

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1 Ω + 3.9 jΩ	
Return Loss	- 25.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 6.0 jΩ	
Return Loss	- 24.1 dB	_

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

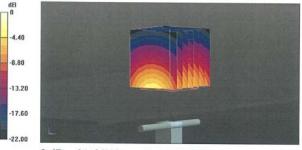
Manufactured by	SPEAG
Manufactured on	November 10, 2009

Certificate No: D2450V2-853_Jul18

DASY5 Validation Report for Head TSL

Date: 24.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

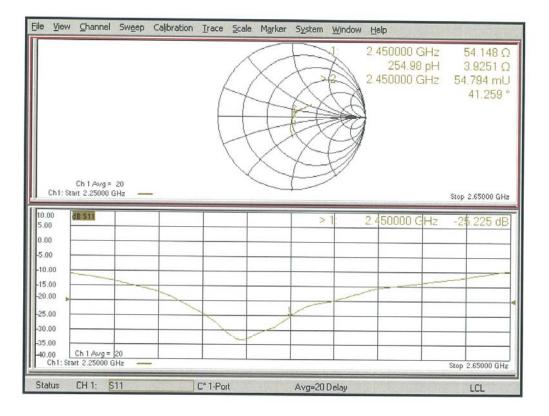

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.3 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg Maximum value of SAR (measured) = 21.6 W/kg



0 dB = 21.6 W/kg = 13.34 dBW/kg

Certificate No: D2450V2-853_Jul18

Impedance Measurement Plot for Head TSL

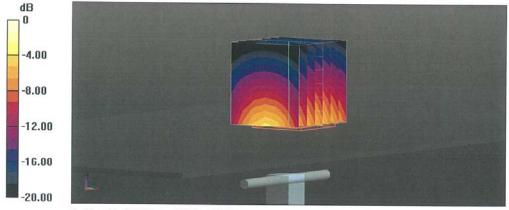
Certificate No: D2450V2-853_Jul18

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 16.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

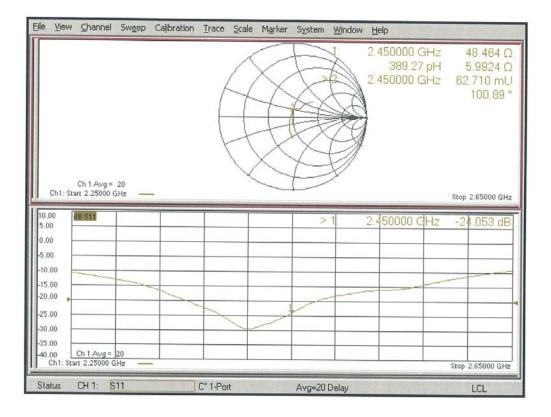

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 108.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 21.0 W/kg


0 dB = 21.0 W/kg = 13.22 dBW/kg

Certificate No: D2450V2-853_Jul18

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul18

Page 8 of 8

2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Servizio svizzero di taratura **Engineering AG** S Swiss Calibration Service Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D2600V2-1012_Jul18 Client CTTL (Auden) **CALIBRATION CERTIFICATE** D2600V2 - SN:1012 Object QA CAL-05.v10 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz July 26, 2018 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) ID # Primary Standards 04-Apr-18 (No. 217-02672/02673) Apr-19 SN: 104778 Power meter NRP 04-Apr-18 (No. 217-02672) Apr-19 SN: 103244 Power sensor NRP-Z91 Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Reference 20 dB Attenuator 04-Apr-18 (No. 217-02683) Apr-19 SN: 5047.2 / 06327 Type-N mismatch combination Dec-18 Reference Probe EX3DV4 SN: 7349 30-Dec-17 (No. EX3-7349 Dec17) SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18 DAE4 Scheduled Check Secondary Standards ID # Check Date (in house) Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 In house check: Oct-18 07-Oct-15 (in house check Oct-16) SN: US37292783 Power sensor HP 8481A In house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 In house check: Oct-18 31-Mar-14 (in house check Oct-17) Network Analyzer Agilent E8358A SN: US41080477 Function Signature Name Michael Weber Laboratory Technician Calibrated by: Approved by: Katja Pokovic Technical Manager Issued: July 26, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1012_Jul18

Page 1 of 8

No.I19Z60464-SEM06 Page 241 of 266

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012_Jul18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.33 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1012_Jul18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4 Ω - 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.1 Ω - 4.9 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

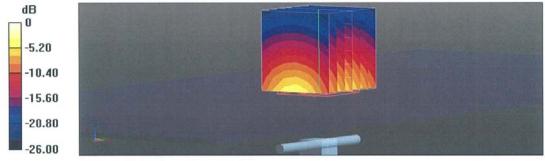
Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 30, 2007

DASY5 Validation Report for Head TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

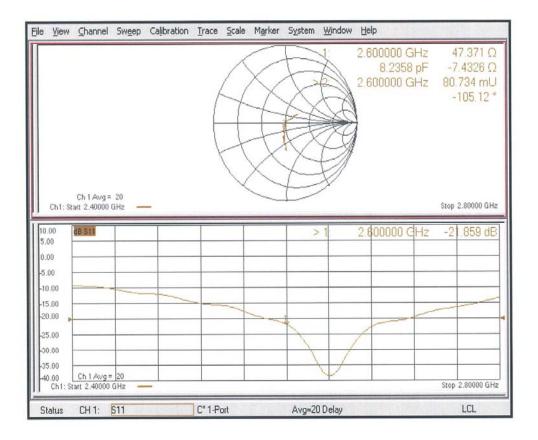

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 37.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.3 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 23.7 W/kg


0 dB = 23.7 W/kg = 13.75 dBW/kg

Certificate No: D2600V2-1012_Jul18

Page 5 of 8

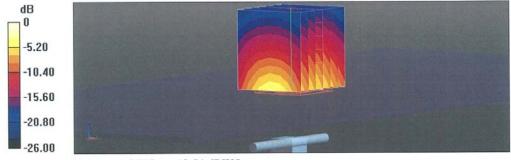
Impedance Measurement Plot for Head TSL

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.17 W/kg Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Certificate No: D2600V2-1012_Jul18

Page 7 of 8

Impedance Measurement Plot for Body TSL

			Sw <u>e</u> ep	Calibration	Irace	Scale	Marker	System	Window	Hel	P	1999		1000
						X		F	X	2.6	00000 (4.132 Ω .9469 Ω
							Χ,	15	2	2.6	00000			418 mL
					f		$ \land$	X	K-X	4			-	136.86 *
					-		T	F F	¥\$	1				
					1	F	+	T	7¢	1				
					f	-	X	\sim	F)	1				
						1	X	7-	X					
		Ch 1 Avg =				×		F	/					
	Ch1: St	art 2.40000	GHz —	-									Stop	2.80000 GH
_						_		-			and the second second			
		dB S11						>	> 1	2.6	00000	GHz	-2	.786 dE
5.0	10	dB \$11						>	> 1;	2.8	00000	GHz	-2	l.786 dE
5.0 0.0	10 10	dB S11							> 1:	2.8	00000	GHz	-2	.786 dE
5.0 0.0 -5.(10 10 00	dB S11						>	> 1	2.8	00000	GHz	-2	1.786 dE
5.0 0.0 -5.(-10 -15	0 00 000 000 000 000 000 000 000 000 0	dB \$11							> 1:	2.8	00000	GHz	-2	786 dE
5.0 0.0 -5.(-10 -15	0 0 00 0 00 0 00 0	dB S11							> 1	2.8	00000	GHz	-2	.786 dE
5.0 0.0 -5.1 -10 -20 -25	0 00 000 000 000 000 000 000 000 000 0	dB \$11						~	> 1:	2.8		GHz	-2	1.786 dE
5.0 0.0 -5.1 -10 -20 -25 -30	0 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	dB \$11						,	> 1: 	2.8		GHz	-2'	1.786 dB
0.0 -5.0 -10 -15 -20 -25 -30 -35 -40	0 - 00 - 00	dB \$11	20 GHz					,		2.8		GHz		2.80000 GH

Certificate No: D2600V2-1012_Jul18

Page 8 of 8

5 GHz Dipole Calibration Certificate

Calibration Laboratory Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich,		BIC-MRA	 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accreditation The Swiss Accreditation Service i	is one of the signatorie		Accreditation No.: SCS 0108
Multilateral Agreement for the rec	ognition of calibration	certificates	
Client CTTL (Auden)		Certificate	No: D5GHzV2-1262_Jan19
CALIBRATION CI	ERTIFICATE		
Object	D5GHzV2 - SN:1	1262	
Calibration procedure(s)	QA CAL-22.v4 Calibration Proce	edure for SAR Validation Sourc	es between 3-6 GHz
Calibration date:	January 31, 2019	9	
All calibrations have been conducte Calibration Equipment used (M&TE		ry facility: environment temperature (22 \pm :	3)°C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4 DAE4	SN: 3503 SN: 601	31-Dec-18 (No. EX3-3503_Dec18) 04-Oct-18 (No. DAE4-601_Oct18)	Dec-19 Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M. Wese
Approved by:	Katja Pokovic	Technical Manager	ally

Certificate No: D5GHzV2-1262_Jan19

Page 1 of 13

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL ConvF

tissue simulating liquid sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1262 Jan19

Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	8.05 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.30 W/kg	

Certificate No: D5GHzV2-1262_Jan19

Page 3 of 13

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied. Temperature Permittivity Conductivity **Nominal Head TSL parameters** 22.0 °C 35.5 5.07 mho/m Measured Head TSL parameters (22.0 ± 0.2) °C 36.2 ± 6 % 4.90 mho/m ± 6 % Head TSL temperature change during test < 0.5 °C

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W / kg ± 19.9 % (k=2)
	12	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.37 W/kg

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1262_Jan19

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.43 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.12 W/kg

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.90 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1262_Jan19

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.11 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.2 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.10 W/kg

Certificate No: D5GHzV2-1262_Jan19

Page 6 of 13

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.4 Ω - 5.2 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	52.0 Ω + 0.2 jΩ
Return Loss	- 34.3 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53.2 Ω + 2.0 jΩ	
Return Loss	- 28.8 dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.9 Ω - 3.5 jΩ	
Return Loss	- 27.6 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω + 2.0 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.6 Ω + 3.7 jΩ
Return Loss	- 26.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1262_Jan19

Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 30.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

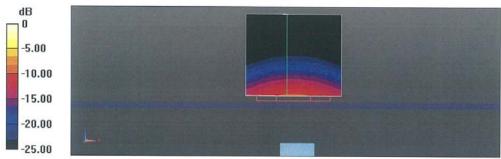
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1262

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.54$ S/m; $\varepsilon_r = 36.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.06$ S/m; $\varepsilon_r = 36$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.45, 5.45, 5.45) @ 5250 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

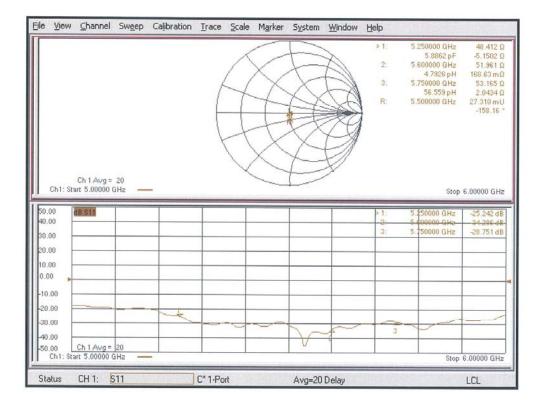
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.10 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 18.3 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.81 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.84 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.6 W/kg

Certificate No: D5GHzV2-1262_Jan19

Page 8 of 13


0 dB = 19.6 W/kg = 12.92 dBW/kg

Certificate No: D5GHzV2-1262_Jan19

Page 9 of 13

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1262_Jan19

Page 10 of 13

DASY5 Validation Report for Body TSL

Date: 31.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

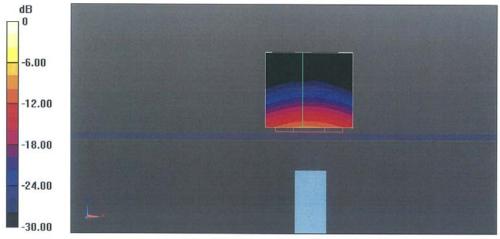
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1262

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.43$ S/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.9$ S/m; $\varepsilon_r = 46.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.11$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.7, 4.7, 4.7) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

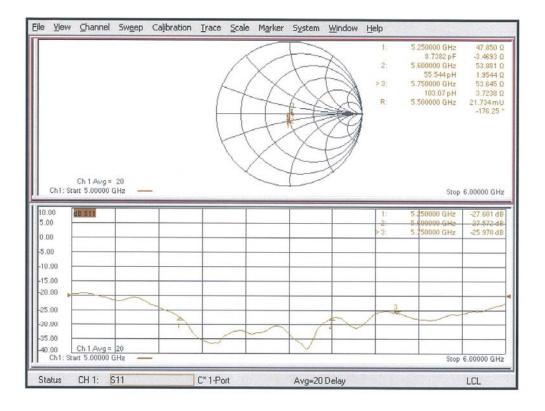
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.34 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 17.6 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.75 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.01 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1262_Jan19

Page 11 of 13


0 dB = 18.4 W/kg = 12.65 dBW/kg

Certificate No: D5GHzV2-1262_Jan19

Page 12 of 13

Impedance Measurement Plot for Body TSL

Page 13 of 13

	124.4mm
	ANT 3# ANT 4# ANT 1# 15mm 70mm SAR Sensor
	Rear View
210mm	
v	ANT 2#

ANNEX I Sensor Triggering Data Summary

Antenna	Trigger position	Trigger distance (mm)
	Back	20
1# (Main ANT)	Left	15
I# (Main ANI)	Тор	30
	Front	18
	Back	10
3# (WIFI 2.4G)	Тор	5
	Front	8
	Back	10
4# (WIFI 5G)	Тор	5
	Front	8

Antenna	Band	Influence Bands	Conducted power reduced (dB)
		850 (5)	8
	GSM (GMSK)	900 (8)	3
		1800 (3)	1.5
		1900(2)	9
	GSM (8PSK)	850 (5)	2
	0.01.01.01.01	1900(2)	6.5
		1	6.5
	WCDMA	2	12
	"ODMH	4	11
		5	6
1# (Main ANT)		1	5
I# (Main ANI)		2	10.5
		3	4.5
		4	10.7
		5	5.5
	LTE	7	10.5
	212	12	7.5
		17	7.5
		28	1
		38	7
		40	8.5
		41	8
3# (WIFI 2.4G)	2.4G		9.5
4# (WIFI 5G)	5G		3.5

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the rear, left edge and top edge of the device. The measured power state within \pm 5mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different proximity sensor triggering distances for rear, left edge and top edge. But the manufacturer has declared 20mm (rear) / 15mm (left edge) / 30mm (top edge) are the most conservative triggering distance for main antenna and 10mm (rear) / 5mm (top edge) for wifi antenna. Therefore base on the most conservative triggering distances as above, additional SAR measurements were required at 19mm (rear) / 14mm (left edge) / 29mm (top edge) for main antenna and 9mm (rear) / 4mm (top edge) for wifi antenna.

Rear of main antenna

Moving device toward the phantom:

The power state												
Distance [mm]	25	24	23	22	21	20	19	18	17	16	15	
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state												
Distance [mm] 15 16 17 18 19 20 21 22 23 24 25								25				
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

Left Edge of main antenna

Moving device toward the phantom:

	The power state												
Distance [mm]	20	19	18	17	16	15	14	13	12	11	10		
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

	The power state												
Distance [mm] 10 11 12 13 14 15 16 17 18 19 20											20		
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		

Top Edge of main antenna

Moving device toward the phantom:

The power state												
Distance [mm]	35	34	33	32	31	30	29	28	27	26	25	
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state											
Distance [mm] 25 26 27 28 29 30 31 32 33 34 35									35		
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Rear of wifi antenna

Moving device toward the phantom:

The power state											
Distance [mm]	15	14	13	12	11	10	9	8	7	6	5
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

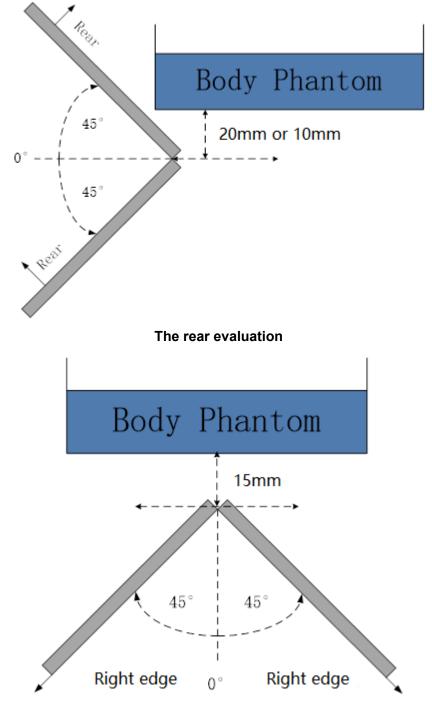
The power state											
Distance [mm]	5	6	7	8	9	10	11	12	13	14	15
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Top Edge of wifi antenna

Moving device toward the phantom:

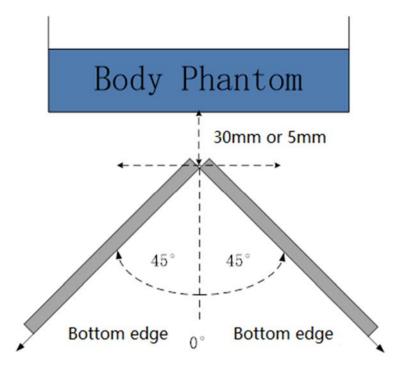
The power state											
Distance [mm] 10 9 8 7 6 5 4 3 2 1									0		
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:


The power state											
Distance [mm]	0	1	2	3	4	5	6	7	8	9	10
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

©Copyright. All rights reserved by CTTL.

No.I19Z60464-SEM06 Page 264 of 266



The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in ≤ 10° increments until the tablet is ±45° or more from the vertical position at 0°.

The left edge evaluation



The top edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

