

### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

# FCC PART 15 SUBPART C TEST REPORT

**FCC PART 15.247** 

Report Reference No...... CTA24120501001

FCC ID.....: : 2BGM6-S2

Compiled by

( position+printed name+signature)... File administrators Xudong Zhang

Supervised by

( position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

( position+printed name+signature)..: RF Manager Eric Wang

Date of issue.....: Dec. 12, 2024

Testing Laboratory Name ...... Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTIN

Applicant's name...... Shenzhen guo-link Technology Co., Ltd.

Shenzhen, Guangdong, China

Test specification .....:

Standard ..... FCC Part 15.247

# Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description.....Locator device

Trade Mark .....: GUO-LINK

Manufacturer ...... Shenzhen guo-link Technology Co., Ltd.

Model/Type reference......S2

Listed Models ......S3

Modulation .....: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings ...... DC 3V From battery

Result...... PASS

Report No.: CTA24120501001 Page 2 of 38

# TEST REPORT

Equipment under Test Locator device

Model /Type S2

Listed Models S3

Shenzhen guo-link Technology Co., Ltd. **Applicant** 

2F Building 3 No. 222 Huating Road Dalang Street Longhua Address CTA TESTING

Shenzhen, Guangdong, China

Manufacturer Shenzhen guo-link Technology Co., Ltd.

Address 2F Building 3 No. 222 Huating Road Dalang Street Longhua

Shenzhen, Guangdong, China

Test Result: **PASS** 

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 38 Report No.: CTA24120501001

# **Contents**

|       |          | -ESTING Con                              | itents      |                  |
|-------|----------|------------------------------------------|-------------|------------------|
|       |          | TATE                                     |             |                  |
|       | 1        | TEST STANDARDS                           |             | 4                |
|       |          | TATL                                     | , 1G        |                  |
|       | 2        | SUMMARY                                  |             | 5                |
|       | <u> </u> | 30 W W A K 1                             |             | <u>J</u>         |
|       |          |                                          |             |                  |
|       | 2.1      | General Remarks                          |             | 5                |
|       | 2.2      | Product Description*                     |             | 5                |
|       | 2.3      | Equipment Under Test                     |             | 5                |
|       | 2.4      | Short description of the Equipment under | Test (EUT)  | 5                |
|       | 2.5      | EUT configuration                        |             | 5                |
|       | 2.6      | EUT operation mode                       |             | 6                |
| CAL   | 2.7      | Block Diagram of Test Setup              |             | 6                |
| ĵ     | 2.8      | Related Submittal(s) / Grant (s)         |             | 6                |
|       | 2.9      | Modifications                            |             | 6                |
|       |          |                                          |             |                  |
|       | <u>3</u> | TEST ENVIRONMENT                         | STATE       | - <del>7</del> G |
|       | <u>-</u> | TEGT ENVIRONMENT                         |             | 55111            |
|       |          |                                          | CTA CTA     |                  |
|       | 3.1      | Address of the test laboratory           |             | 7                |
|       | 3.2      | Test Facility                            |             | 7                |
|       | 3.3      | Environmental conditions                 |             | ,                |
|       | 3.4      | Summary of measurement results           |             | 8                |
|       | 3.5      | Statement of the measurement uncertaint  | y           | 8                |
|       | 3.6      | Equipments Used during the Test          |             | 9                |
|       |          |                                          |             |                  |
|       | A C      | TEST CONDITIONS AND RESUL                | Te          | 10               |
|       | 4        | TEST CONDITIONS AND RESUL                |             | 10               |
|       |          |                                          | CTA TESTING |                  |
|       | 4.1      | AC Power Conducted Emission              |             | 10               |
|       | 4.2      | Radiated Emissions and Band Edge         | STATE       | 11               |
|       | 4.3      | Maximum Peak Output Power                | C.          | 18               |
|       | 4.4      | Power Spectral Density                   |             | 19               |
|       | 4.5      | 6dB Bandwidth                            |             | 21               |
|       | 4.6      | Out-of-band Emissions                    |             | 23               |
|       | 4.7      | Antenna Requirement                      |             | 27               |
|       |          |                                          |             |                  |
| CTATE | <u>5</u> | -51                                      | EUT         | <u> </u>         |
|       | <u>6</u> | PHOTOS OF THE EUT                        | TING        | 29               |
|       |          |                                          |             |                  |
|       |          |                                          | CTATESTING  | ESTING           |
| G     |          |                                          |             |                  |

Report No.: CTA24120501001 Page 4 of 38

#### 1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA24120501001 Page 5 of 38

# SUMMARY

#### **General Remarks**

| CTATES                         |            |               |     |  |
|--------------------------------|------------|---------------|-----|--|
| 2.1 General Remarks            |            | TEST          |     |  |
| Date of receipt of test sample |            | Dec. 05, 2024 | 75. |  |
| Testing commenced on           | To see the | Dec. 05, 2024 | CTA |  |
| Testing concluded on           | :          | Dec. 12, 2024 |     |  |

# 2.2 Product Description\*

| Testing commenced on  | : Dec. 05, 2024                                                      |
|-----------------------|----------------------------------------------------------------------|
| Testing concluded on  | Dec. 12, 2024<br>  iption*                                           |
| 2.2 Product Descr     | iption*                                                              |
| Product Description:  | Locator device                                                       |
| Model/Type reference: | S2                                                                   |
| Power supply:         | DC 3V From battery                                                   |
| Hardware version:     | CY8018 V1                                                            |
| Software version:     | V1.0                                                                 |
| Testing sample ID:    | CTA241205010-1# (Engineer sample)<br>CTA241205010-2# (Normal sample) |
| Bluetooth BLE         |                                                                      |
| Supported type:       | Bluetooth low Energy                                                 |
| Modulation:           | GFSK                                                                 |
| Operation frequency:  | 2402MHz to 2480MHz                                                   |
| Channel number:       | 40                                                                   |
| Channel separation:   | 2 MHz                                                                |
| Antenna type:         | Ceramic antenna                                                      |
| Antenna gain:         | 2.67 dBi                                                             |

# 2.3 Equipment Under Test

# Power supply system utilised

| Power supply system u | tilised |   |                     |            |     |             |     |
|-----------------------|---------|---|---------------------|------------|-----|-------------|-----|
| Power supply voltage  | :       | 0 | 230V / 50 Hz        | 123.001    | 0   | 120V / 60Hz |     |
|                       |         | 0 | 12 V DC             |            | 0   | 24 V DC     | (-9 |
| TING                  |         | • | Other (specified in | blank belo | ow) |             |     |

# Short description of the Equipment under Test (EUT)

This is a Locator device.

For more details, refer to the user's manual of the EUT.

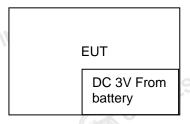
#### 2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

| 0 | -ING   |        |
|---|--------|--------|
|   | TESTIN |        |
|   | CIR    | ESTING |
|   |        | TATE   |

Report No.: CTA24120501001 Page 6 of 38


## 2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

**Operation Frequency:** 

|      | oporation i roquonoy.           |                 |
|------|---------------------------------|-----------------|
|      | Channel                         | Frequency (MHz) |
|      | 00                              | 2402            |
|      | 01                              | 2404            |
|      | 02                              | 2406            |
|      | TING                            | :               |
|      | 19                              | 2440            |
| ; GV | : TESTING                       | :               |
|      | 37                              | 2476            |
|      | 38                              | 2478            |
|      | 39                              | 2480            |
|      | 2.7 Block Diagram of Test Setup | CTATESTIN       |
|      | 2.7 Block Diagram of Test Setup | C.              |
|      |                                 |                 |
|      |                                 |                 |

# 2.7 Block Diagram of Test Setup



# Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### 2.9 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING Report No.: CTA24120501001 **Page 7 of 38** 

#### TEST ENVIRONMENT 3

# Address of the test laboratory

#### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

## Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

| Temperature:          | 23 ° C       |
|-----------------------|--------------|
| VI.                   | TES.         |
| Humidity:             | 44 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

#### AC Main Conducted testing:

| Temperature:          | 24 ° C       |
|-----------------------|--------------|
| NG                    |              |
| Humidity:             | 47 %         |
| . (                   |              |
| Atmospheric pressure: | 950-1050mbar |

|   | Allilosphene pressure. | 930-103011bai | ]    |
|---|------------------------|---------------|------|
| С | onducted testing:      | TES           | TING |
|   | Temperature:           | 24 ° C        | TESI |
|   |                        | C             | (A)  |
|   | Humidity:              | 46 %          |      |
|   |                        |               |      |
|   | Atmospheric pressure:  | 950-1050mbar  |      |

Report No.: CTA24120501001 Page 8 of 38

## 3.4 Summary of measurement results

| Test<br>Specification<br>clause | Test case                                          | Test<br>Mode | Test Channel                                                  |              | ecorded<br>Report                                             | Test result |
|---------------------------------|----------------------------------------------------|--------------|---------------------------------------------------------------|--------------|---------------------------------------------------------------|-------------|
| §15.247(e)                      | Power spectral density                             | BLE 1Mpbs    | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | BLE<br>1Mpbs | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | complies    |
| §15.247(a)(2)                   | Spectrum<br>bandwidth<br>– 6 dB bandwidth          | BLE 1Mpbs    | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | BLE<br>1Mpbs | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | complies    |
| §15.247(b)(3)                   | Maximum output<br>Peak power                       | BLE 1Mpbs    | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | BLE<br>1Mpbs | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | complies    |
| §15.247(d)                      | Band edge<br>compliance<br>conducted               | BLE 1Mpbs    | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | BLE<br>1Mpbs | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | complies    |
| §15.205                         | Band edge<br>compliance<br>radiated                | BLE 1Mpbs    | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | BLE<br>1Mpbs | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | complies    |
| §15.247(d)                      | TX spurious<br>emissions<br>conducted              | BLE 1Mpbs    | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | BLE<br>1Mpbs | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | complies    |
| §15.247(d)                      | TX spurious<br>emissions<br>radiated               | BLE 1Mpbs    | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | BLE<br>1Mpbs | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | complies    |
| §15.209(a)                      | TX spurious<br>Emissions<br>radiated<br>Below 1GHz | BLE 1Mpbs    | -/-                                                           | BLE<br>1Mpbs | -/-                                                           | complies    |
| §15.107(a)<br>§15.207           | Conducted<br>Emissions<br>< 30 MHz                 | BLE 1Mpbs    | 1NG -/-                                                       | BLE<br>1Mpbs | -/-                                                           | N/A         |

#### Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

#### 3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

| Test                                     | Range       | Measurement<br>Uncertainty | Notes |
|------------------------------------------|-------------|----------------------------|-------|
| Radiated Emission                        | 9KHz~30MHz  | 3.02 dB                    | (1)   |
| Radiated Emission                        | 30~1000MHz  | 4.06 dB                    | (1)   |
| Radiated Emission                        | 1~18GHz     | 5.14 dB                    | (1)   |
| Radiated Emission                        | 18-40GHz    | 5.38 dB                    | (1)   |
| Conducted Disturbance                    | 0.15~30MHz  | 2.14 dB                    | (1)   |
| Output Peak power                        | 30MHz~18GHz | 0.55 dB                    | (1)   |
| Power spectral density                   | -ING/       | 0.57 dB                    | (1)   |
| Spectrum bandwidth                       | -25\11      | 1.1%                       | (1)   |
| Radiated spurious emission (30MHz-1GHz)  | 30~1000MHz  | 4.10 dB                    | (1)   |
| Radiated spurious emission (1GHz-18GHz)  | 1~18GHz     | 4.32 dB                    | (1)   |
| Radiated spurious emission (18GHz-40GHz) | 18-40GHz    | 5.54 dB                    | (1)   |

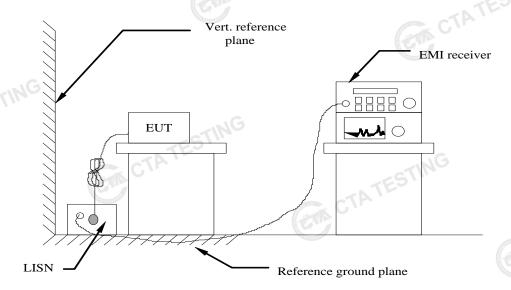
Shenzhen CTA Testing Technology Co., Ltd.

Page 9 of 38 Report No.: CTA24120501001

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

# 3.6 Equipments Used during the Test

|       | 342 marts                                 | 116                       |             |                  |                     |                         |
|-------|-------------------------------------------|---------------------------|-------------|------------------|---------------------|-------------------------|
|       | Test Equipment                            | Manufacturer              | Model No.   | Equipment<br>No. | Calibration<br>Date | Calibration<br>Due Date |
|       | LISN                                      | R&S                       | ENV216      | CTA-308          | 2024/08/03          | 2025/08/02              |
|       | LISN                                      | R&S                       | ENV216      | CTA-314          | 2024/08/03          | 2025/08/02              |
|       | EMI Test Receiver                         | R&S                       | ESPI        | CTA-307          | 2024/08/03          | 2025/08/02              |
|       | EMI Test Receiver                         | R&S                       | ESCI        | CTA-306          | 2024/08/03          | 2025/08/02              |
| CTAIL | Spectrum Analyzer                         | Agilent                   | N9020A      | CTA-301          | 2024/08/03          | 2025/08/02              |
|       | Spectrum Analyzer                         | R&S                       | FSU         | CTA-337          | 2024/08/03          | 2025/08/02              |
|       | Vector Signal generator                   | Agilent                   | N5182A      | CTA-305          | 2024/08/03          | 2025/08/02              |
|       | Analog Signal<br>Generator                | R&S                       | SML03       | CTA-304          | 2024/08/03          | 2025/08/02              |
| G     | WIDEBAND RADIO<br>COMMUNICATION<br>TESTER | CMW500                    | R&S         | CTA-302          | 2024/08/03          | 2025/08/02              |
|       | Temperature and humidity meter            | Chigo                     | ZG-7020     | CTA-326          | 2024/08/03          | 2025/08/02              |
|       | Ultra-Broadband<br>Antenna                | Schwarzbeck               | VULB9163    | CTA-310          | 2023/10/17          | 2026/10/16              |
|       | Horn Antenna                              | Schwarzbeck               | BBHA 9120D  | CTA-309          | 2023/10/13          | 2026/10/12              |
|       | Loop Antenna                              | Zhinan                    | ZN30900C    | CTA-311          | 2023/10/17          | 2026/10/16              |
|       | Horn Antenna                              | Beijing Hangwei<br>Dayang | OBH100400   | CTA-336          | 2023/10/17          | 2026/10/16              |
|       | Amplifier                                 | Schwarzbeck               | BBV 9745    | CTA-312          | 2024/08/03          | 2025/08/02              |
|       | Amplifier                                 | Taiwan chengyi            | EMC051845B  | CTA-313          | 2024/08/03          | 2025/08/02              |
|       | Directional coupler                       | NARDA                     | 4226-10     | CTA-303          | 2024/08/03          | 2025/08/02              |
|       | High-Pass Filter                          | XingBo                    | XBLBQ-GTA18 | CTA-402          | 2024/08/03          | 2025/08/02              |
| CTATE | High-Pass Filter                          | XingBo                    | XBLBQ-GTA27 | CTA-403          | 2024/08/03          | 2025/08/02              |
|       | Automated filter bank                     | Tonscend                  | JS0806-F    | CTA-404          | 2024/08/03          | 2025/08/02              |
|       | Power Sensor                              | Agilent                   | U2021XA     | CTA-405          | 2024/08/03          | 2025/08/02              |
|       | Amplifier                                 | Schwarzbeck               | BBV9719     | CTA-406          | 2024/08/03          | 2025/08/02              |
|       |                                           |                           |             |                  |                     | 761                     |


| Test Equipment    | Manufacturer          | Model No.   | Version number | Calibration<br>Date | Calibration<br>Due Date |
|-------------------|-----------------------|-------------|----------------|---------------------|-------------------------|
| EMI Test Software | Tonscend              | TS®JS32-RE  | 5.0.0.2        | N/A                 | N/A                     |
| EMI Test Software | Tonscend              | TS®JS32-CE  | 5.0.0.1        | N/A                 | N/A                     |
| RF Test Software  | Tonscend              | TS®JS1120-3 | 3.1.65         | N/A                 | N/A                     |
| RF Test Software  | re Tonscend TS®JS1120 |             | 3.1.46         | N/A                 | N/A                     |
| GIA C.            | GW C                  | TATESTIN    | - cT           | TESTING             |                         |

Report No.: CTA24120501001 Page 10 of 38

# TEST CONDITIONS AND RESULTS

## **AC Power Conducted Emission**

#### **TEST CONFIGURATION**



# **TEST PROCEDURE**

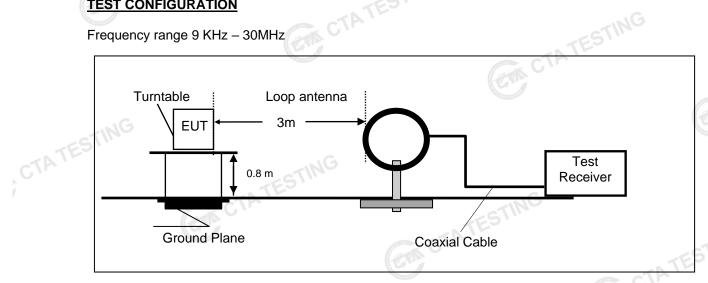
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

#### **AC Power Conducted Emission Limit**

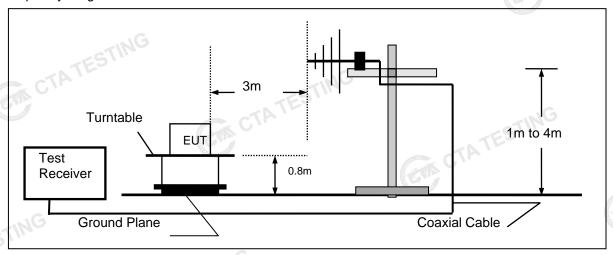
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Frequency range (MHz)                        | Limit (dBuV) |           |  |  |
|----------------------------------------------|--------------|-----------|--|--|
| Frequency range (Miriz)                      | Quasi-peak   | Average   |  |  |
| 0.15-0.5                                     | 66 to 56*    | 56 to 46* |  |  |
| 0.5-5                                        | 56           | 46        |  |  |
| 5-30                                         | 60           | 50        |  |  |
| * Decreases with the logarithm of the freque | ncy.         |           |  |  |

#### **TEST RESULTS**

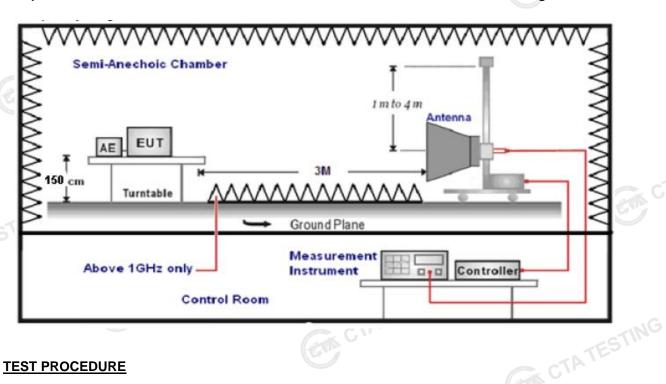

The EUT is powered by the Battery, so this test item is not applicable for the EUT.

Page 11 of 38 Report No.: CTA24120501001


# 4.2 Radiated Emissions and Band Edge

#### **TEST CONFIGURATION**

Frequency range 9 KHz – 30MHz




Frequency range 30MHz - 1000MHz



Frequency range above 1GHz-25GHz

Page 12 of 38 Report No.: CTA24120501001



#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states:

| Test Frequency range | Test Antenna Type          | Test Distance |
|----------------------|----------------------------|---------------|
| 9KHz-30MHz           | Active Loop Antenna        | 3             |
| 30MHz-1GHz           | Ultra-Broadband Antenna    | 3             |
| 1GHz-18GHz           | Double Ridged Horn Antenna | 3             |
| 18GHz-25GHz          | Horn Anternna              | 1             |

Setting test receiver/spectrum as following table states:

| Test Frequency range                              | est Frequency range Test Receiver/Spectrum Setting                                                        |      |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------|--|
| 9KHz-150KHz                                       | 9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                            |      |  |
| 150KHz-30MHz                                      | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                                       | QP   |  |
| 30MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto |                                                                                                           | QP   |  |
| 1GHz-40GHz                                        | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak |  |

#### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

#### FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
|---------------------------|--------------------------------------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |

Report No.: CTA24120501001 Page 13 of 38

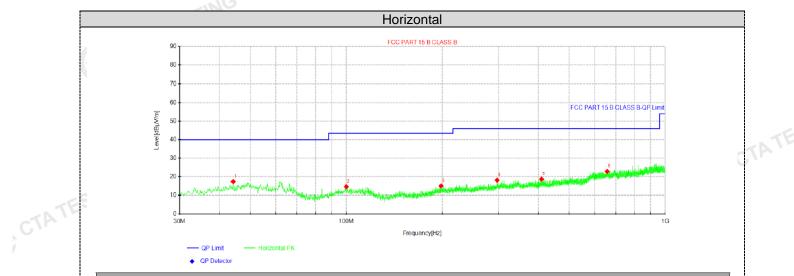
Transd=AF +CL-AG

#### **RADIATION LIMIT**

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

| Frequency (MHz) | Distance<br>(Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |  |  |
|-----------------|----------------------|----------------------------------|-----------------|--|--|
| 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |  |  |
| 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |  |  |
| 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |  |  |
| 30-88           | 3                    | 40.0                             | 100             |  |  |
| 88-216          | 3                    | 43.5                             | 150             |  |  |
| 216-960         | 3                    | 46.0                             | 200             |  |  |
| Above 960       | 3                    | 54.0                             | 500             |  |  |


#### **TEST RESULTS**

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

For 30MHz-1GHz

Page 14 of 38 Report No.: CTA24120501001



| Suspe | Suspected Data List |         |          |        |          |        |        |       |            |
|-------|---------------------|---------|----------|--------|----------|--------|--------|-------|------------|
| NO    | Freq.               | Reading | Level    | Factor | Limit    | Margin | Height | Angle | Dolority   |
| NO.   | [MHz]               | [dBµV]  | [dBµV/m] | [dB/m] | [dBµV/m] | [dB]   | [cm]   | [°]   | Polarity   |
| 1     | 44.1862             | 28.76   | 17.23    | -11.53 | 40.00    | 22.77  | 100    | 198   | Horizontal |
| 2     | 99.9613             | 27.38   | 14.43    | -12.95 | 43.50    | 29.07  | 100    | 34    | Horizontal |
| 3     | 198.173             | 27.82   | 14.86    | -12.96 | 43.50    | 28.64  | 100    | 220   | Horizontal |
| 4     | 296.992             | 28.99   | 17.99    | -11.00 | 46.00    | 28.01  | 100    | 346   | Horizontal |
| 5     | 409.391             | 28.66   | 18.56    | -10.10 | 46.00    | 27.44  | 100    | 359   | Horizontal |
| 6     | 657.347             | 28.35   | 22.89    | -5.46  | 46.00    | 23.11  | 100    | 115   | Horizontal |

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)