

Applicant: Peclet Limited d/b/a Aleck

Product: Nunchucks

Model No.: ALECK, CID80418

Trademark: ALECK

Test Standards: FCC Part 15.249

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.10 & FCC Part 15 Subpart C,

Paragraph 15.249 regulations for the evaluation of

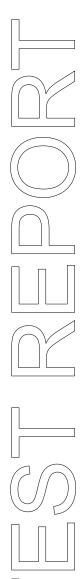
electromagnetic compatibility

Approved By

Terry Tang

Manager

Dated: June 07, 2023


Results appearing herein relate only to the sample tested

The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Report No.: TW2305103-01E Page 2 of 46

Date: 2023-06-07

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

A2LA (Certification Number:5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

Date: 2023-06-07

Test Report Conclusion

Content

1.0	General Details	4
1.1	Test Lab Details	4
1.2	Applicant Details	4
1.3	Description of EUT	4
1.4	Submitted Sample.	4
1.5	Test Duration.	5
1.6	Test Uncertainty	5
1.7	Test By	5
2.0	List of Measurement Equipment.	6
3.0	Technical Details	7
3.1	Summary of Test Results.	7
3.2	Test Standards	7
4.0	EUT Modification	7
5.0	Power Line Conducted Emission Test.	8
5.1	Schematics of the Test.	8
5.2	Test Method and Test Procedure.	8
5.3	Configuration of the EUT	8
5.4	EUT Operating Condition.	9
5.5	Conducted Emission Limit.	9
5.6	Test Result.	9
6.0	Radiated Emission test	12
6.1	Test Method and Test Procedure.	12
6.2	Configuration of the EUT	13
6.3	EUT Operation Condition.	13
6.4	Radiated Emission Limit.	13
6.5	Test Result.	15
7.0	Band Edge	23
7.1	Test Method and Test Procedure.	23
7.2	Radiated Test Setup.	23
7.3	Configuration of the EUT.	23
7.4	EUT Operating Condition.	23
7.5	Band Edge Limit.	23
7.6	Band Edge Test Result.	24
8.0	Antenna Requirement	28
9.0	20dB bandwidth measurement.	29
10.0	FCC ID Label	38
11.0	Photo of Test Setup and EUT View	39

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2023-06-07

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 744189 For 3m Anechoic Chamber

1.2 Applicant Details

Applicant: Peclet Limited d/b/a Aleck

Address: Surville, La Ruette Pinel, St. Helier, Jersey. JE2 3HF

Telephone: -Fax: --

1.3 Description of EUT

Product: Nunchucks

Manufacturer: WATA ELECTRONICS CO., LTD.

Address: No.142, South Tanshen Road, Tanzhou Town, Zhongshan City, Guangdong, China

Trademark: ALECK
Model Number: ALECK
Additional Model Name CID80418

Rating: Input: DC5V, 250mA

Battery: DC3.7V, 250mAh Li-ion battery

Modulation Type: GFSK, Л/4DQPSK, 8DPSK for Bluetooth

Operation Frequency: 2402-2480MHz

Channel Number: 79
Channel Separation: 1MHz

Hardware Version: 2102-L-V1.4/2102-R-V1.4

Software Version: V2002 Serial No.: CD0000015

Antenna Designation PCB antenna with gain 2.0dBi Max (Get from the antenna specification)

1.4 Submitted Sample: 3 Samples

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2305103-01E Page 5 of 46

Date: 2023-06-07

1.5 Test Duration

2023-05-10 to 2023-06-07

1.6 Test Uncertainty

Conducted Emissions Uncertainty = 3.6dB

Radiated Emissions below 1GHz Uncertainty =4.7dB

Radiated Emissions above 1GHz Uncertainty =6.0dB

Conducted Power Uncertainty =6.0dB

Occupied Channel Bandwidth Uncertainty =5%

Conducted Emissions Uncertainty = 3.6dB

Note: The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

1.7 Test Engineer

The sample tested by

Print Name: Andy Xing

Page 6 of 46

Report No.: TW2305103-01E

Date: 2023-06-07

2.0 Test Equipment					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	R&S	ESPI 3	100379	2022-07-15	2023-07-14
LISN	R&S	EZH3-Z5	100294	2022-07-18	2023-07-17
LISN	R&S	EZH3-Z5	100253	2022-07-18	2023-07-17
Impuls-Begrenzer	R&S	ESH3-Z2	100281	2022-07-18	2023-07-17
Loop Antenna	EMCO	6507	00078608	2022-07-18	2025-07-17
Spectrum	R&S	FSIQ26	100292	2022-07-15	2023-07-14
Horn Antenna	A-INFO	LB-180400-KF	J211060660	2022-07-18	2025-07-17
Horn Antenna	R&S	BBHA 9120D	9120D-631	2022-07-18	2024-07-17
Power meter	Anritsu	ML2487A	6K00003613	2022-07-18	2023-07-17
Power sensor	Anritsu	MA2491A	32263	2022-07-18	2023-07-17
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2022-07-18	2025-07-17
9*6*6 Anechoic			N/A	2022-07-26	2025-07-25
EMI Test Receiver	RS	ESVB	826156/011	2022-07-15	2023-07-14
EMI Test Receiver	RS	ESCS 30	834115/006	2022-07-15	2023-07-14
Spectrum	HP/Agilent	E4407B	MY50441392	2022-07-15	2023-07-14
Spectrum	RS	FSP	1164.4391.38	2022-07-15	2023-07-14
RF Cable	Zhengdi	ZT26-NJ-NJ-8M/FA		2022-07-15	2023-07-14
RF Cable	Zhengdi	7m		2022-07-15	2023-07-14
Pre-Amplifier	Schwarebeck	BBV9743	#218	2022-07-15	2023-07-14
Pre-Amplifier	HP/Agilent	8449B	3008A00160	2022-07-15	2023-07-14
LISN	SCHAFFNER	NNB42	00012	2022-08-18	2023-07-17
ESPI Test Receiver	R&S	ESPI 3	100379	2022-07-15	2023-07-14
LISN	R&S	EZH3-Z5	100294	2022-07-18	2023-07-17

2.2 Automation Test Software

For Conducted Emission Test

Name	Version			
EZ-EMC	Ver.EMC-CON 3A1.1			

For Radiated Emissions

Name	Version
EMI Test Software BL410-EV18.91	V18.905
EMI Test Software BL410-EV18.806 High Frequency	V18.06

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 7 of 46

Report No.: TW2305103-01E

Date: 2023-06-07

3.0 Technical Details

3.1 Summary of test results

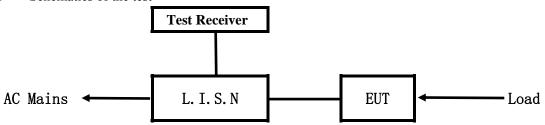
The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.203	Antenna Requirement	Pass	Complies
FCC Part 15, Paragraph 15.207	Conducted Emission Test	Pass	Complies
FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit	Field Strength of Fundamental	Pass	Complies
FCC Part 15, Paragraph 15.209	Radiated Emission Test	Pass	Complies
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Band Edge Test	Pass	Complies

3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249, ANSI C63.4:2014 and ANSI C63.10:2013

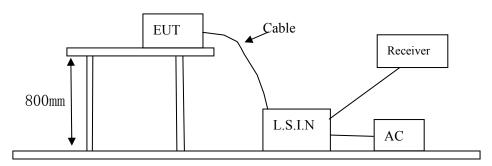
4.0 EUT Modification


No modification by SHENZHEN TIMEWAY TESTING LABORATORIES

Date: 2023-06-07

5.0 Power Line Conducted Emission Test

5.1 Schematics of the test



EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2013. The Frequency spectrum from 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.10-2013.

Test Voltage: 120V~, 60Hz Block diagram of Test setup

5.3 Configuration of the EUT

The EUT was configured according to ANSI C63.10-2013. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

79 channels are provided to the EUT

A. EUT

Device	Manufacturer	Model	FCC ID	
NI	WATA ELECTRONICS CO.,	ALECV CIDOM10	2D A VII 90419	
Nunchucks	LTD.	ALECK, CID80418	2BAXH-80418	

Report No.: TW2305103-01E Page 9 of 46

Date: 2023-06-07

B. Internal Device

Device	Manufacturer	Model	FCC ID/DOC
N/A			

C. Peripherals

Device	Manufacturer	Model	Rating
Power Supply	KEYU	KA23-0502000DEU	Input: 100-240V~, 50/60Hz, 0.35A;
			Output: DC5V, 2A

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.10-2013

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

Frequency	Limits (dB μ V)				
(MHz)	Quasi-peak Level	Average Level			
$0.15 \sim 0.50$	66.0~56.0*	56.0~46.0*			
$0.50 \sim 5.00$	56.0	46.0			
5.00 ~ 30.00	60.0	50.0			

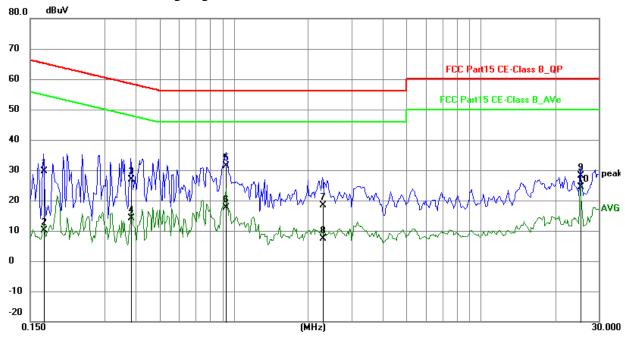
Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

5.6 Test Results:

Date: 2023-06-07

A: Conducted Emission on Live Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging + Communication by BT

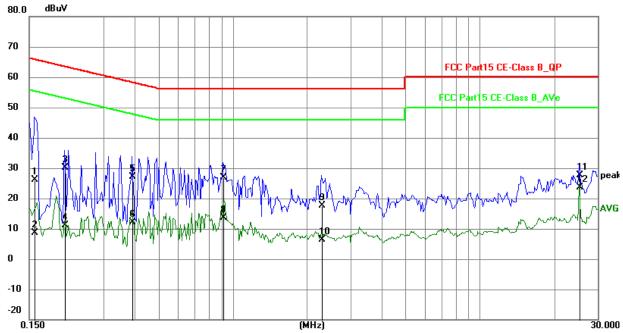
Results: Pass

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1695	19.86	9.77	29.63	64.98	-35.35	QP	Р
2	0.1695	0.41	9.77	10.18	54.98	-44.80	AVG	Р
3	0.3840	17.10	9.76	26.86	58.19	-31.33	QP	Р
4	0.3840	4.36	9.76	14.12	48.19	-34.07	AVG	Р
5	0.9300	21.71	9.79	31.50	56.00	-24.50	QP	Р
6	0.9300	7.94	9.79	17.73	46.00	-28.27	AVG	Р
7	2.2911	8.61	9.81	18.42	56.00	-37.58	QP	Р
8	2.2911	-2.34	9.81	7.47	46.00	-38.53	AVG	Р
9	25.2300	17.17	11.00	28.17	60.00	-31.83	QP	Р
10	25.2300	13.41	11.00	24.41	50.00	-25.59	AVG	Р

Date: 2023-06-07

B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging + Communication by BT

Results: Pass

Please refer to following diagram for individual

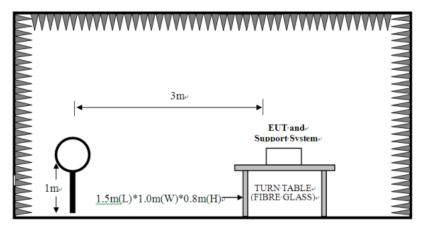
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1578	16.46	9.78	26.24	65.58	-39.34	QP	Р
2	0.1578	-1.14	9.78	8.64	55.58	-46.94	AVG	Р
3	0.2085	20.39	9.75	30.14	63.26	-33.12	QP	Р
4	0.2085	1.29	9.75	11.04	53.26	-42.22	AVG	Р
5	0.3918	17.30	9.76	27.06	58.03	-30.97	QP	Р
6	0.3918	2.36	9.76	12.12	48.03	-35.91	AVG	Р
7	0.9144	17.19	9.79	26.98	56.00	-29.02	QP	Р
8	0.9144	3.96	9.79	13.75	46.00	-32.25	AVG	Р
9	2.2872	7.70	9.81	17.51	56.00	-38.49	QP	Р
10	2.2872	-3.40	9.81	6.41	46.00	-39.59	AVG	Р
11	25.2300	16.61	11.00	27.61	60.00	-32.39	QP	Р
12	25.2300	12.61	11.00	23.61	50.00	-26.39	AVG	Р

The report refers only to the sample tested and does not apply to the bulk.

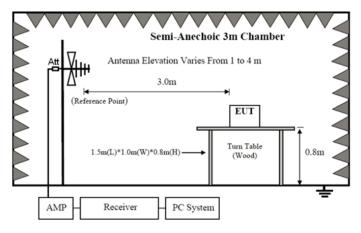
This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2023-06-07



6 Radiated Emission Test

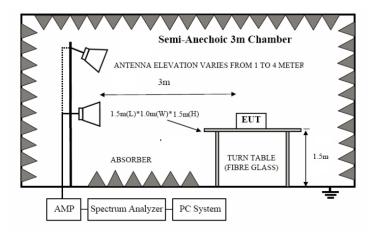

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz (Note: for Fundamental frequency radiated emission measurement, RBW=3MHz, VBW=10MHz). Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz

The report refers only to the sample tested and does not apply to the bulk.


This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2023-06-07

For radiated emissions above 1GHz

- 6.2 Configuration of The EUT
 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.
- 6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

Fundamental Frequency	Field Strength of Fundamental (3m)			Field Strength of Harmonics (3m)		
(MHz)	mV/m	dBuV/m		uV/m	dBuV/m	
2400-2483.5	50	94 (Average)	114 (Peak)	500	54 (Average)	74 (Peak)

Note:

- 1. RF Field Strength (dBuV) = 20 log RF Voltage (uV)
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

Page 14 of 46

Report No.: TW2305103-01E

Date: 2023-06-07

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

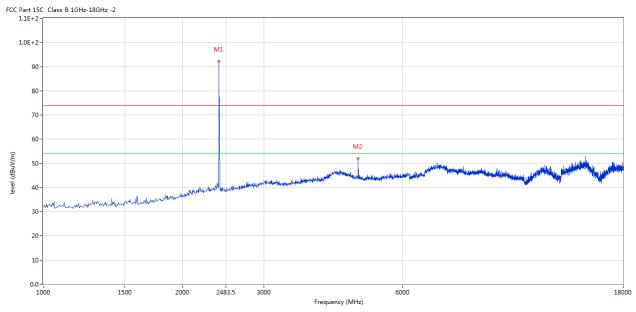
Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
0.009-0.490	3	20log(2400/F(kHz)) +40log (300/3)
0.490-1.705	3	20log(24000/F(kHz)) +40log (30/3)
1.705-30	3	69.5
30-80	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK. For fundamental measurement, PK detector used.
- 5. The three modulation modes of GFSK, Pi/4D-QPSK and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.
- 6. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 7. Battery fully charged was used during the test.

Report No.: TW2305103-01E Page 15 of 46

Date: 2023-06-07

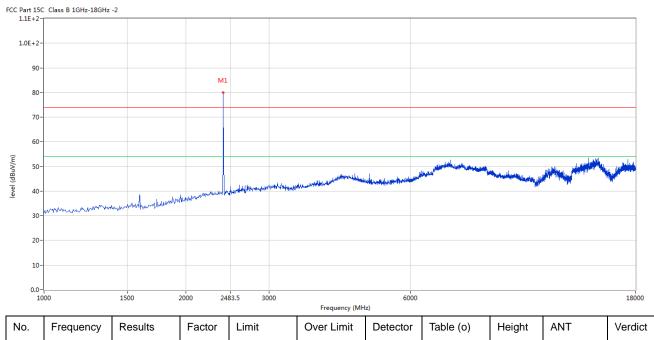


6.5 Test result

A Fundamental & Harmonics Radiated Emission Data

Please refer to the following test plots for details: Low Channel-2402MHz

Horizontal

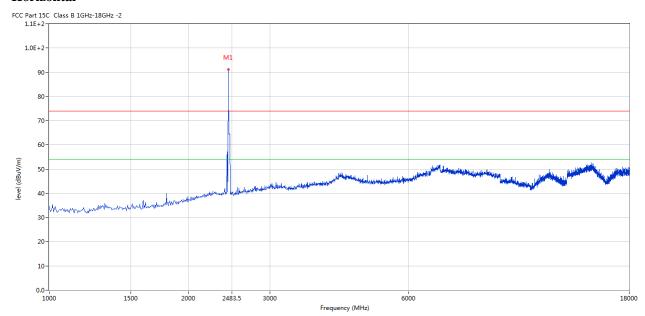

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2402	92.37	-3.57	114.0	-21.63	Peak	260.00	100	Horizontal	Pass
2	4802.799	51.90	3.12	74.0	-22.10	Peak	255.00	100	Horizontal	Pass

Report No.: TW2305103-01E Page 16 of 46

Date: 2023-06-07

Vertical

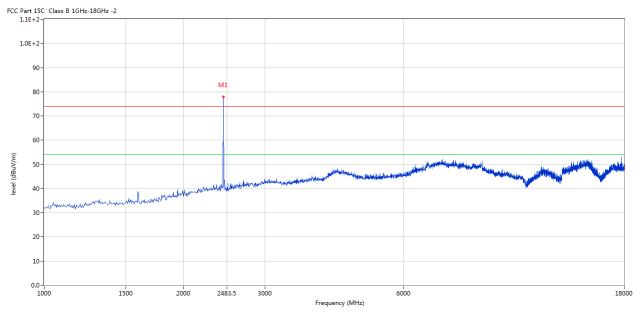
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2402	80.09	-3.57	114.0	-33.91	Peak	204.00	100	Vertical	Pass


Report No.: TW2305103-01E Page 17 of 46

Date: 2023-06-07

Please refer to the following test plots for details: Middle Channel-2441MHz

Horizontal

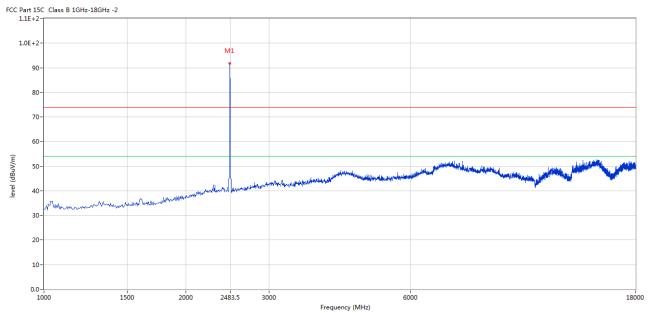

Ī	No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
	1	2441	89.20	-3.57	114.0	-24.80	Peak	257.00	100	Horizontal	Pass

Report No.: TW2305103-01E Page 18 of 46

Date: 2023-06-07

Vertical

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2441	77.84	-3.57	114.0	-36.16	Peak	34.00	100	Vertical	Pass

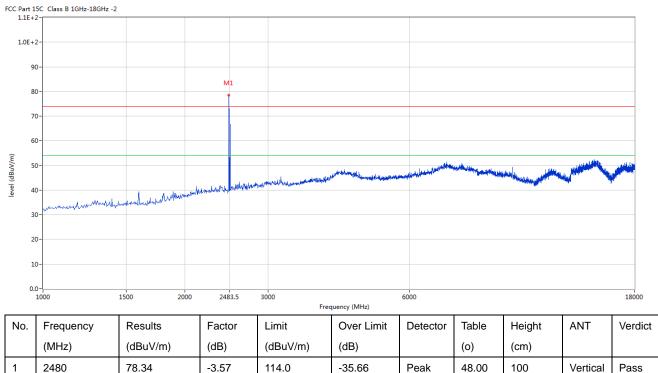

Report No.: TW2305103-01E Page 19 of 46

Date: 2023-06-07

Please refer to the following test plots for details: High Channel-2480MHz

Horizontal

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	2480	86.88	-3.57	114.0	-27.12	Peak	253.00	100	Horizontal	Pass


Page 20 of 46

Date: 2023-06-07

Report No.: TW2305103-01E

Vertical

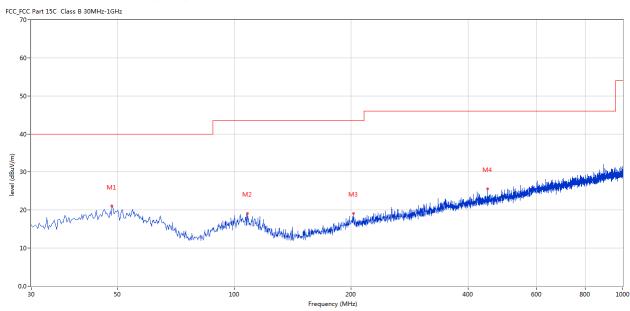
Pass 2480 78.34 -3.57 114.0 -35.66 48.00 100 Vertical Peak

Note: (1) Emission Level = Reading Level + Antenna Factor + Cable Loss-Amplifier

- (2) Margin=Emission-Limits
- (3) According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (4) For test purpose, keep EUT continuous transmitting
- (5) For emission above 18GHz and Below 30MHz, It is only the floor noise and less than the limit for more than 20dB. No necessary to take down.
- (6) the measured PK value less than the AV limit.

Report No.: TW2305103-01E Page 21 of 46

Date: 2023-06-07



B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

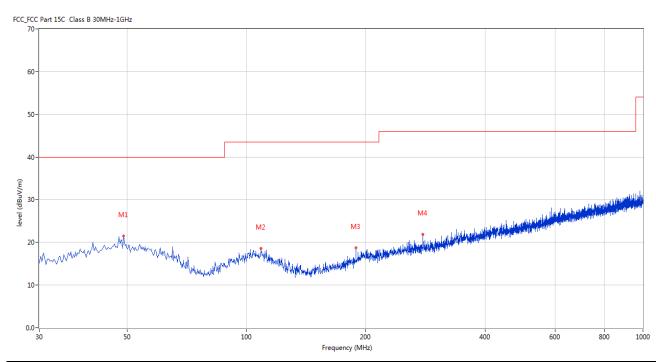
Results: Pass

Please refer to following diagram for individual

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1	48.425	21.03	-11.22	40.0	-18.97	Peak	0.00	100	Horizontal	Pass
2	108.065	19.17	-13.42	43.5	-24.33	Peak	330.00	100	Horizontal	Pass
3	202.859	19.16	-13.42	43.5	-24.34	Peak	213.00	100	Horizontal	Pass
4	449.420	25.64	-8.01	46.0	-20.36	Peak	216.00	100	Horizontal	Pass

Report No.: TW2305103-01E Page 22 of 46

Date: 2023-06-07



Radiated Emission In Vertical (30MHz----1000MHz)

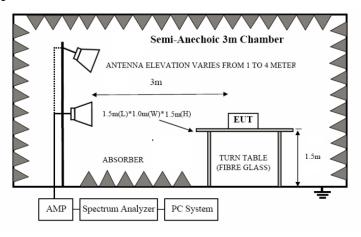
EUT set Condition: Keep Tx transmitting

Results: Pass

Please refer to following diagram for individual

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	48.910	21.48	-11.21	40.0	-18.52	Peak	208.00	100	Vertical	Pass
2	108.793	18.54	-13.50	43.5	-24.96	Peak	297.00	100	Vertical	Pass
3	188.798	18.70	-14.35	43.5	-24.80	Peak	174.00	100	Vertical	Pass
4	278.500	21.85	-11.56	46.0	-24.15	Peak	270.00	100	Vertical	Pass

Date: 2023-06-07



7. Band Edge

7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.10–2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) Set Spectrum as RBW=1MHz, VBW=3MHz and Peak detector used for PK value. RBW=1MHz, VBW=10Hz and Peak detector used for AV value.
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

7. 2 Radiated Test Setup

For the actual test configuration, please refer to the related items – Photos of Testing

7.3 Configuration of the EUT

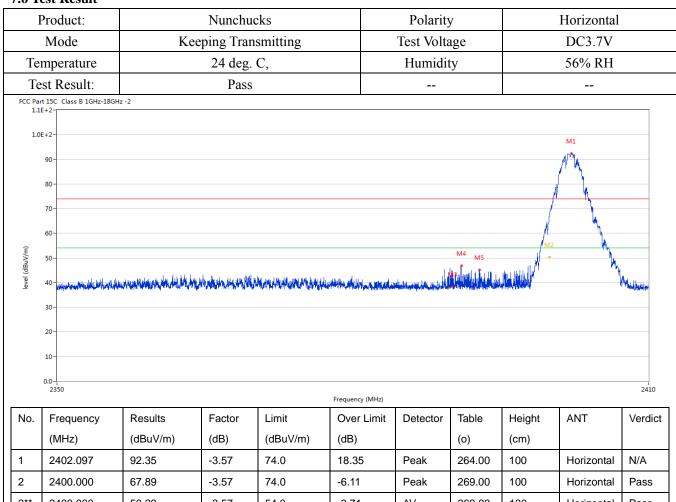
Same as section 5.3 of this report

7.4 EUT Operating Condition

Same as section 5.4 of this report.

7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.


The report refers only to the sample tested and does not apply to the bulk.

Report No.: TW2305103-01E Page 24 of 46

Date: 2023-06-07

7.6 Test Result

١	۱o.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(o)	(cm)		
1		2402.097	92.35	-3.57	74.0	18.35	Peak	264.00	100	Horizontal	N/A
2		2400.000	67.89	-3.57	74.0	-6.11	Peak	269.00	100	Horizontal	Pass
2	**	2400.000	50.29	-3.57	54.0	-3.71	AV	269.00	100	Horizontal	Pass
3		2390.000	38.04	-3.53	74.0	-35.96	Peak	212.00	100	Horizontal	Pass
4	ļ	2390.895	46.74	-3.53	74.0	-27.26	Peak	164.00	100	Horizontal	Pass
5	;	2392.724	45.10	-3.54	74.0	-28.90	Peak	180.00	100	Horizontal	Pass

Page 25 of 46 Report No.: TW2305103-01E

	Product:		Nuncl	nucks		Detect	tor		Vertical	
	Mode]	Keeping Tr	ansmitting		Test Vol	tage		DC3.7V	
Те	mperature		24 de	g. C,		Humid	ity	:	56% RH	
Τe	est Result:		Pa	SS						
C Part : 1.1E+	15C Class B 1GHz-18GHz	: -2								
1.0E+	-2-									
g	90-									
g	30-								M1	
								1	\frown	
	70-									
	50-					M4	N	15		
5	50-					e M	3	. I M2	-+	
	10-	and the second	throughty proportion to all	بالمعدد والمساولة والمالية والمالية	. And the property of the			-		Addreson to the second
3	10-a	e gelatigen kilike kylle skelennie	direction are more than and	usi sa dalah dari sa saka	فلمورض ويتباط للبيالة	Marilland I and a shall had		-		Alada Hadd
3	80-	re gelenteren kirik eta kundik eta kunsur	Uracibitya siyaartiista Level	anterakhidan diren tananka	المناهور بالمناسبين ويتدا وألماء أل	in sii inahija masa ka				halanda) dhada
3 2 1	20	ne o davilne na krije u krijek va planovice	through dynamics that could	noperaribility desires annuals		Marihadi Janas Jaja Mari				
3 2 1	20-	re gelanteren kirjak elepiske kirjak en server	derandering and the desired and the	, was the substitute of the su	Frequency (MHz)	Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-				
1 0	20	Results	Factor	Limit		Detector	Table	Height	ANT	2
1 0	20	and the second of a state of the second of t			Frequency (MHz)		Table (o)	Height (cm)	ANT	2
1 0 No.	20- 20- 2350 Frequency	Results	Factor	Limit	Frequency (MHz) Over Limit				ANT Vertical	2
1 0 No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Frequency (MHz) Over Limit (dB)	Detector	(o)	(cm)		Verdi
1 0 No. 1 2 2	Frequency (MHz) 2402.022	Results (dBuV/m) 79.65	Factor (dB) -3.57	Limit (dBuV/m) 74.0	Frequency (MHz) Over Limit (dB) 5.65	Detector Peak	(o) 222.00	(cm)	Vertical	Verdi N/A Pass
2 2 1	Frequency (MHz) 2402.022 2400.000	Results (dBuV/m) 79.65 57.97	Factor (dB) -3.57	Limit (dBuV/m) 74.0	Frequency (MHz) Over Limit (dB) 5.65 -16.03	Detector Peak Peak	(o) 222.00 233.00	(cm) 100 100	Vertical Vertical	2. Verdi
3 2 2 1 1 0 0 No. 11 2 2 2**	Frequency (MHz) 2402.022 2400.000 2400.000	Results (dBuV/m) 79.65 57.97 43.32	Factor (dB) -3.57 -3.57	Limit (dBuV/m) 74.0 74.0 54.0	Frequency (MHz) Over Limit (dB) 5.65 -16.03 -10.68	Detector Peak Peak AV	(o) 222.00 233.00 233.00	(cm) 100 100	Vertical Vertical Vertical	Verd N/A Pass Pass

Page 26 of 46 Report No.: TW2305103-01E

F	Product:		N	lunchucks			Polari	ty	Horizo	ntal
	Mode		Keepir	ng Transmitti	ng		Test Vol	tage	DC3.7	7V
Teı	mperature		2	4 deg. C,			Humid	ity	56% F	RH
Те	st Result:			Pass						
C Part 1:	5C Class B 1GHz-18GH 2-r	z -2								
1.0E+2										
1.00+2	2-			11						
90	0-		∨ا "المرير	11 11						
80	0-									
70	0-		/	"\						
60	0-		_/							
50	0-		\mathcal{L}	NAME OF THE PROPERTY OF THE PR	2					
	*	المرافق	r		Photograph line is	D				
40					WALL STATE	and the state of the second	المه علم حاملها الله المألولة			ner iglanfaspi esti
30										
20	0-									
10	0-									
0.0	0-									
	2470			248	33.5 Frequency (MHz)					2
۱o.	Frequency	Results	Factor	Limit	Over	Detector	Table	Height	ANT	Verd
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit (dB)		(o)	(cm)		
1	2479.958	86.76	-3.57	74.0	12.76	Peak	247.00	100	Horizontal	N/A
2	2483.500	50.43	-3.57	74.0	-23.57	Peak	249.29	100	Horizontal	Pass

Page 27 of 46

Report No.: TW2305103-01E

Date: 2023-06-07

]	Product:		N	Vunchucks			Detect	or	Vertic	al
	Mode		Keepir	ng Transmitti	ng	-	Test Volt	age	DC3.7	'V
Те	emperature		2	24 deg. C,			Humid	ity	56% F	H
Te	est Result:			Pass						
	rt 15C Class B 1GHz-18G	Hz -2								
1.0	DE+2-									
	90-									
			M	11						
	80-			To No.						
	70-		1	M						
			J	*						
(c)	60-			M						
(dBuV/m)	50 -	ı		Man Man Mark						
level (dBuV/m)		odeological planta processor additional planta processor and additional planta processor and additional planta		Months Market		atalah dayan dak dak bahar da da		hijl djibhadi kalahadaya	harouskette de date de l'Heide	lk i halija kalify a
level (dBuV/m)	50-	nderlahranissischen der		MA MA	-saduk, t.en.intishkilabedaliliyes	waldan makalatika dal	1-	hajlejákok záboles azkodóve	indromation of the plant of the	de Laliphedhja
level (dBuV/m)	50- 40	ente da pravigita de la constanta da la		MA MA	<i>~مما والمعالم المعالم المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة</i>	wakish mukukishi dal		hajlejákkelt száveles askondáro	inascensia pie Alexandria del Primina	de hally backet
level (dBuV/m)	50- 40-244-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	nder de francississe de de service de de de la constanta de de de la constanta de la constanta de de de de la c		Man	- Nadari, dan kepidah Makada di dingan	arabita ya da ka		in Naddhain a shullain a a buallain	hateenshippe Meed alim Parith	de Leavigh and the a
level (dBuV/m)	30- 20- 10-	neller de lyssering face de les agrecies entre de les de les agrecies de les de				erahih perindek kanada	locales the Hill to play as well	hud eidhein e ainn ne achtainn	inasografiya dheydada il Parilla	
level (dBuV/m)	30- 20-	ndich de Princip des Leis des sécritos produkt		2483.		wood day was a fa		ivi l (idi lapin) zin ^l eket ziz kendepe	indreenshippi Meedahii ji Panda	2500
	30- 20- 10-	Results	Factor		5	Detector	Table	Height	ANT	2500
(m/\mu/\mu/\mu) level (m/\mu/\mu) o.	30 - 20 - 10 - 2470		Factor (dB)	2483.	5 Frequency (MHz)					2500
	30- 20- 10- 2470	Results		2483.: Limit	Frequency (MHz) Over Limit		Table	Height		

Note: 1. The PK emission level less than the AV limit. No necessary to record the AV emission level.

2. For Restricted band test, the three modulation modes of GFSK, Pi/4D-QPSK and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Date: 2023-06-07

Page 28 of 46

8.0 Antenna Requirement

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a PCB antenna. The antenna gain is 2.0dBi Max. It fulfills the requirement of this section. Test Result: Pass

Page 29 of 46

Report No.: TW2305103-01E

FSK										
Product:	1	Nunchucks	5		Т	est Mode:		Keep tran	smitting	
Mode	Keepi	ng Transn	nitting		Te	est Voltage		DC3	.7V	
Temperature		24 deg. C,				Humidity		56%	RH	
Test Result:	Pass					Detector		PI	Κ	
0dB Bandwidth	{	871.74kHz							-	
Ref Lvl	Marker ndB	1 [T1 r	ndB] .00 dB		3W 3W	30 ki		· Att	20 di	3
10 dBm	BW 871	L.743486	597 kHz	sı	TW	8.5 m	s Uı	nit	dI	3m
10						v ₁	[T1]	- (.31 dE	3m
			1					2.40183		
0			1	\		ndB		20	.00 dE	3
			7	J. J.		BW		1.74348		
-10			\checkmark	\	کم	$ abla_{\mathrm{T1}}$	[T1]	-19	. , , , , , ,	
		T1/~				$\bigvee_{\mathrm{T2}} \nabla_{\mathrm{T2}}$	[T1]	2.40154 -19		
-20		- 				ty.		2.40241	182 GH	
1MAX						Y	^			1
							4			
-40	V						/w	~~		
-50								J.	Luy	
-60 V									<u></u>	
-70										
-80										$-\parallel$
-90 Center 2.402	CHE		300	leur/				- Cno	n 3 MH	

Page 30 of 46

Report No.: TW2305103-01E

GFSK										
Product:		N-	unchucks			Test Mode:		Keep tra	ansmitting	
Mode		Keepin	g Transmi	tting	Ţ.	Гest Voltage		DC	C3.7V	
Temperature		2	4 deg. C,			Humidity		56% RH		
Test Result:			Pass			Detector		PK		
20dB Bandwidth		87	71.74kHz							
<u>ka</u>		Marker	1 [T1 r	ndB]	RBW	30 ki	Hz R	F Att	20 dB	
Ref Lvl		ndB		00 dB	VBW					
10 dBm		BW 871	.743486	597 kHz	SWT	8.5 m	s Ui	nit	dBm	
						v 1	[T1]	- (0.34 dBm	A
0				1				2.44083	3467 GHz	
				\bigwedge	\	ndB	0.5	20	0.00 dB	
				\ \f\'		BW ▼ _{T1}	87 [T1]	1.74348 -19	8697 kHz 9.94 dBm	
-10				M	Ŋ	\wedge		2.44054	1008 GHz	
			T1			V _{T2} ∨ _{T2}	[T1]	-19	9.87 dBm	
-20			~~			M		2.44141	1182 GHz	1MA
		^				\				IMA
-30							\			
-40	\mathcal{M}	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					W	~\		
-50									allow in	
-60 0									70MA	
-70										
-80										
-90 Center 2	.441 G	Hz		300	kHz/			Spa	an 3 MHz	
Date: 31	l.MAY.2	023 11	:40:26							

Page 31 of 46

Report No.: TW2305103-01E

FSK											
Product:		N	unchucks			Т	est Mode:		Keep tra	ansmitting	
Mode		Keepin	g Transmi	tting		To	est Voltage		DC	23.7V	
Temperature		2	4 deg. C,]	Humidity		56% RH		
Test Result:			Pass				Detector]	PK	
20dB Bandwidth		87	71.74kHz								
r		Marker	1 [T1 n	ndB]	R	BW	30 kF	Iz Rl	F Att	20 dB	
Ref Lvl		ndB	20.	00 dB	V	BW	100 kF	łz			
10 dBm		BW 871	1.743486	97 kHz	S	WT	8.5 ms	s Ui	nit	dBm	ı
10							\mathbf{v}_1	[T1]	-0	.46 dBm	A
				1					2.47983	467 GHz	
0				\\-\-\	\		ndB		20	.00 dB	
					~~~		BW ▼ _{T1}	87 [T1]	1.74348	697 kHz	
-10				<del>/</del>		7	1		2.47954		
			$_{ ext{T}1}$				\	[T1]	-20		
-20			~~				<del>- K</del>		2.48041	182 GHz	
1MAX			/				٧				1MA
-30			<u>/</u>					\			
-40	/\u	V						M	M		
-60 <b>MMWM</b>	, of								W	~~\	
-60										*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-70											
-80											
-90	2.48 GH	7.		300	kHz/				gn:	n 3 MHz	
	2.40 GH 31.MAY.2		.40.15	300	12114/				SPS	5 1.1112	
Date: 3	OI.MAY.2	.UZ3 II	:42:15								

Page 32 of 46

Report No.: TW2305103-01E



Product:		Nunchucks	<u>'</u>		Т	est Mode:		Keep tran	smitting	
Mode	K aa	ping Transm				est Voltage		DC3		
Temperature	NCC	24 deg. C,			<del>                                     </del>	Humidity		56% RH		
Test Result:		Pass			_	Detector				
20dB Bandwidth		1.232MHz								
200D Dandwidtii		Marker 1 [T1 ndB]								
Ref Lvl	Marke ndB		oo db		BW BW	30 ki 100 ki		F Att	20 dB	
10 dBm	BW	1.232464			WT	8.5 m		nit	dBm	a
10						_				1
			_			<b>v</b> ₁	[T1]	-0	.31 dBm 467 GHz	
0			T A			ndB	,	2.40183	.00 dB	
			/\ /	\		BW		1.23246		
-10			$^{\prime}$	$\sim\sim$	٠,		[T1]	-20	.56 dBm	1
			<b>,</b>		~	$\bigvee \bigvee \bigvee \Big $		2.40138	377 GHz	
-20		TK				▽ <del>†</del> 1	2[T1]		.35 dBm	
1MAX	ر	<i>)</i>						2.40261	623 GHz	11
-30										
-40							<i>\</i>	m	\\\\	
-50										
-60										
-70										
-80										
-90										
Center 2.4	102 GHz		300	kHz/				Spa	n 3 MHz	

Page 33 of 46

Report No.: TW2305103-01E



I/4DQPSK			, ,		I				V can transmitting			
Product:			unchucks				est Mode:			ansmitting		
Mode			g Transmi	tting			est Voltage	;	DC3.7V			
Temperature		2	4 deg. C,				Humidity		56% RH PK			
Test Result:			Pass				Detector					
0dB Bandwidth		1.	232MHz									
<u> </u>		Marker	1 [T1 n	ndB]	R	BW	30 k	Hz Ri	F Att	20 dB		
Ref Lvl		ndB	20.	00 dB	V	BW	100 k	Hz				
10 dBm		BW 1	1.232464	193 MHz	SI	TW	8.5 m	s Uı	nit	dBm	ı	
10							lacksquare1	[T1]	- (	.33 dBm		
				1					2.44083	467 GHz	A	
0				\ \ \ /			ndE	3	20	.00 dB		
					lm 1		BW		1.23246	493 MHz		
-10			$\sim$	$\mathcal{N}$	· V(	^_		[T1]	-20	.47 dBm		
							$\wedge$		2.44038			
-20		T	i."				***	2[T1]	-20			
1MAX									2.44161	.623 GHz	1M	
- 30												
-50	~	W						γ.	m	<b>\\\</b>		
30												
-60												
-70												
-80												
-90 Center 2	2.441 G	Hz		300	kHz/				Spa	ın 3 MHz		
Date: 3	1.MAY.2	000 11	:55:57									

Page 34 of 46

Report No.: TW2305103-01E



Product:	Nunchucks		Test Mode:	Keep tra	ansmitting		
Mode	Keeping Transmitt	ting	Test Voltage		C3.7V		
Temperature	24 deg. C,		Humidity	56% RH PK			
Test Result:	Pass		Detector				
20dB Bandwidth	1.232MHz	_		_			
Ŕ	Marker 1 [T1 no	dB] R	BW 30 kHz	RF Att	20 dB		
Ref Lvl			BW 100 kHz				
10 dBm	BW 1.2324649	93 MHz S	WT 8.5 ms	Unit	dBm		
10			<b>▼</b> 1 ['	г1] —(	1.40 dBm		
		<u>1</u>		2.47983			
0		$\Lambda$	ndB	20	0.00 dB		
		/ \/ \/\	BW ▼ _{TT}	1.23246			
-10		~ ·   · ·	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	[T1] -20 2.47938	3.18 dBm 3377 GHz		
	TA TO		<b>▽</b> 1≉2	[T1] -20			
-20	<del>-    </del>		7	2.48061	623 GHz		
-30			\		1M		
-40	www.			www.	\\\\		
-50							
-60							
-70							
-80							
-90 Center 2.4	48 GHZ	300 kHz/		Cha	an 3 MHz		

Page 35 of 46

Report No.: TW2305103-01E



Product:	1	Nunchucks	\$		Te	est Mode:		Keep transmitting			
Mode	Keepi	ng Transm	itting		Te	st Voltage	DC3.7V				
Cemperature		24 deg. C,			I	Iumidity	56% RH				
Γest Result:		Pass			I	Detector		Pk	ζ		
lB Bandwidth		1.232MHz	· ·								
	Marker	1 [T1 n	ndB]	RI	ЗW	30 k	Hz Rl	7 Att	20 dB		
Ref Lvl	ndB	20.	00 dB	VI	ЗW	100 k	Hz				
10 dBm	BW 3	L.232464	193 MHz	SI	$T^{N}$	8.5 m	s Uı	nit	dBm		
10						<b>v</b> ₁	[T1]	<b>–</b> 0	.98 dBm		
				1				2.40216	533 GHz		
0			\	$\setminus$		ndE	3	20	.00 dB		
				\~\ \		$lacktriangledown_{f T1}$	[T1]	1.23246 -21			
10		-	· ·		V	V~	[TT]	2.40138			
						$\nabla$	2[T1]	-20	.53 dBm		
20	7	<u></u>					7	2.40262	224 GHz		
1MAX							4				
30											
40	$\wedge \wedge \wedge$						M	$\sim\sim$	$\mathcal{M}$		
50											
60											
70											
80											
Center 2.4	02 GHz		300	kHz/				Spa	n 3 MHz		

Page 36 of 46

Report No.: TW2305103-01E



8DPSK											
Product:		N ⁻	unchucks			Test Mode	-	Keep tra	ansmitting		
Mode		Keepin	g Transmi	tting		Test Voltage	e	DC	23.7V		
Temperature		2	4 deg. C,			Humidity		56% RH			
Test Result:			Pass			Detector		PK			
20dB Bandwidth		1.	232MHz								
₹ <b>À</b>		Marker	1 [T1 r	ndB]	RBV	1 30 k	Hz R	F Att	20 dB		
Ref Lvl		ndB		00 dB	VBV				_		
10 dBm		BW 1	.232464	93 MHz	SWI	8.5 m	ns U	nit	dBm	l •	
						<b>v</b> ₁	[T1]	-1	1.00 dBm	A	
				1				2.44083	467 GHz		
				$\bigwedge$	$\land$	nd: BW	8	1.23246	0.00 dB 5493 MHz		
1.0			0 (		m /	$\bigvee_{\mathbf{T}}^{BW}$	[ 1 [T1]	-21	$1493~\mathrm{MHz}$		
-10			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~	V			2.44038			
		T				$\triangle^{\mathcal{J}}$	₂ [T1]	-20	.51 dBm		
-20		7	<u>+</u>				Y	2.44162	224 GHz	1MA	
							٦			11111	
-30											
-40	~~~	$\checkmark$					hy	~~~	$\sim$		
-50											
-60											
-70											
-80											
-90 Center 2	.441 GH	łz		300	kHz/			Spa	an 3 MHz		
Date: 31	l.MAY.2	023 14	:30:12								

Page 37 of 46

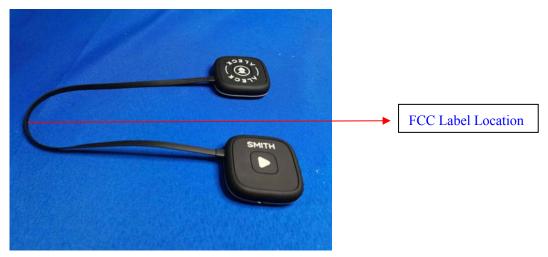
Report No.: TW2305103-01E



BDPSK											
Product:		Nι	unchucks			Т	est Mode:		Keep tra	nsmitting	
Mode	]	Keeping	g Transmi	tting		To	est Voltage		DC	3.7V	
Temperature		24	4 deg. C,			Humidity			56% RH		
Test Result:			Pass			Detector			F	PK	
20dB Bandwidth		1.3	232MHz								
Ŕ	Ма	arker	1 [T1 n	idB]	R	BW	30 k	Hz Rl	F Att	20 dB	
Ref Lvl	nd			00 dB	V	BW	100 k				
10 dBm	BW	1 1	.232464	93 MHz	S	WT	8.5 m	s Uı	nit	dBm	ı
							$\mathbf{v}_1$	[T1]	-1	.03 dBm	A
				1					2.47983	467 GHz	
0				/ /	\ \		ndE	3	20	.00 dB	
					W	$\lfloor \ \rfloor$	BW ▼ _{T1}	[T1]	1.23246	493 MHz	
-10				*		$\vee$	V	_ [	2.47938		
							$\nabla_{X}$	2[T1]	-20		
-20		7	<u>L</u>					7	2.48062	224 GHz	120
IMAX								4			1MA
-30								$\overline{}$			
-40	~~~	<b>V</b>						m~	~~~	\~^\	
-50	,									V	
-60											
-70											
-80											
-90											
Center 2	.48 GHz			300	kHz/				Spa	n 3 MHz	
Date: 31	1.MAY.202	3 14	:38:49								

Report No.: TW2305103-01E Page 38 of 46

Date: 2023-06-07




#### 10.0 FCC ID Label

#### FCC ID: 2BAXH-80418

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

#### Mark Location:



Page 39 of 46

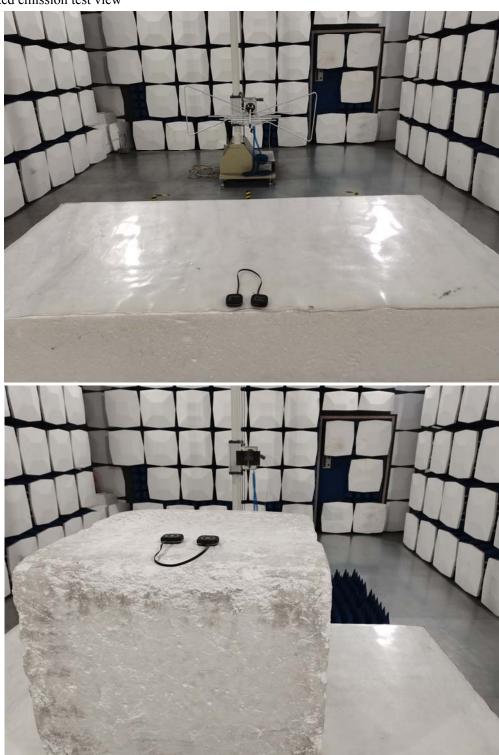
Report No.: TW2305103-01E

Date: 2023-06-07



#### 11.0 Photo of testing 11.1




Page 40 of 46

Report No.: TW2305103-01E

Date: 2023-06-07

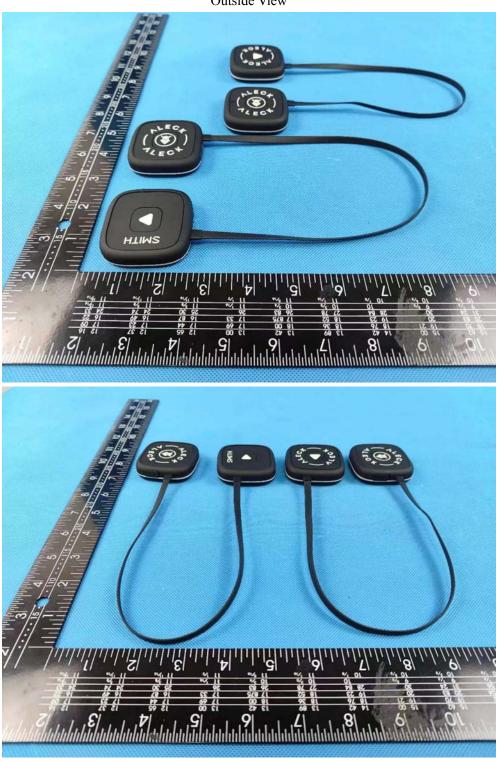


#### Radiated emission test view



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.


In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2023-06-07



#### 11.2 Photographs – EUT

#### Outside View



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Page 42 of 46

Report No.: TW2305103-01E

Date: 2023-06-07



Outside View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Report No.: TW2305103-01E Page 43 of 46



Outside View



Page 44 of 46


Report No.: TW2305103-01E

Date: 2023-06-07



Inside View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Page 45 of 46

Report No.: TW2305103-01E

Date: 2023-06-07



Inside View





The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Page 46 of 46

Report No.: TW2305103-01E

Date: 2023-06-07



Inside View





-- End of the report--

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any

discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.