Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	FCC PART 15.247
Report Reference No	FCC PART 15.247 CTA25011800201 2A6PB-REVERB
position+printed name+signature) .:	File administrators Joan Wu
Supervised by position+printed name+signature) .:	Project Engineer Zoey Cao
Approved by (position+printed name+signature) .:	RF Manager Eric Wang
Date of issue	Feb. 08, 2025
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China
Applicant's name:	Zhuhai Kuwee Technology Co., LTD.
Address	North factory building 4-3-402, Honghui 2nd Road, Hongqi Town Industrial Zone, Jinwan District, Zhuhai, China
Test specification:	TESTIN
	FCC Part 15.247
CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak	TES I
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation	Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzhe acknowledged as copyright owner and source of the material. Shenzhe kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context.
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation	Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzhe acknowledged as copyright owner and source of the material. Shenzhe kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context.
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description	r Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzher acknowledged as copyright owner and source of the material. Shenzher kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Reverb
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description Trade Mark Manufacturer	r Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzher acknowledged as copyright owner and source of the material. Shenzher kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Reverb N/A
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak	 Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzhe acknowledged as copyright owner and source of the material. Shenzhe kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Reverb N/A Zhuhai Kuwee Technology Co., LTD Reverb Looper, LooperPro, Delay, Fuzz, Overdrive, Distortion, Octave,
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description Trade Mark Manufacturer Model/Type reference Listed Models	 Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzhe acknowledged as copyright owner and source of the material. Shenzhe kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Reverb N/A Zhuhai Kuwee Technology Co., LTD Reverb Looper, LooperPro, Delay, Fuzz, Overdrive, Distortion, Octave,
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description Trade Mark Manufacturer Model/Type reference	 Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzhe acknowledged as copyright owner and source of the material. Shenzhe kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Reverb N/A Zhuhai Kuwee Technology Co., LTD Reverb Looper, LooperPro, Delay, Fuzz, Overdrive, Distortion, Octave,
Shenzhen CTA Testing Technology This publication may be reproduced in CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. tak resulting from the reader's interpretation Test item description Trade Mark Manufacturer Listed Models	Co., Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the Shenzher acknowledged as copyright owner and source of the material. Shenzher kes no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context. Reverb N/A Zhuhai Kuwee Technology Co., LTD Reverb Looper, LooperPro, Delay, Fuzz, Overdrive, Distortion, Octave, Booster, IR BOX, PreAmp GFSK, Π/4DQPSK

Page 2 of 44 Report No.: CTA25011800201 TEST REPORT Equipment under Test Reverb Model /Type Reverb Listed Models Looper, LooperPro, Delay, Fuzz, Overdrive, Distortion, Octave, Booster, IR BOX, PreAmp The PCB board, circuit, structure and internal of these models are the Model difference same, Only model number and colour is different for these model. Applicant Zhuhai Kuwee Technology Co., LTD. North factory building 4-3-402, Honghui 2nd Road, Hongqi Town Address Industrial Zone, Jinwan District, Zhuhai, China Zhuhai Kuwee Technology Co., LTD. Manufacturer North factory building 4-3-402, Honghui 2nd Road, Hongqi Town Address Industrial Zone, Jinwan District, Zhuhai, China CTATE

Test Result:	PASS	

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

		Contents	
1	TEST STANDARDS	COTIN ^G	
2	SUMMARY	16-	
		T	ATE
2.1	General Remarks	CT CT	5
2.2	Product Description		J
2.3	Equipment Under Test		55
2.4	Short description of the Equipment	under Test (EUT)	5
2.5	EUT configuration		5
2.6	EUT operation mode		6
2.7	Block Diagram of Test Setup		6
2.8 2.9	Related Submittal(s) / Grant (s) Modifications		6 6
2.9	wouncations		0
<u>3</u>	<u>TEST ENVIRONMENT</u>		<u>7</u>
			CTATESTIN 7 7
3.1	Address of the test laboratory		
3.2	Test Facility		7
3.3	Environmental conditions		7
3.4	Summary of measurement results	_	8
3.5	Statement of the measurement unc	ertainty	8
3.6	Equipments Used during the Test		9
	TATES		
<u>4</u>	TEST CONDITIONS AND R	ESULTS	<u></u>
		TES	ATESTING 11 14 21 22 25
4.1	AC Power Conducted Emission		-STINC 11
4.2	Radiated Emission		TES 14
4.3	Maximum Peak Output Power	C7	21
4.4	20dB Bandwidth		22
4.5	Frequency Separation		ZJ
4.6	Number of hopping frequency		27
4.7 G	Time of Occupancy (Dwell Time)		29
4.8 4.9	Out-of-band Emissions Pseudorandom Frequency Hopping	- Soguenee	32 38
4.9 4.10	Antenna Requirement	Joequence	38
4.10	Antenna Requirement		
_		-ING	
<u>5</u>	TEST SETUP PHOTOS OF	<u>THE EUT</u>	
<u>6</u>	PHOTOS OF THE EUT		
			G G V
			CTATES
	TA TESTING		
	rATE		
		STIN	
		TESTING	
	C/h		

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample	-	Jan. 18, 2025
Testing commenced on	Contraction of the second	Jan. 18, 2025
Testing concluded on	:	Feb. 08, 2025

2.2 Product Description

l esting commenced on		Jan. 18, 2025	CIA	
Testing concluded on	:	Feb. 08, 2025		
2.2 Product Descrip	tion			
Product Name:	Reverb	G		
Model/Type reference:	Reverb	0		
Power supply:	DC 5.0V o	r 9.0V From external of	circuit	
Hardware version:	V1.0		ATES	
Software version:	V1.0	GIA	TESTIN	
Testing sample ID:				
Bluetooth :				
Supported Type:	Bluetooth B	BR/EDR		
Modulation:	GFSK, π/4	DQPSK		
Operation frequency:	2402MHz~	2480MHz	. 6	
Channel number:	79	CVP	TESTING	
Channel separation:	1MHz		CTA	
Antenna type:	PCB anten	na		
Antenna gain:	0.58 dBi		(61)	
	Testing concluded on 2.2 Product Descrip Product Name: Model/Type reference: Power supply: Hardware version: Software version: Testing sample ID: Bluetooth : Supported Type: Modulation: Operation frequency: Channel number: Channel separation: Antenna type:	Testing concluded onImage: Testing concluded onImage: Testing concluded onSoftware: ReverbPower Supply:ReverbPower supply:DC 5.0V orHardware version:V1.0Software version:V1.0Testing sample ID:CTA25011 CTA25011 CTA25011Bluetooth :Supported Type:Bluetooth FModulation:GFSK, π/4Operation frequency:2402MHz~Channel number:79Channel separation:1MHzAntenna type:PCB anten	Testing concluded on : Feb. 08, 2025 2.2 Product Description Product Name: Reverb Model/Type reference: Reverb Power supply: DC 5.0V or 9.0V From external Hardware version: V1.0 Software version: V1.0 Testing sample ID: CTA250118002-1# (Engineer streng) Bluetooth : CTA250118002-2# (Normal sar Bluetooth : GFSK, π/4DQPSK Operation frequency: 2402MHz~2480MHz Channel number: 79 Channel separation: 1MHz Antenna type: PCB antenna	Testing concluded on:Feb. 08, 2025 2.2 Product Description Product Name:ReverbModel/Type reference:ReverbPower supply:DC 5.0V or 9.0V From external circuitHardware version:V1.0Software version:V1.0CTA250118002-1# (Engineer sample) CTA250118002-2# (Normal sample)Bluetooth :Supported Type:Bluetooth BR/EDRModulation:GFSK, $\pi/4DQPSK$ Operation frequency:2402MHz-2480MHzChannel number:79Channel separation:1MHzAntenna type:PCB antenna

2.3 Equipment Under Test

Power supply system utilised

				1.1.1		_
Power supply voltage	:	Ο	230V / 50 Hz	0	120V / 60Hz	
G		Ο	12 V DC	0	24 V DC	
			Other (specified in blank be	low)		(INC
	DC {	5.0\	/ or 9.0V From external circu	it		
2.4 Short description of the Equipment under Test (EUT)						

Short description of the Equipment under Test (EUT) 2.4

This is a Reverb.

For more details, refer to the user's manual of the EUT.

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

 supplied by the manufacturer supplied by the lab 	ATESTING
 ○ Adapter 	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Room 106, Building 1, Yibaolai Industrial	CTA Testing Technology Co., Ltd. Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China -mail:cta@cta-test.cn Web:http://www.cta-test.cn

2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

	Operation Frequency:			
	Channel	Frequency (MHz)		
	00	2402		
	01	2403		
CTATE	- NG	:		
» G V	38 51	2440		
1	39	2441		
	40	2442		
		OIN		
	77	2479		
	78	2480		

2.7 Block Diagram of Test Setup

NG	DC 5.0V From Adapter
	TESTING

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 Modifications

No modifications were implemented to meet testing criteria.

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

GTA CTATESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

•	laalatoa	
	Tamaa	and sures

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C]
TESI		
Humidity:	46 %	-ING
		-ESIN'
Atmospheric pressure:	950-1050mbar	ALL
Conducted testing:		_
Temperature:	25 ° C	

Conducted testina:

25 ° C
44 %
950-1050mbar
TESI

3.4 Summary of measurement results

	Test Specification clause	Specification Test case Mode		Test Channel		orded eport	Test result
	§15.247(a)(1)	Carrier Frequency separation	GFSK II/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	Middle	Compliant
	§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK	🛛 Full	GFSK	🛛 Full	Compliant
	§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK ∏/4DQPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK П/4DQPSK	🛛 Middle	Compliant
ATE	§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK TI/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
-	§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK	Lowest	Compliant
	§15.205	Band edgecompliance radiated	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest	Compliant
	§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK	Lowest Middle	GFSK	 ☑ Lowest ☑ Middle ☑ Highest 	Compliant
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	Middle	Compliant
	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	Middle	Compliant

Remark:

The measurement uncertainty is not included in the test result. 1.

We tested all test mode and recorded worst case in report 2.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

	9		
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)

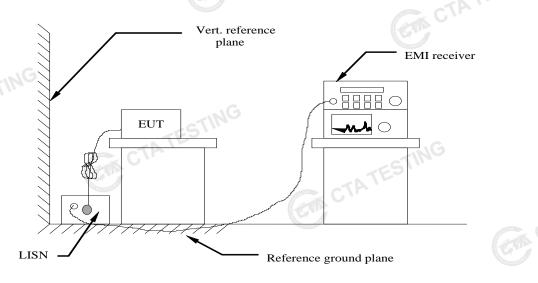
Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


E Tes	t Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI.	Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI.	Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spec	trum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spec	trum Analyzer	G R&S	FSU	CTA-337	2024/08/03	2025/08/02
	ector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	alog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
COM	BAND RADIO MUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	perature and nidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra	a-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	orn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Lo	op Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Ho	orn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Direc	tional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
Hig	h-Pass Filter	[℃] XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
Hig	h-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Aut	omated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Po	wer Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02

	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	TATE
	TING		·			(CTA)	
CTATE	5	CTATESTING					
Ŷ		CTATES					

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

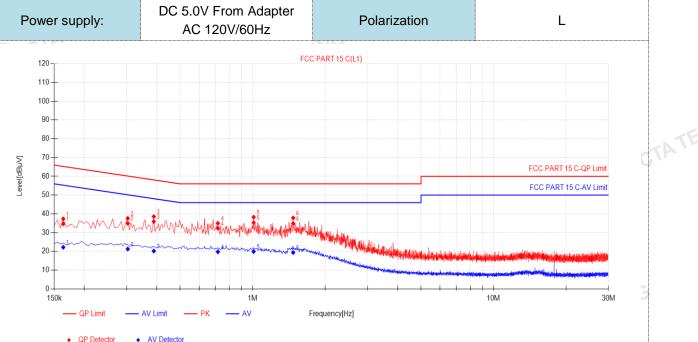
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit	(dBuV)			
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency					

Decreases with the logarithm of the frequency


TEST RESULTS

Remark:

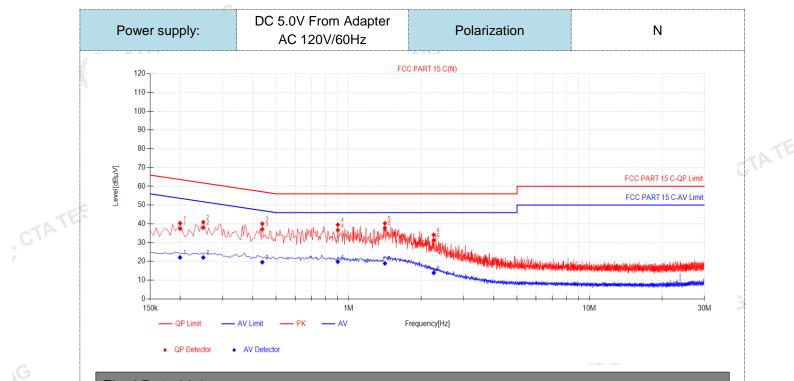
1. All modes of GFSK, Π/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Page 12 of 44

2. We tested the product using 5V and 9V, and the worst data recorded in the report was 5V power supply.

Final Dat 1.1

NO. Freq. [MHz] Factor [dB] QP Reading[dB} µV] QP Value [dBµV] QP Limit [dBµV] QP Margin [dB] AV Reading [dBµV] AV Value [dBµV] AV Limit [dBµV] AV Margin [dB] AV Value [dBµV] AV Limit [dBµV] AV Margin [dB] AV 1 0.1635 9.93 24.75 34.68 65.28 30.60 12.27 22.20 55.28 33.08 PAS 2 0.303 9.95 24.99 34.94 60.16 25.22 11.32 21.27 50.16 28.89 PAS								
2 0.303 9.95 24.99 34.94 60.16 25.22 11.32 21.27 50.16 28.89 PAS								
3 0.3885 9.87 26.03 35.90 58.10 22.20 10.32 20.19 48.10 27.91 PASS								
4 0.717 9.92 22.42 32.34 56.00 23.66 9.87 19.79 46.00 26.21								
5 1.0095 9.91 25.40 35.31 56.00 20.69 10.02 19.93 46.00 26.07 PAS								
6 1.473 9.90 24.98 34.88 56.00 21.12 9.49 19.39 46.00 26.61 PAS								

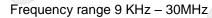

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTIN

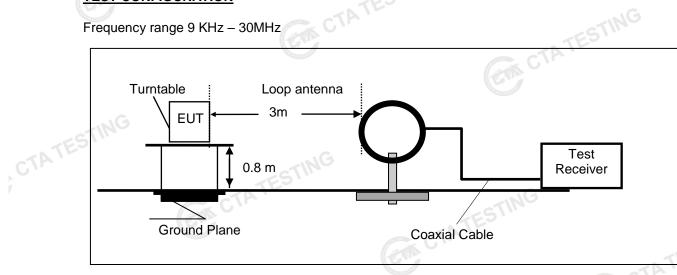
Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATE

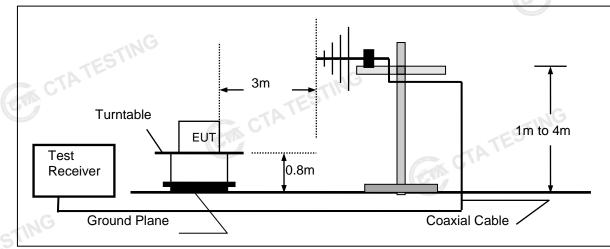
CTATES

Page 13 of 44

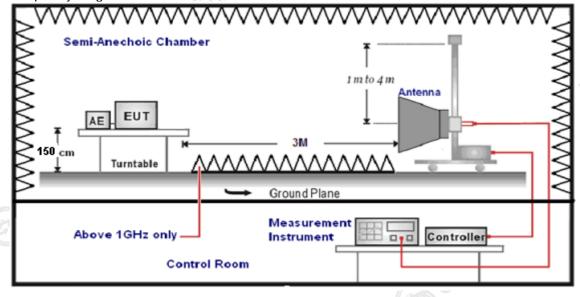

inal	Dat		int
IId	Dai	a L	151

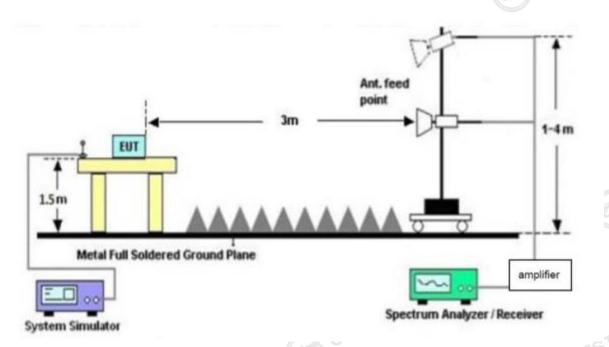

NO.Freq. [MHz]Factor [dB]QP Reading[dB μVI QP Value [dB μVI]QP Margin [dB μVI]QP Margin [dB]AV Reading [dB μVI]AV Reading [dB μVI]AV Margin [dB μVI]AV Reading [dB μVI]AV Nu Limit [dB μVI]AV Margin [dB]AV Value [dB μVI]AV Margin [dB μVI]<			51								1	
2 0.249 10.02 27.98 38.00 61.79 23.79 12.07 22.09 51.79 29.70 PASS 3 0.438 9.97 27.22 37.19 57.10 19.91 9.61 19.58 47.10 27.52 PASS 4 0.9015 10.13 26.52 36.65 56.00 19.35 9.71 19.84 46.00 26.16 PASS 5 1.4145 10.15 27.61 37.76 56.00 18.24 8.78 18.93 46.00 27.07 PASS 6 2.256 10.15 21.18 31.33 56.00 24.67 3.74 13.89 46.00 32.11 PASS ote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	NO.			Reading[dB	Value	Limit	Margin	Reading	Value	Limit	Margin	Verdict
3 0.438 9.97 27.22 37.19 57.10 19.91 9.61 19.58 47.10 27.52 PASS 4 0.9015 10.13 26.52 36.65 56.00 19.35 9.71 19.84 46.00 26.16 PASS 5 1.4145 10.15 27.61 37.76 56.00 18.24 8.78 18.93 46.00 27.07 PASS 6 2.256 10.15 21.18 31.33 56.00 24.67 3.74 13.89 46.00 32.11 PASS	1	0.1995	9.95	27.49	37.44	63.63	26.19	12.15	22.10	53.63	31.53	PASS
a 0.9015 10.13 26.52 36.65 56.00 19.35 9.71 19.84 46.00 26.16 PASS 5 1.4145 10.15 27.61 37.76 56.00 18.24 8.78 18.93 46.00 27.07 PASS 6 2.256 10.15 21.18 31.33 56.00 24.67 3.74 13.89 46.00 32.11 PASS ote: 1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)	2	0.249	10.02	27.98	38.00	61.79	23.79	12.07	22.09	51.79	29.70	PASS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	0.438	9.97	27.22	37.19	57.10	19.91	9.61	19.58	47.10	27.52	PASS
6 2.256 10.15 21.18 31.33 56.00 24.67 3.74 13.89 46.00 32.11 PASS ote:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)	4 0.9015 10.13 26.52 36.65 56.00 19.35 9.71 19.84 46.00 26.16 PASS									PASS		
ote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)	5	1.4145	10.15	27.61	37.76	56.00	18.24	8.78	18.93	46.00	27.07	PASS
lote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	6	2.256	10.15	21.18	31.33	56.00	24.67	3.74	13.89	46.00	32.11	PASS
	3).	QPMargir	n(dB) = C	2P Limit (dBµV) -	QP Valu	ie (dBµV)				
3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)	4)	AV/Margin		V/Limit (A\/ \/alu						

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTIN


Radiated Emission 4.2

TEST CONFIGURATION




Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and 2. rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	Conto V
18GHz-25GHz	Horn Anternna	1	
Setting test receiver/spec	trum as following table states:	-	

· · .	Setting test receiver/sp	ectrum as following table states.	
	Test Frequency range	Test Receiver/Spectrum Setting	Detector
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
15	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak
		C C'	

Field Strength Calculation

7

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

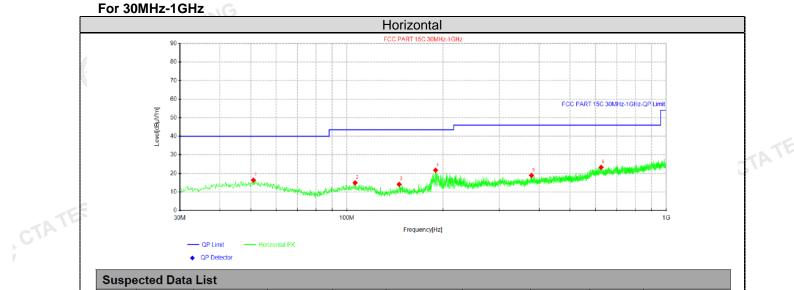
FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	CTA !!

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

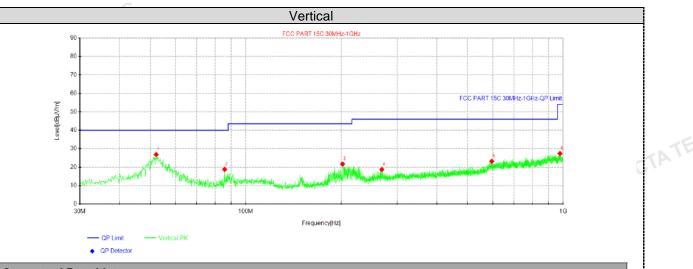

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
3	20log(30)+ 40log(30/3)	30
3	40.0	100
3	43.5	150
3	46.0	200
3	54.0	500
		(Meters) 20log(2400/F(KHz))+40log(300/3) 3 20log(24000/F(KHz))+40log(30/3) 3 20log(24000/F(KHz))+40log(30/3) 3 20log(30)+40log(30/3) 3 40.0 3 43.5 3 46.0

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 5. We tested the product using 5V and 9V, and the worst data recorded in the report was 5V power supply.


ouop	Colou Dala	LIOU							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folality
1	50.9762	27.57	16.34	-11.23	40.00	23.66	100	125	Horizontal
2	106.145	28.05	14.94	-13.11	43.50	28.56	100	137	Horizontal
3	145.793	29.62	14.09	-15.53	43.50	29.41	200	356	Horizontal
4	189.565	35.28	21.69	-13.59	43.50	21.81	100	171	Horizontal
5	378.593	29.27	18.89	-10.38	46.00	27.11	200	299	Horizontal
6	625.458	28.96	23.26	-5.70	46.00	22.74	100	45	Horizontal

CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Suspected Data List

CTATE

•									
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	52.1888	38.15	26.83	-11.32	40.00	13.17	100	152	Vertical
2	85.775	34.43	18.76	-15.67	40.00	21.24	200	82	Vertical
3	201.811	34.46	21.68	-12.78	43.50	21.82	100	25	Vertical
4	268.377	30.38	18.71	-11.67	46.00	27.29	100	1	Vertical
5	595.873	29.22	23.13	-6.09	46.00	22.87	100	94	Vertical
6	977.568	29.24	27.37	-1.87	54.00	26.63	200	163	Vertical

CTATES

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 19 of 44

For 1GHz to 25GHz

Note: 1. GFSK , $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported. 2. We tested the product using 5V and 9V, and the worst data recorded in the report was 5V power supply. GESK (above 1GHz)

The second	× .			GFSK (ado	ve 1GHZ)				
Freque	ncy(MHz)	:	24	02	Pola	arity:	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.82	PK	74	12.18	66.09	32.33	5.12	41.72	-4.27
4804.00	44.88	AV	54	9.12	49.15	32.33	5.12	41.72	-4.27
7206.00	53.92	PK	74	20.08	54.44	36.6	6.49	43.61	-0.52
7206.00	43.17	AV	54	10.83	43.69	36.6	6.49	43.61	-0.52
TING			· · · · · ·			•			A STATE OF S

Freque	ncy(MHz)	:	24	02	Polarity:		VERTICAL		
Frequency (MHz)	_	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.81	PK	74	14.19	64.08	32.33	5.12	41.72	-4.27
4804.00	43.29	AV	54	10.71	47.56	32.33	5.12	41.72	-4.27
7206.00	52.11	PK	74	21.89	52.63	36.6	6.49	43.61	-0.52
7206.00	41.41	AV	54	12.59	41.93	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.02	PK	74	12.98	64.90	32.6	5.34	41.82	-3.88
4882.00	44.36	AV	54	9.64	48.24	32.6	5.34	41.82	-3.88
7323.00	53.12	PK	74	20.88	53.23	36.8	6.81	43.72	-0.11
7323.00	42.51	AV	54	11.49	42.62	36.8	6.81	43.72	-0.11

Freque	Frequency(MHz): 2441						VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.11	PK	74	14.89	62.99	32.6	5.34	41.82	-3.88
4882.00	42.64	AV	54	11.36	46.52	32.6	5.34	41.82	-3.88
7323.00	50.99	PK	74	23.01	51.10	36.8	6.81	43.72	-0.11
7323.00	41.00	AV	54	13.00	41.11	36.8	6.81	43.72	-0.11
	10-114	ALD				-ING			

Freque	ncy(MHz)):	24	80	Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.37	PK	74	13.63	63.45	32.73	5.66	41.47	-3.08
4960.00	43.72	AV	54	10.28	46.80	32.73	5.66	41.47	-3.08
7440.00	52.34	PK	74	21.66	51.89	37.04	7.25	43.84	0.45
7440.00	41.77	AV	54	12.23	41.32	37.04	7.25	43.84	0.45
	ST								

Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	-
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.31	PK	74	15.69	61.39	32.73	5.66	41.47	-3.08
4960.00	41.73	AV	54	12.27	44.81	32.73	5.66	41.47	-3.08
7440.00	50.78	PK	74	23.22	50.33	37.04	7.25	43.84	0.45
7440.00	39.81	AV	54	14.19	39.36	37.04	7.25	43.84	0.45

 Shenzhen CTA Testing Technology Co., Ltd.

 Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

 Tel:+86-755 2322 5875

 E-mail:cta@cta-test.cn

 TING

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: 1. GFSK, $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported. 2. We tested the product using 5V and 9V, and the worst data recorded in the report was 5V power supply.

				GFS	κ				
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	ORIZONTA	AL.
Frequency (MHz)	=-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.66	PK	74	12.34	72.08	27.42	4.31	42.15	-10.42
2390.00	43.74	AV	54	10.26	54.16	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.90	PK	74	14.10	70.32	27.42	4.31	42.15	-10.42
2390.00	41.81	AV	54	12.19	52.23	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	arity:	н	ORIZONTA	AL.
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.91	PK	74	13.09	71.02	27.7	4.47	6 42.28	-10.11
2483.50	43.07	AV	54	10.93	53.18	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.27	PK	74	14.73	69.38	27.7	4.47	42.28	-10.11
2483.50	41.32	AV	54	12.68	51.43	27.7	4.47	42.28	-10.11

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

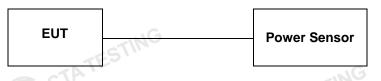
2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power


Limit -

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration CTATESTING

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-0.16	R	TEST
GFSK	39	-0.55	20.97	Pass
	78	-0.25		
-inl	3 00	-1.11		
π/4DQPSK	39	-1.50	20.97	Pass
	78	-1.14		
Note: 1.The test res	ults including the	cable loss.	CTATESTING	

20dB Bandwidth 4.4

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

<u>st Results</u>			CTA TESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
GFSK	CH00	0.960	
	CH39	0.945	
	CH78	0.957	- Deee
π /4DQPSK	CH00	1.278	- Pass
	CH39	1.335	STINC
	CH78	1.320	
		GIA	GM CT
Fest plot as follows:			GIA C'

Test plot as follows: CTA TESTING