

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics U.S.A, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 01/07/2019 - 01/22/2019 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 1M1811230205-13-R4.ZNF

FCC ID:

ZNFV450PM

APPLICANT:

LG ELECTRONICS U.S.A, INC.

Scope of Test: Application Type: FCC Rule Part(s): HAC Standard:

DUT Type: Model: Additional Model(s): Test Device Serial No.: Audio Band Magnetic Testing (T-Coil) Certification CFR §20.19(b) ANSI C63.19-2011 285076 D01 HAC Guidance v05 285076 D02 T-Coil testing for CMRS IP v03 Portable Handset LM-V450PM LMV450PM, V450PM *Pre-Production Sample* [S/N: 00444, 00386, 00004]

C63.19-2011 HAC Category:

T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 1M1811230205-13-R4.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 1 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 1 01 90
© 2019 PCTEST Engineering I	_aboratory, Inc.			REV 3.2.M
				04/17/2018

1.		3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	18
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	22
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	25
8.	FCC 3G MEASUREMENTS	28
9.	T-COIL TEST SUMMARY	30
10.	MEASUREMENT UNCERTAINTY	43
11.	EQUIPMENT LIST	44
12.	TEST DATA	45
13.	CALIBRATION CERTIFICATES	78
14.	CONCLUSION	85
15.	REFERENCES	86
16.	TEST SETUP PHOTOGRAPHS	88

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 2 of 90
© 2019 PCTEST Engineering	REV 3.2.M 04/17/2018			

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 3 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 5 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

2. DUT DESCRIPTION

FCC ID:	ZNFV450PM		
Applicant:	LG Electronics U.S.A, Inc.		
	1000 Sylvan Avenue		
	Englewood Cliffs, NJ 07632		
	United States		
Model:	LM-V450PM		
Additional Model(s):	LMV450PM, V450PM		
Serial Number:	00444, 00386, 00004		
HW Version:	Rev.A		
SW Version:	V450P06h		
Antenna:	Internal Antenna		
DUT Type:	Portable Handset		

I. LTE Band Selection

This device supports the following pairs of LTE bands with similar frequencies: LTE B12 & B17, B5 & B26, B4 & B66, and B2 & B25. These pairs of LTE bands have the same target power and share the same transmission path. Since the supported frequency spans for the smaller LTE bands are completely covered by the larger LTE bands, only the larger LTE bands (LTE B12, B26, B66, and B25) were evaluated for hearing-aid compliance.

II. Device Serial Numbers

Several samples with identical hardware were used to support HAC testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 4 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		
© 2019 PCTEST Engineering	REV 3.2.M 04/17/2018			

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated	
CDMA	835 1900	VO	Yes	Yes: WIFI or BT	CMRS Voice ¹	EVRC	
CDIVIA	EvDO	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	850	-	105				
GSM	1900	vo	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR	
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	850						
	1700	VD	Yes	Yes: WIFI or BT	CMRS Voice ¹	NB AMR	
UMTS	1900						
	HSPA	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	680 (B71)		Yes ³				
	700 (B12)				VoLTE ¹ , Google Duo ²	VoLTE: NB AMR, WB AMR, EVS Google Duo: OPUS	
	700 (B17)			es Yes: WIFI or BT			
	780 (B13)		Yes				
	850 (B5)	VD					
LTE (FDD)	850 (B26)	VD					
	1700 (B4)						
	1700 (B66)						
	1900 (B2)						
	1900 (B25)						
LTE (TDD)	2600 (B41)	VD	Yes	Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	VoLTE: NB AMR, WB AMR, EVS Google Duo: OPUS	
NR	2600 (Band n41)	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	2450						
	5200 (U-NII 1)						
WIFI	5300 (U-NII 2A)	VD	Yes	Yes: CDMA, GSM, UMTS, or LTE	VoWIFI ² , Google Duo ²	VoWIFI: NB AMR, WB AMR, EVS Google Duo: OPUS	
	5500 (U-NII 2C)						
	5800 (U-NII 3)						
BT	2450	DT	No	Yes: CDMA, GSM, UMTS, or LTE	N/A	N/A	
Type Transport Notes: VO = Voice Only ¹ Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and July 2012 C63 VoLTE Interpretation. DT = Digital Data - Not intended for Voice Services ² Reference level is -20dBm0 in accordance with FCC KDB 285076 D02 VD = CMRS and/or IP Voice over Data Transport ³ LTE B71, while outside the scope of ANSI C63.19 and FCC HAC regulations, was additionally tested according to the existing procedures.							

Table 2-1 ZNFV450PM HAC Air Interfaces

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 5 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		1 age 0 01 00
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/17/2018

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

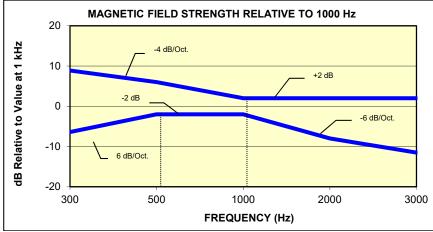
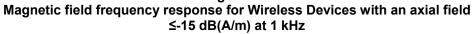
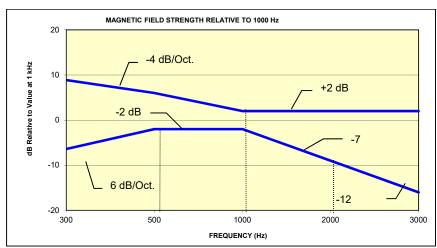




Figure 3-1

Figure 3-2

Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 6 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 0 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters			
	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 3-1 Magnetic Coupling Parameters				

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 7 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage / 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				
				04/17/2018

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

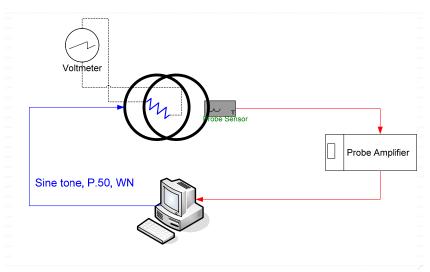
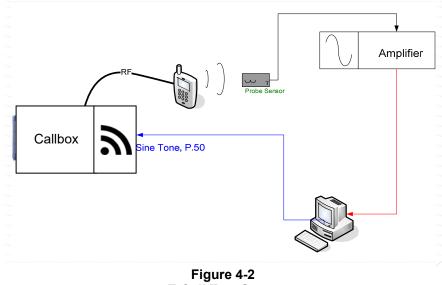



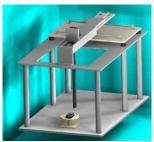
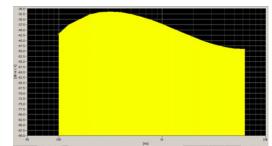
Figure 4-1 Validation Setup with Helmholtz Coil

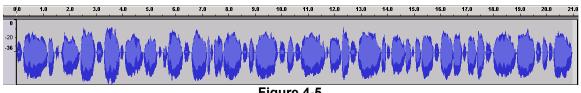
T-Coil Test Setup

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 8 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 6 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

II. Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)


Figure 4-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

Manufacturer:	ITU-T
Active Frequency Range:	100 Hz – 8 kHz
Stimulus Type:	Male and Female, no spaces
Single Sample Duration: Activity Level:	20.96 seconds 100%

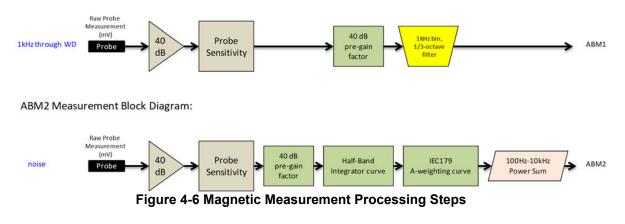

Figure 4-4 Spectral Characteristic of full P.50

Figure 4-5 Temporal Characteristic of full P.50

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 9 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 9 01 90
© 2019 PCTEST Engineering I	_aboratory, Inc.			REV 3.2.M 04/17/2018

ABM1 Measurement Block Diagram:

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

-18 - 30 - 10= -58 dBA/m

- 2. Measurement System Validation(See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_{c} = \frac{NI}{r\sqrt{1.25^{3}}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^{3}}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_{c} = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^{3}}} = 0.316 A / m \approx -10 dB (A / m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10 dB(A/m). This was verified to be within $\pm 0.5 \text{ dB}$ of the -10 dB(A/m) value (see Page 41).

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕑 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 10 01 90
2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M
	-			04/17/2018

^{© 2019} PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

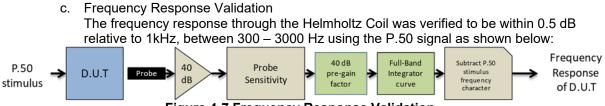


Figure 4-7 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

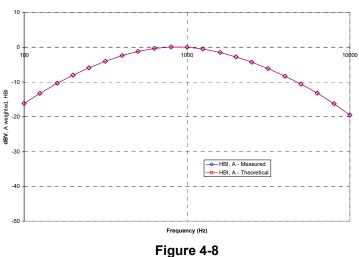
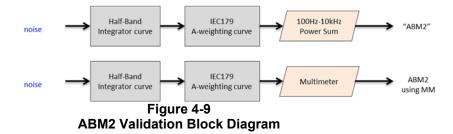

ABM2 Frequency Response Validation				
	HBI, A -	HBI, A -		
f (Hz)	Measured	Theoretical	dB Var.	
	(dB re 1kHz)	(dB re 1kHz)		
100	-16.180	-16.170	-0.010	
125	-13.257	-13.250	-0.007	
160	-10.347	-10.340	-0.007	
200	-8.017	-8.010	-0.007	
250	-5.925	-5.920	-0.005	
315	-4.045	-4.040	-0.005	
400	-2.405	-2.400	-0.005	
500	-1.212	-1.210	-0.002	
630	-0.349	-0.350	0.001	
800	0.071	0.070	0.001	
1000	0.000	0.000	0.000	
1250	-0.503	-0.500	-0.003	
1600	-1.513	-1.510	-0.003	
2000	-2.778	-2.780	0.002	
2500	-4.316	-4.320	0.004	
3150	-6.166	-6.170	0.004	
4000	-8.322	-8.330	0.008	
5000	-10.573	-10.590	0.017	
6300	-13.178	-13.200	0.022	
8000	-16.241	-16.270	0.029	
10000	-19.495	-19.520	0.025	

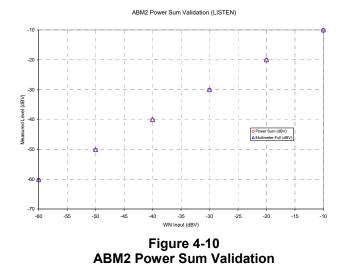
Table 4-1 ABM2 Frequency Response Validation

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 11 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 11 01 90
© 2019 PCTEST Engineering I	© 2019 PCTEST Engineering Laboratory, Inc.			

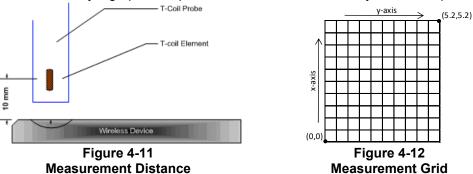

^{04/17/2018}

ABM2 Frequency Response Validation (LISTEN)

ABM2 Frequency Response Validation


The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.


Table 4-2 ABM2 Power Sum Validation					
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)		
-60	-60.36	-60.2	0.16		
-50	-50.19	-50.13	0.06		
-40	-40.14	-40.03	0.11		
-30	-30.13	-30.01	0.12		
-20	-20.12	-20	0.12		
-10	-10.14	-10	0.14		

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 12 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 12 01 90
© 2019 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	

3. Measurement Test Setup

- a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-14 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
IDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 13 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 13 01 90
© 2019 PCTEST Engineering Laboratory, Inc.			REV 3.2.M	

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE), and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - The device was chosen to be tested in the worst-case ABM2 condition (See Section 8 for more information regarding worst-case configurations for CDMA and UMTS. LTE configuration information can be found in Section 5. WIFI configuration information can be found in Section 6 and 7.)
 - ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.
- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 14 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 14 01 90
2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M
	-			04/17/2018

- c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

V. Test Setup

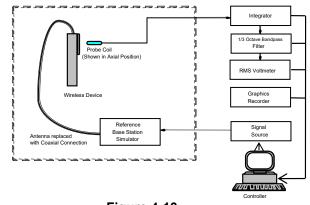


Figure 4-13 Audio Magnetic Field Test Setup

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 15 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 15 01 90
2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M
				04/17/2018

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes.

lencies							
Test frequencies & associated channels							
Frequency (MHz)							
20							
820.10							
836.52							
836.60							
836.60							
1730.40							
PCS 1900							
1880							
1880							
1880							

Table 4-3							
Center Channels and Frequencies							

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels are additionally tested for LTE TDD B41. The middle channel and supported bandwidths from the worst-case bands according to Tables 7-6 and 7-7 were additionally evaluated with OTT VoIP for each probe orientation. See Tables 9-5 to 9-12 as well as 9-20 to 9-21 for LTE bandwidths and channels.

3. 5G (NR) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation for OTT VoIP. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels are additionally tested for NR Band n41. See Table 9-22 for NR Band n41 bandwidths and channels.

4. WIFI

The middle channel for each 802.11 standard was tested for each probe orientation. The 2.4GHz 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. The 5GHz 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested on higher U-NII bands as well as applicable low and high channels. See Tables 9-13 to 9-16 as well as 9-23 to 9-26 for WIFI standards and channels.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager		
Filename:	Test Dates:	DUT Type:		Page 16 of 90		
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset	Fage 10 01 90			
© 2019 PCTEST Engineering Laboratory, Inc.						
				04/17/2018		

IX. Test Flow

The flow diagram below was followed (From C63.19):

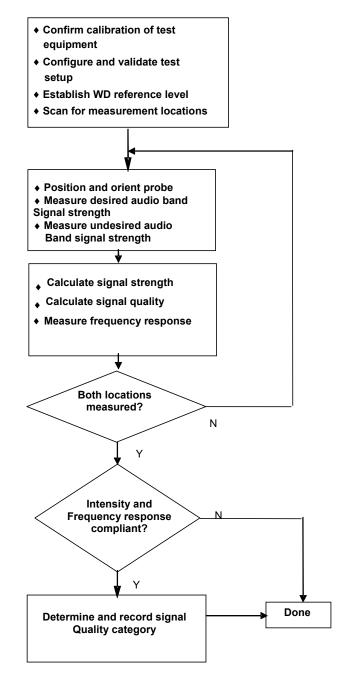


Figure 4-14 C63.19 T-Coil Signal Test Process

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager		
Filename:	Test Dates:	DUT Type:		Page 17 of 90		
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 17 01 90		
© 2019 PCTEST Engineering Laboratory, Inc.						

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

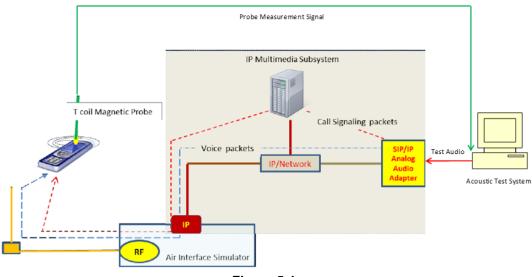


Figure 5-1 Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level^{*}. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 18 of 90	
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 10 01 90	
© 2019 PCTEST Engineering Laboratory, Inc.					
				04/17/2018	

II. DUT Configuration for VoLTE over IMS T-coil Testing

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. 16QAM, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

Erequerer	Volte over IMS SNNR by Radio Configuration Frequency Bandwidth Bandwidth										
[MHz]	Channel	[MHz]	Modulation	RB Size	RB Offset	[dB(A/m)]	[dB(A/m)]	[dB]			
1745.0	132322	20	QPSK	1	0	2.93	-44.77	47.70			
1745.0	132322	20	QPSK	1	50	2.98	-45.17	48.15			
1745.0	132322	20	QPSK	1	99	2.50	-45.00	47.50			
1745.0	132322	20	QPSK	50	0	2.94	-47.70	50.64			
1745.0	132322	20	QPSK	50	25	3.00	-47.03	50.03			
1745.0	132322	20	QPSK	50	50	2.98	-47.86	50.84			
1745.0	132322	20	QPSK	100	0	2.92	-46.63	49.55			
1745.0	132322	20	16QAM	1	0	2.80	-39.02	41.82			
1745.0	132322	20	16QAM	1	50	2.88	-39.41	42.29			
1745.0	132322	20	16QAM	1	99	2.75	-40.52	43.27			
1745.0	132322	20	16QAM	50	0	3.16	-47.76	50.92			
1745.0	132322	20	16QAM	50	25	2.94	-46.28	49.22			
1745.0	132322	20	16QAM	50	50	2.91	-47.07	49.98			
1745.0	132322	20	16QAM	100	0	2.88	-47.16	50.04			
1745.0	132322	20	64QAM	1	0	3.19	-40.06	43.25			
1745.0	132322	20	64QAM	1	50	2.87	-41.57	44.44			
1745.0	132322	20	64QAM	1	99	3.06	-41.72	44.78			
1745.0	132322	20	64QAM	50	0	2.67	-46.94	49.61			
1745.0	132322	20	64QAM	50	25	2.96	-47.28	50.24			
1745.0	132322	20	64QAM	50	50	2.96	-47.20	50.16			
1745.0	132322	20	64QAM	100	0	2.86	-47.51	50.37			

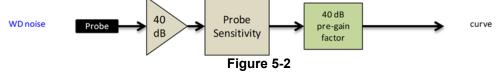
Table 5-1 VoLTE over IMS SNNR by Radio Configuration

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 5-2
AMR Codec Investigation – VoLTE over IMS

AMR Could Investigation - volte over ims										
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel			
ABM1 (dBA/m)	3.57	2.86	3.83	3.83						
ABM2 (dBA/m)	-38.53	-38.37	-38.77	-38.61	Axial	Band 66 20MHz	132322			
Frequency Response	Pass	Pass	Pass	Pass	Axiai		132322			
S+N/N (dB)	42.10	41.23	42.60	42.44						


FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager		
Filename:	Test Dates:	DUT Type:		Page 19 of 90		
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset	andset			
© 2019 PCTEST Engineering Laboratory, Inc.						

EVS Codec Investigation - VoLTE over IMS										
Codec Setting:	EVS Primary SWB 24.4kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 24.4kbps	EVS Primary WB 9.6kbps	Orientation	Band / BW	Channel			
ABM1 (dBA/m)	2.69	3.20	2.62	3.15						
ABM2 (dBA/m)	-38.79	-38.52	-38.98	-38.49	Axial	Band 66 20MHz	132322			
Frequency Response	Pass	Pass	Pass	Pass	Axiai		102022			
S+N/N (dB)	41.48	41.72	41.60	41.64						

Table 5-3 EVS Codec Investigation - VoLTE over IMS

Mute on; Backlight off; Max Volume; Max Contrast

TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

3. LTE TDD Uplink-Downlink Configuration Investigation for VoLTE over IMS

An investigation was performed to determine the worst-case Uplink-Downlink configuration for VoLTE over IMS T-Coil testing.

Per 3GPP TS 36.211, the total frame length for each TDD radio frame of length $T_f = 307200 \cdot T_s = 10 \text{ ms}$, where T_s is a number of time units equal to 1/(15000 x 2048) seconds. Additionally, each radio frame consists of 10 subframes, each of length $30720 \cdot T_s = 1 \text{ ms}$, and subframes can be designated as uplink (U), downlink (D), or special subframe (S), depending on the Uplink-Downlink configuration as indicated in Table 4.2-2 of 3GPP TS 36.211. In the transmission duty factor calculation, the special subframe configuration with the shortest UpPTS duration within the special subframe is used and will be applied for measurement. From 3GPP TS 36.211 Table 4.2-1, the shortest UpPTS is 2192 \cdot Ts which occurs in the normal cyclic prefix and special subframe configuration 4.

See table below outlining the calculated transmission duty cycles for each Uplink-Downlink configuration:

Uplink-downlink configuration	Downlink-to-Uplink Switch-point periodicity		Subframe number					Calculated Transmission				
comgutation	Switch point periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	61.4%
1	5 ms	D	S	U	U	D	D	S	U	U	D	41.4%
2	5 ms	D	S	U	D	D	D	S	U	D	D	21.4%
3	10 ms	D	S	U	U	U	D	D	D	D	D	30.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	20.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	10.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	51.4%

Table 5-4 Uplink-Downlink Configurations for Type 2 Frame Structures

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager			
Filename:	Test Dates:	DUT Type: Portable Handset		Page 20 of 90			
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019			Fage 20 01 90			
© 2019 PCTEST Engineering Laboratory, Inc.							

a. Power Class 3 Uplink-Downlink Configuration Investigation

Power class 3 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 0RB Offset. For Power Class 3, all configurations (0-6) are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 6 was used as the worst-case configuration for Power Class 3 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
2593.0	40620	20	16QAM	1	0	0	7.31	-36.49	43.80
2593.0	40620	20	16QAM	1	0	1	6.88	-36.90	43.78
2593.0	40620	20	16QAM	1	0	2	7.28	-37.10	44.38
2593.0	40620	20	16QAM	1	0	3	7.15	-39.07	46.22
2593.0	40620	20	16QAM	1	0	4	7.03	-39.63	46.66
2593.0	40620	20	16QAM	1	0	5	7.10	-39.47	46.57
2593.0	40620	20	16QAM	1	0	6	7.28	-35.90	43.18

Table 5-5 Power Class 3 VoLTE over IMS SNNR by UL-DL Configuration

b. Power Class 2 Uplink-Downlink Configuration Investigation

Power Class 2 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 0RB Offset. For Power Class 2, configurations 1-5 are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 1 was used as the worst-case configuration for Power Class 2 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
2593.0	40620	20	16QAM	1	0	1	7.16	-35.33	42.49				
2593.0	40620	20	16QAM	1	0	2	6.98	-36.32	43.30				
2593.0	40620	20	16QAM	1	0	3	6.93	-38.17	45.10				
2593.0	40620	20	16QAM	1	0	4	6.89	-37.38	44.27				
2593.0	40620	20	16QAM	1	0	5	6.87	-39.03	45.90				

Table 5-6 Power Class 2 VoLTE over IMS SNNR by UL-DL Configuration

Note: LTE TDD B41 Power Class 2 only supports UL-DL configurations 1-5, not 0 or 6.

c. Conclusion

Per the investigations above, UL-DL Configuration 6 was used to evaluate Power Class 3 VoLTE over IMS and UL-DL Configuration 1 was used to evaluate Power Class 2 VoLTE over IMS.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager				
Filename:	Test Dates:	DUT Type:		Page 21 of 90				
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 21 01 90				
© 2019 PCTEST Engineering I	2019 PCTEST Engineering Laboratory, Inc.							
	-			04/17/2018				

6. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

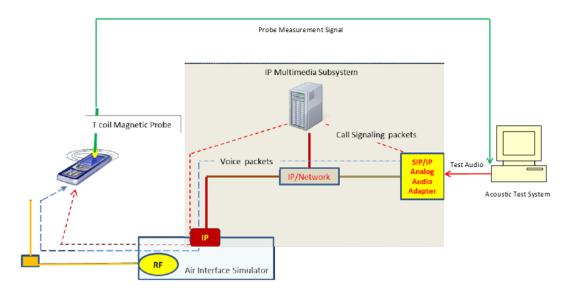


Figure 6-1 Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

FCC ID: ZNFV450PM	<u>CAPCTEST</u>	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 22 of 90
© 2019 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M 04/17/2018

II. DUT Configuration for VoWIFI over IMS T-coil Testing

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each 802.11 standard:

	802.11b SNNR by Radio Configuration										
Mo	ode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
802	2.11b	6	DSSS	1	0.00	-36.08	36.08				
802	2.11b	6	DSSS	2	-0.25	-35.58	35.33				
802	2.11b	6	CCK	5.5	-0.17	-35.12	34.95				
802	2.11b	6	CCK	11	-0.34	-35.33	34.99				

Table 6-1 802.11b SNNR by Radio Configuratio

Table 6-2802.11g/a SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
802.11g	6	BPSK	6	0.03	-36.59	36.62
802.11g	6	BPSK	9	0.00	-36.49	36.49
802.11g	6	QPSK	12	-0.33	-38.83	38.50
802.11g	6	QPSK	18	-0.35	-40.55	40.20
802.11g	6	16-QAM	24	-0.33	-40.44	40.11
802.11g	6	16-QAM	36	0.18	-42.40	42.58
802.11g	6	64-QAM	48	-0.35	-42.92	42.57
802.11g	6	64-QAM	54	0.21	-44.01	44.22

 Table 6-3

 802.11n/ac 20MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
802.11n	20	40	BPSK	6.5	0.25	-42.40	42.65
802.11n	20	40	QPSK	13	-0.13	-44.17	44.04
802.11n	20	40	QPSK	19.5	-0.27	-44.33	44.06
802.11n	20	40	16-QAM	26	-0.26	-45.88	45.62
802.11n	20	40	16-QAM	39	-0.36	-46.26	45.90
802.11n	20	40	64-QAM	52	-0.36	-43.73	43.37
802.11n	20	40	64-QAM	58.5	-0.36	-44.71	44.35
802.11n	20	40	64-QAM	65	0.25	-44.30	44.55
802.11ac	20	40	256-QAM	78	-0.32	-45.69	45.37

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager			
Filename:	Test Dates:	DUT Type:		Page 23 of 90			
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Page 23 01 90			
© 2019 PCTEST Engineering I	Laboratory, Inc.	·		REV 3.2.M			
				04/17/2018			

Mode	Bandwidth [MHz]	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]					
802.11n	40	38	BPSK	13.5	-0.36	-41.66	41.30					
802.11n	40	38	QPSK	27	-0.44	-44.40	43.96					
802.11n	40	38	QPSK	40.5	0.08	-45.67	45.75					
802.11n	40	38	16-QAM	54	0.00	-43.80	43.80					
802.11n	40	38	16-QAM	81	0.03	-45.07	45.10					
802.11n	40	38	64-QAM	108	0.03	-46.08	46.11					
802.11n	40	38	64-QAM	121.5	-0.43	-44.96	44.53					
802.11n	40	38	64-QAM	135	0.02	-45.57	45.59					
802.11ac	40	38	256-QAM	162	-0.51	-44.60	44.09					
802.11ac	40	38	256-QAM	180	-0.53	-45.20	44.67					

Table 6-4 802.11n/ac 40MHz BW SNNR by Radio Configuration

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

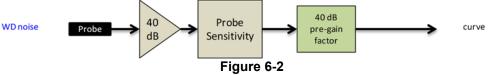

	AMR Codec Investigation – vowIFI over IMS											
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel				
ABM1 (dBA/m)	0.94	0.01	1.32	1.21			IEEE 802.11b	6				
ABM2 (dBA/m)	-36.37	-36.17	-36.16	-35.90	Avial							
Frequency Response	Pass	Pass	Pass	Pass	- Axial	2.4GHz						
S+N/N (dB)	37.31	36.18	37.48	37.11								

Table 6-5 AMR Codec Investigation – VoWIFI over IMS

Table 6-6 EVS Codec Investigation – VoWIFI over IMS

Codec Setting:	EVS Primary SWB 24.4kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 24.4kbps	EVS Primary WB 9.6kbps	Orientation	Band	Standard	Channel				
ABM1 (dBA/m)	-0.07	-0.12	-0.30	-0.29			IEEE 802.11b	6				
ABM2 (dBA/m)	-41.27	-40.69	-40.86	-39.31	Avial	2.4GHz						
Frequency Response	Pass	Pass	Pass	Pass	Axial							
S+N/N (dB)	41.20	40.57	40.56	39.02								

· Mute on; Backlight off; Max Volume; Max Contrast

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 24 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 24 01 90
© 2019 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 64kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The 64kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Codec I	Table 7-1 Codec Investigation – OTT VoIP (EvDO)											
Codec Setting: 64kbps 6kbps Orientation Channel												
ABM1 (dBA/m)	15.14	15.13										
ABM2 (dBA/m)	-50.11	-52.13	Axial	600								
Frequency Response	Pass	Pass	Axiai	600								
S+N/N (dB)	65.25	67.26										

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 25 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 25 01 90
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M

^{04/17/2018}

Codec I	nvestigatio	on – OTT V	OIP (EDGE	.)
Codec Setting:	64kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	15.66	15.79		
ABM2 (dBA/m)	-24.69	-25.58		190
Frequency Response	Pass	Pass	Axial	190
S+N/N (dB)	40.35	41.37		

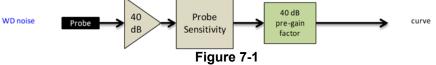
 Table 7-2

 Codec Investigation – OTT VolP (EDGE)

 Table 7-3

 Codec Investigation – OTT VolP (HSPA)

Codec Setting:	64kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	14.86	14.92		
ABM2 (dBA/m)	-50.11	-51.47	A1	0.400
Frequency Response	Pass	Pass	Axial	9400
S+N/N (dB)	64.97	66.39		


Table 7-4 Codec Investigation – OTT VoIP (LTE)

				· /	
Codec Setting:	64kbps	6kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	15.78	15.35		Band / BW Channe Band 25 20MHz BW 20MHz BW 26365	
ABM2 (dBA/m)	-44.87	-46.89	Axial	Band 25	00005
Frequency Response	Pass	Pass	Axiai	20MHz BW	20305
S+N/N (dB)	60.65	62.24			

Table 7-5 Codec Investigation – OTT VoIP (WIFI)

		Inteoligati	011			
Codec Setting:	64kbps	6kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	15.49	15.01				
ABM2 (dBA/m)	-33.25	-33.99	A		IEEE 802.11b	6
Frequency Response	Pass	Pass	Axial	2.4GHz		6
S+N/N (dB)	48.74	49.00				

Mute on; Backlight off; Max Volume; Max Contrast
Radio Configurations can be found in Section 9.II.H

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🔁 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 26 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 20 01 90
© 2019 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE band to be used for OTT VoIP testing. LTE Band 12 was used for FDD testing and LTE Band 41 (PC2) was used for TDD testing as the worst-case configurations for the handset. See below tables for SNNR comparison between different LTE bands:

	OTT VoIP (LTE) SNNR by LTE FDD Band												
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
71	680.5	133297	20	16QAM	1	0	15.40	-48.11	63.51				
66	1745.0	132322	20	16QAM	1	0	15.49	-45.45	60.94				
25	1882.5	26365	20	16QAM	1	0	15.74	-46.38	62.12				
26	831.5	26865	15	16QAM	1	0	15.64	-47.89	63.53				
12	707.5	23095	10	16QAM	1	0	15.75	-38.41	54.16				
13	782.0	23230	10	16QAM	1	0	15.74	-45.88	61.62				

Table 7-6 OTT VoIP (LTE) SNNR by LTE FDD Band

Table 7-7 OTT VoIP (LTE) SNNR by LTE TDD Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
41 (PC3)	2593.0	40620	20	16QAM	1	0	15.02	-35.13	50.15
41 (PC2)	2593.0	40620	20	16QAM	1	0	15.11	-33.37	48.48

3. LTE TDD Uplink Carrier Aggregation for OTT VoIP

LTE TDD ULCA was evaluated to ensure LTE TDD standalone was the worst-case scenario. The configurations in Table 7-8 were determined from Table 7-7 and satisfy the configuration requirements as defined in 3GPP 36.101. See results below:

			LTI	E SN	NR f	or O			e 7-8 plink		rier /	Aggro	egati	on			
				PCC					SCC								
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL/DL) Channel	SCC (UL/DL) Frequency	Modulation	SCC UL# RB	SCC UL RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNN [dB
CA_41C	LTE B41	20	40620	2593.0	16QAM	1	0	LTE B41	20	40422	2573.2	16QAM	1	99	15.00	-35.20	50.2

4. NR Band n41 Radio Configuration for OTT VoIP

An investigation was performed to determine the modulation and RB configuration to be used for NR Band n41 testing. Due to equipment limitations, the worst-case ABM1 from LTE B41 was used (see Section 9) with the ABM2 measured for each NR Band n41 modulation and RB configuration. CP-OFDM 64QAM, 1RB, 1RB offset was determined to be the worst-case configuration for the handset and will be used for full testing in Section 9.

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
	2592.99	518598	60	CP-OFDM QPSK	1	1	14.96	-38.42	53.38	
	2592.99	518598	60	CP-OFDM QPSK	1	81	14.96	-39.46	54.42	
	2592.99	518598	60	CP-OFDM QPSK	1	160	14.96	-39.41	54.37	
	2592.99	518598	60	CP-OFDM QPSK	80	40	14.96	-39.22	54.18	
	2592.99	518598	60	CP-OFDM QPSK	162	0	14.96	-38.70	53.66	
	2592.99	518598	60	CP-OFDM 16QAM	1	1	14.96	-39.65	54.61	
	2592.99	518598	60	CP-OFDM 16QAM	1	81	14.96	-39.85	54.81	
	2592.99	518598	60	CP-OFDM 16QAM	1	160	14.96	-39.40	54.36	
	2592.99	518598	60	CP-OFDM 16QAM	80	40	14.96	-39.74	54.70	
	2592.99	518598	60	CP-OFDM 16QAM	162	0	14.96	-40.31	55.27	
	2592.99	518598	60	CP-OFDM 64QAM	1	1	14.96	-37.43	52.39	
	2592.99	518598	60	CP-OFDM 64QAM	1	81	14.96	-39.36	54.32	
	2592.99	518598	60	CP-OFDM 64QAM	1	160	14.96	-39.55	54.51	
	2592.99	518598	60	CP-OFDM 64QAM	80	40	14.96	-38.55	53.51	
	2592.99	518598	60	CP-OFDM 64QAM	162	0	14.96	-38.72	53.68	
FCC ID: ZNI	FV450PM		PCTEST	HAC (I-COIL) TE	ST REPOR	т	🕒 LG		ved by: / Manage
ilename:		Test	Dates:	DUT	Type:				Daga	07 of 00

 Table 7-9

 NR Band n41 OTT VoIP SNNR by Radio Configuration

1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset	-
© 2019 PCTEST Engineering I	_aboratory, Inc.		REV 3.2.M
			04/17/2018
		pecified, no part of this report may be reproduced or utilized in any part, form or by	

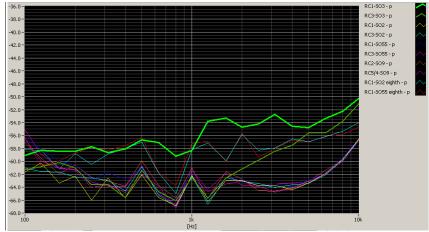
○ 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or nechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an anquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Page 27 of 90

8. FCC 3G MEASUREMENTS

I. CDMA Test Configurations

Radio Configuration 1, Service Option 3 (thick, green data curve) was used for the testing as the worstcase configuration for the handset due to vocoder gating from the EVRC logic. See below plot for ABM noise comparison between operational field service options and radio configurations for a CDMA2000 handset:



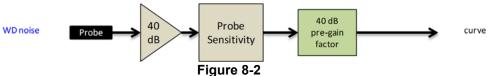

Figure 8-1 CDMA Audio Band Magnetic Noise

Table 8-1
FCC 3G ABM Measurements for ZNFV450PM (CDMA)

Configuration:	RC1/SO3	RC3/SO3	RC4/SO3	Orientation	Channel			
ABM1 (dBA/m)	2.15	1.53	1.94					
ABM2 (dBA/m)	-41.42	-50.29	-49.93	Axial	600			
Frequency Response	Pass	Pass	Pass	Axiai	600			
S+N/N (dB)	43.57	51.82	51.87					

• Mute on; Backlight off; Max Volume; Max Contrast

Power Control Bits = "All Up"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 28 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 20 01 90
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M

II. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

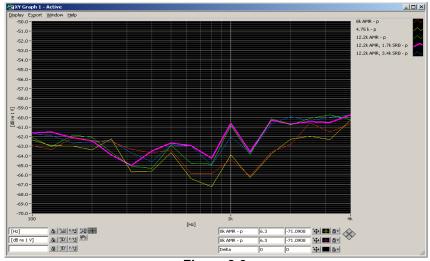
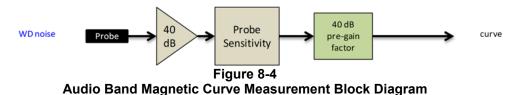



Figure 8-3 UMTS Audio Band Magnetic Noise

Table 8-2 Codec Investigation - UMTS

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel			
ABM1 (dBA/m)	7.30	7.25	7.23					
ABM2 (dBA/m)	-44.08	-44.15	-44.55	Axial	9400			
Frequency Response	Pass	Pass	Pass	Axiai	9400			
S+N/N (dB)	51.38	51.40	51.78					

Mute on; Backlight off; Max Volume; Max Contrast
 TPC="All 1s"

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 29 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 29 01 90
© 2019 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M

T-COIL TEST SUMMARY 9.

-		Con	solida	ated T	abled	Resu	lts		
		Mai	esponse rgin	Intensity	netic y Verdict		dict	Margin from FCC Limit	C63.19-2011 Rating
C63.19	Section	8.3			3.1		3.4	(dB)	Raung
		Axial	Radial	Axial	Radial	Axial	Radial		
	Secondary Cellular	PASS	NA	PASS	PASS	PASS	PASS		
CDMA	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-16.04	Τ4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
EvDO	Secondary Cellular	PASS	NA	PASS	PASS	PASS	PASS		
(OTT VoIP)	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-38.08	Τ4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-7.27	Т3
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
EDGE (OTT VoIP)	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-17.51	Τ4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	Cellular	PASS	NA	PASS	PASS	PASS	PASS	00.44	π.
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-30.14	Т4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
HSPA	Cellular	PASS	NA	PASS	PASS	PASS	PASS		-
(OTT VoIP)	AWS	PASS	NA	PASS	PASS	PASS	PASS	-40.46	Т4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	B71	PASS	NA	PASS	PASS	PASS	PASS		
	B12	PASS	NA	PASS	PASS	PASS	PASS		
	B13	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD	B26	PASS	NA	PASS	PASS	PASS	PASS	-22.37	T4
	B5	PASS	NA	PASS	PASS	PASS	PASS		
	B66	PASS	NA	PASS	PASS	PASS	PASS		
	B25	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD (OTT VoIP)	B12	PASS	NA	PASS	PASS	PASS	PASS	-33.13	Τ4
LTE TDD	B41 (PC3)	PASS	NA	PASS	PASS	PASS	PASS	-22.94	Τ4
	B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	22.04	
LTE TDD (OTT VoIP)	B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	-26.60	Τ4
NR (OTT VoIP)	n41	NA	NA	PASS	PASS	PASS	PASS	-32.72	Т4
	802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN	802.11g	PASS	NA	PASS	PASS	PASS	PASS	-13.42	Τ4
WLAN	802.11n	PASS	NA	PASS	PASS	PASS	PASS	-13.42	14
	802.11ac	PASS	NA	PASS	PASS	PASS	PASS		
	802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN	802.11g	PASS	NA	PASS	PASS	PASS	PASS	-21.39	Τ4
(OTT VoIP)	802.11n	PASS	NA	PASS	PASS	PASS	PASS	-21.39	14
	802.11ac	PASS	NA	PASS	PASS	PASS	PASS		
	802.11a	PASS	NA	PASS	PASS	PASS	PASS		
U-NII	802.11n	PASS	NA	PASS	PASS	PASS	PASS	-8.09	Т3
	802.11ac	PASS	NA	PASS	PASS	PASS	PASS		
	802.11a	I1a PASS NA PASS		PASS	PASS	PASS	PASS		
U-NII (OTT VoIP)	802.11n	PASS	NA	PASS	PASS	PASS	PASS	-16.35	Τ4

Table 9-1

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 30 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 50 01 90
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/17/2018

I. Raw Handset Data

Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		476	00386	5.50	-38.43		1.56	43.93	20.00	-23.93	T4	
	Axial	564	00386	5.17	-37.81	-61.64	1.56	42.98	20.00	-22.98	T4	2.2, 3.4
Secondary		684	00386	4.61	-40.14		1.61	44.75	20.00	-24.75	T4	
Cellular		476	00386	-0.74	-36.78			36.04	20.00	-16.04	T4	
	Radial	564	00386	-0.69	-36.87	-64.63	N/A	36.18	20.00	-16.18	T4	2.2, 2.2
		684	00386	-1.06	-39.20			38.14	20.00	-18.14	T4	
				•								
	Axial	1013	00386	5.78	-42.17	-61.64	1.62	47.95	20.00	-27.95	T4	2.2, 3.4
		384	00386	5.85	-40.17		1.59	46.02	20.00	-26.02	T4	
		777	00386	4.96	-41.84		1.62	46.80	20.00	-26.80	T4	
Cellular		1013	00386	-0.92	-40.23	-64.63	-64.63 N/A	39.31	20.00	-19.31	T4	
	Radial	384	00386	-0.74	-38.30			N/A	37.56	20.00	-17.56	T4
		777	00386	-0.85	-39.44			38.59	20.00	-18.59	T4	
				•								
		25	00386	5.22	-45.57		1.58	50.79	20.00	-30.79	T4	
	Axial	600	00386	5.06	-45.63	-61.64	1.52	50.69	20.00	-30.69	T4	2.2, 3.4
200		1175	00386	4.87	-44.37	1	1.59	49.24	20.00	-29.24	T4	
PCS		25	00386	-0.96	-43.10	1		42.14	20.00	-22.14	T4	
	Radial	600	00386	-1.00	-43.09	-64.63	N/A	42.09	20.00	-22.09	T4	2.2, 2.2
		1175	00386	-0.99	-41.59	1		40.60	20.00	-20.60	T4	

Table 9-2 Raw Data Results for CDMA

Table 9-3 Raw Data Results for GSM

				1.0	II Bata	Results						
Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		128	00386	7.61	-21.75		1.51	29.36	20.00	-9.36	Т3	
	Axial	190	00386	7.85	-21.67	-61.64	1.49	29.52	20.00	-9.52	Т3	2.2, 3.4
GSM850		251	00386	7.57	-22.17		1.51	29.74	20.00	-9.74	Т3	
GSINIOSU		128	00386	-2.73	-30.49	-62.60 N/A	27.76	20.00	-7.76	Т3		
	Radial	190	00386	-2.99	-30.26		-62.60 N/A	27.27	20.00	-7.27	Т3	2.2, 2.2
		251	00386	-2.70	-30.13			27.43	20.00	-7.43	Т3	1
		512	00386	7.77	-25.47		1.54	33.24	20.00	-13.24	T4	
	Axial	661	00386	7.69	-26.24	-61.64	1.51	33.93	20.00	-13.93	T4	2.2, 3.4
GSM1900		810	00386	7.70	-25.61		1.51	33.31	20.00	-13.31	T4	
GSW1900		512	00386	-2.83	-35.37			32.54	20.00	-12.54	T4	
	Radial	661	00386	-2.66	-35.72	-62.60	N/A	33.06	20.00	-13.06	T4	2.2, 2.2
		810	00386	-2.66	-35.59			32.93	20.00	-12.93	T4	

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 31 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		
© 2019 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M 04/17/2018

Table 9-4	
Raw Data Results for	UMTS

					Dutu	Vesuits I					-	
Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		4132	00386	7.33	-43.70		1.53	51.03	20.00	-31.03	T4	
	Axial	4183	00386	7.33	-44.24	-61.64	1.48	51.57	20.00	-31.57	T4	2.2, 3.4
UMTS V		4233	00386	7.31	-42.83		1.54	50.14	20.00	-30.14	T4	
UNITSV		4132	00386	-3.21	-58.38			55.17	20.00	-35.17	T4	
	Radial	4183	00386	-3.21	-58.25	-62.60	N/A	55.04	20.00	-35.04	T4	2.2, 2.2
		4233	00386	-3.21	-58.19			54.98	20.00	-34.98	T4	
		1312	00386	7.45	-44.54		1.54	51.99	20.00	-31.99	T4	
	Axial	1412	00386	7.42	-43.90	-61.64	1.52	51.32	20.00	-31.32	T4	2.2, 3.4
UMTS IV		1513	00386	7.33	-44.92		1.54	52.25	20.00	-32.25	T4	
0111310		1312	00386	-3.20	-58.26			55.06	20.00	-35.06	T4	
	Radial	1412	00386	-3.22	-58.34	-62.60	N/A	55.12	20.00	-35.12	T4	2.2, 2.2
		1513	00386	-3.20	-58.29			55.09	20.00	-35.09	T4	
		9262	00386	7.40	-42.86		1.55	50.26	20.00	-30.26	T4	
	Axial	9400	00386	7.37	-43.52	-61.64	1.54	50.89	20.00	-30.89	T4	2.2, 3.4
UMTS II		9538	00386	7.45	-42.85		1.54	50.30	20.00	-30.30	T4	
UNIST		9262	00386	-3.21	-58.36			55.15	20.00	-35.15	T4	
	Radial	9400	00386	-3.21	-58.61	-62.60	N/A	55.40	20.00	-35.40	T4	2.2, 2.2
		9538	00386	-3.23	-58.79	1		55.56	20.00	-35.56	T4	

Table 9-5Raw Data Results for LTE B71

	Node	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
			20MHz	133297	00386	7.17	-41.36		0.96	48.53	20.00	-28.53	T4	
		Axial	15MHz	133297	00386	7.36	-40.15	-61.64	0.94	47.51	20.00	-27.51	T4	2.2. 3.4
		Axiai	10MHz	133297	00386	7.16	-39.70	-01.04	1.00	46.86	20.00	-26.86	T4	2.2, 3.4
	LTE Band 71		5MHz	133297	00386	6.80	-38.73		0.92	45.53	20.00	-25.53	T4	
LIE			20MHz	133297	00386	-2.96	-54.72			51.76	20.00	-31.76	T4	
		Radial	15MHz	133297	00386	-2.89	-54.71	-61.59	N/A	51.82	20.00	-31.82	T4	2.2. 2.2
		Nadial	10MHz	133297	00386	-2.55	-54.79	-01.59	N/A	52.24	20.00	-32.24	T4	2.2, 2.2
			5MHz	133297	00386	-2.56	-53.98			51.42	20.00	-31.42	T4	

Table 9-6 Raw Data Results for LTE B12

Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		10MHz	23095	00386	7.19	-37.49		1.10	44.68	20.00	-24.68	T4		
LTE Band 12-	Axial	5MHz	23095	00386	7.08	-37.62	-61.64	1.00	44.70	20.00	-24.70	T4	2.2. 3.4	
	Axiai	3MHz	23095	00386	7.20	-38.10	-01.04	1.12	45.30	20.00	-25.30	T4	2.2, 3.4	
		1.4MHz	23095	00386	7.07	-40.60		1.08	47.67	20.00	-27.67	T4		
	2	10MHz	23095	00386	-2.90	-53.86			50.96	20.00	-30.96	T4		
	Radial	5MHz	23095	00386	-3.07	-53.23	-61.59	N/A	50.16	20.00	-30.16	T4	2.2. 2.2	
	radiai	3MHz	23095	00386	-2.56	-54.34	-01.59	IWA	51.78	20.00	-31.78	T4	2.2, 2.2	
		1.4MHz	23095	00386	-3.06	-54.64			51.58	20.00	-31.58	T4		

Table 9-7Raw Data Results for LTE B13

	Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		Axial	10MHz	23230	00386	7.13	-36.31	-61.64	0.95	43.44	20.00	-23.44	T4	2.2, 3.4
	TE David 42	Band 13	5MHz	23230	00386	7.02	-37.37	-01.04	1.11	44.39	20.00	-24.39	T4	2.2, 3.4
ľ	TE Band 13		10MHz	23230	00386	-2.88	-53.21	-61.59	N/A	50.33	20.00	-30.33	T4	2.2. 2.2
		radiai	5MHz	23230	00386	-2.60	-52.91	-01.59	IV/A	50.31	20.00	-30.31	T4	2.2, 2.2

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager					
Filename:	Test Dates:	DUT Type:		Page 32 of 90					
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 52 01 90					
© 2019 PCTEST Engineering Laboratory, Inc.									

Table 9-8 Raw Data Results for LTE B26

Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		15MHz	26865	00386	7.08	-38.76		1.05	45.84	20.00	-25.84	T4	
		10MHz	26865	00386	7.28	-38.20		1.04	45.48	20.00	-25.48	T4	
	Axial	5MHz	26865	00386	7.27	-37.29	-61.64	0.98	44.56	20.00	-24.56	T4	2.2, 3.4
		3MHz	26865	00386	7.06	-37.40		1.05	44.46	20.00	-24.46	T4	
LTE Band 26		1.4MHz	26865	00386	6.90	-37.73		0.98	44.63	20.00	-24.63	T4	
LIE Ballu 20		15MHz	26865	00386	-3.06	-52.49			49.43	20.00	-29.43	T4	
		10MHz	26865	00386	-2.72	-53.82			51.10	20.00	-31.10	T4	
	Radial	5MHz	26865	00386	-2.86	-52.66	-61.59	N/A	49.80	20.00	-29.80	T4	2.2, 2.2
		3MHz	26865	00386	-2.93	-53.08			50.15	20.00	-30.15	T4	
		1.4MHz	26865	00386	-2.90	-53.65			50.75	20.00	-30.75	T4	

Table 9-9 Raw Data Results for LTE B66

Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
		20MHz	132572	00004	3.08	-39.54		1.11	42.62	20.00	-22.62	T4	
		20MHz	132322	00004	2.68	-40.71		1.12	43.39	20.00	-23.39	T4	
		20MHz	132072	00004	2.93	-39.44		1.10	42.37	20.00	-22.37	T4	
	Axial	15MHz	132322	00004	2.64	-42.52	-63.39	1.04	45.16	20.00	-25.16	T4	2.2, 3.4
	Axiai	10MHz	132322	00004	2.67	-42.77	-03.39	1.03	45.44	20.00	-25.44	T4	2.2, 3.4
		5MHz	132322	00004	2.87	-42.62		1.15	45.49	20.00	-25.49	T4	
		3MHz	132322	00004	2.66	-43.29		1.13	45.95	20.00	-25.95	T4	
LTE Band		1.4MHz	132322	00004	2.53	-42.54		1.14	45.07	20.00	-25.07	T4	
66		20MHz	132322	00004	-2.65	-47.04			44.39	20.00	-24.39	T4	
		15MHz	132322	00004	-2.51	-48.02]		45.51	20.00	-25.51	T4	
		10MHz	132322	00004	-2.45	-47.98]		45.53	20.00	-25.53	T4	
	Radial	5MHz	132322	00004	-2.83	-48.80	-64.63	N/A	45.97	20.00	-25.97	T4	2222
	Radiai	3MHz	132657	00004	-2.10	-47.55	-04.03	INA	45.45	20.00	-25.45	T4	2.2,2.2
		3MHz	132322	00004	-2.62	-46.97			44.35	20.00	-24.35	T4]
		3MHz	131987	00004	-2.35	-46.36]		44.01	20.00	-24.01	T4	
		1.4MHz	132322	00004	-2.77	-49.21			46.44	20.00	-26.44	T4]

Table 9-10Raw Data Results for LTE B25

Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	26365	00386	7.31	-40.02		1.23	47.33	20.00	-27.33	T4	
		15MHz	26365	00386	7.20	-41.96		1.03	49.16	20.00	-29.16	T4	
	Axial	10MHz	26365	00386	7.17	-39.69	-61.64	1.01	46.86	20.00	-26.86	T4	2.2, 3.4
	Axiai	5MHz	26365	00386	7.13	-42.39	-01.04	1.09	49.52	20.00	-29.52	T4	2.2, 3.4
		3MHz	26365	00386	7.26	-42.28		1.03	49.54	20.00	-29.54	T4	
LTE Band 25		1.4MHz	26365	00386	6.83	-41.89		1.07	48.72	20.00	-28.72	T4	
LIE Ballu 25		20MHz	26365	00386	-2.93	-54.83			51.90	20.00	-31.90	T4	
		15MHz	26365	00386	-2.85	-54.85			52.00	20.00	-32.00	T4	
	Radial	10MHz	26365	00386	-2.57	-54.39	-61.59	N/A	51.82	20.00	-31.82	T4	2.2, 2.2
	radiai	5MHz	26365	00386	-2.56	-54.54	-01.59	IN/A	51.98	20.00	-31.98	T4	2.2, 2.2
		3MHz	26365	00386	-2.57	-55.03			52.46	20.00	-32.46	T4	
		1.4MHz	26365	00386	-2.97	-55.03			52.06	20.00	-32.06	T4	

Table 9-11Raw Data Results for LTE B41 Power Class 3

Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		20MHz	40620	00386	7.33	-36.07		0.99	43.40	20.00	-23.40	T4		
	Axial	15MHz	40620	00386	7.19	-36.99	-61.64	1.05	44.18	20.00	-24.18	T4	2.2. 3.4	
	Axiai	10MHz	40620	00386	7.19	-37.02	-01.04	1.09	44.21	20.00	-24.21	T4	2.2, 3.4	
LTE Band 41		5MHz	40620	00386	7.38	-37.08		1.03	44.46	20.00	-24.46	T4		
		20MHz	40620	00386	-2.75	-48.85			46.10	20.00	-26.10	T4		
	Radial	15MHz	40620	00386	-3.20	-49.04	-61.59	N/A	45.84	20.00	-25.84	T4	2.2. 2.2	
	Naulai	10MHz	40620	00386	-3.02	-48.95	-01.59	INA	45.93	20.00	-25.93	T4	2.2, 2.2	
		5MHz	40620	00386	-2.86	-48.92			46.06	20.00	-26.06	T4		

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager					
Filename:	Test Dates:	DUT Type:		Page 33 of 90					
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 33 01 90					
© 2019 PCTEST Engineering Laboratory, Inc.									

				IW Dala	resuit	5 101 L			1a33 Z				
Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	00386	7.43	-36.15		0.89	43.58	20.00	-23.58	T4	
		15MHz	40620	00386	7.47	-36.38		1.10	43.85	20.00	-23.85	T4	
		10MHz	41490	00386	7.15	-35.86		1.02	43.01	20.00	-23.01	T4	
	Axial	10MHz	41055	00386	7.53	-35.41	-61.64	1.08	42.94	20.00	-22.94	T4	2.2, 3.4
	Axiai	10MHz	40620	00386	7.16	-36.15	-01.04	1.05	43.31	20.00	-23.31	T4	2.2, 3.4
		10MHz	40185	00386	7.35	-36.82		1.06	44.17	20.00	-24.17	T4	
		10MHz	39750	00386	7.30	-36.79		1.00	44.09	20.00	-24.09	T4	
LTE Band 41		5MHz	40620	00386	7.60	-35.92		1.01	43.52	20.00	-23.52	T4	
LIE Ballu 41		20MHz	40620	00386	-2.75	-48.80			46.05	20.00	-26.05	T4	
		15MHz	40620	00386	-3.01	-48.91			45.90	20.00	-25.90	T4	
		10MHz	40620	00386	-2.80	-48.72			45.92	20.00	-25.92	T4	
	Radial	5MHz	41490	00386	-2.79	-48.73	-61.59	N/A	45.94	20.00	-25.94	T4	2.2, 2.2
	Naulai	5MHz	41055	00386	-2.74	-47.77	-01.59	INA	45.03	20.00	-25.03	T4	2.2, 2.2
		5MHz	40620	00386	-3.10	-48.83	1		45.73	20.00	-25.73	T4	
		5MHz	40185	00386	-2.89	-48.97	1		46.08	20.00	-26.08	T4	
		5MHz	39750	00386	-3.10	-48.94	1		45.84	20.00	-25.84	T4	

Table 9-12Raw Data Results for LTE B41 Power Class 2

Table 9-13 Raw Data Results for 2.4GHz WIFI

Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		1	00444	-0.10	-34.22		0.94	34.12	20.00	-14.12	T4		
	Axial	6	00444	-0.05	-33.47	-61.64	1.02	33.42	20.00	-13.42	T4	2.2, 3.4	
IEEE		11	00444	-0.21	-34.70		0.96	34.49	20.00	-14.49	T4		
802.11b		1	00444	-6.74	-42.30			35.56	20.00	-15.56	T4		
	Radial	6	00444	-6.43	-42.17	-64.63	N/A	35.74	20.00	-15.74	T4	2.2,2.2	
		11	00444	-6.83	-41.02			34.19	20.00	-14.19	T4		
IEEE	Axial	6	00444	-0.32	-37.25	-61.64	0.98	36.93	20.00	-16.93	T4	2.2, 3.4	
802.11g	Radial	6	00444	-6.43	-46.15	-64.63	N/A	39.72	20.00	-19.72	T4	2.2,2.2	
IEEE	Axial	6	00444	-0.08	-38.16	-61.64	1.11	38.08	20.00	-18.08	T4	2.2, 3.4	
802.11n	Radial	6	00444	-6.63	-44.98	-64.63	N/A	38.35	20.00	-18.35	T4	2.2,2.2	
IEEE	Axial	6	00444	0.02	-38.93	-61.64	1.19	38.95	20.00	-18.95	T4	2.2, 3.4	
802.11ac	Radial	6	00444	-6.70	-45.19	-64.63	N/A	38.49	20.00	-18.49	T4	2.2,2.2	

Table 9-14 Raw Data Results for 5GHz WIFI 802.11a

	Mode	Orientation	Bandwidth	U-NII	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
		Axial	20MHz	1	40	00444	-0.15	-45.41	-63.39	0.99	45.26	20.00	-25.26	T4	2.2, 3.4
IE	EE 802.11a														
		Radial	20MHz	1	40	00444	-6.88	-38.05	-64.63	N/A	31.17	20.00	-11.17	T4	2.2,2.2

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 34 of 90
© 2019 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M 04/17/2018

Table 9-15 Raw Data Results for 5GHz WIFI 802.11n

Mode	Orientation	Bandwidth	U-NII	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	00444	-0.11	-44.63		1.06	44.52	20.00	-24.52	T4	
		20MHz	1	40	00444	-0.13	-43.95		1.17	43.82	20.00	-23.82	T4	
		40MHz	2A	54	00444	-0.34	-45.31		1.10	44.97	20.00	-24.97	T4	
		20MHz	2A	56	00444	-0.25	-45.46		1.02	45.21	20.00	-25.21	T4	
	Axial	40MHz	2C	118	00444	-0.22	-45.04	-63.39	1.10	44.82	20.00	-24.82	T4	2.2, 3.4
		20MHz	2C	120	00444	-0.31	-45.37		0.95	45.06	20.00	-25.06	T4	
		40MHz	3	151	00444	-0.19	-43.89		1.16	43.70	20.00	-23.70	T4	
		40MHz	3	159	00444	-0.32	-43.63		1.04	43.31	20.00	-23.31	T4	
		20MHz	3	157	00444	-0.16	-45.26		1.11	45.10	20.00	-25.10	T4	
IEEE														
802.11n		40MHz	1	38	00444	-6.71	-36.47			29.76	20.00	-9.76	Т3	
		20MHz	1	40	00444	-6.65	-36.22			29.57	20.00	-9.57	Т3	
		40MHz	2A	54	00444	-6.81	-35.77			28.96	20.00	-8.96	Т3	
		20MHz	2A	56	00444	-6.79	-35.63			28.84	20.00	-8.84	Т3	
	Radial	40MHz	2C	118	00444	-6.76	-35.97	-64.63	N/A	29.21	20.00	-9.21	Т3	2.2.2.2
	Naulai	20MHz	2C	100	00444	-6.87	-35.04	-04.03	NVA	28.17	20.00	-8.17	Т3	2.2,2.2
		20MHz	2C	120	00444	-6.79	-34.88			28.09	20.00	-8.09	Т3	
		20MHz	2C	144	00444	-7.00	-36.53			29.53	20.00	-9.53	Т3	
		40MHz	3	151	00444	-6.69	-35.88			29.19	20.00	-9.19	Т3	
		20MHz	3	157	00444	-6.57	-35.43			28.86	20.00	-8.86	T3	

Table 9-16 Raw Data Results for 5GHz WIFI 802.11ac

Mode	Orientation	Bandwidth	U-NII	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	00444	-0.20	-45.56	-63.39	0.98	45.36	20.00	-25.36	T4	2.2, 3.4
IEEE	Axiai	20MHz	1	40	00444	-0.15	-45.79	-03.39	1.13	45.64	20.00	-25.64	T4	2.2, 3.4
802.11ac														
002.1140	Radial	40MHz	1	38	00444	-6.82	-37.10	-64.63	N/A	30.28	20.00	-10.28	T4	2.2.2.2
	Naulai	20MHz	1	40	00444	-6.56	-36.76	-04.03		30.20	20.00	-10.20	T4	2.2,2.2

Table 9-17 Raw Data Results for EvDO (OTT VoIP)

Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
Secondary Cellular	Axial	564	00444	15.09	-49.16	-63.19	1.44	64.25	20.00	-44.25	T4	2.2,3.4
EvDO	Radial	564	00444	8.46	-49.62	-62.60	N/A	58.08	20.00	-38.08	T4	2.2,2.2
Cellular	Axial	384	00444	15.06	-50.08	-63.19	1.40	65.14	20.00	-45.14	T4	2.2,3.4
EvDO	Radial	384	00444	8.93	-50.24	-62.60	N/A	59.17	20.00	-39.17	T4	2.2,2.2
PCS	Axial	600	00444	15.15	-50.53	-63.19	1.46	65.68	20.00	-45.68	T4	2.2,3.4
EvDO	Radial	600	00444	8.52	-50.18	-62.60	N/A	58.70	20.00	-38.70	T4	2.2,2.2

Table 9-18 Raw Data Results for EDGE (OTT VoIP)

Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
EDGE850	Axial	190	00444	15.71	-24.32	-63.19	1.45	40.03	20.00	-20.03	T4	2.2,3.4
EDGE050	Radial	190	00444	8.23	-29.28	-62.60	N/A	37.51	20.00	-17.51	T4	2.2,2.2
EDCE4000	Axial	661	00444	15.72	-23.70	-63.19	1.35	39.42	20.00	-19.42	T4	2.2,3.4
EDGE1900	Radial	661	00444	8.11	-33.69	-62.60	N/A	41.80	20.00	-21.80	T4	2.2, 2.2

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 35 of 90
© 2019 PCTEST Engineering	Laboratory, Inc.			REV 3.2.M 04/17/2018

						5 101 110						
Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
HSPA V	Axial	4183	00444	15.75	-50.06	-61.64	1.41	65.81	20.00	-45.81	T4	2.2,3.4
NOPA V	Radial	4183	00444	8.33	-54.43	-61.59	N/A	62.76	20.00	-42.76	T4	2.2,2.2
HSPA IV	Axial	1412	00444	15.45	-45.01	-61.64	1.43	60.46	20.00	-40.46	T4	2.2,3.4
HOFAIN	Radial	1412	00444	8.25	-54.62	-61.59	N/A	62.87	20.00	-42.87	T4	2.2,2.2
HSPA II	Axial	9400	00444	15.69	-47.75	-61.64	1.45	63.44	20.00	-43.44	T4	2.2,3.4
Horali	Radial	9400	00444	8.03	-54.77	-61.59	N/A	62.80	20.00	-42.80	T4	2.2,2.2

Table 9-19Raw Data Results for HSPA (OTT VolP)

Table 9-20 Raw Data Results for LTE FDD B12 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	23095	00444	15.67	-38.20		1.48	53.87	20.00	-33.87	T4	
		5MHz	23155	00444	15.73	-39.18		1.46	54.91	20.00	-34.91	T4	
	Axial	5MHz	23095	00444	15.14	-37.99	-63.19	1.47	53.13	20.00	-33.13	T4	2.2,3.4
	Axidi	5MHz	23035	00444	15.76	-42.48	-03.19	1.46	58.24	20.00	-38.24	T4	2.2,3.4
		3MHz	23095	00444	15.71	-40.60		1.47	56.31	20.00	-36.31	T4	
LTE Band 12		1.4MHz	23095	00444	15.56	-42.99		1.41	58.55	20.00	-38.55	T4	
LTE Ballu 12		10MHz	23130	00444	8.37	-47.24			55.61	20.00	-35.61	T4	
		10MHz	23095	00444	8.29	-46.69			54.98	20.00	-34.98	T4	
	Radial	10MHz	23060	00444	8.41	-45.96	-62.60	N/A	54.37	20.00	-34.37	T4	2.2.2.2
	Naulai	5MHz	23095	00444	8.25	-46.95	-02.00	INA	55.20	20.00	-35.20	T4	2.2,2.2
		3MHz	23095	00444	8.29	-47.23			55.52	20.00	-35.52	T4	1
		1.4MHz	23095	00444	8.26	-47.73			55.99	20.00	-35.99	T4	

 Table 9-21

 Raw Data Results for LTE TDD B41 (PC2) (OTT VolP)

								· · · · · · · ·						
Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		20MHz	40620	00386	15.17	-33.53		1.47	48.70	20.00	-28.70	T4		
		15MHz	40620	00386	15.12	-33.48		1.50	48.60	20.00	-28.60	T4		
		10MHz	41490	00386	14.96	-33.47		1.49	48.43	20.00	-28.43	T4		
	Axial	10MHz	41055	00386	15.03	-32.86	-63.19	1.46	47.89	20.00	-27.89	T4	2.2,3.4	
	AXIai	10MHz	40620	00386	15.00	-33.39	-03.19	1.50	48.39	20.00	-28.39	T4	2.2,3.4	
		10MHz	40185	00386	14.97	-33.87		1	1.51	48.84	20.00	-28.84	T4	
		10MHz	39750	00386	15.21	-33.64		1.50	48.85	20.00	-28.85	T4		
TE Dand 44		5MHz	40620	00386	15.08	-33.32		1.38	48.40	20.00	-28.40	T4		
LTE Band 41		20MHz	40620	00386	7.81	-41.17			48.98	20.00	-28.98	T4		
		15MHz	41490	00386	7.69	-40.45			48.14	20.00	-28.14	T4		
		15MHz	41055	00386	7.79	-39.99			47.78	20.00	-27.78	T4		
	Radial	15MHz	40620	00386	7.82	-40.78	-62.60	NA	48.60	20.00	-28.60	T4		
	Radiai	15MHz	40185	00386	7.86	-41.03	-02.00	INA	48.89	20.00	-28.89	T4	2.2, 2.2	
		15MHz	39750	00386	7.82	-38.78			46.60	20.00	-26.60	T4		
		10MHz	40620	00386	7.78	-40.85		-		48.63	20.00	-28.63	T4	
		5MHz	40620	00386	7.82	-40.91			48.73	20.00	-28.73	T4		

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 36 of 90
© 2019 PCTEST Engineering		Follable Halldset		REV 3.2.M
	-			04/17/2018

Table 9-22	
Raw Data Results for NR Band n41 ((OTT VoIP)

Mode	Orientation	Bandwidth	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		60MHz	531996	00386	14.96	-38.93			53.89	20.00	-33.89	T4	
		60MHz	525300	00386	14.96	-41.22			56.18	20.00	-36.18	T4	
	Axial	60MHz	518598	00386	14.96	-38.38	-63.39	N/A	53.34	20.00	-33.34	T4	2.2, 3.4
Axiai	60MHz	511902	00386	14.96	-38.44	-03.39	3.35	53.40	20.00	-33.40	T4	2.2, 3.4	
		60MHz	505200	00386	14.96	-39.71			54.67	20.00	-34.67	T4	
NR n41		40MHz	518598	00386	14.96	-39.47			54.43	20.00	-34.43	T4	
NR 141		60MHz	531996	00386	7.69	-46.34			54.03	20.00	-34.03	T4	
		60MHz	525300	00386	7.69	-45.89			53.58	20.00	-33.58	T4	
	Radial	60MHz	518598	00386	7.69	-45.03	-64.63	N/A	52.72	20.00	-32.72	T4	2.2. 2.2
	Radiai	60MHz	511902	00386	7.69	-45.51	-04.03	INA	53.20	20.00	-33.20	T4	2.2, 2.2
		60MHz	505200	00386	7.69	-45.15	-		52.84	20.00	-32.84	T4	
		40MHz	518598	00386	7.69	-46.07			53.76	20.00	-33.76	T4	1

Table 9-23 Raw Data Results for 2.4GHz WIFI (OTT VoIP)

			Itan				(*		/			
Mode	Orientation	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
IEEE	Axial	6	00444	15.89	-32.91	-63.19	1.47	48.80	20.00	-28.80	T4	2.2,3.4
802.11b	Radial	6	00444	8.33	-41.44	-62.60	N/A	49.77	20.00	-29.77	T4	2.2,2.2
IEEE	Axial	6	00444	15.69	-31.95	-63.19	1.42	47.64	20.00	-27.64	T4	2.2,3.4
802.11g	Radial	6	00444	8.31	-34.78	-62.60	N/A	43.09	20.00	-23.09	T4	2.2,2.2
		1	00444	15.57	-31.41		1.49	46.98	20.00	-26.98	T4	
	Axial	6	00444	15.80	-31.20	-63.19	1.45	47.00	20.00	-27.00	T4	2.2,3.4
IEEE		11	00444	15.74	-31.58		1.44	47.32	20.00	-27.32	T4	
802.11n		1	00444	8.35	-33.04			41.39	20.00	-21.39	T4	
	Radial	6	00444	8.41	-33.69	-62.60	N/A	42.10	20.00	-22.10	T4	2.2,2.2
		11	00444	8.67	-33.97			42.64	20.00	-22.64	T4	
IEEE	Axial	6	00444	15.69	-31.65	-63.19	1.44	47.34	20.00	-27.34	T4	2.2,3.4
802.11ac	Radial	6	00444	8.15	-35.15	-62.60	N/A	43.30	20.00	-23.30	T4	2.2,2.2

Table 9-24 Raw Data Results for 5GHz WIFI 802.11a (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	1	40	00444	15.76	-41.25		1.46	57.01	20.00	-37.01	T4	
		20MHz	2A	56	00444	15.64	-43.00		1.43	58.64	20.00	-38.64	T4	
	Axial	20MHz	2C	100	00444	15.77	-41.14	-63.19	1.47	56.91	20.00	-36.91	T4	2.2,3.4
	Axiai	20MHz	2C	120	00444	15.41	-40.66	-03.19	1.43	56.07	20.00	-36.07	T4	2.2,3.4
		20MHz	2C	144	00444	15.65	-40.54		1.45	56.19	20.00	-36.19	T4	
IEEE		20MHz	3	157	00444	15.66	-42.98		1.47	58.64	20.00	-38.64	T4	
802.11a														
002.110		20MHz	1	40	00444	8.16	-28.38			36.54	20.00	-16.54	T4	
		20MHz	2A	52	00444	8.28	-28.55			36.83	20.00	-16.83	T4	
	Radial	20MHz	2A	56	00444	8.13	-28.22	62.60	N/A	36.35	20.00	-16.35	T4	2.2,2.2
	Radiai	20MHz	2A	64	00444	8.23	-28.58	-28.58 -28.50	IVA	36.81	20.00	-16.81	T4	2.2,2.2
		20MHz	2C	120	00444	8.19	-28.50			36.69	20.00	-16.69	T4	
		20MHz	3	157	00444	8.15	-29.63			37.78	20.00	-17.78	T4	

Table 9-25 Raw Data Results for 5GHz WIFI 802.11n (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Avial	40MHz	1	38	00444	15.73	-41.32	-63.19	1.44	57.05	20.00	-37.05	T4	2.2.3.4
Axial	20MHz	1	40	00444	15.60	-42.31	-03.19	1.45	57.91	20.00	-37.91	T4	2.2,3.4	
802.11n														
002.1111		40MHz	1	38	00444	8.23	-29.85	-62.60	N/A	38.08	20.00	-18.08	T4	2.2.2.2
Radial	20MHz	1	40	00444	8.16	-28.82	-02.00	IN/A	36.98	20.00	-16.98	T4	2.2,2.2	

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager		
Filename:	Test Dates:	DUT Type:		Page 37 of 90		
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 37 01 90		
© 2019 PCTEST Engineering Laboratory, Inc.						

				1.0	w Data	Nesult	3 101 0		111002.	1140 (0		• /					
Мо	de	Orientation	Bandwidth	U-NII	Channel	DUT S/N	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates		
	IEEE	Axial	40MHz	1	38	00444	15.68	-44.96	-63.19	62.10	1.45	60.64	20.00	-40.64	T4	2.2,3.4	
100			20MHz	1	40	00444	15.72	-44.02	-03.15	1.47	59.74	20.00	-39.74	T4	2.2,3.4		
002.1	802.11ac	Dedial	40MHz	1	38	00444	8.23	-33.14	62.60	N/A	41.37	20.00	-21.37	T4	2.2.2.2		
		Radial	20MHz	1	40	00444	8.20	-33.28	-62.60	-62.60	-62.60	NVA.	41.48	20.00	-21.48	T4	2.2,2.2

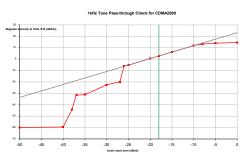
Table 9-26 Raw Data Results for 5GHz WIFI 802.11ac (OTT VoIP)

II. Test Notes

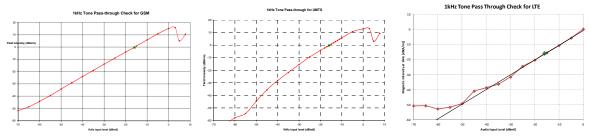
- A. General
 - 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
 - 2. 'Radial' orientation refers to radial transverse.
 - 3. Hearing Aid Mode (Phone→Call Settings→Additional Settings→Hearing aids) was set to ON for Frequency Response compliance
 - 4. Speech Signal: ITU-T P.50 Artificial Voice
 - 5. Bluetooth and WIFI were disabled while testing 2G/3G/4G modes.
 - 6. Licensed data modes and Bluetooth were disabled while testing WIFI modes.
 - 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).

B. CDMA

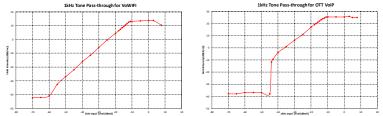
- 1. Power Configuration: Power Control Bits = "All Up"
- 2. Vocoder Configuration: RC1/SO3 (CDMA EVRC)
- C. GSM
 - 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
 - 2. Vocoder Configuration: EFR (GSM);
- D. UMTS
 - 1. Power Configuration: TPC= "All 1s";
 - 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);
- E. LTE FDD
 - 1. Power Configuration: TPC = "Max Power"
 - 2. Radio Configuration: 16QAM, 1RB, 0RB offset
 - 3. Vocoder Configuration: WB AMR 6.60kbps
 - 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 66 at 20MHz is the worst-case for the Axial probe orientation. LTE Band 66 at 3MHz is the worst-case for the Radial probe orientation.
- F. LTE TDD
 - 1. Power Configuration: TPC = "Max Power"
 - 2. Radio Configuration: 16QAM, 1RB, 0RB offset
 - 3. Power Class 3 Uplink-Downlink configuration: 6
 - 4. Power Class 2 Uplink-Downlink configuration: 1
 - 5. Vocoder Configuration: WB AMR 6.60kbps
 - 6. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, mid-high and high channels for those combinations. LTE Band 41 (PC2) at 10MHz is the worst-case for the Axial probe orientation. LTE Band 41 (PC2) at 5MHz bandwidth is the worst-case for the Radial probe orientation.


FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 38 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 30 01 90
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M
				04/17/2018

- G. WIFI
 - 1. Radio Configuration
 - a. 802.11b: CCK, 5.5Mbps
 - b. 802.11g/a: BPSK, 9Mbps
 - c. 802.11n/ac 20MHz: BPSK, 6.5Mbps
 - d. 802.11n/ac 40MHz: BPSK, 13.5Mbps
 - 2. Vocoder Configuration: WB AMR 6.60kbps
 - 3. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. 802.11b is the worst-case for both the Axial and Radial probe orientation.
 - 4. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. 802.11n (40MHz BW, U-NII 3) is the worst-case for the Axial probe orientation. 802.11n (20MHZ BW, U-NII 2C) is the worst-case for the Radial probe orientation.
- H. OTT VoIP
 - 1. Vocoder Configuration: 64kbps
 - 2. EvDO Configuration
 - a. Revision: A
 - 3. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
 - 4. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
 - 5. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 0RB offset
 - c. LTE Band 12 was the worst-case band from Table 7-6 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 12 at 5MHz is the worst-case for the Axial probe orientation. LTE Band 12 at 10MHz bandwidth is the worst-case for the Radial probe orientation.
 - 6. LTE TDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 0RB offset
 - c. Power Class 2 Uplink-Downlink configuration: 1
 - d. LTE Band 41 (Power Class 2) was the worst-case band from Table 7-7 and was used to test both Axial and Radial probe orientations.
 - e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 2) at 10MHz is the worst-case for the Axial probe orientation and LTE Band 41 (Power Class 2) at 15MHz is the Radial probe orientation.
 - 7. NR Band n41 Configuration:
 - a. Power Configuration: TxAGC is set such that DUT operates at max power
 - b. Radio Configuration: CP-OFDM 64QAM, 1RB, 1RB offset
 - c. Due to equipment limitations, ABM1 measurements were not possible. Therefore, the worst-case ABM1 measurements from LTE TDD OTT VoIP testing for Axial and Radial were combined with NR Band n41 ABM2 measurements to obtain SNNR values. Additionally, Frequency Response measurements were not possible due to equipment limitations.


FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 39 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 39 01 90
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M
				04/17/2018

- 8. WIFI Configuration:
 - a. Radio Configuration
 - i. 802.11b: CCK, 5.5Mbps
 - ii. 802.11g/a: BPSK, 9Mbps
 - iii. 802.11n/ac 20MHz: BPSK, 6.5Mbps
 - iv. 802.11n/ac 40MHz: BPSK, 13.5Mbps
 - b. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. 802.11n is the worst-case for both the Axial and Radial probe orientations.
 - c. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. 802.11a (U-NII 2C) is the worst-case for the Axial probe orientation. 802.11a (U-NII 2A) is the worst-case for the Radial probe orientation.


III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -18 dBm0 for CDMA. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 40 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 40 01 90
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M
				04/17/2018

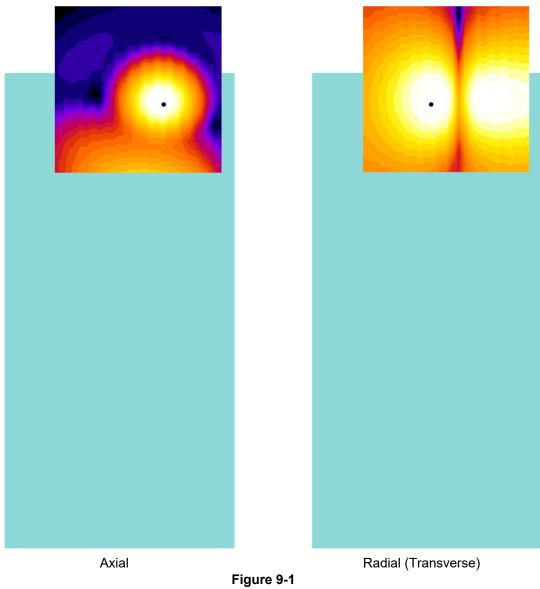
IV. T-Coil Validation Test Results

ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.793	PASS
Environmental Noise	< -58 dBA/m	-61.64	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.041	PASS
Environmental Noise	< -58 dBA/m	-61.59	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

Table 9-27 Helmholtz Coil Validation Table of Results - 01/07/2019

Table 9-28 Helmholtz Coil Validation Table of Results - 01/14/2019

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.758	PASS
Environmental Noise	< -58 dBA/m	-63.19	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.032	PASS
Environmental Noise	< -58 dBA/m	-62.60	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS


Table 9-29 Helmholtz Coil Validation Table of Results - 01/22/2019

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.881	PASS
Environmental Noise	< -58 dBA/m	-63.39	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.994	PASS
Environmental Noise	< -58 dBA/m	-64.63	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 41 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 41 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

04/17/2018

ABM1 Magnetic Field Distribution Scan Overlays V.

T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 42 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 42 01 90
© 2019 PCTEST Engineering	REV 3.2.M 04/17/2018			

10. MEASUREMENT UNCERTAINTY

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)						17.7%	0.71
Expanded uncertainty (k=2), 95% confidence level					35.3%	1.31	

Table 10-1 Uncertainty Estimation Table

Notes:

1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

2. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 43 of 90	
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 45 01 90	
© 2019 PCTEST Engineering Laboratory, Inc.					
				04/17/2018	

11. EQUIPMENT LIST

Table 11-1 Equipment List

		_qa.po.tot				
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Dell	Latitude E6540	SoundCheck Acoustic Analyzer Laptop	4/11/2017	Biennial	4/11/2019	7BFNM32
Listen	SoundConnect	Microphone Power Supply	9/6/2018	Biennial	9/6/2020	0899-PS150
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	4/11/2017	Biennial	4/11/2019	23528889
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/19/2018	Annual	1/19/2019	162125
Rohde & Schwarz	CMW500	Radio Communication tester	8/3/2018	Annual	8/3/2019	140144
Rohde & Schwarz	CMW500	Radio Communication Tester	4/20/2018	Annual	4/20/2019	128635
Seekonk	NC-100	Torque Wrench (8" lb)	5/10/2018	Biennial	5/10/2020	21053
TEM	Axial T-Coil Probe	Axial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1129
TEM	Helmholtz Coil	Helmholtz Coil	10/10/2018	Biennial	10/10/2020	SBI 1052
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM		HAC Positioner	N/A		N/A	N/A

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 44 of 90
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M 04/17/2018

12. TEST DATA

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 45 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 45 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

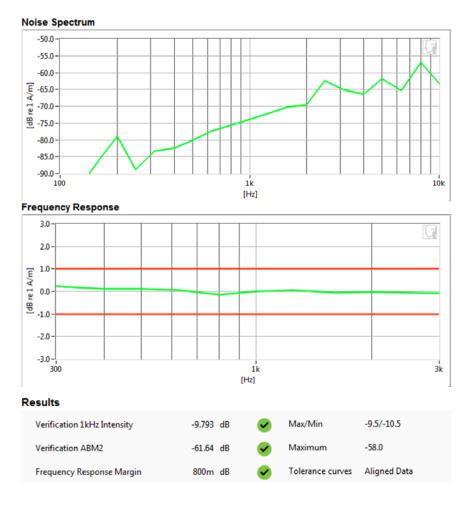
© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/17/2018

ENGINEERING LABORATORY, INC.

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 40 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

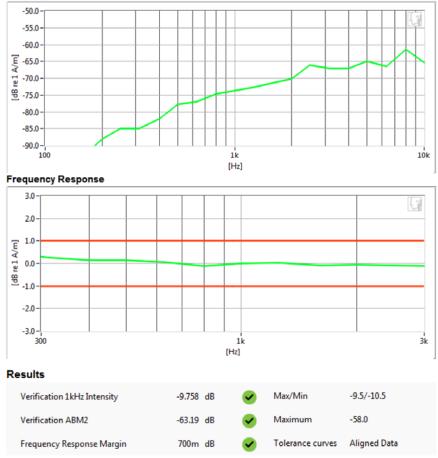
04/17/2018 © 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

1/7/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Helmholtz Coil – SN: SBI 1052; Calibrated: 10/10/2018

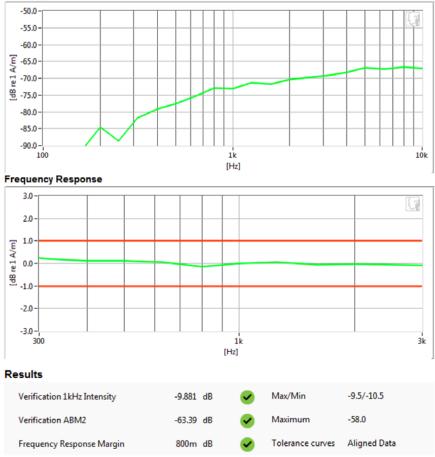
Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 47 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

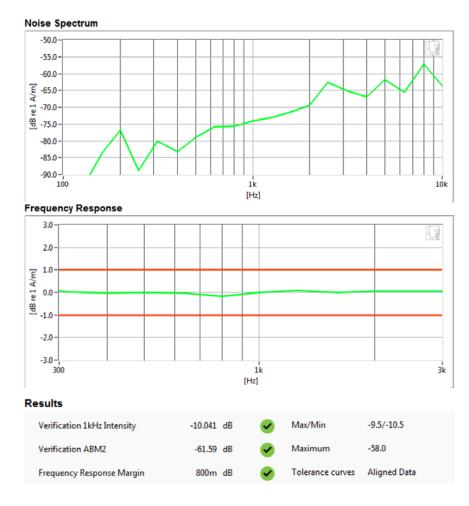
PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 48 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 40 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

PCTEST[®] ENGINEERING LABORATORY, INC.

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 09/19/2018 ٠ •

Helmholtz Coil - SN: SBI 1052; Calibrated: 10/10/2018

PCTEST 2019

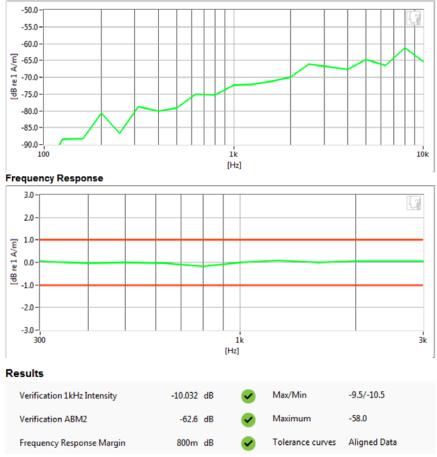
FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 49 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

04/17/2018 © 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

1/7/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 09/19/2018 ٠ •
 - Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

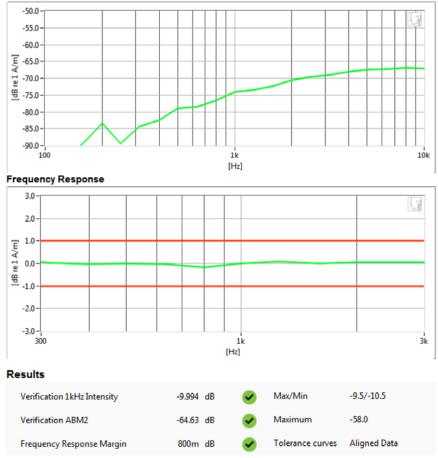
Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 50 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 50 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 09/19/2018 ٠ •
 - Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 51 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 51 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

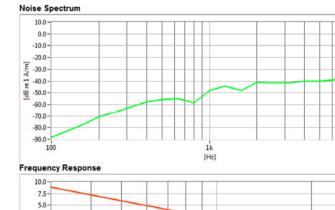
104

3

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: Secondary Cellular CDMA
- Channel: 564
- Speech Signal: ITU-T P.50 Artificial Voice

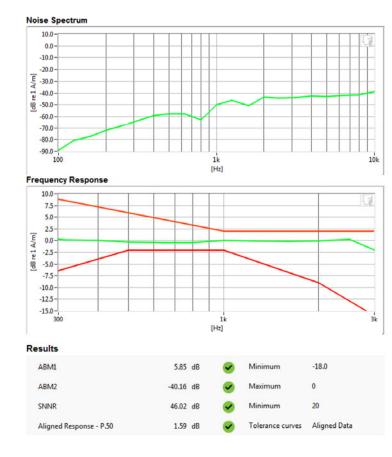
PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 52 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 52 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: Cellular CDMA
- Channel: 384
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2019

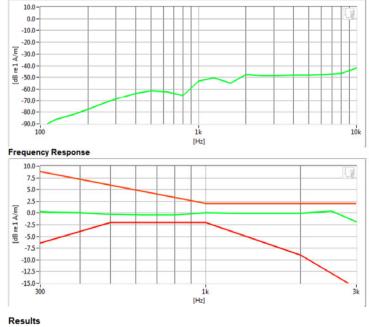
FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 53 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 55 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: PCS CDMA
- Channel: 1175
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 54 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM850
- Channel: 128
- Speech Signal: ITU-T P.50 Artificial Voice

Noise Spectrum 10.0 -0.0 -10.0 -20.0 -20.0--30.0--30.0-1 = -40.0-BP -50.0--60.0 -70.0 --80.0 -90.0 100 1k 104 [Hz] Frequency Response 10.0 3 7.5 5.0 2.5 2.5-[m/H] -2.5-[B] -5.0--7.5--10.0 --12.5 -15.0-1k 3 [Hz] Results ABM1 7.61 dB Minimum -18.0 0 -21.76 dB ABM2 4 Maximum SNNR 29.36 dB Minimum 20 1.51 dB Tolerance curves Aligned Data Aligned Response - P.50 0

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 55 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 55 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/17/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM1900
- Channel: 512
- Speech Signal: ITU-T P.50 Artificial Voice

Noise Spectrum 10.0 -0.0 -10.0 --20.0 -20.0-[-30.0--30.0--40.0--20.0--30 -60.0 -70.0 --80.0 -90.0-100 1k 104 [Hz] Frequency Response 10.0 3 7.5 5.0 2.5 2.5-[m/H] -2.5-[B] -5.0--7.5--10.0 --12.5 -15.0-1k 3 [Hz] Results ABM1 7.77 dB Minimum -18.0 ~ 0 -25.47 dB ABM2 4 Maximum SNNR 33.24 dB Minimum 20 1.54 dB Tolerance curves Aligned Data Aligned Response - P.50 0

PCTEST 2019

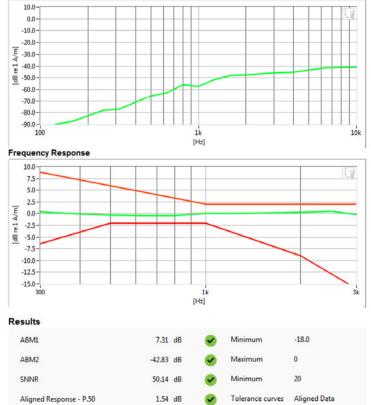
FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 56 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 50 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS V
- Channel: 4233
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2019

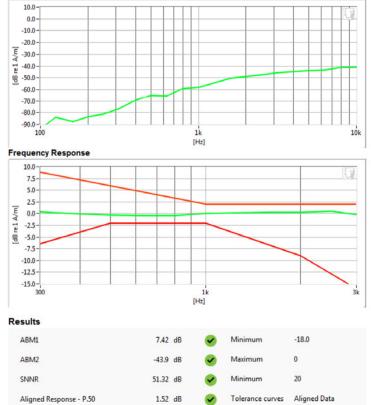
FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 57 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 57 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS IV
- Channel: 1412
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2019

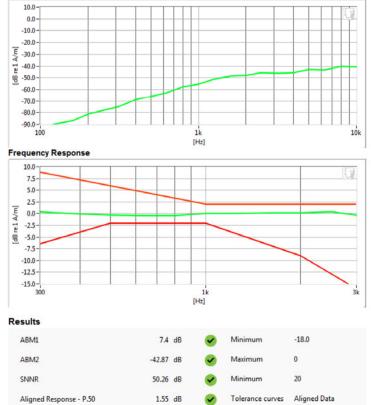
FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 58 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 56 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS II
- Channel: 9262
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕦 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 59 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

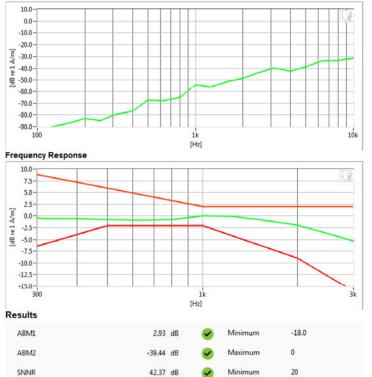
PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00004

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE FDD B66
- Bandiwdth: 20MHz
- Channel: 132072
- Speech Signal: ITU-T P.50 Artificial Voice

Aligned Response - P.50

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕦 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 60 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 00 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

~

Tolerance curves Aligned Data

1.1 dB

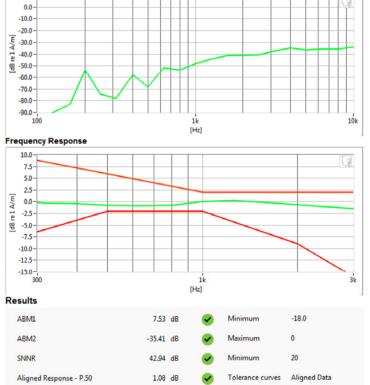
1/10/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE TDD B41 (PC2)
- Bandwidth: 10MHz
- Channel: 41055
- Speech Signal: ITU-T P.50 Artificial Voice

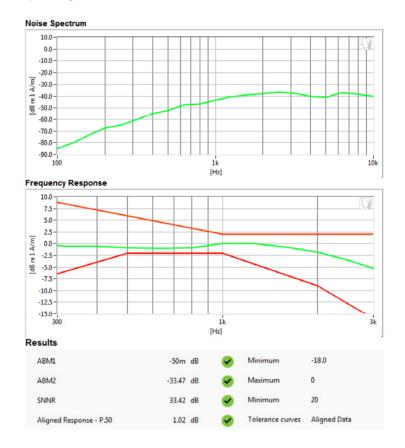
PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 61 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 01 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00444


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 6
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 62 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 02 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

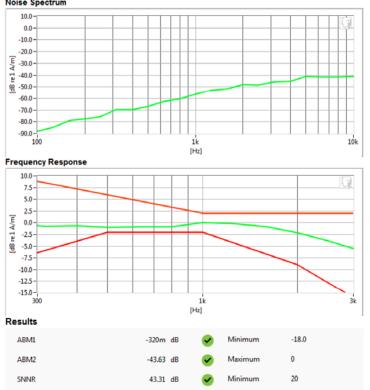
PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00444

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: 5GHz WIFI
- Standard: IEEE 802.11n (U-NII 3) ٠
- Bandwidth: 40MHz ٠
- . Channel: 159
- Speech Signal: ITU-T P.50 Artificial Voice ٠

Aligned Response - P.50

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 63 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 03 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

9

Tolerance curves Aligned Data

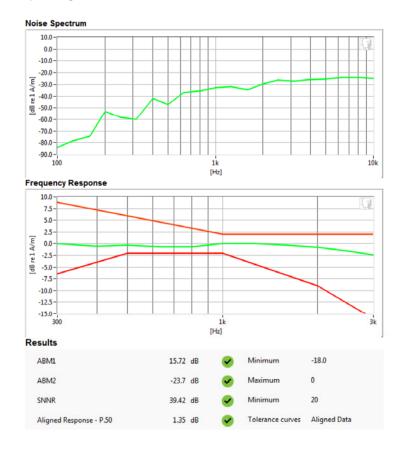
1.04 dB

1/15/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00444


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- VolP Application: Google Duo
- Mode: EDGE1900
- Channel: 661
- Speech Signal: ITU-T P.50 Artificial Voice

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 64 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 04 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: Secondary Cellular CDMA
- Channel: 476

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 65 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		
© 2019 PCTEST Engineering I	Laboratory, Inc.			REV 3.2.M
				04/17/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: Cellular CDMA
- Channel: 384

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 66 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 00 01 90
© 2019 PCTEST Engineering	REV 3.2.M 04/17/2018			

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: PCS CDMA
- Channel: 1175

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 67 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		0
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M 04/17/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM850
- Channel: 190

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 68 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		J
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M 04/17/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM1900
- Channel: 512

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 69 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M 04/17/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS V
- Channel: 4233

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 70 of 90
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M 04/17/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS IV
- Channel: 1312

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 71 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		
© 2019 PCTEST Engineering Laboratory, Inc.				REV 3.2.M 04/17/2018

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS II
- Channel: 9262

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename: 1M1811230205-13-R4.ZNF	Test Dates: 01/07/2019 - 01/22/2019	DUT Type: Portable Handset		Page 72 of 90
© 2019 PCTEST Engineering		Foltable Halluset		REV 3.2.M
0 0				04/17/2018

1/22/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00004

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE FDD B66
- Bandwidth: 3MHz
- Channel: 131987

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 73 of 90	
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		1 age 70 01 00	
© 2019 PCTEST Engineering Laboratory, Inc.					
				04/17/2018	

1/11/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00386

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE TDD B41 (PC2)
- Bandwidth: 5MHz
- Channel: 41055

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 74 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		_
© 2019 PCTEST Engineering Laboratory, Inc.				
				04/17/2018

1/22/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00444

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: 2.4GHz WIFI
- Standard: IEEE 802.11b
- Channel: 11

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 75 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 75 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				
				04/17/2018

1/22/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00444

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: 5GHz WIFI
- Standard: IEEE 802.11n (U-NII 2C)
- Bandwidth: 20MHz
- Channel: 120

Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 76 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		5
© 2019 PCTEST Engineering I	REV 3.2.M			
	-			04/17/2018

1/15/2019

PCTEST Hearing-Aid Compatibility Facility

DUT: ZNFV450PM

Type: Portable Handset Serial: 00444

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- VoIP Application: Google Duo
- Mode: 5GHz WIFI
- Standard: IEEE 802.11a (U-NII 2A)
- Channel: 56

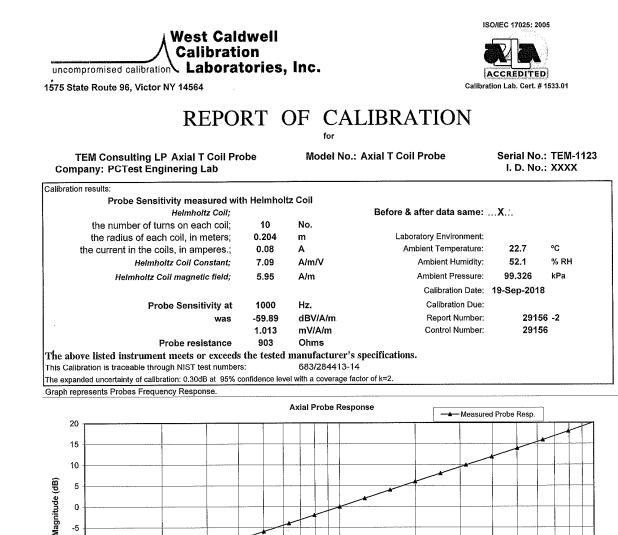
Noise Spectrum

PCTEST 2019

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 77 of 90	
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		r age // 0100	
© 2019 PCTEST Engineering Laboratory, Inc.					
				04/17/2018	

13. CALIBRATION CERTIFICATES

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 78 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 70 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				


© 2019 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

04/17/2018

West C	Caldwell Cal	ibration La	aboratories Inc.	
				R
Certi	ficate	of Ca	libration	
		for		
	AXIAI	L T COIL PROBE		
	Manufactured Model No:		CONSULTING LP AL T COIL PROBE	
	Serial No: Calibration Re	TEM	-1123	
		Submitted By:	,	
	Customer:	Andrew Harwe	11	
	Company: Address:	PCTest Engine 6660-B Dobbin		
	Address;	Columbia	MD 21045	
The subject instrumen	t was calibrated to th	e indicated snecific	ation using standards traceable to the	
National Institute of S	tandards and Technol	logy or to accepted	values of natural physical constants. pecification upon its return to the	
submitter.	s that the list unleat	met the following s	pechication upon its return to the	
West Caldwell Calibra	ation Laboratories Pro	ocedure No. A	KIAL T C TEM C	
Upon receipt for Calib	oration, the instrumen	t was found to be:	V a44 12/4/2019	
Within	(x)		147/2010	
tolerance of the indica	-	•		
	tion Laboratories' ca	libration control sy	stem meets the requirements, ISO	
10012-1 MIL-STD-450	662A, ANSI/NCSL Z5	40-1, IEC Guide 25	5, ISO 9001:2008 and ISO 17025.	
				Ś
Note: With this Certificate,	Report of Calibration is in	ncluded.	Approved by: Fc	
Calibration Date:	19-Sep-18		Felix Christopher (QA Mgr.)	
Certificate No:	29156 -2			
QA Doc. #1051 Rev. 2.0 10/1/01		icate Page 1 of 1	ISO/IEC 17025:2005	ľ
100 million (100 m	/est Caldwell Calibration			
		Inc.	ACCREDITED	200. 200

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 79 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 79 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

HCATEMC_TEM-1123_Sep-19-2018

Cal. Date: 19-Sep-2018 Measurements performed by: Calibrated on WCCL system type 9700 James Zhu Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

Freq. (Hz)

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISØ)17025

-10 -15 -20

100

Calibration Laboratories Inc. procedure :

Page 1 of 2

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 80 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 60 01 90
© 2019 PCTEST Engineering Laboratory, Inc.				

1000

10000

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

HCATEMC_TEM-1123_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab for Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Function	unction Toleran		Measured values		
			Before	Out	Remarks
Probe Sensitivity at	1000 Hz.	dBV/A/m	-59.89		
		dB			
Probe Level Linearity		6	6.03		
	Ref. (0 dB)	0	0.00		
		-6	-6.03		
		-12	-12.05		
*****		Hz			
Probe Frequency Response			-19.9		
		316			
		398			
		501	-6.0		
		631	-4.0		
		794	-2.0		
	Ref. (0 dB)	1000	0.0		
		1259	2.0		
		1585	4.0		
		1995	5.9		
		2512	7.9		
		3162	9.9		
		3981	11.9		
		5012	13.9		
		6310	15.9		
		7943	18.0		
		10000	20.1		
	Probe Sensitivity at	Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB) Probe Frequency Response	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity 6 6 Ref. (0 dB) 0 -6 -12 -6 -12 Probe Frequency Response 100 126 158 200 251 200 251 316 398 501 631 794 Ref. (0 dB) 1000 1259 1585 1995 2512 3162 3981 6310 7943 1621	Probe Sensitivity at 1000 Hz. dBV/A/m -59.89 Probe Level Linearity 6 6.03 6.03 Ref. (0 dB) 0 0.00 -6 -6.03 -12 -12.05 -12 -12.05 Probe Frequency Response 100 -19.9 158 -15.9 200 -13.9 158 -15.9 200 -13.9 251 -11.9 316 -9.9 398 -7.9 316 -9.9 316 -9.9 398 -7.9 501 -6.0 631 -4.0 -4.0 -794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1565 4.0 1995 5.9 2512 7.9 3162 9.9 3981 11.9 5012 13.9 3981 11.9 5012 13.9 6310 15.9 6310 15.9 3981 11.9 5012 13.9 6310 15.9 7943 <td< td=""><td>Before Out Probe Sensitivity at 1000 Hz. dBV/A/m -59.89 -59.89 Probe Level Linearity 6 6.03 - - Ref. (0 dB) 0 0.00 - - - Probe Level Linearity 6 6.03 -</td></td<>	Before Out Probe Sensitivity at 1000 Hz. dBV/A/m -59.89 -59.89 Probe Level Linearity 6 6.03 - - Ref. (0 dB) 0 0.00 - - - Probe Level Linearity 6 6.03 -

Instruments used for c	alibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

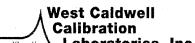
Cal. Date: 19-Sep-2018

Tested by: James Zhu

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC


Page 2 of 2

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 81 of 90
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage of 01 90
© 2019 PCTEST Engineering	REV 3.2.M			

West C	aldwell Cal	ibration L	aborato	ries Inc.	
					Š
					
Certi	ficate	ot Ca	alibr	ation	
		for			
	RADIA	L T COIL PROB	E		
	Manufactured Model No:	•	M CONSULTI DIAL T COIL		
	Serial No: Calibration Red	TEN	M-1129		
		Submitted By:	50		
	Customer:	Andrew Harw	/ell		
	Company:	PCTest Engin			
	Address:	6660-B Dobbin Columbia	n Koad	MD 21045	
The subject instrument	was calibrated to the	e indicated specifi	cation using st	andards traceable to th	e
National Institute of St This document certifies submitter.					
West Caldwell Calibra	tion Laboratories Pro	xedure No. I	RADIAL T TEM		
Upon receipt for Calib	ration, the instrumen	t was found to be:	:	VAA 12/4/2018	
Within	(X)			12/4/2018	
tolerance of the indica					
The information suppli West Caldwell Calibra				ie requirements, ISO	
10012-1 MIL-STD-456	62A, ANSI/NCSL Z5	40-1, IEC Guide 2	25, ISO 9001:2	008 and ISO 17025.	/
					e
Note: With this Certificate,	Report of Callbration is in	cluded.	Approved	by: FC	
	19-Sep-18			istopher (QA Mgr.)	
Calibration Date:				• • • • • •	
	29156 -1			/IEC 17025:2005	
Calibration Date: Certificate No: QA Doc. #1051 Rev. 2.0 10/1/01	29156 - ¹ Certif	icate Page 1 of 1	ISO,		
Certificate No: QA Doc. #1051 Rov. 2.0 10/1/01		icate Page 1 of 1			

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 82 of 90	
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 62 01 90	
© 2019 PCTEST Engineering Laboratory, Inc.					

HCRTEMC_TEM-1129_Sep-19-2018

uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

		TEM Consulting	a LP Radial	T Coil P	robe		Mode	No.:	Radial T (Coil P	robe		Ser	ial No	.: TEM	-1129
,c		ipany: PCTest					mout				C DC				.: XXX	
alik	oratic	on results:														
		Probe Se	ensitivity mea		th Heimho	oltz C	oil									
			Helmhoi						Before	& after	data s	ame:	X			
			of turns on ea		10		lo.				- ·					
		the radius of			0.204 0.08	m A				boratory			-	2.7	°C	
		the current in th	mholtz Coil Co	•	7.09		./m/V		,	Ambient	pient Hu			2.1	% RH	
			tz Coil magnet		5.95		Jm				ient Pre			.326	kPa	
		neiminoi	tz con magnet	ne neia,	5.55	~	un									
					4000						libration		19-56	p-2018	`	
			Probe Sensit	•	1000		z.				alibratio					
				was	-60.37 0.958		BV/A/ı ıV/A/m				eport N ontrol N			2915		
			Probe resi	istance	0.958		1V/A/IT)hms	I		C	DITUDE N	innoer:		2915	0	
p	ab	ove listed instrur						urer's s	ecificatio	ns.						
		bration is traceable						413-14								
•	ехра	nded uncertainty of c	alibration: 0.30d	iBat 95% c	onfidence le	evel wit	h a cove	erage fact	r of k=2.			-				
	oh re	presents Probes Fre	equency Respo	nse.												
						Radi	al Prot	e Respo	ise						1	
	20)	<u> </u>									Measur	ed Probe	Resp.		
	20															-
	15	5 -		+ +												
	10											-				
											*					
	5	5		++									-			
	c							_								
	, c	1					-	1								
	-5	5				-										
	-10		_													
	-15	5	_							_						
	-20	100	!		F	req. (H	(7)	1000								10000
							·-/					~				
			ment was ch		sing calib	ration	proce	dure do								
	e ab	ove listed instru									0 Jan.	24, 20 [.]	14 Doc	. # 103	8 HCR	TEMC
١	e ab ibra	tion Laboratorie	s Inc. proced					•								
	e ab ibra bratio	tion Laboratorie	s Inc. proced y West Caldwel	II Calibratio							۱ <u>۰</u> سه (۸			100.47	7005	
1	e ab ibra bratio	tion Laboratorie	s Inc. proced y West Caldwel	II Calibratio							A) and	ISO 900	01:2008	, ISO 17	7025	
1	e ab ibra bratio	ation Laboratorie on was performed by to implement the re	s Inc. proced y West Caldwel equirements of I	II Calibration ISO10012-1					1, (MIL-STI	D-45662			01:2008	, ISO 17	7025	
 } r	e ab ibra ibratio ided	ation Laboratorie on was performed by to implement the re	s Inc. proced y West Caldwel equirements of I Date: 19-Sej	II Calibration ISO10012-1					1, (MIL-STI					, ISO 17	7025	

Page 1 of 2

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 83 of 90	
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 03 01 90	
© 2019 PCTEST Engineering Laboratory, Inc.					

HCRTEMC_TEM-1129_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab ^{for} Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Test	Function	Tolera	Measured values			
			Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37		
			dB			
.0	Probe Level Linearity		6	6.03		
		Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.05		
			Hz			
.0	Probe Frequency Response		100	-20.0		
			126	-17.9		
			158	-15.9		
			200	-14.0		
			251	-12.0		
			316	-10.0		
			398	-8.0		
			501	-6.0		
			631	-4.0		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	4.0		
			1995	6.0		
			2512	7.9		
			3162	9.9		
			3981	11.9		
			5012	13.9		
			6310	15.9		
			7943	18.0		
			10000	20.1		

Instruments used for c	alibration:		Date of Cal.	Traceability No.	Due Date
' HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Page 2 of 2

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 84 of 90	
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 64 01 90	
© 2019 PCTEST Engineering Laboratory, Inc.					

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕕 LG	Approved by: Quality Manager			
Filename:	Test Dates:	DUT Type:		Page 85 of 90			
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 05 01 90			
© 2019 PCTEST Engineering	© 2019 PCTEST Engineering Laboratory, Inc.						
				04/17/2018			

15. **REFERENCES**

- 1. ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- 4. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, "U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager		
Filename:	Test Dates:	DUT Type:		Page 86 of 90		
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 00 01 90		
© 2019 PCTEST Engineering Laboratory, Inc.						
				04/17/2018		

- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 28. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFV450PM		HAC (T-COIL) TEST REPORT	🕒 LG	Approved by: Quality Manager			
Filename:	Test Dates:	DUT Type:		Page 87 of 90			
1M1811230205-13-R4.ZNF	01/07/2019 - 01/22/2019	Portable Handset		Fage 07 01 90			
© 2019 PCTEST Engineering Laboratory, Inc.							
				04/17/2018			