Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client C&C Taiwan (Auden) | | ERTIFICA | | | |---|---|--|---| | Object(s) | D5GHzV2 - S | N. 1004 | | | Calibration procedure(s) | QA CAL-05 v.
Calibration pro | 2
ocedure for dipole validation kits | | | Calibration date: | October 5, 20 | 03 | | | Condition of the calibrated item | în Tolerance (| according to the specific calibration | document) | | All calibrations have been conducte | d in the closed laborate | bry facility: environment temperature 22 +/- 2 degrees | Celsius and humidity > 750/ | | Calibration Equipment used (M&TE | critical for calibration) | ory facility: environment temperature 22 +/- 2 degrees | Celsius and humidity < 75%. | | Calibration Equipment used (M&TE | critical for calibration) | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&TE Wodel Type Power meter EPM E4419B | critical for calibration) | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) | Scheduled Calibration Apr-04 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A | critical for calibration) JD # GB41293874 | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) | Scheduled Calibration Apr-04 Apr-04 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator | critical for calibration) ID# GB41293874 MY41495277 | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 | Scheduled Calibration Apr-04 Apr-04 Apr-04 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator R&S SMT06 | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator R&S SMT06 | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator R&S SMT06 | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 100058 | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) 23-May-01 (SPEAG, in house check May-03) | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 In house check: May-05 In house check: Oct 03 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator R&S SMT06 Network Analyzer HP 8753E | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 100058 US37390585 | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) 23-May-01 (SPEAG, in house check May-03) 18-Oct-01 (Agilent, No. 24BR1033101) | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 In house check: May-05 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator R&S SMT06 Network Analyzer HP 8753E | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 100058 US37390585 Name | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) 23-May-01 (SPEAG, in house check May-03) 18-Oct-01 (Agilent, No. 24BR1033101) Function | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 In house check: May-05 In house check: Oct 03 | | All calibrations have been conducte Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator R&S SMT06 Network Analyzer HP 8753E Calibrated by: | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 100058 US37390585 Name | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) 23-May-01 (SPEAG, in house check May-03) 18-Oct-01 (Agilent, No. 24BR1033101) Function | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 In house check: May-05 In house check: Oct 03 | | Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator R&S SMT06 Network Analyzer HP 8753E Calibrated by: | critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 100058 US37390585 Name Katja Pokovo | Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS No. 251-0340 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (Agilent, No. 20020918) 23-May-01 (SPEAG, in house check May-03) 18-Oct-01 (Agilent, No. 24BR1033101) Function Laboratory Director | Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 03 In house check: May-05 In house check: Oct 03 | This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed. Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com # DASY Dipole Validation Kit Type: D5GHzV2 Serial: 1004 Manufactured: July 8, 2003 Calibrated: October 5, 2003 ### 1. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters: Frequency: 5200 MHz Relative Dielectricity 36.3 $\pm 5\%$ Conductivity 4.57 mho/m $\pm 5\%$ Frequency: 5800 MHz Relative Dielectricity 35.4 $\pm 5\%$ Conductivity 5.20 mho/m $\pm 5\%$ The DASY3 System with a dosimetric E-field probe ES3DV3 - SN:3025 was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 10mm was aligned with the dipole. Special 8x8x8 fine cube was chosen for cube integration (dx=dy=4.3mm, dz=3mm). Distance between probe sensors and phantom surface was set to 3.0 mm. The dipole input power (forward power) was $250mW \pm 3$ %. The results are normalized to 1W input power. ### SAR Measurement with DASY System Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figures supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured at **5200 MHz** (Head Tissue) with the dosimetric probe ES3DV3 SN:3025 and applying the <u>advanced extrapolation</u> are: averaged over 1 cm³ (1 g) of tissue: 86.0 mW/g \pm 32.0 % (k=2)¹ averaged over 10 cm³ (10 g) of tissue: 23.8 mW/g \pm 31.7 % (k=2)¹ The resulting averaged SAR-values measured at 5800 MHz (Head Tissue) with the dosimetric probe ES3DV3 SN:3025 and applying the advanced extrapolation are: averaged over 1 cm³ (1 g) of tissue: 88.8 mW/g ± 32.0 % (k=2)² averaged over 10 cm³ (10 g) of tissue: 24.4 mW/g \pm 31.7 % (k=2)² ¹ Target dipole values determined by FDTD (feedpoint impedance set to 50 Ohm). The values are SAR_1g=76.5 mW/g, SAR_10g=21.6 mW/g and SAR_peak=310.3 mW/g. ² Target dipole values determined by FDTD (feedpoint impedance set to 50 Ohm). The values are SAR_1g=78.0 mW/g, SAR_10g=21.9 mW/g and SAR_peak=340.9 mW/g. ### 3. Dipole Transformation Parameters The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint (please refer to the graphics attached to this document). The transformation parameters from the SMA-connector to the dipole feedpoint are: Electrical delay: 1.153 ns (one direction) Transmission factor: 0.954 (voltage transmission, one direction) ### 4. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters: Frequency: 5200 MHz Relative Dielectricity 49.7 $\pm 5\%$ Conductivity 5.18 mho/m $\pm 5\%$ Frequency: 5800 MHz Relative Dielectricity 48.5 \pm 5% Conductivity 6.01 mho/m \pm 5% The DASY3 System with a dosimetric E-field probe ES3DV3 - SN:3025 was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 8x8x8 fine cube was chosen for cube integration (dx=dy=4.3mm, dz=3mm). Distance between probe sensors and phantom surface was set to 3.0 mm. The dipole input power (forward power) was $250mW \pm 3$ %. The results are normalized to 1W input power. ### 5. SAR Measurement with DASY System Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figures supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured at **5200 MHz (Body Tissue)** with the dosimetric probe ES3DV3 SN:3025 and applying the <u>advanced extrapolation</u> are: averaged over 1 cm³ (1 g) of tissue: 84.0 mW/g \pm 32.0 % (k=2)³ averaged over 10 cm³ (10 g) of tissue: 23.4 mW/g \pm 31.7 % (k=2)³ The resulting averaged SAR-values measured at 5800 MHz (Body Tissue) with the dosimetric probe ES3DV3 SN:3025 and applying the <u>advanced extrapolation</u> are: averaged over 1 cm³ (1 g) of tissue: 80.0 mW/g \pm 32.0 % (k=2)⁴ averaged over 10 cm³ (10 g) of tissue: 22.4 mW/g \pm 31.7 % (k=2)⁴ ### 6. Handling Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole. ### 7. Design The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. Small end caps have been added to the dipole arms in order to increase frequency bandwidth at the position as explained in Sections 1 and 4. #### 8. Power Test After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured ³ Target dipole values determined by FDTD (feedpoint impedance set to 50 Ohm). The values are SAR_1g=71.8 mW/g, SAR_10g=20.1 mW/g and SAR_peak=284.7 mW/g. ⁴ Target dipole values determined by FDTD (feedpoint impedance set to 50 Ohm). The values are SAR_1g=74.1 mW/g, SAR_10g=20.5 mW/g and SAR_peak=324.7 mW/g. Date/Time: 10/04/03 15:55:20 ### SPEAG Calibration Laboratory ## DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1004 Communication System: CW-5GHz; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: HSL5800 ($\sigma = 4.57 \text{ mho/m}$, $\epsilon_r = 36.34$, $\rho = 1000 \text{ kg/m}^3$) Phantom section: Flat Section DASY4 Configuration: - Probe: ES3DV3 SN3025-Y2003; ConvF(2.65, 2.65, 2.65); Calibrated: 9/19/2003 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn410; Calibrated: 4/22/2003 - Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 - Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 60 d=10mm, Pin=250mW, f=5200 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 91.5 V/m Power Drift = -0.001 dB Maximum value of SAR = 33.2 mW/g d=10mm, Pin=250mW, f=5200 MHz/Zoom Scan (8x8x8), dist=3mm (7x7x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Peak SAR (extrapolated) = 98.6 W/kg SAR(1 g) = 21.5 mW/g; SAR(10 g) = 5.94 mW/g Reference Value = 91.5 V/m Power Drift = -0.001 dB Maximum value of SAR = 30.2 mW/g 0 dB = 30.2 mW/g Date/Time: 10/04/03 15:55:20 ### SPEAG Calibration Laboratory ### DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1004 Communication System: CW-5GHz; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: HSL5800 ($\sigma = 5.2 \text{ mho/m}, \epsilon_r = 35.39, \rho = 1000 \text{ kg/m}^3$) Phantom section: Flat Section ### DASY4 Configuration: - Probe: ES3DV3 SN3025-Y2003; ConvF(2.3, 2.3, 2.3); Calibrated: 9/19/2003 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn410; Calibrated: 4/22/2003 - Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 - Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 60 d=10mm, Pin=250mW, f=5800 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 84.8 V/m Power Drift = -0.0 dB Maximum value of SAR = 33.1 mW/g d=10mm, Pin=250mW, f=5800 MHz/Zoom Scan (8x8x8), dist=3mm (7x7x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Peak SAR (extrapolated) = 114.0 W/kg SAR(1 g) = 22.2 mW/g; SAR(10 g) = 6.1 mW/g Reference Value = 84.8 V/m Power Drift = -0.0 dB Maximum value of SAR = 30 mW/g Date/Time: 10/05/03 15:06:30 ### SPEAG Calibration Laboratory ### DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1004 Communication System: CW-5GHz; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL5800 ($\sigma = 5.18 \text{ mho/m}, \epsilon_r = 49.73, \rho = 1000 \text{ kg/m}^3$) Phantom section: Flat Section ### DASY4 Configuration: - Probe: ES3DV3 SN3025-Y2003; ConvF(1.93, 1.93, 1.93); Calibrated: 9/19/2003 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn410; Calibrated: 4/22/2003 - Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 - Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 60 d=10mm, Pin=250mW, f=5200 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 86.6 V/m Power Drift = -0.0 dB Maximum value of SAR = 33.4 mW/g d=10mm, Pin=250mW, f=5200 MHz/Zoom Scan (8x8x8), dist=3mm (7x7x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Peak SAR (extrapolated) = 80.6 W/kg SAR(1 g) = 21 mW/g; SAR(10 g) = 5.84 mW/g Reference Value = 86.6 V/m Power Drift = -0.0 dB Maximum value of SAR = 31 mW/g 0 dB = 31 mW/g Date/Time: 10/05/03 14:38:14 ### SPEAG Calibration Laboratory ### DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1004 Communication System: CW-5GHz; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL5800 ($\sigma = 6.01 \text{ mho/m}$, $\epsilon_r = 48.51$, $\rho = 1000 \text{ kg/m}^3$) Phantom section: Flat Section ### DASY4 Configuration: - Probe: ES3DV3 SN3025-Y2003; ConvF(1.65, 1.65, 1.65); Calibrated: 9/19/2003 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn410; Calibrated: 4/22/2003 - Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1197 - Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 60 d=10mm, Pin=250mW, f=5800 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 82 V/m Power Drift = -0.0008 dB Maximum value of SAR = 31.6 mW/g d=10mm, Pin=250mW, f=5800 MHz/Zoom Scan (8x8x8), dist=3mm (7x7x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Peak SAR (extrapolated) = 80.3 W/kg SAR(1 g) = 20 mW/g; SAR(10 g) = 5.61 mW/g Reference Value = 82 V/m Power Drift = -0.0008 dB Maximum value of SAR = 29.1 mW/g $0 \, dB = 29.1 \, mW/g$