

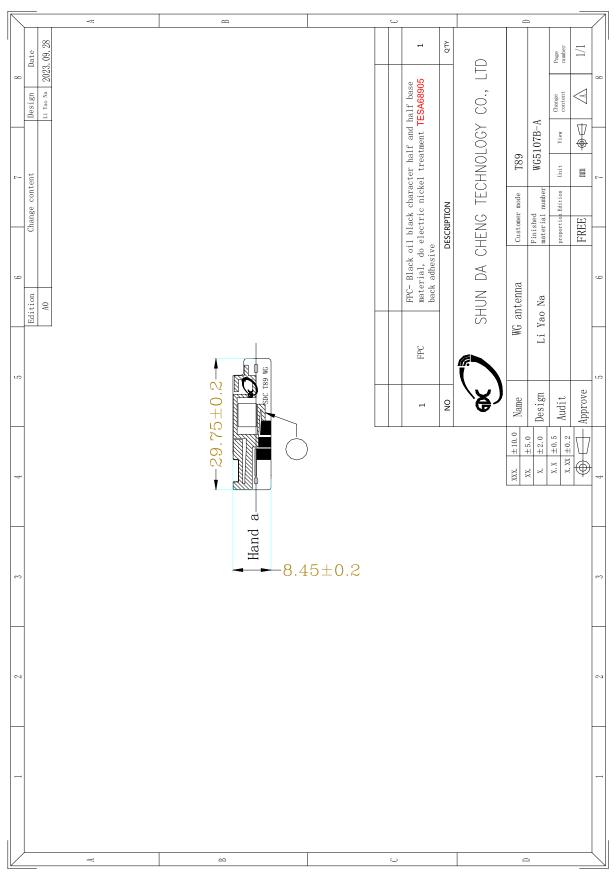
Acknowledgment Letter

SPECIFICATION FOR APPROVAL

Customer Name		Yihua	
Customer Project	Т89	Project Name	Т89
Antenna type	Four in one antenna	SDC P/N	WG5107B-A
Band	WiFi2. 4G/5. 8G/BT/GPS		
Version	A0		
	Designer Inf	ormation	
RF Engineer	**************************************	R&D Diretor	游量的
ME Engineer	杨智		

	Appr	ustomer	Approval		
	Prepared By	Checked By	Approval By	Checked By	Approval By
Signature	Huang Zongbao	Fu Xuerong	Xia Chenglei		
Date	2023. 9. 28	2023. 9. 28	2023. 9. 28		

	hange Log										
Version	Change Description	Person in Charge	Approval By	Date							

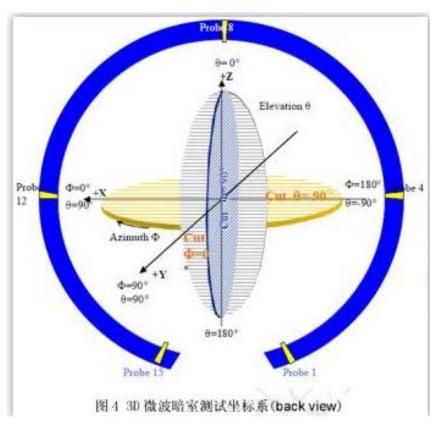


Catalogue

No.	ltem	Page No.
1	Drawing or Product Image	3
2	Dimensions Test Report	4
3	RF Performance Test Report	5-7
4	Reliability Test Report1	8
5	Package Document	9
6	RoHS Control list for Sample	10
7	Install Wizard or Other	10

Drawing or Product Image

Sample Dimensions Test Report


Test Date	2023. 9. 28	Inspector	Xu Yanfang		
Dimension No.	Standard	Sample 1	Sample 2	Sample 3	Pass/NG
1 length	29.75±0.2mm	29. 75	29. 85	29. 75	Pass
2width	8. 45±0. 2mm	8. 45	8. 55	8. 55	Pass
③ thickness	0.1±0.03mm	0. 1	0. 1	0. 1	Pass
4					
(5)					
6					
7					
	1	Conclusion			PASS
Inspector & Date	Xu Yanfang 202	23. 9. 28	Approval &D ate		

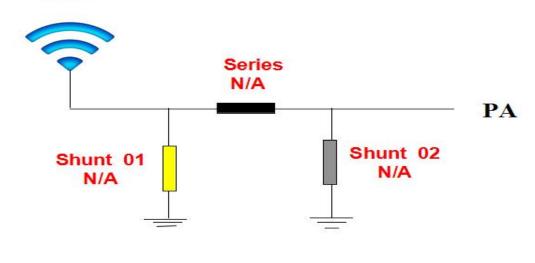
RF Performance Test Report

Antenna Test Equipment Introduction

Test of antenna input characteristics using **Agilent E5071C** and **Agilent 5062A** vector network analyzer; The radiation pattern of the antenna are tested using the guangping 3D near field Anechoic Chamber, and the instrument is used to agilent8960 E5515 and Agilent E4438C. The test coordinates of the darkroom are as follows:

1. S11 Parameter-VSWR

Measuring Method is a $50\,\Omega$ coaxial cable is connected to the antenna. Then this cable is connected to a network analyzer to measure the S11 parameter, Keeping this fixture away from metal at least 20cm.

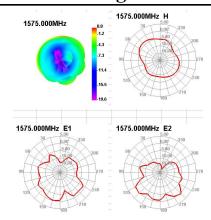


S11 Parameter-VSWR											
Frequency(MHz)	1570	1575	1580	2400	2450	2500	5150	5720	5850		
VSWR	1.54	1.53	1.57	2.12	1.10	1.98	1.52	1.36	1.59		

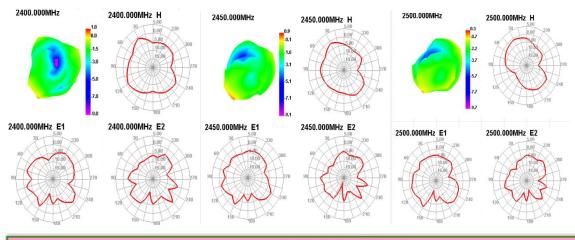
2. Antenna Matching Network

Antenna

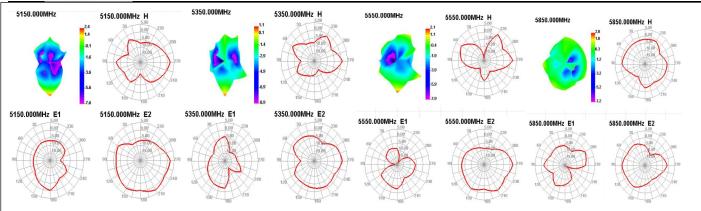
3. Electrical parameter:


Electrical parameter								
(Frequency range)	1575-5850Mhz							
Polarization mode	Horizontal and vertical polarization							
Measurement program	Wide screen							
Test equipment	Agilent(5071B) /Agilent (8960) /ROHDE&SCHWARZ(CMW500)							
Test Settings	Insert the testing white card, fix the entire machine on the testing turntable, open the testing software, and select the corresponding testing frequency band							
Testing location	OTA microwave anechoic chamber							
Antenna manufacturer	Shenzhen Shundacheng Technology Co., Ltd							
Debugging mode	PIFA							
Antenna material	FPC+coaxial line							

4. Gain & Efficiency


Freq (MHz) Effi (%) Gain (dB) Gain (dBd) UHIS (%) DHIS (Max (MB) (MB) (dB) (dB) Max (MIN (Attention (MB) (dB) (dB) (dB) (dB) (dB) Hor 1500 32.5 -3.14 2.8 0.65 16.66 31.838 0.8 -20.4 43.1525 1525 32.86 -3.2 0.59 0.44 15.309 32.552 0.59 -21.47 43.1525	Ver
1500 32.5 -3.14 2.8 0.65 16.66 31.838 0.8 -20.4 43	- TOTAL TOTAL
1525 32, 86 -3, 2 0, 59 0, 44 15, 309 32, 552 0, 59 -21, 47 43	
1.11 101000 001000 01101	39 43.93
1550 43. 28 -3. 64 1. 82 -0. 33 12. 607 30. 669 1. 82 -15. 36 44	44.11
1575 38.85 -4.58 0.81 -1.34 9.312 25.539 0.81 -19.56 44	32 44.78
1600 34.74 -4.59 0.67 -1.48 10.102 24.642 0.67 -20.95 4	1 45.91

1500.00MHz - 1600.00MHz Gain



	Passive Test For 2.4G												
Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max	Min	irectivit	Beamwidth	AttH	AttV	
(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)	(dBi)	(3dB)	(dB)	(dB)	
2400	43. 54	-3. 61	1.03	-1.12	20. 581	22. 962	1.03	-15. 9	4.64	15	48. 93	49.09	
2425	45. 48	-2.97	1.96	-0.19	23. 926	26. 555	1.96	-16. 48	4. 93	15	49.09	49. 22	
2450	36. 53	-4.37	0.87	-1.28	17. 136	19.397	0.87	-19.74	5. 24	15	49. 25	49. 27	
2475	35. 97	-4. 4 4	0.52	-1.63	17. 205	18. 763	0.52	-23. 22	4. 96	75	49.98	49.91	
2500	36. 94	-4. 32	0.32	-1.83	17.676	19. 267	0.32	-18.36	4.64	75	49.71	49.62	

L		Passive Test For 5.8G											
	Freq	Effi	Effi	Gain	Gain	UHIS	DHIS	Max	Min	irectivit	Beamwidth	AttH	AttV
	(MHz)	(%)	(dB)	(dBi)	(dBd)	(%)	(%)	(dB)	(dB)	(dBi)	(3dB)	(dB)	(dB)
Va.	5150	42.13	-3. 75	2. 36	0.21	16. 688	25. 441	2.36	-12.69	6. 11	0	58. 6	58. 01
Va.	5250	36. 5	-4. 38	1.37	-0. 78	16. 245	20. 256	1. 37	-11.52	5. 75	30	58. 53	57. 7 4
12	5350	33. 61	-4. 73	1.07	-1.08	14. 487	19. 127	1.07	-15. 18	5. 81	60	57.99	57.08
1/2	5450	38. 75	-4. 12	2.03	-0.12	14. 442	24. 308	2.03	-15. 14	6. 15	0	59. 19	57.9
1/2	5550	43. 16	-3.65	2.14	-0.01	15. 599	27. 564	2.14	-19. 43	5. 79	60	60.21	58.81
12	5650	45. 41	-3.43	2. 1	-0.05	16. 711	28.699	2. 1	-20.47	5. 53	0	60.31	59.42
1/2	5750	46. 58	-3.32	2.17	0.02	17. 996	28. 581	2.17	-18	5. 49	30	60.88	60.28
1	5850	44. 83	-3.48	2. 78	0.63	18. 496	26. 336	2. 78	-23.77	6. 27	30	61.09	60.41

5. OTA data

2. 4G	802.11b, (2.4G)11M						
Channe1	CH1	СН6	CH11				
TRP	13. 35	13. 63	13. 71				
TIS	-81. 29	-80. 64	-80. 22				
5. 8G	802.11A, (5.8G)54M						
Channe1	СН36	СН60	CH165				
TRP	11. 35	11. 13	11. 26				
TIS	-70. 29	-70. 64	−70. 22				

6. GPS measurement map

Measured on the rooftop of the 5th floor, the best star value is around 2 stars and 40 stars, with a positioning time of about 70 seconds

Reliability Test Report

Test Date	2023. 9. 28	Sample Qty.	3	Inspector	Xu Yanfang				
Test Item	Requirement	testing equipment	Sample 1	Sample 2	Sample 3	PASS/NG			
high temperature storage	Expose to+85 °C for 24 hours, recover for 2 hours, and conduct testing	Constant temperature and humidity box	ок	ОК	ок	Pass			
low temperature storage	Expose to -40 ° C for 24 hours, recover for 2 hours, and perform testing	Constant temperature and humidity box	ОК	ОК	ОК	Pass			
High temperature operation	Powered on for 24 hours at+60 °C	Constant temperature and humidity box	OK	OK	ОК	Pass			
Low temperature operation	Powered on for 24 hours at -20 °C	Constant temperature and humidity box	ок	ОК	ок	Pass			
Salt spray test	(5 ± 0. 5)%sodium chloride, pHValue is6.5~7.2, Temperature of experimental chamber (35±2)°C □24H	Salt spray testing machine	OK	ОК	ОК	Pass			
Connector riveting and pulling force	1.13Wire diameter≥ 10N 0.81Wire diameter≥ 8N RG174 ≥60N RG178 ≥50N	Push-pull force gauge	≥10N	≥10N	≥10N	Pass			
	Conclusion								
Inspector &	Xu Yanfang 2023. 9. 28								

Product ROHS Composition Declaration Form

produc	Unifo rm	Harmful substance content(PPM)						Date of HS test
t name		Pb	Cd	Hg	Cr	Br	HS test report number	report
		ND	ND	ND	ND	ND		
		ND	ND	ND	ND	ND		
	FPC .	ND	ND	ND	ND	ND	UNIB21042707HR-01	2023. 9. 28
four		ND	ND	ND	ND	ND		
in		ND	ND	ND	ND	ND		
	wire	ND	ND	ND	ND	ND		
onean	rod	ND	ND	ND	ND	ND		
tenna		ND	ND	ND	ND	ND		
	termin	ND	ND	ND	ND	ND		

Install Wizard or Other

setup script:

Take 1 PCS of product, tear off the release paper on the back of the FPC by hand, and then align the FPC positioning hole position with the shell positioning hole position (positioning rib position or positioning line), and attach it flat to the shell, as shown in the following figure:

	Installation process precautions:								
	☐Ensure that the FPC is fully attached to the housing after pasting the antenna;								
	□Align the positioning hole with the position of the casing positioning column;								
	□Align FPC edge with shell edge;								
	□When attaching the terminal to the PCBA end of the motherboard, please first align								
the	terminals and then snap them vertically;								
	☐When disassembling antenna terminals, it is necessary to use a tool (such as a special								
	pry bar) to vertically lift the terminals and not directly pull								
	the wires for disassembly								
_									

Test equipment(The following equipment is calibrated every six months, inMarch/September of each year)

agilent 8960 is mainly used for testing 2G/3G

Nordschwarz CMW500 is mainly used for testing WiFi/4G

The Agilent E5071B network analyzer is mainly used for passive 2D/3D antenna testing

Certificate Number: UNIB23083106HC-01

Product: 5G/4G/WIFI/GPS/BT antenna

Applicant: ShenZhen ShunDaCheng Technology Co., Ltd.

4th Floor, Building B5, Xinfu Industrial Zone, Fuyong Chongqing Road,

Baoan District, Shenzhen

Manufacturer: N/A

Model No.: N/A
Trade Name: N/A

Test Methods: IEC 62321-2:2021, IEC 62321-3-1:2013, IEC 62321-4:2013 +A1:2017,

IEC 62321-5:2013, IEC 62321-6:2015, IEC 62321-7-1:2015

IEC 62321-7-2:2017, IEC 62321-8:2017

The laboratory tested the product provided by the applicant according to the above test methods. According to the test results, the product conforms to RoHS Directive [(2011/65/EU and Amendment (EU) 2015/863)] issued by the European Commission. It is possible to use CE marking to demonstrate the compliance with RoHS Directive.

The certificate applies to the tested sample above mentioned only and shall not imply an assessment of the whole production. It is only valid in connection with the test report number: UNIB23083106HR-01.

Note: According to the requirements of the applicant for testing, details are shown in the test report.

RoHS

Sep. 06, 2023 Issue Date Hoffer Lau

Shenzhen United Testing Technology

Shenzhen: D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community, Longhua District, Shenzhen, Guangdong, China/518109

Guangzhou:No.47-3, Industrial Road, Zhushan, Dalong Street, Panyu District, Guangzhou, Ol China/511450;

101/F, Building 2, Tongxin Industrial Park, Xinqiao Village, Dalong Street, Panyu District, Guangzhou, Guangdong China/511450

Tel:+86-755-86180996/+86-020-39277769 Fax:+86- 0755-86180156

Web.Site:www.uni-lab.hk/ E-mail:hofferlau@uni-lab.hk

Certificate of Compliance