TEST REPORT

FCC MPE Test for RFV01U-D2A

Class II Permissive Change

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2001-FC036

DATE OF ISSUE January 17, 2020

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

HCT Co., Ltd.

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

Applicant		SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea	
Мос	Eut Type Iel Name	RRU(RFV01U) RFV01U-D2A	
		This test results were applied only to the test methods required by the	

standard.

Tested by Kwang Il Yoon

Kignatur

Technical Manager Jong Seok Lee

HCT CO., LTD. Soo Chan Lee / CEO

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	January 17, 2020	Initial Release

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

RF Exposure Statement

1. LIMITS

According to §1.1310 and §2.1091 RF exposure is calculated.

(B) Limits for General Population/Uncontrolled Exposures				
Frequency range (MHz)	Electric field Strength (V/m)	Magneticfield Strength (A/m)	Powerdensity (mW/cm²)	Averagingtime (minutes)
0.3 - 1.34····· 1.34 - 30····· 30 - 300····· 300 - 1500····	614 824/f 27.5	1.63 2.19/f 0.073	*(100) *(180/ f ²) 0.2 f/1500	30 30 30 30
1500 - 100.000			1.0	30

F = frequency in MHz

* = Plane-wave equivalent power density

2. MAXIMUM PERMISSIBLE EXPOSURE Prediction

Prediction of MPE limit at a given distance

$S = PG/4\pi R^2$

- S = Power density
- P = power input to antenna
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna

3. Results

3-1. Band 13 LTE (40 W, 4 Tx)		
Max Average output Power for Multi input Multi output (MIMO)	53.04	dBm
Max Average output Power for Multi input Multi output (MIMO)	201372.42	mW
Prediction distance	1000.00	cm
Prediction frequency	751.00	MHz
Antenna Gain(typical)	10.865	dBi
Antenna Gain(numeric)	12.204	-
Power density at prediction frequency	0.1956	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	0.5007	mW/cm ²

3-2.Band 13 LTE (34.5 W, 4 Tx)

Max Average output Power for Multi input Multi output (MIMO)	52.40	dBm
Max Average output Power for Multi input Multi output (MIMO)	173780.08	mW
Prediction distance	1000.00	cm
Prediction frequency	751.00	MHz
Antenna Gain(typical)	10.865	dBi
Antenna Gain(numeric)	12.204	-
Power density at prediction frequency	0.1688	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	0.5007	mW/cm ²

3-3.Band 13 NB-IoT (5.5 W, 4 Tx)

Max Average output Power for Multi input Multi output (MIMO)	44.42	dBm
Max Average output Power for Multi input Multi output (MIMO)	27669.42	mW
Prediction distance	1000.00	cm
Prediction frequency	746.20	MHz
Antenna Gain(typical)	10.865	dBi
Antenna Gain(numeric)	12.204	-
Power density at prediction frequency	0.0269	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	0.4975	mW/cm ²

3-4.LTE Band 5 (40 W, 4 Tx)

Max Average output Power for Multi input Multi output (MIMO)	53.04	dBm
Max Average output Power for Multi input Multi output (MIMO)	201372.42	mW
Prediction distance	1000.00	cm
Prediction frequency	871.50	MHz
Antenna Gain(typical)	10.865	dBi
Antenna Gain(numeric)	12.204	-
Power density at prediction frequency	0.1956	mW/cm ²
MPE limit for uncontrolled exposure at prediction frequency	0.5810	mW/cm ²

% Manufacturer does not provide an antenna.

* The antenna gain in the table above is virtual value of the available range.

Simultaneous transmission operations

Simultaneous MPE 10 m is

- 1. Band 13_LTE (0.1956/0.5007) + Band 5_LTE (0.1956/0.5810) = 0.7273 < 1.0
- Band 13_LTE (0.1688/0.5007) + Band 13_NB-IoT (0.0269/0.4975) + LTE Band 5 (0.1956/0.5810)
 = 0.7279 < 1.0