TPMDC	1	/	/
	Em	issions in restricted	frequency band	s (above 1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-05-26	2024-05-25
3	Amplifier	Agilent	8449B	3008A01120	2023-05-26	2024-05-25
4	Multi-device Controller	TuoPu	TPMDC	1	/	/
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-05-05	2024-05-04

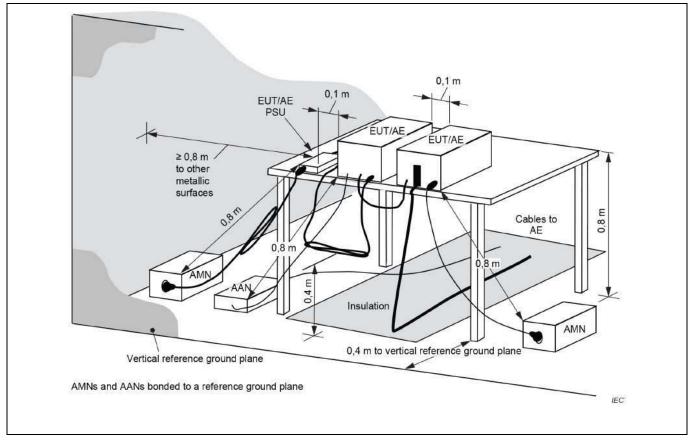
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
Description of the antenna of EUT:	The antenna of the EUT is permanently attached.
Conclusion:	The EUT complies with the requirement of FCC PART 15.203.

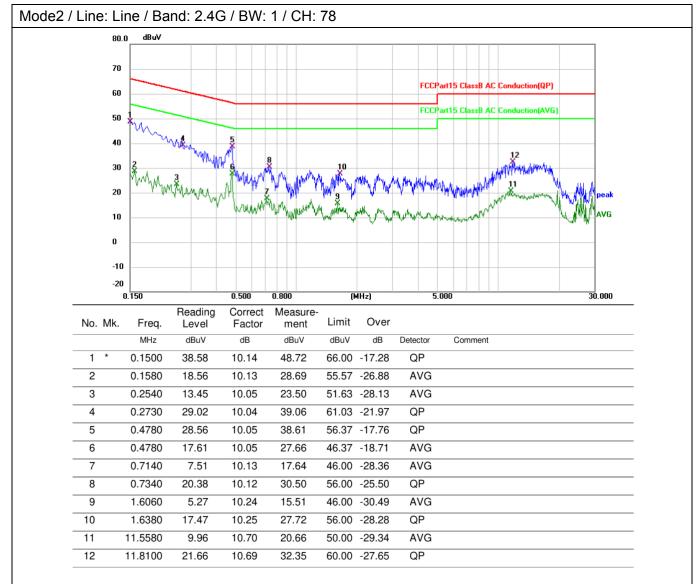
6 Radio Spectrum Matter Test Results (RF)

6.1 Conducted Emission at AC power line


Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµ\	/)				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30 60 50						
	*Decreases with the logarithm of the frequency.						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices						

6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 33.2 °C Humidity: 60.2 % Atmospheric Pressure: 99 kPa						
Pre test mode:	Pre test mode: Mode1, Mode2						
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report							



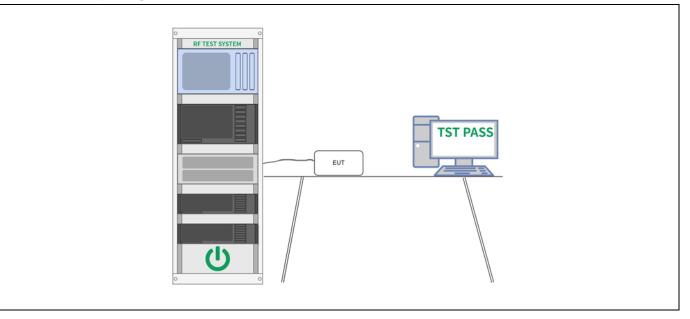
6.1.2 Test Setup Diagram:

6.1.3 Test Data:

Mode2 / Line: Neutral / Band: 2.4G / BW: 1 / CH: 78

6.2 Occupied Bandwidth

Test Requirement:	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Limit:	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	Occupied bandwidth—relative measurement procedure
Test Method: Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value. f) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the
	delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified


6.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 26 °C Humidity: 57 % Atmospheric Pressure: 101 kPa							
Pre test mode:		Mode	e1, Mode2					
Final test mode: Mod			e1, Mode2					

6.2.2 Test Data:

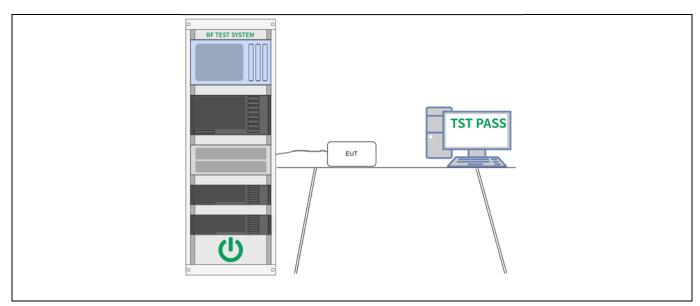
Please Refer to Appendix for Details.

6.2.3 Test Setup Diagram:

6.3 Maximum Conducted Output Power

Test Requirement:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.					
Test Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequence hopping systems in the 2400-2483.5 MHz band: 0.125 watts.					
Test Method:	Output power test procedure for frequency-hopping spread-spectrum (FHSS) devices					
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer. 					

6.3.1 E.U.T. Operation:


Operating Environment:							
Temperature:	26 °C		Humidity:	57 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mo		Mode	e1, Mode2				
Final test mode: Mod		e1, Mode2					

6.3.2 Test Data:

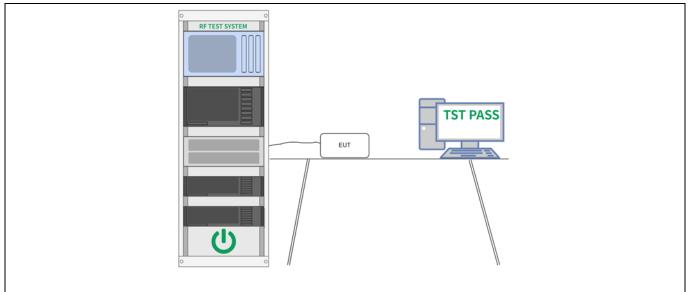
Please Refer to Appendix for Details.

6.3.3 Test Setup Diagram:

6.4 Channel Separation

Test Requirement:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	Carrier frequency separation
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the
	test report.

6.4.1 E.U.T. Operation:


Operating Environment:								
Temperature:	26 °C		Humidity:	57 %	Atmospheric Pressure:	101 kPa		
Pre test mode: Mod			e1, Mode2					
Final test mode: Mod			e1, Mode2					

6.4.2 Test Data:

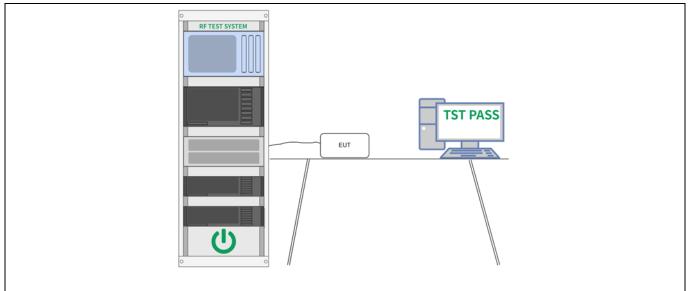
Please Refer to Appendix for Details.

6.4.3 Test Setup Diagram:

6.5 Number of Hopping Frequencies

Test Requirement:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Limit:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	Number of hopping frequencies
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.5.1 E.U.T. Operation:


Operating Environment:							
Temperature:	26 °C		Humidity:	57 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Moc			e1, Mode2				
Final test mode	e:	Mode	e1, Mode2				

6.5.2 Test Data:

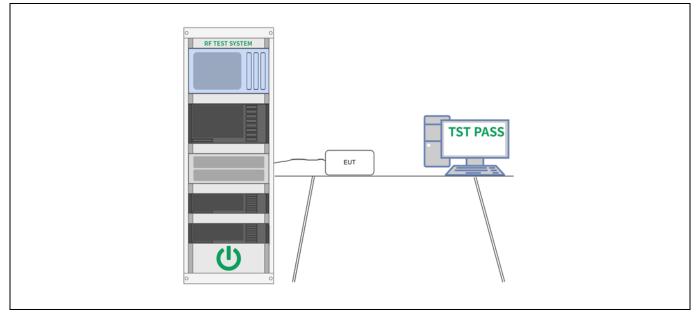
Please Refer to Appendix for Details.

6.5.3 Test Setup Diagram:

6.6 Dwell Time

Test Requirement:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Limit:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	Time of occupancy (dwell time)
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

6.6.1 E.U.T. Operation:


Operating Environment:							
Temperature:	26 °C		Humidity:	57 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mode	e1, Mode2				
Final test mode: Mod		Mode	e1, Mode2				

6.6.2 Test Data:

Please Refer to Appendix for Details.

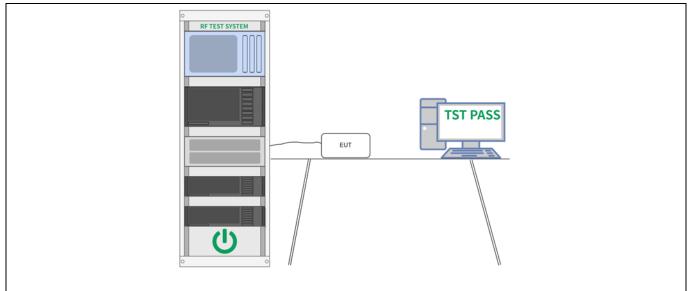
6.6.3 Test Setup Diagram:

6.7 Emissions in non-restricted frequency bands

Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Conducted spurious emissions test methodology
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.7.1 E.U.T. Operation:

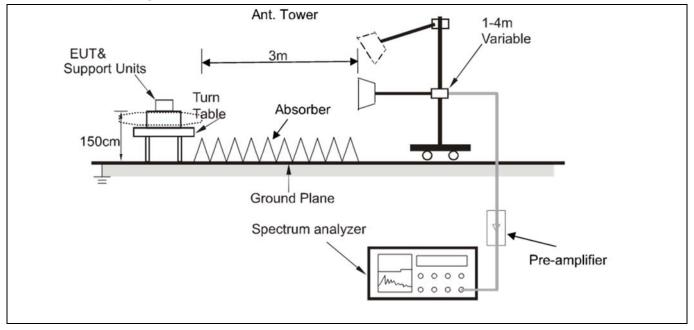
Operating Environment:


operating Environment.							
Temperature:	26 °C		Humidity:	57 %	Atmospheric Pressure	101 kPa	
Pre test mode: Mod			e1, Mode2				
Final test mode: Mod			e1, Mode2				

6.7.2 Test Data:

Please Refer to Appendix for Details.

6.7.3 Test Setup Diagram:


6.8 Band edge emissions (Radiated)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960 500 3						
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. 						
Test Method:	Radiated emissions tests						
Procedure:	ANSI C63.10-2013 sec	ction 6.10.5.2					

6.8.1 E.U.T. Operation:

Operating Envi	Operating Environment:							
Temperature:	18.6 °C		Humidity:	59.6 %	Atmospheric Pressure:	100 kPa		
Pre test mode: M			e1, Mode2					
Final test mode: Mode1, Mode2								
Note: All other	Note: All other emissions are attenuated 20dB below the limit, so does not recorded							

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

olarizat	ion:	Horizonta	I / Band: 2.4	4G / BW: ′	1 / CH: 00				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		_
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	1
1	2	2310.000	47.53	-8.08	39.45	74.00	-34.55	peak	_
2	2	2310.000	37.45	-8.08	29.37	54.00	-24.63	AVG	
3	2	2390.000	55.72	-7.71	48.01	74.00	-25.99	peak	_
4	* 2	2390.000	39.58	-7.71	31.87	54.00	-22.13	AVG	_
	No.	No. Mk.	No. Mk. Freq. MHz 1 2310.000 2 2310.000 3 2390.000	No. Mk. Freq. Reading Level MHz dBuV 1 2310.000 47.53 2 2310.000 37.45 3 2390.000 55.72	No. Mk. Freq. Reading Level Correct Factor MHz dBuV dB 1 2310.000 47.53 -8.08 2 2310.000 37.45 -8.08 3 2390.000 55.72 -7.71	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 1 2310.000 47.53 -8.08 39.45 2 2310.000 37.45 -8.08 29.37 3 2390.000 55.72 -7.71 48.01	No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit MHz dBuV dB dBuV/m dBuV/m 1 2310.000 47.53 -8.08 39.45 74.00 2 2310.000 37.45 -8.08 29.37 54.00 3 2390.000 55.72 -7.71 48.01 74.00	No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 1 2310.000 47.53 -8.08 39.45 74.00 -34.55 2 2310.000 37.45 -8.08 29.37 54.00 -24.63 3 2390.000 55.72 -7.71 48.01 74.00 -25.99	No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 1 2310.000 47.53 -8.08 39.45 74.00 -34.55 peak 2 2310.000 37.45 -8.08 29.37 54.00 -24.63 AVG 3 2390.000 55.72 -7.71 48.01 74.00 -25.99 peak

Mode2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: 00

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	46.56	-8.08	38.48	74.00	-35.52	peak
2		2310.000	37.23	-8.08	29.15	54.00	-24.85	AVG
3		2390.000	47.36	-7.71	39.65	74.00	-34.35	peak
4	*	2390.000	37.75	-7.71	30.04	54.00	-23.96	AVG

Page 32 of 70

	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
_	1		2483.500	66.43	-7.24	59.19	74.00	-14.81	peak
_	2	*	2483.500	55.11	-7.24	47.87	54.00	-6.13	AVG
_	3		2500.000	49.53	-7.17	42.36	74.00	-31.64	peak
-	4		2500.000	39.51	-7.17	32.34	54.00	-21.66	AVG

Page 33 of 70

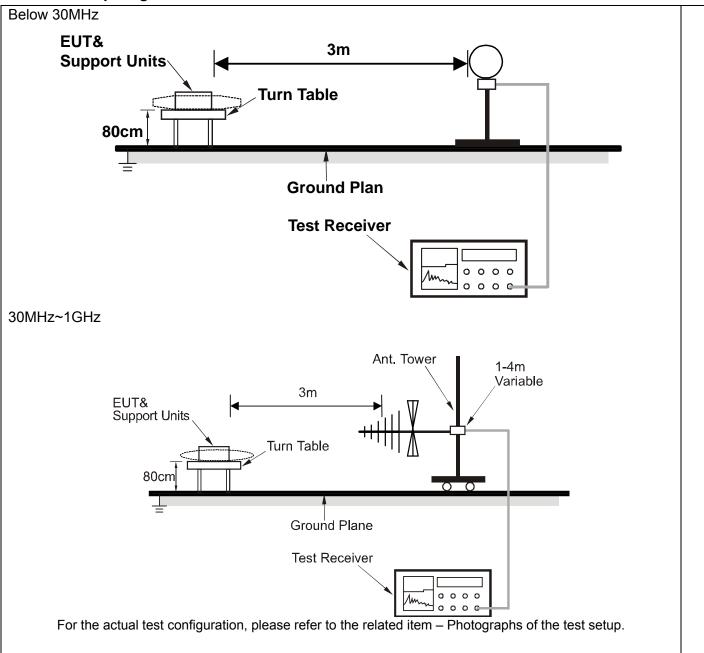
MHz dBuV dB dBuV/m dBuV/m dB Detector 1 2483.500 56.87 -7.24 49.63 74.00 -24.37 peak 2 * 2483.500 45.26 -7.24 38.02 54.00 -15.98 AVG 3 2500.000 48.73 -7.17 41.56 74.00 -32.44 peak 4 2500.000 38.15 -7.17 30.98 54.00 -23.02 AVG	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 * 2483.500 45.26 -7.24 38.02 54.00 -15.98 AVG 3 2500.000 48.73 -7.17 41.56 74.00 -32.44 peak			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
3 2500.000 48.73 -7.17 41.56 74.00 -32.44 peak	1		2483.500	56.87	-7.24	49.63	74.00	-24.37	peak
	2	*	2483.500	45.26	-7.24	38.02	54.00	-15.98	AVG
4 2500.000 38.15 -7.17 30.98 54.00 -23.02 AVG	3		2500.000	48.73	-7.17	41.56	74.00	-32.44	peak
	4		2500.000	38.15	-7.17	30.98	54.00	-23.02	AVG

6.9 Emissions in restricted frequency bands (below 1GHz)

Test Requirement:	-	nissions which fall in the rest comply with the radiated em 5(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.							
Test Method:	Radiated emissions tests							
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4						

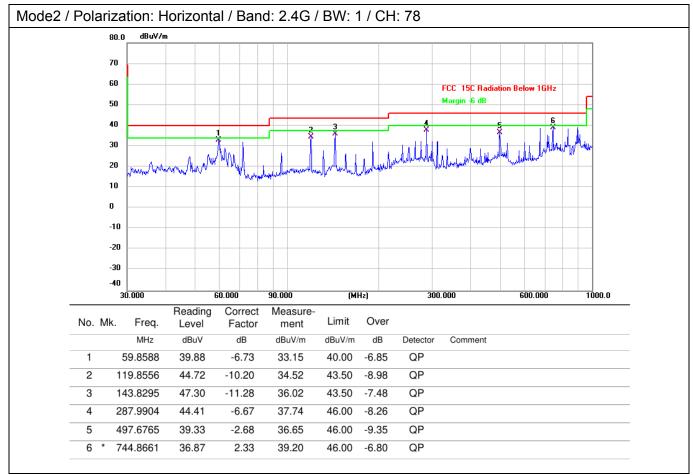
6.9.1 E.U.T. Operation:

Operating Environment:										
Temperature: 24.3 °C			Humidity:	71.8 %	Atmospheric Pressure:	100 kPa				
Pre test mode:		Mode	e1, Mode2							
Final test mode:		Mode	e1, Mode2							

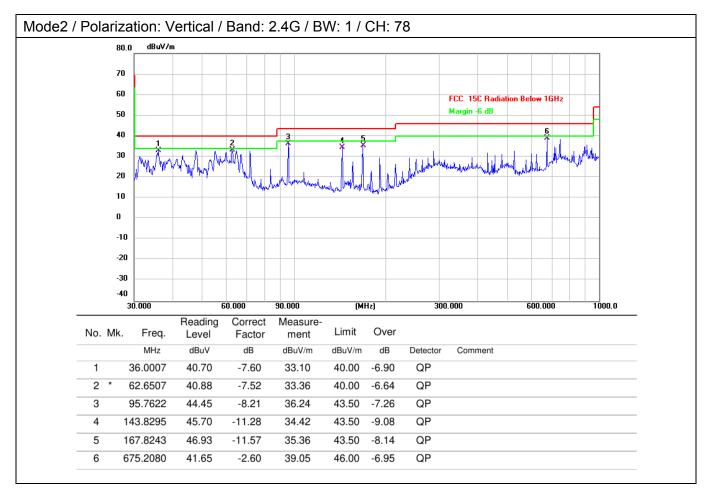

Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.



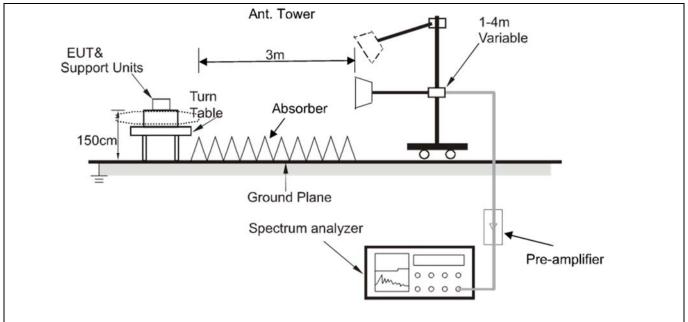
6.9.2 Test Setup Diagram:



6.9.3 Test Data:

6.10 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.							
Test Method:	Radiated emissions tes	sts						
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4						


6.10.1 E.U.T. Operation:

Operating Envi	Operating Environment:										
Temperature:	24.3 °C		Humidity:	71.8 %	Atmospheric Pressure:	100 kPa					
Pre test mode:			e1, Mode2								
Final test mode: N		Mode	e1, Mode2								

Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.10.2 Test Setup Diagram:

6.10.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	45.32	0.74	46.06	74.00	-27.94	peak
2	*	4804.000	39.37	0.74	40.11	54.00	-13.89	AVG
3		7206.000	40.21	6.02	46.23	74.00	-27.77	peak
4		7206.000	33.79	6.02	39.81	54.00	-14.19	AVG
5		9608.000	41.11	5.88	46.99	74.00	-27.01	peak
6		9608.000	33.45	5.88	39.33	54.00	-14.67	AVG

Page 40 of 70

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	0
1		4804.000	44.31	0.74	45.05	74.00	-28.95	peak	
2		4804.000	38.97	0.74	39.71	54.00	-14.29	AVG	
3		7206.000	40.53	6.02	46.55	74.00	-27.45	peak	
4		7206.000	34.17	6.02	40.19	54.00	-13.81	AVG	
5		9608.000	42.01	5.88	47.89	74.00	-26.11	peak	
6	*	9608.000	35.65	5.88	41.53	54.00	-12.47	AVG	

Page **41** of **70**

Mode2 / Polarization: Horizontal / Band	: 2.4G / BW: 1 / CH: 39
---	-------------------------

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	41.29	1.05	42.34	74.00	-31.66	peak
2		4882.000	35.54	1.05	36.59	54.00	-17.41	AVG
3		7323.000	40.71	5.94	46.65	74.00	-27.35	peak
4		7323.000	34.17	5.94	40.11	54.00	-13.89	AVG
5		9764.000	46.96	6.55	53.51	74.00	-20.49	peak
6	*	9764.000	42.73	6.55	49.28	54.00	-4.72	AVG

Page 42 of 70

Mode2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: 39

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	44.36	1.05	45.41	74.00	-28.59	peak
2		4882.000	37.39	1.05	38.44	54.00	-15.56	AVG
3		7323.000	40.21	5.94	46.15	74.00	-27.85	peak
4		7323.000	33.67	5.94	39.61	54.00	-14.39	AVG
5		9764.000	46.96	6.55	53.51	74.00	-20.49	peak
6	*	9764.000	41.90	6.55	48.45	54.00	-5.55	AVG

Page 43 of 70

Mode2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: 78

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	43.89	1.50	45.39	74.00	-28.61	peak
2		4960.000	37.51	1.50	39.01	54.00	-14.99	AVG
3		7440.000	41.09	5.61	46.70	74.00	-27.30	peak
4		7440.000	34.65	5.61	40.26	54.00	-13.74	AVG
5		9920.000	44.44	6.10	50.54	74.00	-23.46	peak
6	*	9920.000	35.23	6.10	41.33	54.00	-12.67	AVG

Page 44 of 70

Mode2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: 78

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	43.43	1.50	44.93	74.00	-29.07	peak
2		4960.000	35.99	1.50	37.49	54.00	-16.51	AVG
3		7440.000	40.70	5.61	46.31	74.00	-27.69	peak
4		7440.000	32.94	5.61	38.55	54.00	-15.45	AVG
5		9920.000	46.15	6.10	52.25	74.00	-21.75	peak
6	*	9920.000	37.78	6.10	43.88	54.00	-10.12	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

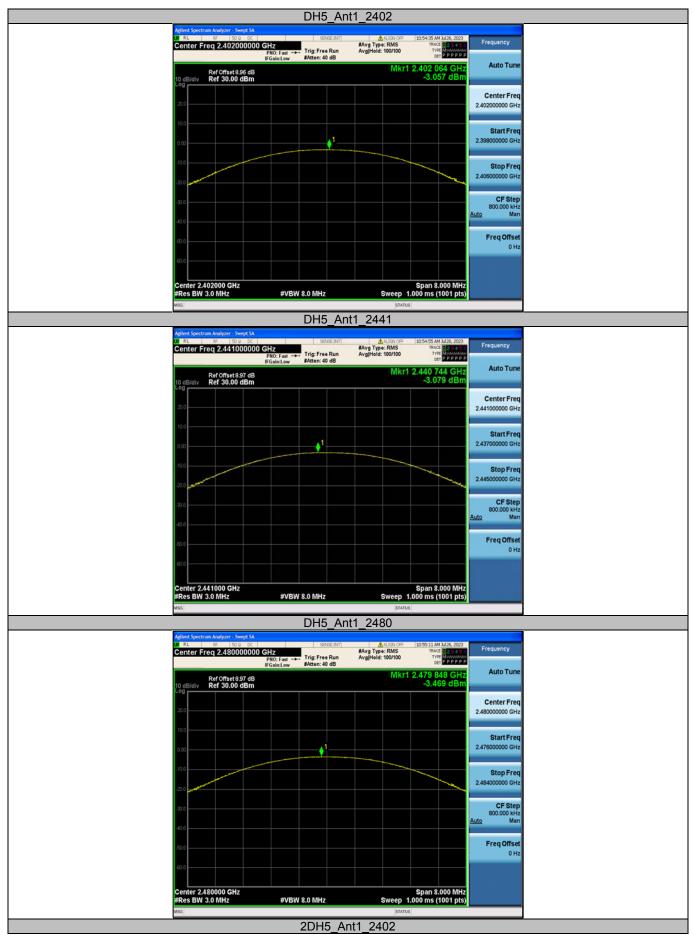
Page 46 of 70

Appendix

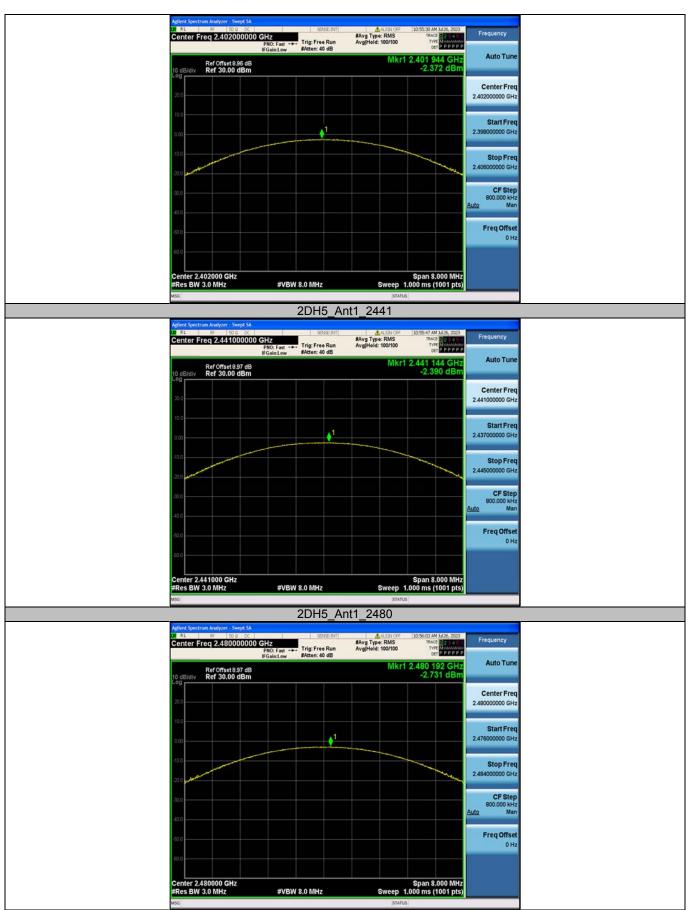
Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	0.954
DH5	Ant1	2441	0.954
		2480	0.945
		2402	1.323
2DH5	Ant1	2441	1.326
		2480	1.308



Appendix B: Maximum conducted output power


Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	-3.06	≤30	PASS
DH5	Ant1	2441	-3.08	≤30	PASS
		2480	-3.47	≤30	PASS
		2402	-2.37	≤20.97	PASS
2DH5	Ant1	2441	-2.39	≤20.97	PASS
		2480	-2.73	≤20.97	PASS

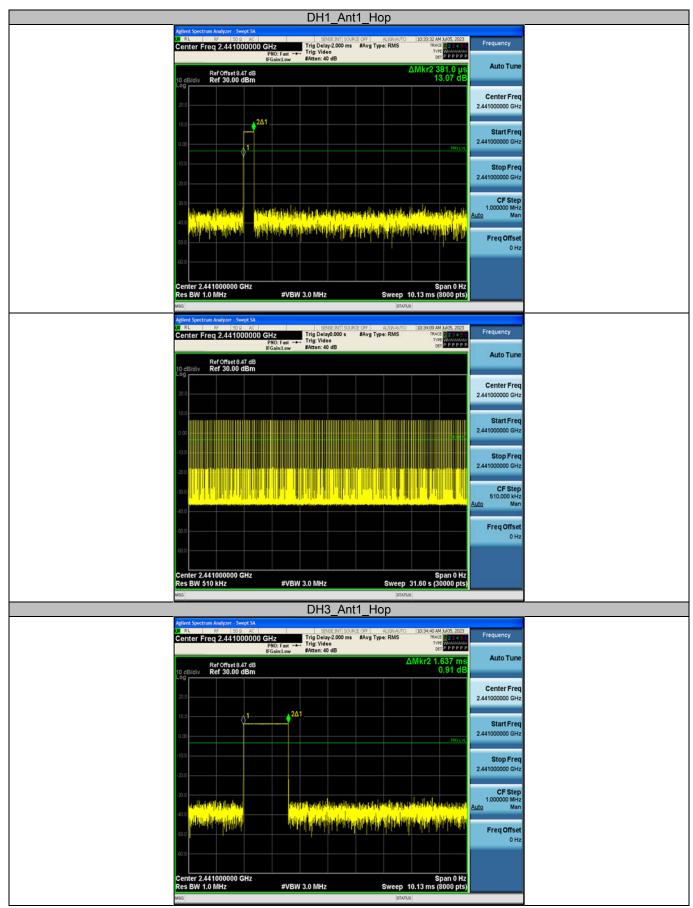
Appendix C: Carrier frequency separation

Test Result

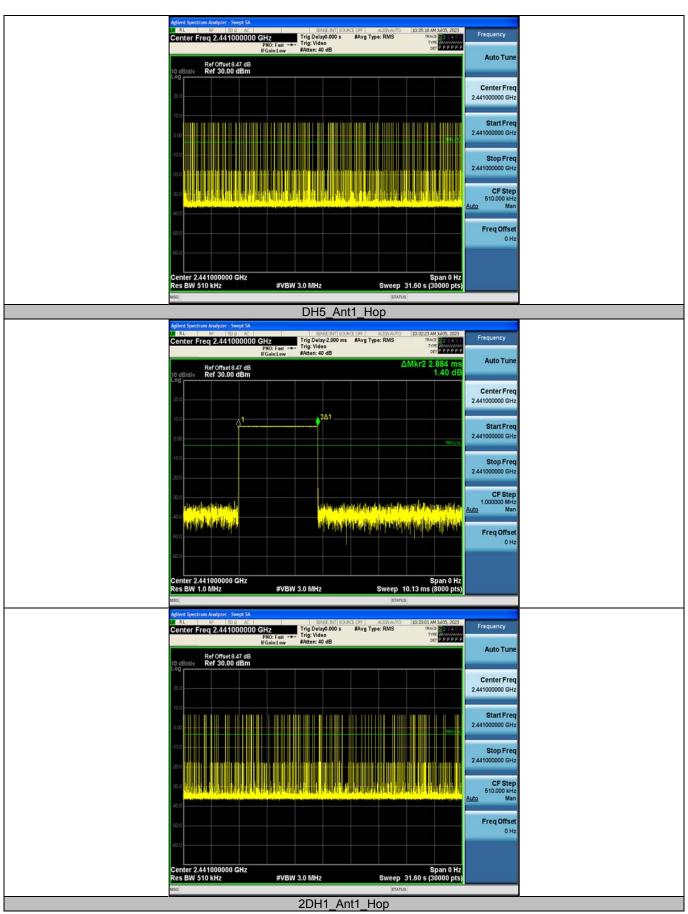
Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1	≥0.954	PASS
2DH5	Ant1	Нор	1	≥0.884	PASS

Appendix D: Time of occupancy

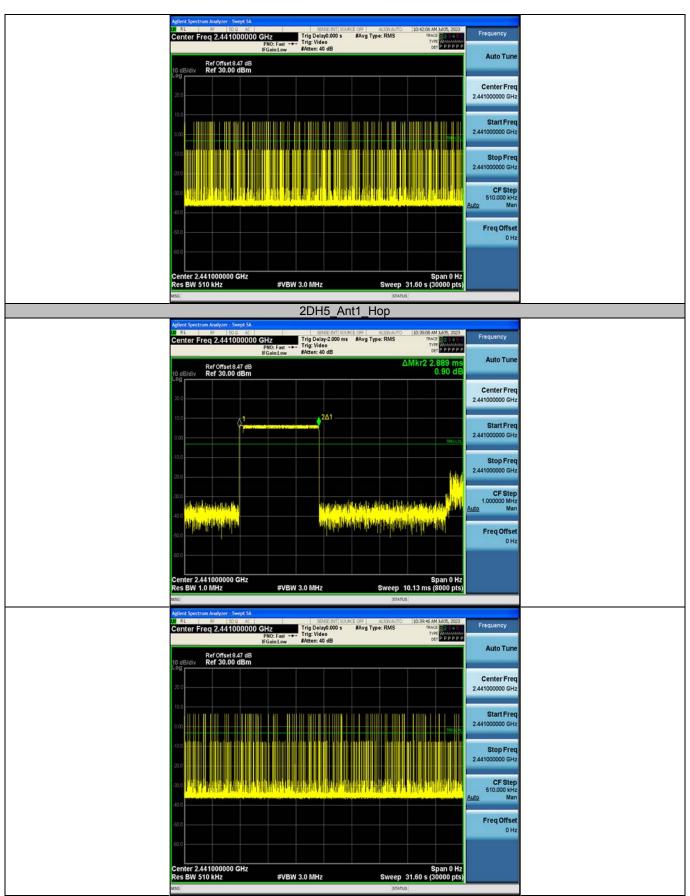
Test Result


Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.381	317	0.121	≤0.4	PASS
DH3	Ant1	Нор	1.637	168	0.275	≤0.4	PASS
DH5	Ant1	Нор	2.884	121	0.349	≤0.4	PASS
2DH1	Ant1	Нор	0.390	315	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.642	154	0.253	≤0.4	PASS
2DH5	Ant1	Нор	2.889	108	0.312	≤0.4	PASS

Notes:


1. Period time = 0.4s * 79 = 31.6s

2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]



Adjend Spectrum Analyser: Swegt 54 Descent Processing Spectrum Descent Processing Spectrum Descent Processing Spectrum Descent Processing Spectrum Processi
Bit Number Bit Number Bit Number Bit Number Display 2000 Frequency Center Freq 2.44100000 GHz PR0:starter Trig Display 2000 Starter Trig Display 2000 Starter Trig Display 2000 Starter Auto Tune Center Freq 2.44100000 GHz Frequency Trig Display 2000 Auto Tune Auto Tune Center Freq 2.44100000 GHz Frequency Auto Tune Auto Tune Center Freq 2.44100000 GHz Auto Tune Auto Tune Center Freq 2.44100000 GHz 200 Auto Tune Auto Tune Auto Tune Center Freq 2.44100000 GHz 200 Auto Tune Auto Tune Center Freq 2.44100000 GHz Center Freq 2.44100000 GHz 200 Auto Tune Auto Tune Start Freq 2.44100000 GHz Center Freq 2.44100000 GHz 200 Auto Tune Auto Tune Auto Tune Center Freq 2.44100000 GHz Center Freq 2.44100000 GHz 200 Auto Tune Auto Tune Auto Tune Center Freq 2.44100000 GHz Center Freq 2.44100000 GHz 200 Auto Tune Auto Tune Tune Tune Center Freq 2.44100000 GHz 200 Auto Tune Auto Tune
Center Freq 2.44100000 GHz Frig: Video Ref Offset 3.47 dB Cog Cog Cog Cog Cog Cog Cog Cog
PNC: Fail
Ref Offset 8.47 dB CMKr2 390.0 µs Auto Tune 10 2.00 Center Freq 2.441000000 GHz 100 2.01 100 2.441000000 GHz 100 2.01 100 100 100 100 2.01 100 100 100 100 100 2.01 100 100 100 100 100 100 2.01 100
Ref offset 8.47 dB Center Freq 200 200 200 Center Freq 200 201 201 201 201 200 201 201 201 201 201 200 201 201 201 201 201 201 200 201 201 201 201 201 201 200 201 201 201 201 201 201 201 200 201 201 201 201 201 201 201 200 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 202 203 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204 204
Corr Conter Freq 200 201 100 201 100 201 100 100 1000 100 1000 100 1000 100 1000 100 1000 1000 1000 1000 1000 1000 10000 10000 <
201 10 201 201 201 201 201 201 2
201 10 201 201 201 201 201 201 2
100 221 100 1
0.00 Start Preq 0.00 1000 1000 1000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 100000 0.00 100000
0.00 Start Preq 0.00 1000 1000 1000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 10000 0.00 100000 0.00 100000
100 100 (100) </td
100 1
2000 2.441000000 GHz 2000 4.44100000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.44100000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000
2000 2.441000000 GHz 2000 4.44100000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.44100000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000 4.441000000 GHz 2000
200 Implementation
In bit of the bi
In bit of the bi
60.0 Freq Offset
60.0 Freq Offset
Center 2.441000000 GHz Span 0 Hz
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)
MSG STATUS
Aglient Spectrum Analyzer - Swept SA
10 RL RF 50.0 AC SENSE INT SOURCE OFF ALIGNAUTO 10:40:56 AM 3405, 2023
Center Freq 2.441000000 GHz Trig Delay0.000 s #Avg Type: RMS TRACE 123436 Frequency
PRO:Fast == Trig: Video Trie IF Gainci.tww # Attent: Ad B ccl ########
AutoTune
Ref Offset 5.47 dB 10 dB/div Ref 30.00 dBm
Center Freq
20.0 GHz
Start Freq
000 2.44100000 GHz
199 Stop Freq
2.44100000 GHz
300 CF Step 510.000 kHz
Auto Man
Freq Offset
400 OHz
Center 2.44 100000 GHz Span 0 Hz
Center 2.44 1000000 GHz Span 0 Hz Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts)
MSG STATUS
2DH3_Ant1_Hop
Agilent Spectrum Analyzer - Swept SA
RL RF 50 9 AC SENSENT SOURCE OFF ALIONAUTO 1004129 AM M05, 2023 Center Freq 2.441000000 GHz Trig Delay-2000 ms #Avg Type: RMS TAXE DElay 100
PIO: Fait Trig: Video Trig: Video Trig: Video
IFGaint.ow #Atten: 40 dB Continued
Ref Offset 5.47 dB ΔMkr2 1.642 ms Auto Tune
Ref Offset 6.47 dB △₩KF2 1.042 mS 10 dB/div Ref 30.00 dBm 1.13 dB
20.0 Center Freq 2.441000000 GHz
2.44100000 GHz
100 Start Freq
2,441000000 GHz
TROLAL TROLAL
100 Stop Freq
100 Stop Freq 2.44100000 GHz
-20.0 2.441000000 GHz
200 2.44100000 GHz
2010 2441000000 GHz
22441000000 GHz 2010 2
200 2.44100000 GHz
200 2.441000000 GHz
200 2.44100000 GHz
200 2.441000000 GHz
200 2.441000000 GHz
200 2441000000 GHz 201 244100000 GHz 202 244100000 GHz 203 244100000 GHz 244100000 GHz 244100000 GHz 244100000 GHz 24100000 GHz 200 1000 GHz 1000 Minz 200 100 100 100 100 100 100 100 100 100
2010 20 20 20 20 20 20 20 20 20 2
200 2441000000 GHz 201 244100000 GHz 202 244100000 GHz 203 244100000 GHz 244100000 GHz 244100000 GHz 244100000 GHz 24100000 GHz 200 1000 GHz 1000 Minz 200 100 100 100 100 100 100 100 100 100



Appendix E: Number of hopping channels

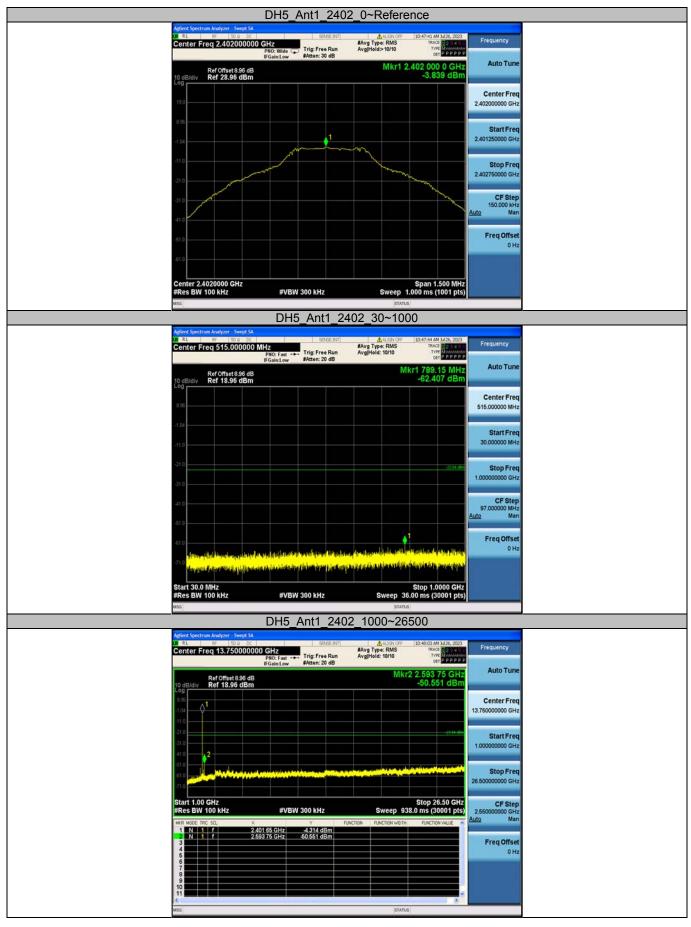
Test Result

Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS

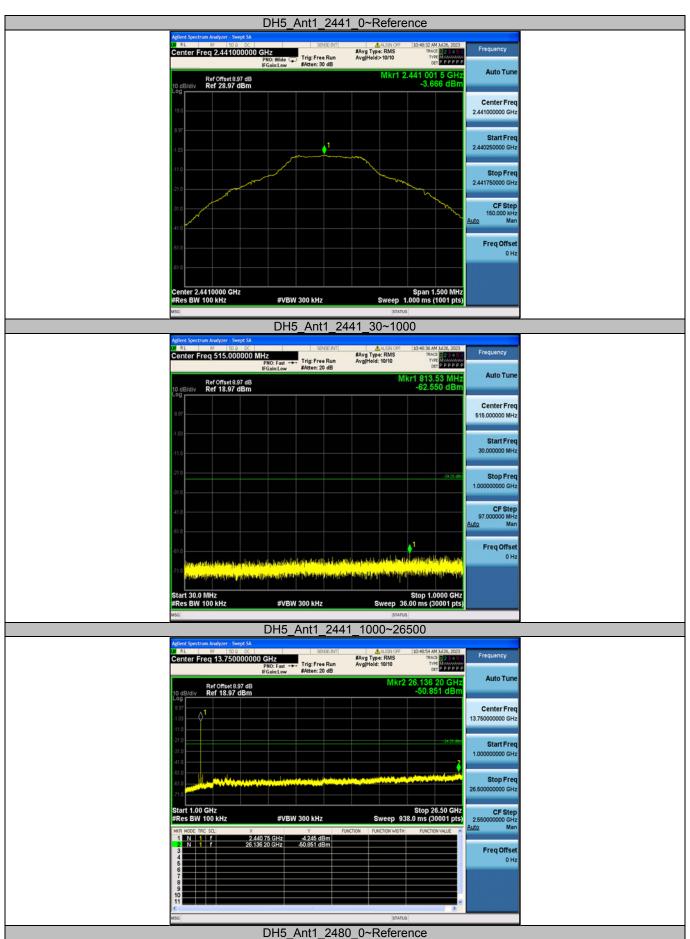
Appendix F: Band edge measurements

Test Graphs

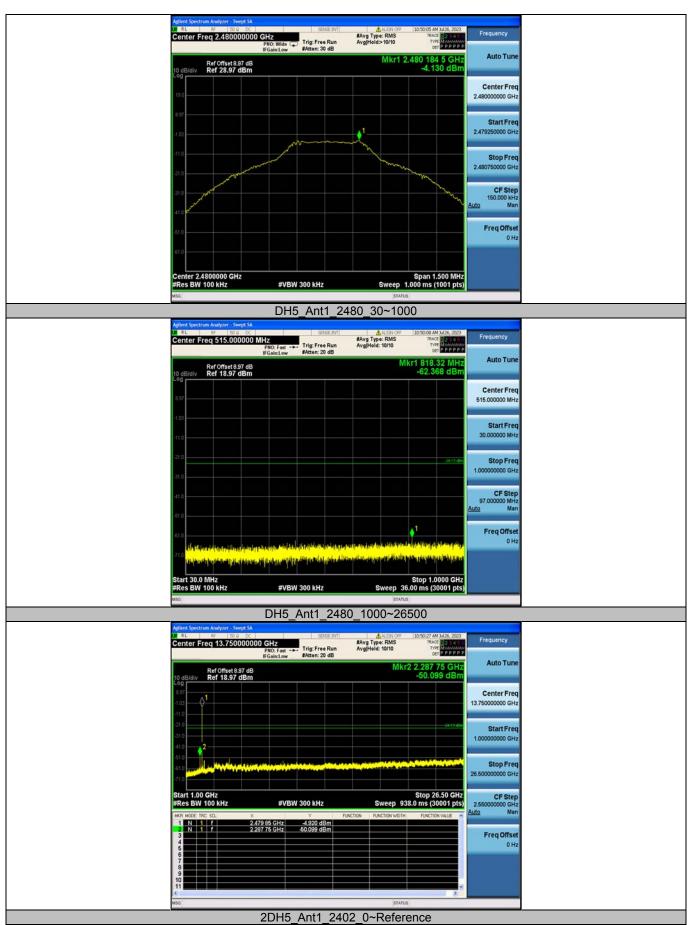
Address: 101, No. 7, Zone 2, XinxingIndustrial Park, Fuhai Avenue, XinheCommunity, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com



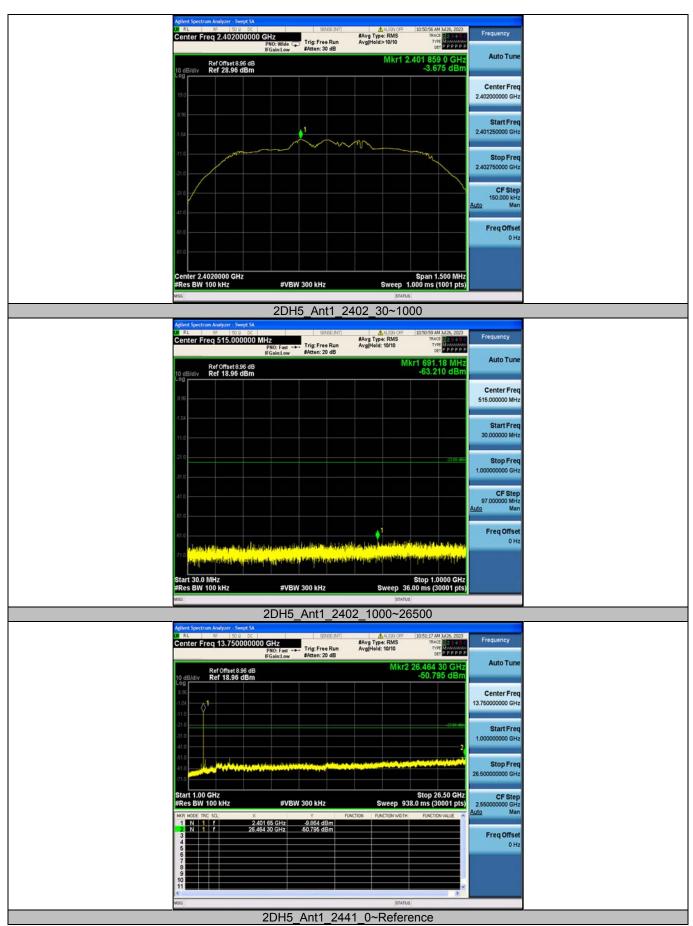
Aglent Spectrum Analyzer - Swept SA Center Freq 2:352500000 GHz Freq 2:3525000000 GHZ Freq 2:352500000 GHZ Freq 2:3525000000 GHZ Freq 2:3525000000 GHZ Freq 2:35250000000000000000000000000000000000	#LIGNAUTO 05:51:05 PM JJ 14, 2023 Avg Type: RMS TRACE Jpiel 200/100 TYPE CEP PP PP P	Frequency
Ref Offset 8.9 dB	Mkr5 2.345 990 GHz -49.440 dBm	Auto Tune
		Center Freq .352500000 GHz
-200		Start Freq .30000000 GHz
	β^3 β^2	Stop Freq #405000000 GHz
Start 2.30000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.40500 GHz Sweep 10.07 ms (1001 pts)	CF Step 10.500000 MHz
NCR MODE TRC SQL X Y FUNCTION 1 N 1 f 2.402.900 GHz -10.723 GHm 2 N 1 f 2.400.000 GHz -50.680 dBm 3 N 1 f 2.330.000 GHz 550.680 dBm 4 N 1 f 2.310.000 GHz -50.182 dBm 5 N 1 f 2.315.900 GHz -49.440 dBm	FUNCTION WIDTH FUNCTION VALUE	Treq Offset 0 Hz
	status	
2DH5_Ant1_High	_Hop_2480	
	#LIGNAUTO [05:51:16 PM 3d 14, 2023] Vrg Type: RMS TRACE Jppe: RMS TRACE Urg Hold>100/100 TYPE CET P.P.P.P.P	Frequency
IF Gain:Low #Atten: 30 dB Ref Offset 8.97 dB 10 dB/div Ref 20.00 dBm	Mkr4 2.540 24 GHz -48.336 dBm	Auto Tune
		Center Freq .51000000 GHz
		Start Freq 470000000 GHz
400 500	antrian conservation internationality come	Stop Freq
		.550000000 GHz
	Stop 2.55000 GHz Sweep 7.667 ms (1001 pts) PUNCTION WOTH PUNCTION VALUE	CF Step 8.000000 MHz to Man
1 N 1 f 2.474.00 GHz -13.683 dBm 2 N 1 f 2.483 50 GHz 52.619 dBm 3 N 1 f 2.483 50 GHz 53.04 dBm 4 N 1 f 2.500 00 GHz 53.04 dBm 4 N 1 f 2.540 24 GHz 48.336 dBm		Freq Offset 0 Hz
10		
MSG	STATUS	

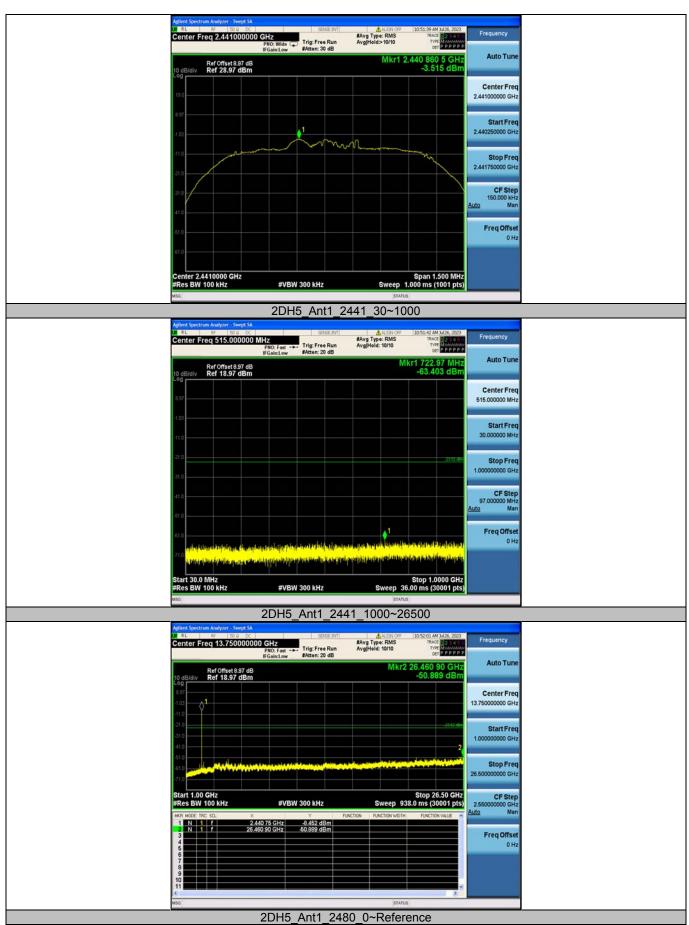

Appendix G: Conducted Spurious Emission

Test Graphs



Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com







----End of Report----