FCC Measurement/Technical Report on # BRP VIP Cluster VIPHI2BT FCC ID: 2AMJS-VDIBRHS01 IC: 22868-VDIBRHS01 Test Report Reference: MDE_BOSCH_1710_FCCa ### **Test Laboratory:** 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. 7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard Geschäftsführer/ Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com ### **Table of Contents** | 8 | Measurement Uncertainties | 104 | |---------------------|---|-----------------| | 7 | Setup Drawings | 103 | | 6.6 | Antenna EMCO 3160-10 (26.5 GHz - 40 GHz) | 102 | | 6.5 | Antenna EMCO 3160-09 (18 GHz - 26.5 GHz) | 101 | | 6.4 | Antenna R&S HF907 (1 GHz - 18 GHz) | 100 | | 6.3 | Antenna R&S HL562 (30 MHz – 1 GHz) | 99 | | 6.2 | Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) | 98 | | 6.1 | LISN R&S ESH3-Z5 (150 kHz – 30 MHz) | 97 | | 6 | Antenna Factors, Cable Loss and Sample Calculations | 97 | | 5 | Test Equipment | 95 | | 4.9 | Number of Hopping Frequencies | 92 | | 4.8 | Dwell Time | 89 | | 4.7 | Channel Separation | 86 | | 4.6 | Band Edge Compliance Radiated | 81 | | 4.5 | Band Edge Compliance Conducted | 66 | | 4.4 | Transmitter Spurious Radiated Emissions | 52 | | 4.2 | Spurious RF Conducted Emissions | 28
40 | | 4.1 | Occupied Bandwidth (20 dB) Peak Power Output | 28 | | 4
4.1 | Test Results Occupied Bandwidth (20 dB) | 16
16 | | 1 | Toot Populto | 14 | | 3.7 | Product labelling | 15 | | 3.6 | Operating Modes | 15 | | 3.5 | EUT Setups | 15 | | 3.4 | Auxiliary Equipment | 14 | | 3.3 | EUT Main components Ancillary Equipment | 14 | | 3.1 | General EUT Description | 13
14 | | 3 | Test object Data | 13 | | 2 | Test shiest Date | 12 | | 2.4 | Manufacturer Data | 12 | | 2.3 | Applicant Data | 12 | | 2.2 | Project Data | 12 | | -
2.1 | Testing Laboratory | 12 | | 2 | Administrative Data | 12 | | 1.3 | Measurement Summary / Signatures | 6 | | 1.2 | FCC-IC Correlation Table | 5 | | 1.1 | Applied Standards | 4 | | 1 | Applied Standards and Test Summary | 4 | ### 9 Photo Report 104 #### 1 APPLIED STANDARDS AND TEST SUMMARY #### 1.1 APPLIED STANDARDS ### Type of Authorization Certification for an Intentional Radiator. ### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 15, Subpart C – Intentional Radiators § 15.201 Equipment authorization requirement § 15.207 Conducted limits § 15.209 Radiated emission limits; general requirements § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz Note: (FHSS Equipment) The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.10-2013 is applied. ### **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures. ### 1.2 FCC-IC CORRELATION TABLE Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC ### **FHSS** equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|--| | Conducted emissions on AC
Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (1) | RSS-247 Issue 2: 5.1 (b) | | Peak conducted output power | § 15.247 (b) (1), (4) | RSS-247 Issue 2: 5.4 (b) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4:
6.13/8.9/8.10;
RSS-247 Issue 2: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 2: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 2: 5.5 | | Dwell time | § 15.247 (a) (1) (iii) | RSS-247 Issue 2: 5.1 (d) | | Channel separation | § 15.247 (a) (1) | RSS-247 Issue 2: 5.1 (b) | | No. of hopping frequencies | § 15.247 (a) (1) (iii) | RSS-247 Issue 2: 5.1 (d) | | Hybrid systems (only) | § 15.247 (f);
§ 15.247 (e) | RSS-247 Issue 2: 5.3 | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | - | ### 1.3 MEASUREMENT SUMMARY / SIGNATURES ### **Module: UGXZEX304A** | §15.247 | |) (1) | | |---|---------------------------------------|---|-------------------------| | Occupied Bandwidth (20 dB) | | | | | The measurement was performed according to ANSI C63. | .10 | Final Re | esult | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency | | | | | Bluetooth BDR, high | S01_AB01 | Passed | Passe | | Bluetooth BDR, low | S01_AB01 | Passed | Passe | | Bluetooth BDR, mid | S01_AB01 | Passed | Passe | | Bluetooth EDR 2, high | S01_AB01 | Passed | Passe | | Bluetooth EDR 2, low | S01_AB01 | Passed | Passe | | Bluetooth EDR 2, mid | S01_AB01 | Passed | Passe | | Bluetooth EDR 3, high | S01_AB01 | Passed | Passe | | Bluetooth EDR 3, low | S01_AB01 | Passed | Passe | | Bluetooth EDR 3, mid | S01_AB01 | Passed | Passe | | • | § 15.247 (b) |) (1) | | | §15.247
Peak Power Output | | | | | The measurement was performed according to ANSI C63 | .10 | Final Re | esult | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency, Measurement method | | | | | Bluetooth BDR, high, conducted | S01_AB01 | Passed | Passe | | Bluetooth BDR, low, conducted | S01_AB01 | Passed | Passe | | Bluetooth BDR, mid, conducted | S01_AB01 | Passed | Passe | | Bluetooth EDR 2, high, conducted | S01_AB01 | Passed | Passe | | Bluetooth EDR 2, low, conducted | S01_AB01 | Passed | Passe | | Bluetooth EDR 2, mid, conducted | S01_AB01 | Passed | Passe | | Bluetooth EDR 3, high, conducted | S01_AB01 | Passed | Passe | | Bluetooth EDR 3, low, conducted | S01_AB01 | Passed | Passe | | Bluetooth EDR 3, mid, conducted | S01_AB01 | Passed | Passe | | | | | | | • | § 15.247 (d) |) | | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247
Spurious RF Conducted Emissions | § 15.247 (d) |) | | | §15.247 | | Final Re | esult | | §15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63. OP-Mode | | | esult
IC | | S15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency | .10 | Final Re | | | S15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63 OP-Mode Radio Technology, Operating Frequency | .10 | Final Re | IC | | S15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63. OP-Mode Radio Technology, Operating Frequency Bluetooth BDR, high | .10
Setup | Final Re | IC
Passe | | Spurious RF Conducted Emissions The measurement was performed according to ANSI C63. OP-Mode Radio Technology, Operating Frequency Bluetooth BDR, high Bluetooth BDR, low | .10 Setup S01_AB01 | Final Re
FCC
Passed | IC Passe | | S15.247 Spurious RF Conducted Emissions The measurement was performed according to ANSI C63. OP-Mode Radio Technology, Operating Frequency Bluetooth BDR, high Bluetooth BDR, low Bluetooth BDR, mid | .10 Setup S01_AB01 S01_AB01 | Final Re FCC Passed Passed | Passe
Passe
Passe | | §15.247 Spurious RF Conducted Emissions | .10 Setup S01_AB01 S01_AB01 S01_AB01 | Final Re
FCC
Passed
Passed
Passed | | TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa | 47 CFR CHAPTER I | FCC PART 15 Subpart C | § 15.247 (d) | |------------------|-----------------------|--------------| | 815 247 | | | | 3.0.2.7 | | | | |--|--------------|--------|--------| | Spurious RF Conducted Emissions The measurement was performed according to ANS | Final Result | | | | OP-Mode Radio Technology, Operating Frequency | Setup | FCC | IC | | Bluetooth EDR 3, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, mid | S01_AB01 | Passed | Passed | ## 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) § 15.247 | Transmitter Spurious Radiated Emissions | | | | |---|----------|--------------|--------| | The measurement was performed according to ANSI C63.10 | | Final Result | | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency, Measurement range | | | | | Bluetooth BDR, high, 1 GHz - 26 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, high, 30 MHz - 1 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, low, 1 GHz - 26 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, low, 30 MHz - 1 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, mid, 1 GHz - 26 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, mid, 30 MHz - 1 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, mid, 9 kHz - 30 MHz | S01_AA01 | Passed | Passed | | Bluetooth EDR 2, high, 1 GHz - 26 GHz
Remark: tested 1GHz-8GHz | S01_AA01 | Passed | Passed | | Bluetooth EDR 2, low, 1 GHz - 26 GHz
Remark: tested 1GHz-8GHz | S01_AA01 | Passed | Passed | | Bluetooth EDR 2, mid, 1 GHz - 26 GHz | S01_AA01
 Passed | Passed | # 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247 | The measurement was performed according to ANSI C63.10 | | Final Result | | |---|----------|--------------|--------| | OP-Mode Radio Technology, Operating Frequency, Band Edge | Setup | FCC | IC | | Bluetooth BDR, high, high | S01_AB01 | Passed | Passed | | Bluetooth BDR, hopping, high | S01_AB01 | Passed | Passed | | Bluetooth BDR, hopping, low | S01_AB01 | Passed | Passed | | Bluetooth BDR, hopping, high | S01_AB01 | Passed | Passed | |--------------------------------|----------|--------|--------| | Bluetooth BDR, hopping, low | S01_AB01 | Passed | Passed | | Bluetooth BDR, low, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, high, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, hopping, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, hopping, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, low, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, high, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, hopping, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, hopping, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, low, low | S01_AB01 | Passed | Passed | | | | | | Remark: tested 1GHz-8GHz Band Edge Compliance Conducted **Final Result** | 47 CFR CHAPTER I FCC PART 15 Subpart C | § 15.247 (d) | |--|--------------| | §15.247 | | Band Edge Compliance Radiated The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Radio Technology, Operating Frequency, Band Edge Bluetooth BDR, high, high Bluetooth EDR 2, high, high S01_AA01 Passed Passed Passed Bluetooth EDR 3, high, high S01_AA01 Passed Passed Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) §15.247 Channel Separation The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Radio Technology Bluetooth BDR S01_AB01 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) (iii) §15.247 Dwell Time The measurement was performed according to ANSI C63.10 5 OP-Mode Setup FCC IC Radio Technology Bluetooth BDR S01_AB01 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) (iii) §15.247 Number of Hopping Frequencies The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Radio Technology Bluetooth BDR S01_AB01 Passed Passed N/A: Not applicable N/P: Not performed ### Module: UGKZ7A1001A | §15.247 Occupied Bandwidth (20 dB) | | | | |--|----------------------|------------------|----------------------------| | The measurement was performed according to ANSI C63 | .10 | Final Re | esult | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency | | | | | Bluetooth BDR, high | S01_AB01 | Passed | Passed | | Bluetooth BDR, low | S01_AB01 | Passed | Passec | | Bluetooth BDR, mid | S01_AB01 | Passed | Passec | | Bluetooth EDR 2, high | S01_AB01 | Passed | Passec | | Bluetooth EDR 2, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, mid | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, mid | S01_AB01 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.247 (b) |) (1) | | | Peak Power Output The measurement was performed according to ANSI C63 | .10 | Final Re | esult | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency, Measurement method | | FCC | 10 | | Bluetooth BDR, high, conducted | S01_AB01 | Passed | Passed | | Bluetooth BDR, low, conducted | _
S01_AB01 | Passed | Passed | | Bluetooth BDR, mid, conducted | _
S01_AB01 | Passed | Passed | | Bluetooth EDR 2, high, conducted | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, low, conducted | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, mid, conducted | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, high, conducted | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, low, conducted | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, nid, conducted | S01_AB01 | Passed | Passed | | | § 15.247 (d | | | | §15.247 | 3 13.247 (u | ,
 | | | Spurious RF Conducted Emissions
The measurement was performed according to ANSI C63 | .10 | Final Re | esult | | OP-Mode | Setup | FCC | IC | | Radio Technology, Operating Frequency | - | | | | Bluetooth BDR, high | S01_AB01 | Passed | Passed | | Bluetooth BDR, low | S01_AB01 | Passed | Passed | | | S01_AB01 | Passed | Passed | | Bluetooth BDR, mid | | | | | | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, high | S01_AB01
S01_AB01 | Passed
Passed | | | Bluetooth EDR 2, high
Bluetooth EDR 2, low | | | Passed
Passed
Passed | | Bluetooth BDR, mid Bluetooth EDR 2, high Bluetooth EDR 2, low Bluetooth EDR 2, mid Bluetooth EDR 3, high | S01_AB01 | Passed | Passed | TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa Bluetooth EDR 3, low Passed S01_AB01 Passed | 47 CFR CHAPTER I FCC PART 15 Subpart C | § 15.247 (d) | |--|--------------| | 815 247 | | Spurious RF Conducted Emissions The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Radio Technology, Operating Frequency Bluetooth EDR 3, mid S01_AB01 Passed Passed # 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247 Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10 Final Result | OP-Mode | Setup | FCC | IC | |--|----------|--------|--------| | Radio Technology, Operating Frequency, Measurement range | | | | | Bluetooth BDR, high, 1 GHz - 26 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, high, 30 MHz - 1 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, low, 1 GHz - 26 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, low, 30 MHz - 1 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, mid, 1 GHz - 26 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, mid, 30 MHz - 1 GHz | S01_AA01 | Passed | Passed | | Bluetooth BDR, mid, 9 kHz - 30 MHz | S01_AA01 | Passed | Passed | | Bluetooth EDR 2, high, 1 GHz - 26 GHz
Remark: 1-8GHz | S01_AA01 | Passed | Passed | | Bluetooth EDR 2, low, 1 GHz - 26 GHz
Remark: 1-8GHz | S01_AA01 | Passed | Passed | | Bluetooth EDR 2, mid, 1 GHz - 26 GHz
Remark: 1-8GHz | S01_AA01 | Passed | Passed | # 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI C63.10 Final Result | OP-Mode Radio Technology, Operating Frequency, Band Edge | Setup | FCC | IC | |--|----------|--------|--------| | Bluetooth BDR, high, high | S01_AB01 | Passed | Passed | | Bluetooth BDR, hopping, high | S01_AB01 | Passed | Passed | | Bluetooth BDR, hopping, low | S01_AB01 | Passed | Passed | | Bluetooth BDR, low, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, high, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, hopping, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, hopping, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 2, low, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, high, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, hopping, high | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, hopping, low | S01_AB01 | Passed | Passed | | Bluetooth EDR 3, low, low | S01_AB01 | Passed | Passed | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 § 15.247 (d) Band Edge Compliance Radiated The measurement was performed according to ANSI C63.10 **Final Result** **FCC** IC Setup Radio Technology, Operating Frequency, Band Edge Bluetooth BDR, high, high S01 AA01 Passed Passed Bluetooth EDR 2, high, high S01 AA01 Passed Passed Bluetooth EDR 3, high, high S01_AA01 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) §15.247 Channel Separation The measurement was performed according to ANSI C63.10 **Final Result** **OP-Mode** IC Setup FCC Radio Technology Bluetooth BDR S01_AB01 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) (iii) §15.247 **Dwell Time** The measurement was performed according to ANSI C63.10 **Final Result** **OP-Mode FCC** IC Setup Radio Technology Bluetooth BDR S01_AB01 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (a) (1) (iii) §15.247 Number of Hopping Frequencies The measurement was performed according to ANSI C63.10 **Final Result** **OP-Mode FCC** Setup IC Radio Technology Bluetooth BDR S01 AB01 Passed Passed N/A: Not applicable N/P: Not performed 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0 (responsible for accreditation scope) Dipl.-Ing. Marco Kullik (responsible for testing and report) Dipl.-Ing. Daniel Gall TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa Page 11 of 104 #### 2 ADMINISTRATIVE DATA #### 2.1 TESTING LABORATORY Company Name: 7layers GmbH Address: Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1. The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no: DAkkS D-PL-12140-01-00 FCC Designation Number: DE0015 FCC Test Firm Registration #: 929146 Responsible for accreditation scope: Dipl.-Ing. Marco Kullik Report Template Version: 2017-12-19 2.2 PROJECT DATA Responsible for testing and report: Dipl.-Ing. Daniel Gall Employees who performed the tests: documented internally at 7Layers Date of Report: 2018-01-04 Testing Period: 2017-12-11 to 2017-12-14 2.3 APPLICANT DATA Company Name: Robert Bosch LLC Address: 38000 Hills Tech Drive Farmington Hills USA Contact Person: Nicolai Muellendorff 2.4 MANUFACTURER DATA Company Name: Please see applicant data TEST REPORT
REFERENCE: MDE_BOSCH_1710_FCCa Page 12 of 104 ### 3 TEST OBJECT DATA ### 3.1 GENERAL EUT DESCRIPTION | Kind of Device product description | Instrument Cluster | |---------------------------------------|--| | Product name | VIPHI2BT | | Туре | BRP VIP Cluster | | Declared EUT data by | the supplier | | Voltage Type | DC (vehicular battery) | | Voltage Level | 7.0V - 16.0V, tested with 14.0V | | Tested Modulation Type | GFSK Modulation, 1-DHx packets п/4 DQPSK Modulation, 2-DHx packets 8-DPSK Modulation, 3-DHx packets | | General product description | The EUT is an instrument cluster for vehicles. It is supplied by the vehicle power supply. It contains two wireless modules: • ALPS module UGKZ7A1001A [BT & WIFI]. The WLAN functionality of this module is deactivated • ALPS module UGXZEX304A | | Antenna | Integral Gain: for module UGXZEX304A [BT]: -0.5 dBi for module UGKZ7A1001A [BT & WIFI]: 4.5 dBi | | The EUT provides the following ports: | DC Power supply CAN bus | | Tested data rates | 1 Mbps, 2 Mbps, 3 Mbps | | Special software used for testing | DiagTool III [Robert Bosch, Car Multimedia] | The main components of the EUT are listed and described in chapter 3.2 EUT Main components. ### 3.2 EUT MAIN COMPONENTS | Sample Name | Sample Code | Description | |---------------------|----------------------|-------------------------| | DE1050013aa01 | aa01 | Radiated Sample | | Sample Parameter | | Value | | Serial No. | 48F07B6831A1 | | | HW Version | 7953g06 | | | SW Version | SW 9.2 | | | Integral Antenna(s) | [UGKZ7A1001A]4.5 dBi | / [UGXZEX304A]-0.5 dBi | | Comment | | | | Sample Name | Sample Code | Description | |---------------------|--------------|------------------| | DE1050013ab01 | ab01 | Conducted Sample | | Sample Parameter | | Value | | Serial No. | 48F07B58319D | | | HW Version | 7953g06 | | | SW Version | SW 9.2 | | | Integral Antenna(s) | deactivated | | | Comment | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. #### 3.3 ANCILLARY EQUIPMENT For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | | Details
(Manufacturer, Type Model, OUT
Code) | Description | |---|--|-------------| | - | - | - | #### 3.4 AUXILIARY EQUIPMENT For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Device | Details
(Manufacturer, HW, SW, S/N) | Description | |--------|--|-------------| | - | _ | - | ### 3.5 EUT SETUPS This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | |----------|---------------------|---------------------------| | S01_AB01 | DE1050013ab01 | Conducted Setup | | S01_AA01 | DE1050013aa01 | Radiated Setup | ### 3.6 OPERATING MODES This chapter describes the operating modes of the EUTs used for testing. ### 3.6.1 TEST CHANNELS | | 2.4 GHz ISM | | | | |-------------------|-------------------|------|------|--| | | 2400 - 2483.5 MHz | | | | | BT Test Channels: | low mid high | | | | | Channel: | 0 | 39 | 78 | | | Frequency [MHz] | 2402 | 2441 | 2480 | | ### 3.7 PRODUCT LABELLING ### 3.7.1 FCC ID LABEL Please refer to the documentation of the applicant. ### 3.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant. #### 4 TEST RESULTS ### 4.1 OCCUPIED BANDWIDTH (20 DB) Standard FCC Part 15 Subpart C ### The test was performed according to: ANSI C63.10 ### 4.1.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. ### Analyzer settings: • Resolution Bandwidth (RBW): 1% to 5 % of the OBW Video Bandwidth (VBW): ≥ 3 x RBW Span: 2 to 5 times the OBW Trace: MaxholdSweeps: 2000Sweeptime: 8.5 msDetector: Peak The technology depending measurement parameters can be found in the measurement plot. #### 4.1.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (a) (2) For the band: 902 - 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i) The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii) The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii) TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa Page 16 of 104 Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. ### Implication by the test laboratory: Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power: 1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz 2. If the system output power exceeds 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW) The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report. Therefore the limit is determined as 1.5 MHz. #### 4.1.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22°C Air Pressure: 1010hPa Humidity: 38% RT GESK (1-DH1) | Band | Channel No. | Frequency [MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin to Limit
[MHz] | |-------------|-------------|-----------------|--------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402 | 0.896 | 1.000 | 0.104 | | | 39 | 2441 | 0.896 | 1.000 | 0.104 | | | 78 | 2480 | 0.890 | 1.000 | 0.110 | ### BT n/4 DOPSK (2-DH1) | Band | Channel No. | Frequency [MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin to Limit
[MHz] | |-------------|-------------|-----------------|--------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402 | 1.221 | 1.500 | 0.279 | | | 39 | 2441 | 1.221 | 1.500 | 0.279 | | | 78 | 2480 | 1.221 | 1.500 | 0.279 | ### BT 8-DPSK (3- DH1) | Band | Channel
No. | Frequency
[MHz] | 20 dB Bandwidth
[MHz] | Limit [MHz] | Margin to Limit
[MHz] | |-------------|----------------|--------------------|--------------------------|-------------|--------------------------| | 2.4 GHz ISM | 0 | 2402 | 1.269 | 1.500 | 0.231 | | | 39 | 2441 | 1.257 | 1.500 | 0.243 | | | 78 | 2480 | 1.251 | 1.500 | 0.249 | TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa Page 17 of 104 ### Module: **UGKZ7A1001A** 22 °C Ambient temperature: Air Pressure: 1010 hPa Humidity: BT GFSK (1-DH1) 34 % | Band | Channel
No. | Frequency
[MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin to Limit
[MHz] | |-------------|----------------|--------------------|--------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402 | 0.896 | 1.000 | 0.104 | | | 39 | 2441 | 0.896 | 1.000 | 0.104 | | | 78 | 2480 | 0.890 | 1.000 | 0.110 | ### BT π/4 DQPSK (2-DH1) | Band | Channel
No. | Frequency
[MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin to Limit
[MHz] | |-------------|----------------|--------------------|--------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402 | 1.257 | 1.500 | 0.243 | | | 39 | 2441 | 1.257 | 1.500 | 0.243 | | | 78 | 2480 | 1.257 | 1.500 | 0.243 | #### BT 8-DPSK (3-DH1) | Band | Channel
No. | Frequency
[MHz] | 20 dB Bandwidth
[MHz] | Limit
[MHz] | Margin
to Limit
[MHz] | |-------------|----------------|--------------------|--------------------------|----------------|--------------------------| | 2.4 GHz ISM | 0 | 2402 | 1.269 | 1.500 | 0.231 | | | 39 | 2441 | 1.269 | 1.500 | 0.231 | | | 78 | 2480 | 1.269 | 1.500 | 0.231 | Remark: Please see next sub-clause for the measurement plot. ### 4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") ### Module: UGXZEX304A ### Radio Technology = Bluetooth BDR, Operating Frequency = low ### Radio Technology = Bluetooth BDR, Operating Frequency = mid Comment A: CE M: 2441 MEZ; 20dB bandwidth (kEz):896.4 Date: 11.DEC.2017 13:22:34 ### Radio Technology = Bluetooth BDR, Operating Frequency = high CH T: 2480 MHZ; 20dB bandwidth (kHz):890.4 11.DEC.2017 13:45:39 ### Radio Technology = Bluetooth EDR 2, Operating Frequency = low Title: 20dB Bandwidth Comment A: CE B: 2402 MEz; 20dB bandwidth (kHz):1221 Date: 11.DEC.2017 11:36:25 ### Radio Technology = Bluetooth EDR 2, Operating Frequency = mid Title: 20dB Bandwidth CE M: 2441 MEz; 20dB bandwidth (kHz):1221 11.DEC.2017 13:27:50 ### Radio Technology = Bluetooth EDR 2, Operating Frequency = high Title: 20dB Bandwidth Comment A: CE T: 2480 MEz; 20dB bandwidth (kHz):1221 Date: 11.DEC.2017 14:02:23 ### Radio Technology = Bluetooth EDR 3, Operating Frequency = low Title: 20dB Bandwidth CE B: 2402 MEz; 20dB bandwidth (kHz):1269.6 11.DEC.2017 12:03:41 ### Radio Technology = Bluetooth EDR 3, Operating Frequency = mid Title: 20dB Bandwidth Comment A: CE M: 2441 MEz; 20dB bandwidth (kEz):1257.6 Date: 11.DEC.2017 12:48:52 ### Radio Technology = Bluetooth EDR 3, Operating Frequency = high ### Module: UGKZ7A1001A ### Radio Technology = Bluetooth BDR, Operating Frequency = low Comment A: CE B: 2402 MEz; 20dB bandwidth (kHz):896.4 Date: 12.DEC.2017 08:23:01 ### Radio Technology = Bluetooth BDR, Operating Frequency = mid CE M: 2441 MEZ; 20dB bandwidth (kHz):896.4 12.DEC.2017 10:13:05 ### Radio Technology = Bluetooth BDR, Operating Frequency = high Title: 20dB Bandwidth Comment A: CE T: 2480 MHz; 20dB bandwidth (kHz):890.4 Date: 12.DEC.2017 10:30:14 ### Radio Technology = Bluetooth EDR 2, Operating Frequency = low CE B: 2402 MEz; 20dB bandwidth (kHz):1257.6 12.DEC.2017 08:41:06 ### Radio Technology = Bluetooth EDR 2, Operating Frequency = mid Title: 20dB Bandwidth Comment A: CE M: 2441 MEz; 20dB bandwidth (kEz):1257.6 Date: 12.DEC.2017 09:53:38 ### Radio Technology = Bluetooth EDR 2, Operating Frequency = high CE T: 2480 MEz; 20dB bandwidth (kHz):1257.6 12.DEC.2017 12:23:05 ### Radio Technology = Bluetooth EDR 3, Operating Frequency = low Title: 20dB Bandwidth Comment A: CE B: 2402 MHz; 20dB bandwidth (kHz):1269.6 Date: 12.DEC.2017 09:19:24 ### Radio Technology = Bluetooth EDR 3, Operating Frequency = mid ### Radio Technology = Bluetooth EDR 3, Operating Frequency = high Title: 20dB Bandwidth Comment A: CE T: 2480 MEZ, 20dB bandwidth (kEz):1269.6 Date: 12.DEC.2017 11:17:11 ### 4.1.5 TEST EQUIPMENT USED Regulatory Bluetooth RF Test Solution #### 4.2 PEAK POWER OUTPUT Standard FCC Part 15 Subpart C ### The test was performed according to: ANSI C63.10 ### 4.2.1 TEST DESCRIPTION ### DTS EQUIPMENT: The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. ### Analyzer settings: Resolution Bandwidth (RBW): 3 MHzVideo Bandwidth (VBW): 3 MHz Trace: MaxholdSweeps: 2000Sweeptime: 5 msDetector: Peak The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth) #### FHSS EQUIPMENT: The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Resolution Bandwidth (RBW): 3 MHz • Video Bandwidth (VBW): 3 MHz Trace: MaxholdSweeps: 2000Sweeptime: 5 msDetector: Peak #### 4.2.2 TEST REQUIREMENTS / LIMITS #### DTS devices: FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt. ==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used). ### **Frequency Hopping Systems:** FCC Part 15, Subpart C, §15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. FCC Part 15, Subpart C, §15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section. Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW) #### 4.2.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22°C Air Pressure: 1010hPa Humidity: 38% BT GFSK (1-DH1) | Band | Channel No. | Frequency
[MHz] | Peak Power [dBm] | Limit
[dBm] | Margin to Limit [dB] | |-------------|-------------|--------------------|------------------|----------------|----------------------| | 2.4 GHz ISM | 0 | 2402 | -2.3 | 30.0 | 32.3 | | | 39 | 2441 | -1.2 | 30.0 | 31.2 | | | 78 | 2480 | -1.7 | 30.0 | 31.7 | ### BT π/4 DQPSK (2-DH1) | Band | Channel No. | Frequency
[MHz] | Peak Power
[dBm] | Limit
[dBm] | Margin to Limit [dB] | |-------------|-------------|--------------------|---------------------|----------------|----------------------| | 2.4 GHz ISM | 0 | 2402 | -2.5 | 21.0 | 23.5 | | | 39 | 2441 | -1.1 | 21.0 | 22.1 | | | 78 | 2480 | -1.6 | 21.0 | 22.6 | #### BT 8-DPSK (3-DH1) | Band | Channel No. | Frequency
[MHz] | Peak Power
[dBm] | Limit
[dBm] | Margin to Limit
[dB] | |-------------|-------------|--------------------|---------------------|----------------|-------------------------| | 2.4 GHz ISM | 0 | 2402 | -2.2 | 21.0 | 23.2 | | | 39 | 2441 | -0.8 | 21.0 | 21.8 | | | 78 | 2480 | -1.2 | 21.0 | 22.2 | TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa ### Module: UGKZ7A1001A Ambient temperature: 22 °C Air Pressure: 1010 hPa Humidity: 34 % BT GFSK (1-DH1) | Band | Channel
No. | Frequency
[MHz] | Peak Power
[dBm] | Limit
[dBm] | Margin to Limit
[dB] | |-------------|----------------|--------------------|---------------------|----------------|-------------------------| | 2.4 GHz ISM | 0 | 2402 | -4.4 | 30.0 | 34.4 | | | 39 | 2441 | -4.6 | 30.0 | 34.6 | | | 78 | 2480 | -3.9 | 30.0 | 33.9 | #### BT π/4 DQPSK (2-DH1) | Band | Channel
No. | Frequency
[MHz] | Peak Power
[dBm] | Limit
[dBm] | Margin to Limit [dB] | |-------------|----------------|--------------------|---------------------|----------------|----------------------| | 2.4 GHz ISM | 0 | 2402 | -1.8 | 21.0 | 22.8 | | | 39 | 2441 | -2.0 | 21.0 | 23.0 | | | 78 | 2480 | -1.2 | 21.0 | 22.2 | ### BT 8-DPSK (3-DH1) | Band | Channel
No. | Frequency
[MHz] | Peak Power
[dBm] | Limit
[dBm] | Margin to Limit
[dB] | |-------------|----------------|--------------------|---------------------|----------------|-------------------------| | 2.4 GHz ISM | 0 | 2402 | -1.5 | 21.0 | 22.5 | | | 39 | 2441 | -1.7 | 21.0 | 22.7 | | | 78 | 2480 | -0.8 | 21.0 | 21.8 | Remark: Please see next sub-clause for the measurement plot. ### 4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") ### Module: UGXZEX304A Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement method = conducted Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement method = conducted Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement method = conducted Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement method = conducted Radio Technology = Bluetooth EDR 2, Operating Frequency = mid, Measurement method = conducted Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Measurement method = conducted Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Measurement method = conducted Radio Technology = Bluetooth EDR 3, Operating Frequency = mid, Measurement method = # Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Measurement method = conducted ### Module: UGKZ7A1001A Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement method = conducted Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement method = conducted Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement method = conducted Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement method = conducted Radio Technology = Bluetooth EDR 2, Operating Frequency = mid, Measurement method = conducted Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Measurement method = conducted Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Measurement method = conducted Title: Peak outputpower Power Comment A: CH B: 2402 MHZ Date: 12.DEC.2017 09:19:54 Radio Technology = Bluetooth EDR 3, Operating Frequency = mid, Measurement method = conducted # Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Measurement method = conducted ### 4.2.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.3 SPURIOUS RF CONDUCTED EMISSIONS Standard FCC Part 15 Subpart C The test was performed according to: ANSI C63.10
4.3.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Frequency range: 30 – 25000 MHz Resolution Bandwidth (RBW): 100 kHz Video Bandwidth (VBW): 300 kHz Trace: MaxholdSweeps: 2 Sweep Time: 330 sDetector: Peak The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit. #### 4.3.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. ### 4.3.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22 °C Air Pressure: 1010 hPa Humidity: 38 % BT GFSK (1-DH1) | Channel No | Channel
Center
Freq. | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |------------|----------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | [MHz]
2402 | - | - | - | - | -2.8 | -22.8 | - | | 39 | 2441 | - | - | - | - | -1.6 | -21.6 | - | | 78 | 2480 | - | - | - | - | -2.1 | -22.1 | - | BT n/4 DQPSK (2-DH1) | Channel No | Channel
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |------------|-------------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | - | - | - | - | -3.7 | -23.7 | - | | 39 | 2441 | - | - | - | - | -2.3 | -22.3 | - | | 78 | 2480 | - | - | - | - | -2.7 | -22.7 | - | BT 8-DPSK (3-DH1) | Channel
No | Channel
Center
Freq. [MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin to
Limit
[dB] | |---------------|----------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | - | - | - | _ | -3.8 | -23.8 | - | | 39 | 2441 | - | - | - | - | -2.6 | -22.6 | - | | 78 | 2480 | - | - | - | - | -2.7 | -22.7 | - | Remark: Please see next sub-clause for the measurement plot. ### Module: UGKZ7A1001A Ambient temperature: 22 °C Air Pressure: 1010 hPa Humidity: BT GFSK (1-DH1) 34 % | Channel No | Channel
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |------------|-------------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | | | PEAK | 100 | -5.2 | -25.2 | | | 39 | 2441 | | | PEAK | 100 | -5.0 | -25.0 | | | 78 | 2480 | | | PEAK | 100 | -4.2 | -24.2 | | BT π/4 DQPSK (2-DH1) | Channel No | Channel
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |------------|-------------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | | | PEAK | 100 | -4.6 | -24.6 | | | 39 | 2441 | | | PEAK | 100 | -4.8 | -24.8 | | | 78 | 2480 | | | PEAK | 100 | -3.8 | -23.8 | | BT 8-DPSK (3-DH1) | Channel No | Channel
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |------------|-------------------------------------|----------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | | | PEAK | 100 | -4.6 | -24.6 | | | 39 | 2441 | | | PEAK | 100 | -4.8 | -24.8 | | | 78 | 2480 | | | PEAK | 100 | -3.8 | -23.8 | | #### COMMENT: No (further) spurious emissions in the range 20dB below the limit were found, therefore no measurement values are reported in the tables. Remark: Please see next sub-clause for the measurement plot. ## 4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### Module: UGXZEX304A ## Radio Technology = Bluetooth EDR 3, Operating Frequency = low Radio Technology = Bluetooth EDR 2, Operating Frequency = mid ## Radio Technology = Bluetooth EDR 3, Operating Frequency = mid spurious emissions CE M: 2441 MEZ 11.DEC.2017 12:45:53 ## Radio Technology = Bluetooth EDR 2, Operating Frequency = high Title: spurious emissions Comment A: CE M: 2441 MHZ Date: 11.DEC.2017 13:01:14 ## Radio Technology = Bluetooth EDR 2, Operating Frequency = low spurious emissions CE B: 2402 MEZ 11.DEC.2017 11:33:16 ## Radio Technology = Bluetooth BDR, Operating Frequency = mid Title: spurious emissions Comment A: CE M: 2441 MHZ Date: 11.DEC.2017 13:19:15 ## Radio Technology = Bluetooth EDR 3, Operating Frequency = high ## Radio Technology = Bluetooth BDR, Operating Frequency = high Title: spurious emissions Comment A: CH T: 2480 MHZ Date: 11.DEC.2017 13:42:16 ## Radio Technology = Bluetooth BDR, Operating Frequency = low #### Module: UGKZ7A1001A ## Radio Technology = Bluetooth BDR, Operating Frequency = low Title: spurious emissions Comment A: CE B: 2402 MHZ Date: 12.DEC.2017 08:19:34 ## Radio Technology = Bluetooth BDR, Operating Frequency = mid Radio Technology = Bluetooth BDR, Operating Frequency = high Title: spurious emissions Comment A: CH T: 2480 MHZ Date: 12.DEC.2017 10:26:50 ## Radio Technology = Bluetooth EDR 2, Operating Frequency = low ## Radio Technology = Bluetooth EDR 2, Operating Frequency = mid Title: spurious emissions Comment A: CE M: 2441 MHZ Date: 12.DEC.2017 09:50:38 ## Radio Technology = Bluetooth EDR 2, Operating Frequency = high spurious emissions CE M: 2441 MEZ 12.DEC.2017 09:50:38 ## Radio Technology = Bluetooth EDR 3, Operating Frequency = low Title: spurious emissions Comment A: CE B: 2402 MHZ Date: 12.DEC.2017 09:16:17 ## Radio Technology = Bluetooth EDR 3, Operating Frequency = mid CE M: 2441 MEZ 12.DEC.2017 09:33:07 ## Radio Technology = Bluetooth EDR 3, Operating Frequency = high Title: spurious emissions Comment A: CE M: 2441 MHZ Date: 12.DEC.2017 09:33:07 ### 4.3.5 TEST EQUIPMENT USED Regulatory Bluetooth RF Test Solution #### 4.4 TRANSMITTER SPURIOUS RADIATED EMISSIONS #### Standard FCC Part 15 Subpart C ### The test was performed according to: ANSI C63.10 #### 4.4.1 TEST DESCRIPTION The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement up to 30 MHz The Loop antenna HFH2-Z2 is used. #### Step 1: pre measurement - Anechoic chamber - Antenna distance: 3 m - Detector: Peak-Maxhold - Frequency range: 0.009 0.15 MHz and 0.15 30 MHz - Frequency steps: 0.05 kHz and 2.25 kHz - IF-Bandwidth: 0.2 kHz and 9 kHz - Measuring time / Frequency step: 100 ms (FFT-based) Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### Step 2: final measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level. - Open area test side - Antenna distance: according to the Standard - Detector: Quasi-Peak - Frequency range: 0.009 30 MHz - Frequency steps: measurement at frequencies detected in step 1 - IF-Bandwidth: 0.2 10 kHz - Measuring time / Frequency step: 1 s ### 2. Measurement above 30 MHz and up to 1 GHz #### Step 1: Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m - Detector: Peak-Maxhold / Quasipeak (FFT-based) - Frequency range: 30 1000 MHz - Frequency steps: 30 kHzIF-Bandwidth: 120 kHz - Measuring time / Frequency step: 100 ms TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa - Turntable angle range: -180° to 90° - Turntable step size: 90° Height variation range: 1 – 3 m Height variation step size: 2 m Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement
are identified. #### Step 2: Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 120 kHzMeasuring time: 100 ms - Turntable angle range: \pm 45 $^{\circ}$ around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 ### Step 3: Final measurement with QP detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: Quasi-Peak (< 1 GHz) - Measured frequencies: in step 1 determined frequencies - IF – Bandwidth: 120 kHz - Measuring time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by \pm 45° EMI receiver settings (for all steps): Detector: Peak, AverageIF Bandwidth = 1 MHz #### Step 3: Spectrum analyser settings for step 3: - Detector: Peak / Average - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 1 MHzMeasuring time: 1 s #### 4.4.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m) ### 4.4.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22 - 23 °C Air Pressure: 971 - 1004 hPa Humidity: 35 - 38 % BT GFSK (1-DH1) Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Spurious
Freq. [MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-------------------------|-------------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 0 | 2402 | 332.1 | 35.0 | QP | 120 | 46.0 | 11.0 | RB | | 39 | 2441 | 278.2 | 32.6 | QP | 120 | 46.0 | 13.4 | RB | | 39 | 2441 | 281.6 | 34.2 | QP | 120 | 46.0 | 11.8 | RB | | 39 | 2441 | 322.0 | 36.7 | QP | 120 | 46.0 | 9.3 | RB | | 39 | 2441 | 328.8 | 34.6 | QP | 120 | 46.0 | 11.4 | RB | | 39 | 2441 | 332.1 | 35.2 | QP | 120 | 46.0 | 10.8 | RB | Module: UGKZ7A1001A Ambient temperature: 22 - 23 °C Air Pressure: 971 - 1004 hPa Humidity: 35 - 38 % BT GFSK (1-DH1) Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq. | Spurious
Freg. [MHz] | Spurious
Level | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|---------------------|-------------------------|-------------------|---------------|--------------|-------------------|-------------------------|---------------| | 1.10. | [MHz] | | [dBµV/m] | 10. | [] | Lasharing | | . , , , , | | 0 | 2402 | 4803.6 | 58.6 | PEAK | 1000 | 74.0 | 15.4 | RB | | 0 | 2402 | 4804.2 | 45.9 | AV | 1000 | 54.0 | 8.1 | RB | | 39 | 2441 | 4881.7 | 58.2 | PEAK | 1000 | 74.0 | 15.8 | RB | | 39 | 2441 | 4881.7 | 44.7 | AV | 1000 | 54.0 | 9.3 | RB | | 78 | 2480 | 4959.6 | 56.3 | PEAK | 1000 | 74.0 | 17.7 | RB | | 78 | 2480 | 4959.9 | 49.1 | AV | 1000 | 54.0 | 4.9 | RB | | 0 | 2402 | 74.0 | 34.0 | QP | 120 | 40.0 | 6.0 | RB | | 39 | 2441 | 281.6 | 33.9 | QP | 120 | 46.0 | 12.1 | RB | | 39 | 2441 | 322.0 | 37.6 | QP | 120 | 46.0 | 8.4 | RB | | 39 | 2441 | 328.8 | 35.6 | QP | 120 | 46.0 | 10.4 | RB | | 39 | 2441 | 332.1 | 36.6 | QP | 120 | 46.0 | 9.4 | RB | | 78 | 2480 | 261.3 | 29.9 | QP | 120 | 46.0 | 16.1 | RB | | 78 | 2480 | 268.1 | 30.3 | QP | 120 | 46.0 | 15.7 | RB | | 78 | 2480 | 271.4 | 31.9 | QP | 120 | 46.0 | 14.1 | RB | | 78 | 2480 | 281.6 | 34.2 | QP | 120 | 46.0 | 11.8 | RB | Remark: Please see next sub-clause for the measurement plot. ## 4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") ### Module: UGXZEX304A Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth EDR 2, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AA01) ### Module: UGKZ7A1001A Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth EDR 2, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AA01) Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_AA01) ### 4.4.5 TEST EQUIPMENT USED - Radiated Emissions #### 4.5 BAND EDGE COMPLIANCE CONDUCTED Standard FCC Part 15 Subpart C ### The test was performed according to: ANSI C63.10 #### 4.5.1 TEST DESCRIPTION For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Lower Band Edge: Minimum frequency: 2397.0 MHz Upper Band Edge Maximum frequency: 2485.0 MHz Span: Bluetooth: 6 MHz WLAN: 25 / 45 / 85 MHz [depending on channel bandwidth] Detector: Peak Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz Sweeptime: 5 msSweeps: 2000Trace: Maxhold #### 4.5.2 TEST REQUIREMENTS / LIMITS #### FCC Part 15.247 (d) "In any 100 kHz bandwidth outside the frequency band
in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ... If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))." For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..." ### 4.5.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22°C Air Pressure: 1010hPa Humidity: BT GFSK (1-DH1) 38% | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | 2400.0 | -53.4 | PEAK | 100 | -2.8 | -22.8 | 30.6 | | 78 | 2480 | 2483.5 | -64.6 | PEAK | 100 | -2.0 | -22.0 | 42.7 | | hopping | hopping | 2400.0 | -54.9 | PEAK | 100 | -3.3 | -23.3 | 31.6 | | hopping | hopping | 2483.5 | -62.6 | PEAK | 100 | -1.9 | -21.9 | 40.7 | BT π/4 DQPSK (2-DH1) | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | 2400.0 | -44.6 | PEAK | 100 | -3.5 | -23.5 | 21.1 | | 78 | 2480 | 2483.5 | -64.4 | PEAK | 100 | -2.6 | -22.6 | 41.8 | | hopping | hopping | 2400.0 | -44.8 | PEAK | 100 | -3.7 | -23.7 | 21.1 | | hopping | hopping | 2483.5 | -62.8 | PEAK | 100 | -2.6 | -22.6 | 40.2 | BT 8-DPSK (3-DH1) | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | 2400.0 | -44.6 | PEAK | 100 | -3.7 | -23.7 | 21.0 | | 78 | 2480 | 2483.5 | -63.8 | PEAK | 100 | -2.7 | -22.7 | 41.1 | | hopping | hopping | 2400.0 | -44.9 | PEAK | 100 | -3.6 | -23.6 | 21.3 | | hopping | hopping | 2483.5 | -62.2 | PEAK | 100 | -2.5 | -22.5 | 39.7 | ## Module: UGKZ7A1001A Ambient temperature: 22 °C Air Pressure: 1010 hPa Humidity: BT GFSK (1-DH1) 34 % | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | 2400.0 | -62.4 | PEAK | 100 | -5.1 | -25.1 | 37.3 | | 78 | 2480 | 2483.5 | -56.6 | PEAK | 100 | -4.1 | -24.1 | 32.5 | | hopping | hopping | 2400.0 | -63.0 | PEAK | 100 | -4.7 | -24.7 | 38.4 | | hopping | hopping | 2483.5 | -62.8 | PEAK | 100 | -4.2 | -24.2 | 38.6 | BT π/4 DQPSK (2-DH1) | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | 2400.0 | -60.1 | PEAK | 100 | -4.4 | -24.4 | 35.7 | | 78 | 2480 | 2483.5 | -57.5 | PEAK | 100 | -3.7 | -23.7 | 33.8 | | hopping | hopping | 2400.0 | -59.0 | PEAK | 100 | -4.3 | -24.3 | 34.7 | | hopping | hopping | 2483.5 | -62.4 | PEAK | 100 | -3.9 | -23.9 | 38.5 | BT 8-DPSK (3-DH1) | Channel No. | Channel
Center
Frequency
[MHz] | Band
Edge
Freq.
[MHz] | Spurious
Level
[dBm] | Detector | RBW
[kHz] | Ref.
Level
[dBm] | Limit
[dBm] | Margin
to Limit
[dB] | |-------------|---|--------------------------------|----------------------------|----------|--------------|------------------------|----------------|----------------------------| | 0 | 2402 | 2400.0 | -57.6 | PEAK | 100 | -4.4 | -24.4 | 33.2 | | 78 | 2480 | 2483.5 | -62.4 | PEAK | 100 | -3.7 | -23.7 | 38.7 | | hopping | hopping | 2400.0 | -57.9 | PEAK | 100 | -4.4 | -24.4 | 33.4 | | hopping | hopping | 2483.5 | -60.3 | PEAK | 100 | -4.0 | -24.0 | 36.3 | Remark: Please see next sub-clause for the measurement plot. ## 4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### Module: UGXZEX304A Radio Technology = Bluetooth BDR, Operating Frequency = low, Band Edge = low (S01_AB01) Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S01_AB01) Radio Technology = Bluetooth BDR, Operating Frequency = hopping, Band Edge = low (S01_AB01) Radio Technology = Bluetooth BDR, Operating Frequency = hopping, Band Edge = high (S01_AB01) # Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Band Edge = low (S01_AB01) # Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high (S01_AB01) Radio Technology = Bluetooth EDR 2, Operating Frequency = hopping, Band Edge = low (S01_AB01) Radio Technology = Bluetooth EDR 2, Operating Frequency = hopping, Band Edge = high (S01_AB01) ## Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Band Edge = low (S01_AB01) ## Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Band Edge = high (S01_AB01) Radio Technology = Bluetooth EDR 3, Operating Frequency = hopping, Band Edge = low (S01_AB01) Radio Technology = Bluetooth EDR 3, Operating Frequency = hopping, Band Edge = high (S01_AB01) #### Module: UGKZ7A1001A Radio Technology = Bluetooth BDR, Operating Frequency = low, Band Edge = low Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high Band Edge Compliance CH T: 2480 MHz 12.DEC.2017 10:14:56 Comment A: Date: Radio Technology = Bluetooth BDR, Operating Frequency = hopping, Band Edge = low (\$01_AB01) Comment A: Radio Technology = Bluetooth BDR, Operating Frequency = hopping, Band Edge = high (S01_AB01) Title: Number of hopping frequencies Comment A: CH H: Hopping Date: 12.DBC.2017 14:35:06 Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Band Edge = low ## Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high Title: Band Edge Compliance Comment A: CE T: 2480 MEz Date: 12.DEC.2017 11:21:41 Radio Technology = Bluetooth EDR 2, Operating Frequency = hopping, Band Edge = low Radio Technology = Bluetooth EDR 2, Operating Frequency = hopping, Band Edge = high Title: Number of hopping frequencies Comment A: CH H: Hopping Date: 12.DBC.2017 14:47:31 Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Band Edge = low Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Band Edge = high Title: Band Edge Compliance Comment A: CE T: 2480 MEz Date: 12.DEC.2017 11:02:13 Radio Technology = Bluetooth EDR 3, Operating Frequency = hopping, Band Edge = low (S01_AB01) Mearker 1 [T1] REW 100 kHz REF A++ 00 T Radio Technology = Bluetooth EDR 3, Operating Frequency = hopping, Band Edge = high (S01_AB01) ## 4.5.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.6 BAND EDGE COMPLIANCE RADIATED Standard FCC Part 15 Subpart C The test was performed according to: ANSI C63.10 #### 4.6.1 TEST DESCRIPTION Please see test description for the test case "Spurious Radiated Emissions" #### 4.6.2 TEST REQUIREMENTS / LIMITS For band edges connected to a restricted band, the limits are specified in Section 15.209(a) FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency
emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m) #### 4.6.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22 - 23 °C Air Pressure: 971 - 1004 hPa Humidity: 35 - 38 % BT GFSK (1-DH1) Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|-------------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 78 | 2480 | 2483.5 | 54.6 | PEAK | 1000 | 74.0 | 19.4 | BE | | 78 | 2480 | 2483.5 | 39.2 | AV | 1000 | 54.0 | 14.8 | BE | BT n/4 DQPSK (2-DH1) Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|-------------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 78 | 2480 | 2483.5 | 52.2 | PEAK | 1000 | 74.0 | 21.8 | BE | | 78 | 2480 | 2483.5 | 39.4 | AV | 1000 | 54.0 | 14.6 | BE | BT 8-DPSK (3-DH1) Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|-------------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 78 | 2480 | 2483.5 | 52.9 | PEAK | 1000 | 74.0 | 21.1 | BE | | 78 | 2480 | 2483.5 | 40.0 | AV | 1000 | 54.0 | 14.0 | BE | ## Module: UGKZ7A1001A Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious Level [dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|-------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 78 | 2480 | 2483.5 | 54.6 | PEAK | 1000 | 74.0 | 19.4 | BE | | 78 | 2480 | 2483.5 | 39.2 | AV | 1000 | 54.0 | 14.8 | BE | BT n/4 DQPSK (2-DH1) Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious Level [dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|-------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 78 | 2480 | 2483.5 | 55.2 | PEAK | 1000 | 74.0 | 18.8 | BE | | 78 | 2480 | 2483.5 | 39.3 | AV | 1000 | 54.0 | 14.7 | BE | BT 8-DPSK (3-DH1) Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious Level [dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|-------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 78 | 2480 | 2483.5 | 54.9 | PEAK | 1000 | 74.0 | 19.1 | BE | | 78 | 2480 | 2483.5 | 39.4 | AV | 1000 | 54.0 | 14.6 | BE | Remark: Please see next sub-clause for the measurement plot. # 4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") **Module: UGXZEX304A** Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S01_AA01) Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high (S01_AA01) Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Band Edge = high (S01_AA01) ## Module: UGKZ7A1001A Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S01_AA01) Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high (S01_AA01) Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Band Edge = high (S01_AA01) ## 4.6.5 TEST EQUIPMENT USED - Radiated Emissions #### 4.7 CHANNEL SEPARATION Standard FCC Part 15 Subpart C ## The test was performed according to: ANSI C63.10 #### 4.7.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### Analyzer settings: Detector: PeakTrace: Maxhold • Span: appr. 3 x OBW • Centre Frequency: a mid frequency of the used band • Resolution Bandwidth (RBW): appr. 3 % of channel spacing Video Bandwidth (VBW): 3 x RBW • Sweep Time: 8.5 ms • Sweeps: 2000 The technology depending measurement parameters can be found in the measurement plot. #### 4.7.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. #### 4.7.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22°C Air Pressure: 1010hPa Humidity: 38% | Radio Technology | Channel Separation [MHz] | Limit [MHz] | Margin to Limit [MHz] | |------------------|--------------------------|-------------|-----------------------| | BT GFSK (1-DH1) | 1.000 | 0.896 | 0.104 | Module: UGKZ7A1001A Ambient temperature: 22 °C Air Pressure: 1010 hPa Humidity: 34 % | Radio Technology | Channel Separation [MHz] | Limit [MHz] | Margin to Limit [MHz] | |------------------|--------------------------|-------------|-----------------------| | BT GFSK (1-DH1) | 1.000 | 0.896 | 0.104 | Remark: Please see next sub-clause for the measurement plot. ## 4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Module: UGXZEX304A Title: Channel separation Comment A: CH H: Hopping Date: 11.DEC.2017 14:37:30 ## Module: UGKZ7A1001A ## 4.7.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.8 DWELL TIME Standard FCC Part 15 Subpart C ## The test was performed according to: ANSI C63.10 #### 4.8.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The dwell time is independent from the modulation pattern. The dwell time is calculated by: The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s #### with: - hop rate = 1600 * 1/s for DH1 packets = 1600 s⁻¹ - hop rate = $1600/3 \times 1/s$ for DH3 packets = 533.33 s^{-1} - hop rate = 1600/5 * 1/s for DH5 packets = 320 s⁻¹ - number of hopping channels = 79 - 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79 The highest value of the dwell time is reported. #### Analyzer settings: - Center Frequency: mid channel frequency - Span: Zero span - Detector: Peak - Trace: Maxhold - Resolution Bandwidth (RBW): ≤ channel separation - Trigger: Video #### 4.8.2 TEST REQUIREMENTS / LIMITS For the band: 902 - 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i) If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. For the band: 5725 – 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii) The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period. For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii) TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa ...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds. #### 4.8.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22°C Air Pressure: 1010hPa Humidity: 38% | Radio Technology | Time Slot Length [ms] | Dwell Time [ms] | Limit [s] | Margin to Limit [ms] | |------------------|-----------------------|-----------------|-----------|----------------------| | BT GFSK (1-DH5) | 2.910 | 372.480 | 0.4 | 27.520 | Module: UGKZ7A1001A Ambient temperature: 22 °C Air Pressure: 1010 hPa Humidity: 34 % | Radio Technology | Time Slot Length [ms] | Dwell Time [ms] | Limit [s] | Margin to Limit [ms] | |------------------|-----------------------|-----------------|-----------|----------------------| | BT GFSK (1-DH5) | 2.910 |
372.480 | 0.4 | 27.520 | Remark: Please see next sub-clause for the measurement plot. ## 4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### Module: UGXZEX304A ## Radio Technology = Bluetooth BDR Title: Dwell time Comment A: CE M: 2441 MEz Date: 11.DEC.2017 13:24:11 ## Module: UGKZ7A1001A ## 4.8.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution #### 4.9 NUMBER OF HOPPING FREQUENCIES Standard FCC Part 15 Subpart C The test was performed according to: ANSI C63.10 #### 4.9.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Analyzer settings: Detector: PeakTrace: Maxhold • Centre frequency: 2442 MHz • Frequency span: Frequency band of operation • Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is maller) • Video Bandwidth (VBW): 3 x RBW • Sweep Time: 21.5 ms • Sweeps: 2000 The technology depending measurement parameters can be found in the measurement plot. #### 4.9.2 TEST REQUIREMENTS / LIMITS For the band: 902 - 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i) If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. For the band: 2400 - 2483.5 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. TEST REPORT REFERENCE: MDE_BOSCH_1710_FCCa #### 4.9.3 TEST PROTOCOL Module: UGXZEX304A Ambient temperature: 22°C Air Pressure: 1010hPa Humidity: 38% | Radio Technology | Number of Hopping Frequencies | Limit | Margin to Limit | |------------------|-------------------------------|-------|-----------------| | BT GFSK (1-DH1) | 79 | 15 | 64 | Module: UGKZ7A1001A Ambient temperature: 22 °C Air Pressure: 1010 hPa Humidity: 34 % | Radio Technology | Number of Hopping Frequencies | Limit | Margin to Limit | |------------------|-------------------------------|-------|-----------------| | BT GFSK (1-DH1) | 79 | 15 | 64 | Remark: Please see next sub-clause for the measurement plot. ## 4.9.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") #### Module: UGXZEX304A ## Radio Technology = Bluetooth BDR Title: Number of hopping frequencies Comment A: CH H: Bopping Date: 11.DEC.2017 14:51:49 ## Module: UGKZ7A1001A ## 4.9.5 TEST EQUIPMENT USED - Regulatory Bluetooth RF Test Solution ## 5 TEST EQUIPMENT ## 1 Radiated Emissions Lab to perform radiated emission tests | Ref.No. | Device Name | Description | Manufacturer | | Last
Calibration | Calibration
Due | |---------|--------------------------|---|---|--------------------|---------------------|--------------------| | 1.1 | NRV-Z1 | Sensor Head A | Rohde &
Schwarz | 827753/005 | 2017-05 | 2018-05 | | 1.2 | MFS | Rubidium
Frequency Normal
MFS | Datum GmbH | 002 | 2017-10 | 2018-10 | | 1.3 | Opus10 TPR
(8253.00) | ThermoAirpressure
Datalogger 13
(Environ) | Lufft Mess- und
Regeltechnik
GmbH | 13936 | 2017-04 | 2019-04 | | 1.4 | Anechoic
Chamber | 10.58 x 6.38 x
6.00 m ³ | Frankonia | none | 2016-05 | 2019-05 | | 1.5 | | Ultralog new
biconicals | Rohde &
Schwarz | 830547/003 | 2015-06 | 2018-06 | | 1.6 | 5HC2700/12750-
1.5-KK | | Trilithic | 9942012 | | | | 1.7 | ASP 1.2/1.8-10
kg | Antenna Mast | Maturo GmbH | - | | | | 1.8 | Room | 8.80m x 4.60m x
4.05m (l x w x h) | Albatross
Projects | P26971-647-001-PRB | 2015-06 | 2018-06 | | 1.9 | Fluke 177 | Digital Multimeter
03 (Multimeter) | Fluke Europe
B.V. | 86670383 | 2016-02 | 2018-02 | | 1.10 | JS4-18002600-
32-5P | Broadband
Amplifier 18 GHz -
26 GHz | Miteq | 849785 | | | | 1.11 | FSW 43 | Spectrum Analyzer | Rohde &
Schwarz | 103779 | 2016-12 | 2018-12 | | 1.12 | 3160-09 | Standard Gain /
Pyramidal Horn
Antenna 26.5 GHz | EMCO Elektronic
GmbH | 00083069 | | | | 1.13 | WHKX 7.0/18G-
8SS | High Pass Filter | Wainwright | 09 | | | | 1.14 | 4HC1600/12750-
1.5-KK | High Pass Filter | Trilithic | 9942011 | | | | 1.15 | Chroma 6404 | AC Power Source | Chroma ATE
INC. | 64040001304 | | | | 1.16 | JS4-00102600-
42-5A | Broadband
Amplifier 30 MHz -
26 GHz | Miteq | 619368 | | | | 1.17 | TT 1.5 WI | Turn Table | Maturo GmbH | - | | | | 1.18 | | <u> </u> | Rohde &
Schwarz | 100609 | 2016-04 | 2019-04 | | 1.19 | 3160-10 | Standard Gain /
Pyramidal Horn
Antenna 40 GHz | EMCO Elektronic
GmbH | 00086675 | | | | 1.20 | 5HC3500/18000-
1.2-KK | High Pass Filter | Trilithic | 200035008 | | | | 1.21 | HFH2-Z2 | Loop Antenna | Rohde &
Schwarz | 829324/006 | 2014-11 | 2017-11 | | 1.22 | Opus10 THI
(8152.00) | ThermoHygro
Datalogger 12
(Environ) | Lufft Mess- und
Regeltechnik
GmbH | 12482 | 2017-03 | 2019-03 | | 1.23 | ESR 7 | EMI Receiver /
Spectrum Analyzer | Rohde &
Schwarz | 101424 | 2016-11 | 2018-11 | | 1.24 | | Broadband
Amplifier 30 MHz -
18 GHz | Miteq | 896037 | | | |------|-------------------------------------|---|--------------------|----------------------------|---------|---------| | 1.25 | AS 620 P | Antenna mast | HD GmbH | 620/37 | | | | 1.26 | Tilt device
Maturo
(Rohacell) | Antrieb TD1.5-
10kg | Maturo GmbH | TD1.5-
10kg/024/3790709 | | | | 1.27 | ESIB 26 | Spectrum Analyzer | Rohde &
Schwarz | 830482/004 | 2015-12 | 2017-12 | | 1.28 | PAS 2.5 - 10 kg | Antenna Mast | Maturo GmbH | - | | | | 1.29 | AM 4.0 | Antenna mast | Maturo GmbH | AM4.0/180/11920513 | | | | 1.30 | | Double-ridged
horn | Rohde &
Schwarz | 102444 | 2015-05 | 2018-05 | ## 2 Regulatory Bluetooth RF Test Solution Regulatory Bluetooth RF Tests | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last | Calibration | |---------|-------------------------|---|--------------------------------------|----------------|-------------|-------------| | | | | | | Calibration | Due | | 2.1 | MFS | Rubidium
Frequency
Normal MFS | Datum GmbH | 002 | 2017-10 | 2018-10 | | 2.2 | EX520 | Digital
Multimeter 12
(Multimeter) | Extech Instruments
Corp | 05157876 | 2016-02 | 2018-02 | | 2.3 | NRV Z1 A | Power Sensor | Rohde & Schwarz | 832279/013 | 2017-09 | 2018-09 | | 2.4 | Opus10 THI
(8152.00) | | Lufft Mess- und
Regeltechnik GmbH | 13985 | 2017-04 | 2019-04 | | 2.5 | TOCT Switching
Unit | | 7layers, Inc. | 040107 | | | | 2.6 | KWP 120/70 | Temperature
Chamber
Weiss 01 | Weiss | 59226012190010 | 2016-03 | 2018-03 | | 2.7 | ADU 200 Relay
Box 7 | used for
automated
testing (EMMI)
only | Ontrak Control
Systems Inc | A04380 | | | | 2.8 | СВТ | IL BT RF Test
Solution | Rohde & Schwarz | 100302 | 2017-02 | 2018-02 | | 2.9 | NRVD | Powermeter | Rohde & Schwarz | 832025/059 | 2017-09 | 2018-09 | | 2.10 | FSIQ26 | Signal
Analyser | Rohde & Schwarz | 832695/007 | 2016-09 | 2018-09 | | 2.11 | SMP02 | | Rohde & Schwarz | 833286/0014 | 2016-05 | 2019-05 | | 2.12 | SMIQ03B | Signal
Generator | Rohde & Schwarz | 832870/017 | 2016-06 | 2019-06 | | 2.13 | СВТ | | Rohde & Schwarz | 100589 | 2015-01 | 2018-01 | | 2.14 | NGSM 32/10 | Power Supply | Rohde & Schwarz | 2725 | 2017-06 | 2019-06 | The calibration interval is the time interval between "Last Calibration" and "Calibration Due" ## 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN. ## 6.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ) | _ | | |-----------|-------| | Frequency | Corr. | | MHz | dB | | 0.15 | 10.1 | | 5 | 10.3 | | 7 | 10.5 | | 10 | 10.5 | | 12 | 10.7 | | 14 | 10.7 | | 16 | 10.8 | | 18 | 10.9 | | 20 | 10.9 | | 22 | 11.1 | | 24 | 11.1 | | 26 | 11.2 | | 28 | 11.2 | | 30 | 11.3 | | | cable | |------------|-----------| | LISN | loss | | insertion | (incl. 10 | | loss | dB | | ESH3- | atten- | | Z 5 | uator) | | dB | dB | | 0.1 | 10.0 | | 0.1 | 10.2 | | 0.2 | 10.3 | | 0.2 | 10.3 | | 0.3 | 10.4 | | 0.3 | 10.4 | | 0.4 | 10.4 | | 0.4 | 10.5 | | 0.4 | 10.5 | | 0.5 | 10.6 | | 0.5 | 10.6 | | 0.5 | 10.7 | | 0.5 | 10.7 | | 0.5 | 10.8 | | | | #### Sample calculation U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB) U = Receiver reading LISN Insertion loss = Voltage Division Factor of LISN Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table. ## 6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ) | | 1 | | |-----------|----------------|--------| | | | | | | AF | | | Frequency | HFH-Z2) | Corr. | | MHz | dB (1/m) | dB | | 0.009 | 20.50 | -79.6 | | 0.007 | 20.45 | -79.6 | | 0.015 | 20.43 | -79.6 | | 0.013 | 20.36 | -79.6 | | 0.025 | 20.38 | -79.6 | | 0.023 | 20.32 | -79.6 | | 0.05 | 20.35 | -79.6 | | 0.03 | 20.30 | -79.6 | | 0.08 | 20.20 | -79.6 | | 0.1 | 20.20 | -79.6 | | 0.2 | 20.17 | -79.6 | | 0.49 | 20.14 | -79.6 | | 0.490001 | | -39.6 | | 0.490001 | 20.12
20.11 | -39.6 | | 0.8 | 20.11 | -39.6 | | 1 | 20.10 | -39.6 | | 2 | 20.09 | -39.6 | | 3 | 20.06 | -39.6 | | 4 | 20.05 | -39.5 | | 5 | 20.05 | -39.5 | | 6 | 20.03 | -39.5 | | 8 | 19.95 | -39.5 | | 10 | 19.83 | -37.3 | | 12 | 19.71 | -39.4 | | 14 | 19.54 | -39.4 | | 16 | 19.53 | -39.3 | | 18 | 19.50 | -39.3 | | 20 | 19.57 | -39.3 | | 22 | 19.61 | -39.3 | | 24 | 19.61 | -39.3 | | 26
| 19.54 | -39.3 | | 28 | 19.46 | -39.2 | | 30 | 19.73 | -39.1 | | 50 | 17.73 | J /. I | | (/ 10112 | 00 WII 12 | <u>'</u> | | | | | |-----------|-----------|----------|-----------|----------|-------------|----------| | cable | cable | cable | cable | distance | d_{Limit} | dused | | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-40 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | 0.4 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | | ' | | | | | ' | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values ## 6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ) (d_{Li} | $d_{Limit} = 3 m$ | | | |-------------------|--------------------|-------| | Frequency | AF
R&S
HL562 | Corr. | | MHz | dB (1/m) | dB | | 30 | 18.6 | 0.6 | | 50 | 6.0 | 0.9 | | 100 | 9.7 | 1.2 | | 150 | 7.9 | 1.6 | | 200 | 7.6 | 1.9 | | 250 | 9.5 | 2.1 | | 300 | 11.0 | 2.3 | | 350 | 12.4 | 2.6 | | 400 | 13.6 | 2.9 | | 450 | 14.7 | 3.1 | | 500 | 15.6 | 3.2 | | 550 | 16.3 | 3.5 | | 600 | 17.2 | 3.5 | | 650 | 18.1 | 3.6 | | 700 | 18.5 | 3.6 | | 750 | 19.1 | 4.1 | | 800 | 19.6 | 4.1 | | 850 | 20.1 | 4.4 | | 900 | 20.8 | 4.7 | | 950 | 21.1 | 4.8 | | 1000 | 21.6 | 4.9 | | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | |----------|----------|---------|-----------|----------|-------------|------------| | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-20 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.29 | 0.04 | 0.23 | 0.02 | 0.0 | 3 | 3 | | 0.39 | 0.09 | 0.32 | 0.08 | 0.0 | 3 | 3 | | 0.56 | 0.14 | 0.47 | 0.08 | 0.0 | 3 | 3 | | 0.73 | 0.20 | 0.59 | 0.12 | 0.0 | 3 | 3 | | 0.84 | 0.21 | 0.70 | 0.11 | 0.0 | 3 | 3 | | 0.98 | 0.24 | 0.80 | 0.13 | 0.0 | 3 | 3 | | 1.04 | 0.26 | 0.89 | 0.15 | 0.0 | 3 | 3 | | 1.18 | 0.31 | 0.96 | 0.13 | 0.0 | 3 | 3 | | 1.28 | 0.35 | 1.03 | 0.19 | 0.0 | 3 | 3 | | 1.39 | 0.38 | 1.11 | 0.22 | 0.0 | 3 | 3 | | 1.44 | 0.39 | 1.20 | 0.19 | 0.0 | 3 | 3 | | 1.55 | 0.46 | 1.24 | 0.23 | 0.0 | 3 | 3 | | 1.59 | 0.43 | 1.29 | 0.23 | 0.0 | 3 | 3 | | 1.67 | 0.34 | 1.35 | 0.22 | 0.0 | 3 | 3 | | 1.67 | 0.42 | 1.41 | 0.15 | 0.0 | 3 | 3 | | 1.87 | 0.54 | 1.46 | 0.25 | 0.0 | 3 | 3 | | 1.90 | 0.46 | 1.51 | 0.25 | 0.0 | 3 | 3 | | 1.99 | 0.60 | 1.56 | 0.27 | 0.0 | 3 | 3 | | 2.14 | 0.60 | 1.63 | 0.29 | 0.0 | 3 | 3 | | 2.22 | 0.60 | 1.66 | 0.33 | 0.0 | 3 | 3 | | 2.23 | 0.61 | 1.71 | 0.30 | 0.0 | 3 | 3 | | $(d_{Limit} = 10 \text{ m})$ | 1) | | | | | | | | | |------------------------------|------|------|------|------|------|------|-------|----|---| | 30 | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 | | 50 | 6.0 | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 | | 100 | 9.7 | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 | | 150 | 7.9 | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 | | 200 | 7.6 | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 | | 250 | 9.5 | -8.3 | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 | | 300 | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 | | 350 | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 | | 400 | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 | | 450 | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 | | 500 | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 | | 550 | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 | | 600 | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 | | 650 | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 | | 700 | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 | | 750 | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 | | 800 | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 | | 850 | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 | | 900 | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 | | 950 | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 | | 1000 | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 | ## Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$ Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. ## 6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ) | | AF
R&S | | |-----------|-----------|-------| | Frequency | HF907 | Corr. | | MHz | dB (1/m) | dB | | 1000 | 24.4 | -19.4 | | 2000 | 28.5 | -17.4 | | 3000 | 31.0 | -16.1 | | 4000 | 33.1 | -14.7 | | 5000 | 34.4 | -13.7 | | 6000 | 34.7 | -12.7 | | 7000 | 35.6 | -11.0 | | | | cable | | | |----------|----------|----------|------------|--| | cable | | loss 3 | | | | loss 1 | | (switch | | | | (relay + | cable | unit, | | | | cable | loss 2 | atten- | cable | | | inside | (outside | uator & | loss 4 (to | | | chamber) | chamber) | pre-amp) | receiver) | | | dB | dB | dB | dB | | | 0.99 | 0.31 | -21.51 | 0.79 | | | 1.44 | 0.44 | -20.63 | 1.38 | | | 1.87 | 0.53 | -19.85 | 1.33 | | | 2.41 | 0.67 | -19.13 | 1.31 | | | 2.78 | 0.86 | -18.71 | 1.40 | | | 2.74 | 0.90 | -17.83 | 1.47 | | | 2.82 | 0.86 | -16.19 | 1.46 | | | | | | | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 3000 | 31.0 | -23.4 | | 4000 | 33.1 | -23.3 | | 5000 | 34.4 | -21.7 | | 6000 | 34.7 | -21.2 | | 7000 | 35.6 | -19.8 | | cable
loss 1
(relay
inside
chamber) | cable
loss 2
(inside
chamber) | cable
loss 3
(outside
chamber) | cable loss 4 (switch unit, atten- uator & pre-amp) | cable
loss 5 (to
receiver) | used
for
FCC
15.247 | |---|--|---|--|----------------------------------|------------------------------| | dB | dB | dB | dB | dB | 10.247 | | 0.47 | 1.87 | 0.53 | -27.58 | 1.33 | | | 0.56 | 2.41 | 0.67 | -28.23 | 1.31 | | | 0.61 | 2.78 | 0.86 | -27.35 | 1.40 | | | 0.58 | 2.74 | 0.90 | -26.89 | 1.47 | | | 0.66 | 2.82 | 0.86 | -25.58 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 7000 | 35.6 | -57.3 | | 8000 | 36.3 | -56.3 | | 9000 | 37.1 | -55.3 | | 10000 | 37.5 | -56.2 | | 11000 | 37.5 | -55.3 | | 12000 | 37.6 | -53.7 | | 13000 | 38.2 | -53.5 | | 14000 | 39.9 | -56.3 | | 15000 | 40.9 | -54.1 | | 16000 | 41.3 | -54.1 | | 17000 | 42.8 | -54.4 | | 18000 | 44.2 | -54.7 | | cable | | | | | | |----------|--------|--------|----------|----------|-----------| | loss 1 | cable | cable | cable | cable | cable | | (relay | loss 2 | loss 3 | loss 4 | loss 5 | loss 6 | | inside | (High | (pre- | (inside | (outside | (to | | chamber) | Pass) | amp) | chamber) | chamber) | receiver) | | dB | dB | dB | dB | dB | dB | | 0.56 | 1.28 | -62.72 | 2.66 | 0.94 | 1.46 | | 0.69 | 0.71 | -61.49 | 2.84 | 1.00 | 1.53 | | 0.68 | 0.65 | -60.80 | 3.06 | 1.09 | 1.60 | | 0.70 | 0.54 | -61.91 | 3.28 | 1.20 | 1.67 | | 0.80 | 0.61 | -61.40 | 3.43 | 1.27 | 1.70 | | 0.84 | 0.42 | -59.70 | 3.53 | 1.26 | 1.73 | | 0.83 | 0.44 | -59.81 | 3.75 | 1.32 | 1.83 | | 0.91 | 0.53 | -63.03 | 3.91 | 1.40 | 1.77 | | 0.98 | 0.54 | -61.05 | 4.02 | 1.44 | 1.83 | | 1.23 | 0.49 | -61.51 | 4.17 | 1.51 | 1.85 | | 1.36 | 0.76 | -62.36 | 4.34 | 1.53 | 2.00 | | 1.70 | 0.53 | -62.88 | 4.41 | 1.55 | 1.91 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. ## 6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ) | _ | AF
EMCO | | |-----------|------------|-------| | Frequency | 3160-09 | Corr. | | MHz | dB (1/m) | dB | | 18000 | 40.2 | -23.5 | | 18500 | 40.2 | -23.2 | | 19000 | 40.2 |
-22.0 | | 19500 | 40.3 | -21.3 | | 20000 | 40.3 | -20.3 | | 20500 | 40.3 | -19.9 | | 21000 | 40.3 | -19.1 | | 21500 | 40.3 | -19.1 | | 22000 | 40.3 | -18.7 | | 22500 | 40.4 | -19.0 | | 23000 | 40.4 | -19.5 | | 23500 | 40.4 | -19.3 | | 24000 | 40.4 | -19.8 | | 24500 | 40.4 | -19.5 | | 25000 | 40.4 | -19.3 | | 25500 | 40.5 | -20.4 | | 26000 | 40.5 | -21.3 | | 26500 | 40.5 | -21.1 | | | | , | | | |----------|--------|----------|---------|-----------| | cable | cable | cable | cable | cable | | loss 1 | loss 2 | loss 3 | loss 4 | loss 5 | | (inside | (pre- | (inside | (switch | (to | | chamber) | amp) | chamber) | unit) | receiver) | | dB | dB | dB | dB | dB | | 0.72 | -35.85 | 6.20 | 2.81 | 2.65 | | 0.69 | -35.71 | 6.46 | 2.76 | 2.59 | | 0.76 | -35.44 | 6.69 | 3.15 | 2.79 | | 0.74 | -35.07 | 7.04 | 3.11 | 2.91 | | 0.72 | -34.49 | 7.30 | 3.07 | 3.05 | | 0.78 | -34.46 | 7.48 | 3.12 | 3.15 | | 0.87 | -34.07 | 7.61 | 3.20 | 3.33 | | 0.90 | -33.96 | 7.47 | 3.28 | 3.19 | | 0.89 | -33.57 | 7.34 | 3.35 | 3.28 | | 0.87 | -33.66 | 7.06 | 3.75 | 2.94 | | 0.88 | -33.75 | 6.92 | 3.77 | 2.70 | | 0.90 | -33.35 | 6.99 | 3.52 | 2.66 | | 0.88 | -33.99 | 6.88 | 3.88 | 2.58 | | 0.91 | -33.89 | 7.01 | 3.93 | 2.51 | | 0.88 | -33.00 | 6.72 | 3.96 | 2.14 | | 0.89 | -34.07 | 6.90 | 3.66 | 2.22 | | 0.86 | -35.11 | 7.02 | 3.69 | 2.28 | | 0.90 | -35.20 | 7.15 | 3.91 | 2.36 | | | | | | | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. ## 6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ) | Frequency | AF
EMCO
3160-10 | Corr. | |-----------|-----------------------|-------| | GHz | dB (1/m) | dB | | 26.5 | 43.4 | -11.2 | | 27.0 | 43.4 | -11.2 | | 28.0 | 43.4 | -11.1 | | 29.0 | 43.5 | -11.0 | | 30.0 | 43.5 | -10.9 | | 31.0 | 43.5 | -10.8 | | 32.0 | 43.5 | -10.7 | | 33.0 | 43.6 | -10.7 | | 34.0 | 43.6 | -10.6 | | 35.0 | 43.6 | -10.5 | | 36.0 | 43.6 | -10.4 | | 37.0 | 43.7 | -10.3 | | 38.0 | 43.7 | -10.2 | | 39.0 | 43.7 | -10.2 | | 40.0 | 43.8 | -10.1 | | cable
loss 1
(inside
chamber) | cable
loss 2
(outside
chamber) | cable
loss 3
(switch
unit) | cable
loss 4
(to
receiver) | distance
corr.
(-20 dB/
decade) | d _{Limit}
(meas.
distance
(limit) | d _{used}
(meas.
distance
(used) | |--|---|-------------------------------------|-------------------------------------|--|---|---| | dB | dB | dB | dB | dB | m | m | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.5 | | | | -15.6 | 3 | 0.5 | | 4.6 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.8 | | | | -15.6 | 3 | 0.5 | | 4.9 | | | | -15.6 | 3 | 0.5 | | 5.0 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.2 | | | | -15.6 | 3 | 0.5 | | 5.3 | | | | -15.6 | 3 | 0.5 | | 5.4 | | | | -15.6 | 3 | 0.5 | | 5.5 | | | | -15.6 | 3 | 0.5 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. distance correction = -20 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. ## 7 SETUP DRAWINGS Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. **Drawing 1:** Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane. **Drawing 2:** Setup for conducted radio tests. ## 8 MEASUREMENT UNCERTAINTIES | Test Case | Parameter | Uncertainty | |--------------------------------------|--------------------|------------------------| | AC Power Line | Power | ± 3.4 dB | | Field Strength of spurious radiation | Power | ± 5.5 dB | | 6 dB / 26 dB / 99% Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | Conducted Output Power | Power | ± 2.2 dB | | Band Edge Compliance | Power
Frequency | ± 2.2 dB
± 11.2 kHz | | Frequency Stability | Frequency | ± 25 Hz | | Power Spectral Density | Power | ± 2.2 dB | ## 9 PHOTO REPORT Please see separate photo report.