TEST REPORT DT&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664 1. Report No: DRRFCC1804-0046(1) 2. Customer · Name : LG Electronics MobileComm USA, Inc. Address: 1000 Sylvan Ave., Englewood Cliffs, New Jersey, United States, 07632 3. Use of Report: FCC Original Grant 4. Product Name / Model Name: Mobile Phone / LM-Q710EM FCC ID: ZNFQ710EM 5. Test Method Used: IEEE 1528-2013, FCC SAR KDB Publications (Details in test report) Test Specification: CFR §2.1093 6. Date of Test: 2018.03.19 ~ 2018.03.29 7. Testing Environment: Refer to appended test report. 8. Test Result: Refer to attached test report. Affirmation Tested by Name: HoSik Sim Reviewed by Name: HakMin Kim The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except 2018.05.09. in full, without the written approval of DT&C Co., Ltd. DT&C Co., Ltd. If this report is required to confirmation of authenticity, please contact to report@dtnc.net # **Test Report Version** | Test Report No. | Date | Description | |--------------------|---------------|----------------------------| | DRRFCC1804-0046 | Apr. 24, 2018 | Initial issue | | DRRFCC1804-0046(1) | May. 09, 2018 | Remove Channel 12, 13 etc. | ### **Table of Contents** | 1. DESCRIPTION OF DEVICE | 5 | |--|----------------| | 1.1 Guidance Applied | 6
7
7 | | 2. INTROCUCTION | | | 3. DESCRIPTION OF TEST EQUIPMENT | 10 | | 3.1 SAR MEASUREMENT SETUP | 11
12 | | 3.4 Data Extrapolation 3.5 SAM Twin PHANTOM 3.6 Device Holder for Transmitters 3.7 Brain & Muscle Simulation Mixture Characterization 3.8 SAR TEST EQUIPMENT 4. TEST SYSTEM SPECIFICATIONS | 14
15
17 | | 5. SAR MEASUREMENT PROCEDURE | 19 | | 5.1 Measurement Procedure | | | 6.1 Ear Reference Point | 21 | | 7.1 Device Holder | 22
23
23 | | 9. FCC MEASUREMENT PROCEDURES | | | 9.1 Measured and Reported SAR | 26 | | 9.3.2 Head SAR Measurements for Handsets | 26 | | 9.3.3 Body SAR Measurements | 27 | | 9.3.4 Release 5 HSDPA Data Devices | 27 | | 9.3.5 Release 6 HSUPA Data Devices | | | 9.3.6 SAR Measurement Conditions for DC-HSDPA | | | 9.4 SAR Measurement Conditions for LTE 9.4.1 Spectrum Plots for RB Configurations | 28 | | 9.4.2 MPR | | | 9.4.3 A-MPR | | | 9.4.4 Required RB Size and RB Offsets for SAR Testing | 29 | | 9.5 SAR Testing with 802.11 Transmitters | 29 | |---|-----| | 9.5.1 General Device Setup | 29 | | 9.5.2 Initial Test Position Procedure | 30 | | 9.5.3 2.4 GHz SAR Test Requirements | 30 | | 9.5.4 OFDM Transmission Mode and SAR Test Channel Selection | 30 | | 9.5.5 Initial Test Configuration Procedure | 30 | | 10. RF CONDUCTED POWERS | 31 | | 10.1 GSM Nominal and Maximum Output Power Spec and Conducted Powers | 31 | | 10.2 WCDMA Nominal and Maximum Output Power Spec and Conducted Powers | 32 | | 10.3 LTE Nominal and Maximum Output Power Spec and Conducted Powers | | | 10.4 WLAN Nominal and Maximum Output Power Spec and Conducted Powers | | | 10.5 Bluetooth Conducted Powers | | | 11. SYSTEM VERIFICATION | 43 | | 11.1 Tissue Verification | | | 11.2 Test System Verification | | | 12. SAR TEST RESULTS | 45 | | 12.1 Head SAR Results | | | 12.2 Standalone Body-Worn SAR Worn SAR Results | | | 12.3 Standalone Hotspot SAR Results | | | 12.4 SAR Test Notes | | | | | | 13.1 Introduction | | | 13.2 Simultaneous Transmission Procedures | | | 13.3 Simultaneous Transmission Capabilities | | | 13.5 Body-Worn Simultaneous Transmission Analysis | | | 13.6 Hotspot SAR Simultaneous Transmission Analysis | | | 13.7 Phablet SAR Simultaneous Transmission Analysis | | | 13.8 Simultaneous Transmission Conclusion | | | 14. SAR MEASUREMENT VARIABILITY | 65 | | 14.1 Measurement Variability | 65 | | 15. MEASUREMENT UNCERTAINTIES | 66 | | 16. CONCLUSION | 76 | | 17. REFERENCES | 77 | | Attachment 1. – Probe Calibration Data | 79 | | Attachment 2. – Dipole Calibration Data | 118 | | Attachment 3 - SAR SYSTEM VALIDATION | 158 | # 1. DESCRIPTION OF DEVICE | General | Information | |---------|-------------| |---------|-------------| | EUT type | Mobile Phone | | | | | | | | | | | |------------------------|---|--|-----------------------------|---------------------|---------------------|--|--|--|--|--|--| | FCC ID | ZNFQ710EM | | | | | | | | | | | | Equipment model name | | LM-Q710EM | | | | | | | | | | | Equipment model name | | LMQ710EM, Q710EM | | | | | | | | | | | Equipment add | | 3 models are same mechanical, electrical and functional. | | | | | | | | | | | model name | | · · | | | | | | | | | | | Equipment serial no. | Identical prototype | , | | | | | | | | | | | Mode(s) of Operation | GSM 850, GSM 1900. | GSM 850, GSM 1900, WCDMA 850, WCDMA 1900, LTE Band 12, 17, 5, 4, 2.4 G W-LAN (802.11b/g/n-HT20), Bluetooth | | | | | | | | | | | | Band | Mode | Operating Modes | Bandwidth | Frequency | | | | | | | | | GSM 850 | GSM/GPRS/EDGE | Voice/Data | - | 824.2 ~ 848.8 MHz | | | | | | | | | GSM 1900 | GSM/GPRS/EDGE | Voice/Data | - | 1850.2 ~ 1909.8 MHz | | | | | | | | | WCDMA 850 | WCDMA | Voice/Data | - | 826.4 ~ 846.6 MHz | | | | | | | | | WCDMA 1900 | WCDMA | Voice/Data | - | 1852.4 ~ 1907.6 MHz | | | | | | | | TX Frequency Range | LTE Band 12 | LTE | Voice/Data | 1.4/3/5/10MHz | 699.7 ~ 715.3 MHz | | | | | | | | | LTE Band 17 | LTE | Voice/Data | 5/10MHz | 706.5 ~ 713.5 MHz | | | | | | | | | LTE Band 5 | LTE | Voice/Data | 1.4/3/5/10MHz | 824.7 ~ 848.3 MHz | | | | | | | | | LTE Band 4 | LTE | Voice/Data | 1.4/3/5/10/15/20MHz | 1710.7 ~ 1754.3 MHz | | | | | | | | | 2.4 GHz W-LAN | 802.11b/g/n | Voice/Data | HT20/VHT20 | 2412 ~ 2462 MHz | | | | | | | | | Bluetooth | - | Data | - | 2402 ~ 2480 MHz | | | | | | | | | GSM 850 | GSM/GPRS/EDGE | Voice/Data | - | 869.2 ~ 893.8 MHz | | | | | | | | | GSM 1900 | GSM/GPRS/EDGE | Voice/Data | - | 1930.2 ~ 1989.8 MHz | | | | | | | | | WCDMA 850 | WCDMA | Voice/Data | - | 871.4 ~ 891.6 MHz | | | | | | | | | WCDMA 1900 | WCDMA | Voice/Data | - | 1932.4 ~ 1987.6 MHz | | | | | | | | | LTE Band 12 | LTE | Voice/Data | 1.4/3/5/10MHz | 729.7 ~ 745.3 MHz | | | | | | | | RX Frequency Range | LTE Band 17 | LTE | Voice/Data | 5/10MHz | 736.5 ~ 743.5 MHz | | | | | | | | | LTE Band 5 | LTE | Voice/Data | 1.4/3/5/10MHz | 869.7 ~ 893.3 MHz | | | | | | | | | LTE Band 4 | LTE | Voice/Data | 1.4/3/5/10/15/20MHz | 2110.7 ~ 2154.3 MHz | | | | | | | | | 2.4 GHz W-LAN | 802.11b/g/n | o/g/n Voice/Data HT20/VHT20 | | 2412 ~ 2462 MHz | | | | | | | | | Bluetooth | - | Data | = | 2402 ~ 2480 MHz | | | | | | | | | | Reported SAR | | | | | | | | | | | Equipment
Class | Band | | 10g SAR (W/kg) | | | | | | | | | | | | Head | Body-Worn | Hotspot | Phablet | | | | | | | | PCE | GSM 850 | 0.16 | 0.47 | - | - | | | | | | | | PCE | GPRS 850 | 0.24 | 0.68 | 0.68 | - | | | | | | | | PCE | GSM 1900 | 0.12 | 0.35 | - | - | | | | | | | | PCE | GPRS 1900 | 0.18 | 0.54 | 0.72 | - | | | | | | | | PCE | WCDMA 850 | 0.26 | 0.79 | 0.79 | - | | | | | | | | PCE | WCDMA 1900 | 0.11 | 0.31 | 0.47 | - | | | | | | | | PCE | LTE Band 12 | 0.15 | 0.71 | 0.71 | - | | | | | | | | PCE
PCE | LTE Band 17
LTE Band 5 | 0.29 | 1.00 | 1.00 | - | | | | | | | | PCE | LTE Band 5 | < 0.10 | 0.32 | 0.51 | - | | | | | | | | DTS | 2.4 GHz W-LAN | 0.86 | 0.32 | 0.30 | <u>-</u> | | | | | | | | DSS | Bluetooth | 0.86 | < 0.10 | 0.30 | - | | | | | | | | | per KDB 690783 D01v01r03 | 1.07 | 1.22 | 1.22 | - | | | | | | | | Ţ. | Licensed Portable Transmitte | | 1.22 | 1.44 | <u> </u> | | | | | | | | FCC Equipment
Class | Part 15 Spread Spectrum Tra | nsmitter(DSS) | | | | | | | | | | | Date(s) of Tests | Digital Transmission System(
2018.03.19 ~ 2018.03.29 | (טוט | | | | | | | | | | | Antenna Type | Internal Antenna | | | | | | | | | | | | anoma rype | | PRS/EDGE Class: 12) suppo | rted. | | | | | | | | | | | * DTM not supported. | | | | | | | | | | | | Functions | | mission between BT & 2.4GH | 47 W/I ΔΝΙ | | | | | | | | | | Functions | | mission between bi & 2.40F | IZ VV LAIN | | | | | | | | | | | • | VoIP is supported. W-LAN 2.4GHz is supported Hotspot. | ### 1.1 Guidance Applied - IEEE 1528-2013 - FCC KDB Publication 941225 D01v03r01 (3G SAR Procedures) - FCC KDB Publication 941225 D05v02r05 (SAR for LTE Devices) - FCC KDB Publication 941225 D05Av01r02 (LTE Rel.10 KDB Inquiry Sheet) - FCC KDB Publication 941225 D06v02r01(Hotspot Mode) - FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR) - FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance) - FCC KDB Publication 648474 D04v01r03 (Handset SAR) - FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants) - FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz) - FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting) - October 2013 TCB Workshop Notes (GPRS testing criteria) - April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified) - October 2016 TCB Workshop Notes (Bluetooth Duty Factor) #### 1.2 DUT Antenna Locations The overall dimensions of this device are $> 9 \times 5$ cm. A diagram showing the location of the device of the device antenna can be found in ZNFG710EM_Antenna Location. Since the diagonal dimension of this device is > 160 mm and < 200 mm. it is considered a "phablet". Report No.: DRRFCC1804-0046(1) | Mode | Device Sides for SAR Testing | | | | | | | |
--------------------|------------------------------|--------|-------|------|-------|------|--|--| | Mode | Тор | Bottom | Front | Rear | Right | Left | | | | GSM/GPRS/EDGE 850 | Х | 0 | 0 | 0 | 0 | 0 | | | | GSM/GPRS/EDGE 1900 | Х | 0 | 0 | 0 | Х | 0 | | | | WCDMA 850 | Х | 0 | 0 | 0 | 0 | 0 | | | | WCDMA 1900 | Х | 0 | 0 | 0 | X | 0 | | | | LTE Band 12 | Х | 0 | 0 | 0 | 0 | 0 | | | | LTE Band 17 | Х | 0 | 0 | 0 | 0 | 0 | | | | LTE Band 5 | X | 0 | 0 | 0 | 0 | 0 | | | | LTE Band 4 | Х | 0 | 0 | 0 | X | 0 | | | | 2.4G W-LAN | 0 | X | 0 | 0 | X | 0 | | | | Bluetooth | 0 | X | 0 | 0 | X | 0 | | | Note 1: Particular DUT edges were not required to be evaluated for Hotspot SAR or Phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 648474 D04v01r03. The antenna document shows the distances between the transmit antennas and the edges of the device. Note 2: O means test and X means no testing. # 1.3 Near Field Communications (NFC) Antenna This DUT has NFC operations. The NFC antenna is integrated into the back side. The SAR tests were performed with NFC antenna already incorporated. A diagram showing the location of the device antenna can be found in ZNFG710EM_Antenna Location. # 1.4 SAR Test Exclusions Applied #### (A) Licensed Transmitter(s) GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data. Report No.: DRRFCC1804-0046(1) This device support LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE band have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range. #### 1.5 Power Reduction for SAR There is no power reduction used for any band/mode implemented in this device for SAR purposes. #### 1.6 Device Serial Numbers | Band & Mode | Head Serial Number | Body Serial Number | Hotspot Serial
Number | Phablet Serial
Number | |--------------------|--------------------|--------------------|--------------------------|--------------------------| | GSM/GPRS/EDGE 850 | FCC #1 | FCC #1 | FCC #1 | - | | GSM/GPRS/EDGE 1900 | FCC #1 | FCC #1 | FCC #1 | - | | WCDMA 850 | FCC #1 | FCC #1 | FCC #1 | - | | WCDMA 1900 | FCC #1 | FCC #1 | FCC #1 | - | | LTE Band 12 | FCC #1 | FCC #1 | FCC #1 | - | | LTE Band 17 | FCC #1 | FCC #1 | FCC #1 | - | | LTE Band 5 | FCC #1 | FCC #1 | FCC #1 | - | | LTE Band 4 | FCC #1 | FCC #1 | FCC #1 | - | | 2.4 GHz WLAN | FCC #1 | FCC #1 | FCC #1 | - | | Bluetooth | FCC #1 | FCC #1 | FCC #1 | - | #### 1.7 LTE Information | Form Factor | Mobile Phone | | | | | | | | | |---|--|--|---|----------------------|---------------------|--|--|--|--| | Frequency Range of each LTE transmission Band | LTE Band 12 (699.7 ~ 715.3 MHz) LTE Band 17 (706.5 ~ 713.5 MHz) LTE Band 5 (Cell) (824.7 ~ 848.3 MHz) LTE Band 4 (AWS) (1710.7 ~ 1754.3 MHz) | | | | | | | | | | Channel Bandwidths | LTE Band 17 : 5 MHz, 10 MHz
LTE Band 5 : 1.4 MHz, 3 MHz, | LTE Band 12 : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz
LTE Band 17 : 5 MHz, 10 MHz
LTE Band 5 : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz
LTE Band 4 : 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz | | | | | | | | | Channel Number and Frequencies(MHz) | Low | Low-Mid | Mid | Mid-High | High | | | | | | LTE Band 12: 1.4 MHz | 699.7 (23017) | N/A | 707.5 (23095) | N/A | 715.3 (23173) | | | | | | LTE Band 12: 3 MHz | 700.5 (23025) | N/A | 707.5 (23095) | N/A | 714.5 (23165) | | | | | | LTE Band 12: 5 MHz | 701.5 (23035) | N/A | 707.5 (23095) | N/A | 713.5 (23155) | | | | | | LTE Band 12: 10 MHz | 704.0 (23060) | N/A | 707.5 (23095) ^{Note1} | N/A | 711.0 (23130) | | | | | | LTE Band 17: 5 MHz | 706.5(23755) | N/A | 710.0(23790) | N/A | 713.5(23825) | | | | | | LTE Band 17: 10 MHz | 709.0(23780) | N/A | 710.0(23790) | N/A | 711.0(23800) | | | | | | LTE Band 5 (Cell): 1.4 MHz | 824.7 (20407) | N/A | 836.5 (20525) | N/A | 848.3 (20643) | | | | | | LTE Band 5 (Cell): 3 MHz | 825.5 (20415) | N/A | 836.5 (20525) | N/A | 847.5 (20635) | | | | | | LTE Band 5 (Cell): 5 MHz | 826.5 (20425) | N/A | 836.5 (20525) | N/A | 846.5 (20625) | | | | | | LTE Band 5 (Cell): 10 MHz | 829.0 (20450) | N/A | 836.5 (20525) ^{Note2} | N/A | 844.0 (20600) | | | | | | LTE Band 4 (AWS): 1.4 MHz | 1710.7 (19957) | N/A | 1732.5 (20175) | N/A | 1754.3 (20393) | | | | | | LTE Band 4 (AWS): 3 MHz | 1711.5 (19965) | N/A | 1732.5 (20175) | N/A | 1753.5 (20385) | | | | | | LTE Band 4 (AWS): 5 MHz | 1712.5 (19975) | N/A | 1732.5 (20175) | N/A | 1752.5 (20375) | | | | | | LTE Band 4 (AWS): 10 MHz | 1715.0 (20000) | N/A | 1732.5 (20175) | N/A | 1750.0 (20350) | | | | | | LTE Band 4 (AWS): 15 MHz | 1717.5 (20025) | N/A | 1732.5 (20175) | N/A | 1747.5 (20325) | | | | | | LTE Band 4 (AWS): 20 MHz | 1720.0 (20050) | N/A | 1732.5 (20175) Note3 | N/A | 1745.0 (20300) | | | | | | UE Category | | | LTE Rel.10, UE Category 6 | | | | | | | | Modulations Supported in UL | | | QPSK, 16QAM | | | | | | | | LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) | Yes | | | | | | | | | | A-MPR (Additional MPR) disabled for SAR Testing? | Yes | | | | | | | | | | Power reduction explanation | | This device | doesn't implements power r | eduction. | | | | | | | LTE Carrier Aggregation Possible Combinations | | | rier Aggregation is not suppo | | | | | | | | LTE Additional Information | 8 Specifications. The fo | ollowing LTE Release | GPP Release 10. All uplink of 0 Features are not supporte MS, Cross-Carrier Schedulin | d: Relay, HetNet, En | hanced MIMO, eICIC, | | | | | LTE Information ZNFQ710EM Note(s) 1. LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. 2. LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. 3. LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. ### 2. INTROCUCTION The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. Report No.: DRRFCC1804-0046(1) The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. #### **SAR Definition** Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1) $$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$ Fig. 2.1 SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \frac{\sigma \cdot E^2}{\rho}$$ where: σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the
orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. # 3. DESCRIPTION OF TEST EQUIPMENT #### 3.1 SAR MEASUREMENT SETUP Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1). A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-2600 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 3.1 SAR Measurement System Setup The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail. #### 3.2 Probe Specification Calibration In air from 10 MHz to 4 GHz In brain and muscle simulating tissue at Frequencies of 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz Frequency 10 MHz to 4 GHz **Linearity** ± 0.2 dB(30 MHz to 4 GHz) **Dynamic** $10 \mu \text{W/g to} > 100 \text{ mW/g}$ Range Linearity: ±0.2dB **Dimensions** Overall length: 337 mm Tip length 20 mm Body diameter 12 mm Tip diameter 3.9 mm Distance from probe tip to sensor center 2.0 mm **Application** SAR Dosimetry Testing Compliance tests of mobile phones Figure 3.2 Triangular Probe Configurations Figure 3.3 Probe Thick-Film Technique **DAE System** The SAR measurements were conducted with the dosimetric probe ES3DV3 designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. #### 3.3 Probe Calibration Process #### 3.3.1 E-Probe Calibration #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. Report No.: DRRFCC1804-0046(1) #### **Free Space Assessment** The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees. #### **Temperature Assessment *** E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ where: where: Δt = exposure time (30 seconds), heat capacity of tissue (brain or muscle), ΔT = temperature increase due to RF exposure. σ = simulated tissue conductivity, o = Tissue density (1.25 g/cm³ for brain tissue) SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure 3.4 E-Field and Temperature Measurements at 900MHz Figure 3.5 E-Field and Temperature Measurements at 1800MHz ## 3.4 Data Extrapolation The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below; with $$V_i$$ = compensated signal of channel i (i=x,y,z) $$U_i = \text{input signal of channel i} \qquad \text{(i=x,y,z)}$$ $$U_i = \text{input signal of channel i} \qquad \text{(i=x,y,z)}$$ $$cf = \text{crest factor of exciting field} \qquad \text{(DASY parameter)}$$ $$dcp_i = \text{diode compression point} \qquad \text{(DASY parameter)}$$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with V_i = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$ with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³ The power flow density is calculated assuming the excitation field to be a free space field. $P_{pue} = \frac{E_{tot}^2}{3770}$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m #### 3.5 SAM Twin PHANTOM The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6) Figure 3.6 SAM Twin Phantom #### **SAM Twin Phantom Specification:** Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure. Shell Thickness 2 ± 0.2 mm Filling Volume Approx. 25 liters Dimensions Length: 1000 mm Width: 500 mm Height: adjustable feet #### Specific Anthropomorphic Mannequin (SAM) Specifications: The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 3.7). The perimeter sidewalls of each phantom halves
are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface. Figure 3.7 Sam Twin Phantom shell #### 3.6 Device Holder for Transmitters In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. Figure 3.8 Mounting Device #### 3.7 Brain & Muscle Simulation Mixture Characterization The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove. Figure 3.9 Simulated Tissue **Table 3.1 Composition of the Tissue Equivalent Matter** | Ingredients | Frequency (MHz) | | | | | | | | |--------------------------------|-----------------|-------|-------|-------|-------|-------|-------------|-------| | (% by weight) | 835 | | 1900 | | 2450 | | 5200 ~ 5800 | | | Tissue Type | Head | Body | Head | Body | Head | Body | Head | Body | | Water | 40.19 | 50.75 | 55.24 | 70.23 | 71.88 | 73.40 | 65.52 | 80.00 | | Salt (NaCl) | 1.480 | 0.940 | 0.310 | 0.290 | 0.160 | 0.060 | - | - | | Sugar | 57.90 | 48.21 | - | - | - | - | - | - | | HEC | 0.250 | - | ı | ı | ı | ı | - | - | | Bactericide | 0.180 | 0.100 | - | - | - | - | - | - | | Triton X-100 | 1 | - | 1 | - | 19.97 | - | 17.24 | - | | DGBE | - | - | 44.45 | 29.48 | 7.990 | 26.54 | - | - | | Diethylene glycol hexyl ether | - | - | - | - | - | - | 17.24 | - | | Polysorbate (Tween) 80 | - | - | - | - | - | - | | 20.00 | | Target for Dielectric Constant | 41.5 | 55.2 | 40.0 | 53.3 | 39.2 | 52.7 | - | - | | Target for Conductivity (S/m) | 0.90 | 0.97 | 1.40 | 1.52 | 1.80 | 1.95 | - | - | Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol] Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether Table 3.2 HSL/MSL750 (Head and Body liquids for 700 - 800 MHz) | Table of The American Conference of the Conferen | | | | | | | |--|--|--|--|--|--|--| | Item | Head Tissue Simulation Liquids HSL750 | | | | | | | item | Muscle (body) Tissue Simulation Liquids MSL750 | | | | | | | Type No | SL AAH 075, SL AAM 075 | | | | | | | Manufacturer | SPEAG | | | | | | | The item is composed of the fo | ollowing ingredients: | | | | | | | H ² O | Water, 35 – 58% | | | | | | | Sucrose | Sucrose, 40 – 60% | | | | | | | NaCl | Sodium Chloride, 0 – 6% | | | | | | | Hydroxyethyl-cellulose | Medium Viscosity (CAS# 9004-62-0), < 0.3% | | | | | | | Preventol-D7 | Preservative: aqueous preparation, (CAS# 55965-84-9), containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1 – 0.6% | | | | | | Table 3.3 HSL/MSL1750 (Head and Body liquids for 1700 – 1800 MHz) | Item | Head Tissue Simulation Liquids HSL1750 | | | | | |--|--|--|--|--|--| | item | Muscle (body) Tissue Simulation Liquids MSL1750 | | | | | | Type No | SL AAH 175, SL AAM 175 | | | | | | Manufacturer | SPEAG | | | | | | The item is composed of the following ingredients: | | | | | | | H ² O | Water, 52 – 75% | | | | | | C8H18O3 | Diethylene glycol monobutyl ether (DGBE), 25 – 48% | | | | | | NaCl | Sodium Chloride, < 1.0% | | | | | # 3.8 SAR TEST EQUIPMENT **Table 3.4 Test Equipment Calibration** Report No.: DRRFCC1804-0046(1) | | Table 3.4 Test Equipment Calibration Type Manufacturer Model Cal.Date Next.Cal.Date S/N | | | | | | | | | | |------------------------|--|---------------------------|------------------------------|------------|------------|-----------------|--|--|--|--| | \boxtimes | SEMITEC Engineering | SEMITEC | N/A | N/A | N/A | Shield Room | | | | | | | Robot | SCHMID | TX60L | N/A | N/A | F12/5LP5A1/A/01 | | | | | | | Robot Controller | SCHMID | CS8C | N/A | N/A | F12/5LP5A1/C/01 | | | | | | | Joystick | SCHMID | N/A | N/A | N/A | S-12030401 | | | | | | | IntelCorei7-2600 3.40 GHz
Windows 7 Professional | N/A | N/A | N/A | N/A | N/A | | | | | | \boxtimes | Probe Alignment Unit LB | N/A | N/A | N/A | N/A | SE UKS 030 AA | | | | | | | Device Holder | SCHMID | Holder | N/A | N/A | SD000H01KA | | | | | | | Twin SAM Phantom | SCHMID | QD000P40CD | N/A | N/A | 1679 | | | | | | | Data Acquisition Electronics | SCHMID | DAE4V1 | 2017-04-24 | 2018-04-24 | 1391 | | | | | | | Dosimetric E-Field Probe | SCHMID | ES3DV3 | 2017-09-18 | 2018-09-18 | 3327 | | | | | | | 750MHz SAR Dipole | SCHMID | D750V3 | 2018-01-18 | 2020-01-18 | 1049 | | | | | | $\overline{\boxtimes}$ | 835MHz SAR Dipole | SCHMID | D835V2 | 2017-09-21 | 2019-09-21 | 464 | | | | | | | 1800MHz SAR Dipole | SCHMID | D1800V2 | 2017-05-23 | 2019-05-23 | 2d047 | | | | | | $\overline{\boxtimes}$ | 1900MHz SAR Dipole | SCHMID | D1800V2 | 2017-09-20 | 2019-09-20 | 5d029 | | | | | | $\overline{\boxtimes}$ | 2450MHz SAR Dipole | SCHMID | D2450V2 | 2017-09-19 | 2019-09-19 | 726 | | | | | | $\overline{\boxtimes}$ | Network Analyzer | Agilent | E5071C | 2018-02-02 | 2019-02-02 | MY46111534 | | | | | | $\overline{\boxtimes}$ | Signal Generator | Agilent | E4438C | 2017-09-05 | 2018-09-05 | US41461520 | | | | | | $\overline{\boxtimes}$ | Amplifier | RFBAY.Inc | MPA-40-40 | 2017-12-28 | 2018-12-28 | 21151801 | | | | | | $\overline{\boxtimes}$ | Amplifier | EMPOWER | BBS3Q7ELU | 2017-09-06 | 2018-09-06 | 1020 | | | | | | $\overline{\boxtimes}$ | High Power RF Amplifier | EMPOWER | BBS3Q8CCJ | 2017-09-05 | 2018-09-05 | 1005 | | | | | | $\overline{\boxtimes}$ | Power Meter | HP | EPM-442A | 2017-12-27 | 2018-12-27 | GB37170267 | | | | | | $\overline{\boxtimes}$ | Power Meter | HP | EPM-442A | 2017-12-27 | 2018-12-27 | GB37170413 | | | | | | $\overline{\boxtimes}$ | Power Sensor | HP | 8481A | 2017-12-27 | 2018-12-27 | US37294267 | | | | | | | Power Sensor | HP | 8481A | 2017-12-27 | 2018-12-27 | 3318A96566 | | | | | | \boxtimes | Power Sensor | HP | 8481A | 2017-12-27 | 2018-12-27 | 2702A65976 | | | | | | \boxtimes | Dual Directional Coupler | Agilent | 778D-012 | 2017-12-27 | 2018-12-27 | 50228 | | | | | | \boxtimes | Directional Coupler | HP | 772D | 2017-07-13 | 2018-07-13 | 2889A01064 | | | | | | | Low Pass Filter 1GHz | Wainwright
Instruments | WLK6-1000-1400-
9000-60SS | 2017-09-05 | 2018-09-05 | 165 | | | | | | \boxtimes | Low Pass Filter 1.5GHz | Micro LAB | LA-15N | 2017-12-27 | 2018-12-27 | N/A | | | | | | \boxtimes | Low Pass Filter 3.0GHz | Micro LAB | LA-30N | 2017-09-05 | 2018-09-05 | N/A | | | | | | \boxtimes | Attenuators(3 dB) | Agilent | 8491B | 2017-12-27 |
2018-12-27 | MY39260700 | | | | | | \boxtimes | Attenuators(10 dB) | WEINSCHEL | 23-10-34 | 2017-12-27 | 2018-12-27 | BP4387 | | | | | | \boxtimes | Dielectric Probe kit | SCHMID | DAK-3.5 | 2017-11-21 | 2018-11-21 | 1092 | | | | | | \boxtimes | Dielectric Probe kit | SCHMID | DAK-3.5 | 2017-07-18 | 2018-07-18 | 1046 | | | | | | \boxtimes | 8960 Series 10 Wireless Comms. Test Set | Agilent | E5515C | 2017-09-05 | 2018-09-05 | GB41321164 | | | | | | \boxtimes | Wideband Radio Communication Tester | Rohde Schwarz | CMW500 | 2018-03-07 | 2019-03-07 | 162709 | | | | | | \boxtimes | Wideband Radio Communication Tester | Rohde Schwarz | CMW500 | 2018-02-05 | 2019-02-05 | 101414 | | | | | | \boxtimes | Radio Communication Analyzer | KEYSIGHT | E7515A | 2017-09-07 | 2018-09-07 | MY55210201 | | | | | | \boxtimes | Radio Communication Analyzer | KEYSIGHT | E7515A | 2017-12-27 | 2018-12-27 | MY57270113 | | | | | | \boxtimes | Power Splitter | Anritsu | K241B | 2017-12-27 | 2018-12-27 | 1301183 | | | | | | \boxtimes | Bluetooth Tester | TESCOM | TC-3000B | 2017-12-26 | 2018-12-26 | 3000B770243 | | | | | **NOTE:** The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain and muscle-equivalent material. Each equipment item was used solely within its respective calibration period. ### 4. TEST SYSTEM SPECIFICATIONS #### **Automated TEST SYSTEM SPECIFICATIONS:** #### **Positioner** Robot Stäubli Unimation Corp. Robot Model: TX60L Repeatability 0.02 mm No. of axis ## **Data Acquisition Electronic (DAE) System** **Cell Controller** Processor Intel Core i7-2600 Clock Speed 3.40 GHz Operating System Windows 7 Professional Data Card DASY5 PC-Board Data Converter Features Signal, multiplexer, A/D converter. & control logic Software DASY5 **Connecting Lines** Optical downlink for data and status info Optical uplink for commands and clock PC Interface Card **Function** 24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot E-Field Probes Model ES3DV3 S/N: 3327 **Construction** Triangular core fiber optic detection system Frequency 10 MHz to 4 GHz **Linearity** \pm 0.2 dB (30 MHz to 4 GHz) **Phantom** **Phantom** SAM Twin Phantom (V5.0) Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$ Figure 4.1 DASY5 Test System # 5. SAR MEASUREMENT PROCEDURE #### **5.1 Measurement Procedure** The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE1528-2013. - The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value. Figure 5.1 Sample SAR Area Scan - 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 5.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. | | | | ≤ 3 GHz | >3 GHz | |--|-------------|---|---|--| | Maximum distance fr
(geometric center of p | | measurement point
ers) to phantom surface | 5 mm ± 1 mm | ½·δ·ln(2) mm ± 0.5 mm | | Maximum probe angl
surface normal at the | | | 30°±1° | 20°±1° | | | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan s | patial reso | lution: Δx_{Area} , Δy_{Area} | When the x or y dimension
measurement plane orienta
above, the measurement re
corresponding x or y dimensiat least one measurement p | tion, is smaller than the
solution must be ≤ the
usion of the test device with | | Maximum zoom scan | spatial res | olution: Δx _{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | uniform | grid: Δz _{Zoon} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | graded | Δz _{Zoom} (1): between
1 st two points closest
to phantom surface | ≤4 mm | 3 – 4 GHz: ≤3 mm
4 – 5 GHz: ≤2.5 mm
5 – 6 GHz: ≤2 mm | | | grid | Δz _{Zoon} (n>1):
between subsequent
points | ≤1.5·Δzz | nom(n-1) mm | | Minimum zoom
scan volume | ĸ, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04* ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 6. DEFINITION OF REFERENCE POINTS #### 6.1 Ear Reference Point Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning. Figure 6.1 Close-up side view of ERP #### 6.2 Handset Reference Points Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point. Figure 6.2 Front, back and side view SAM Twin Phantom Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points # 7. TEST CONFIGURATION POSITIONS FOR HANDSETS #### 7.1 Device Holder The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. #### 7.2 Positioning for Cheek/Touch 1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Figure 7.1 Front, Side and Top View of Cheek/Touch Position - 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear. - 3. While maintaining the handset in this plane, the handset
was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane). - 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF. - 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 7.2) # 7.3 Positioning for Ear / 15 ° Tilt With the test device aligned in the "Cheek/Touch Position": - 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree. - 2. The phone was then rotated around the horizontal line by 15 degree. - 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7.3). Figure 7.3 Front, Side and Top View of Ear/15°Position 7.4 Body-Worn Accessory Configurations Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 7.4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for Figure 7.4 Sample Body-Worn Diagram hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Report No.: DRRFCC1804-0046(1) Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration. #### 7.5 Extremity Exposure Configurations Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498D01v06 should be applied to determine SAR test requirements. _____ Report No.: DRRFCC1804-0046(1) #### 7.6 Wireless Router Configurations Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L \times W \ge 9 cm \times 5 cm) are based on a composite test separation distance of 10 mm from the front the front, rear and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitter often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was not activated during SAR assessment, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. ### 8. RF EXPOSURE LIMITS #### **Uncontrolled Environment:** UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: DRRFCC1804-0046(1) #### **Controlled Environment:** CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 | | HUMAN EXPO | SURE LIMITS | |---|---|---| | | General Public Exposure
(W/kg) or (mW/g) | Occupational Exposure
(W/kg) or (mW/g) | | SPATIAL PEAK SAR * (Brain) | 1.60 | 8.00 | | SPATIAL AVERAGE SAR **
(Whole Body) | 0.08 | 0.40 | | SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist) | 4.00 | 20.0 | - 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 2. The Spatial Average value of the SAR averaged over the whole body. - 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). ### 9. FCC MEASUREMENT PROCEDURES Power measurements were performed using a base station simulator under digital average power. #### 9.1 Measured and Reported SAR Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03. #### 9.2 Procedures Used to
Establish RF Signal for SAR The following procedures are according to FCC KDB Publication 941225 D01v03r01. The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated. ### 9.3 SAR Measurement Conditions for WCDMA (UMTS) #### 9.3.1 Output Power Verification Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s". Maximum output power is verified on the High, Middle and Low channels according to the general, descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC,(transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified. #### 9.3.2 Head SAR Measurements for Handsets SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode. #### 9.3.3 Body SAR Measurements SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". #### 9.3.4 Release 5 HSDPA Data Devices The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. SAR is required for devices in body-worn accessory and other body exposure conditions, including handsets and data modems operating in various electronic devices. HSDPA operates in conjunction with WCDMA and requires an active DPCCH. The default test configuration is to measure SAR in WCDMA with HSDPA remain inactive, to establish a radio link between the test device and a communication test set using a 12.2 kbps RMC configured in Test Loop Mode 1. SAR for HSDPA is selectively measured using the highest reported SAR configuration in WCDMA, with an FRC in H-set 1 and a 12.2 kbps RMC. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCHn) according to exposure conditions, device operating capabilities and maximum output power specified for production units, including tune-up tolerance by applying the 3G SAR test reduction procedures. Maximum output power is verified according to the applicable versions of 3GPP TS 34.121. SAR must be measured based on these maximum output conditions and requirements in KDB Publication 447498, with respect to the UE Categories, and explained in the SAR report. When Maximum Power Reduction (MPR) applies, the implementations must be clearly identified in the SAR report to support test results according to Cubic Metric (CM) and, as appropriate, Enhanced MPR (E-MPR) requirements. | Sub-test | βς | $\beta_{\mathbf{d}}$ | β _d
(SF) | β_c/β_d | $\beta_{hs}^{(I)}$ | CM (dB) ⁽²⁾ | |----------|----------------------|----------------------|------------------------|----------------------|--------------------|------------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | | 2 | 12/15 ⁽³⁾ | 15/15 ⁽³⁾ | 64 | 12/15 ⁽³⁾ | 24/15 | 1.0 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1,5 | Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$ Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$. Figure 9.1 Table 1 ### 9.3.5 Release 6 HSUPA Data Devices The following procedures are applicable to HSPA (HSUPA/HSDPA) data devices operating under 3GPP Release 6. SAR is required for devices in body-worn accessory and other body exposure conditions, including handsets and data modems operating in various electronic devices. HSUPA operates in conjunction with WCDMA and HSDPA. SAR is initially measured in WCDMA test configurations with HSPA remain inactive. The default test configuration is to establish a radio link between the test device and a communication test set to configure a 12.2 kbps RMC in Test Loop Mode 1. SAR for HSPA is selectively measured with HS-DPCCH, E-DPCCH and E-DPDCH, all enabled, along with a 12.2 kbps RMC using the highest reported SAR configuration in WCDMA with 12.2 kbps RMC only. An FRC is configured according to HS-DPCCH Sub-test 1 using H-set 1 and QPSK. HSPA is configured according to E-DCH Sub-test 5 requirements. SAR for other HSPA sub-test configurations is confirmed selectively according to exposure conditions, E-DCH UE Category and maximum output power of production units, including tune-up tolerance by applying the 3G SAR test reduction procedure. Maximum output power is verified according to procedures in applicable versions of 3GPP TS 34.121. SAR must be measured based on these maximum output conditions and requirements in KDB Publication 447498, with respect to the UE Categories for HS-DPCCH and HSPA, and explained in the SAR report. When Maximum Power Reduction (MPR) applies, the implementations must be clearly identified in the SAR report to support test results according to Cubic Metric (CM) and, as appropriate, Enhanced MPR (E-MPR) requirements. | Sub-
test | β _e | β_d | β _d
(SF) | β_c/β_d | $\beta_{hs}^{(1)}$ | β_{ec} | β_{ed} | β _{ed}
(SF) | β _{ed}
(codes) | CM ⁽²⁾
(dB) | MPR
(dB) | AG ⁽⁴⁾
Index | E-
TFCI | |--------------|----------------------|----------------------|------------------------|----------------------|--------------------|--------------|--|-------------------------|----------------------------|---------------------------|-------------|----------------------------|------------| | 1 | 11/15(3) | 15/15(3) | 64 | 11/15(3) | 22/15 | 209/225 | 1039/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed1} : 47/15
β _{ed2} : 47/15 | | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15 ⁽⁴⁾ | 15/15 ⁽⁴⁾ | 64 | 15/15 ⁽⁴⁾ | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | Note 1: Δ_{ACK} . Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{lis} = \beta_{lis}/\beta_c = 30/15 \Leftrightarrow \beta_{lis} = 30/15 * \beta_c$. Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{lis}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$ Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: β_{ed} cannot be set directly; it is set by Absolute Grant Value Figure 9.2 Table 2 #### 9.3.6 SAR Measurement Conditions for DC-HSDPA In the following DB 941225 D01v03r01 procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode. SAR is required for Rel. 8 DC-HSDPA when SAR is
required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable. #### 9.4 SAR Measurement Conditions for LTE LTE modes were tested according to FCC KDB 941225 D05v02r05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR. The R&S CMW500 was used for LTE output power measurement and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI). #### 9.4.1 Spectrum Plots for RB Configurations A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report. #### 9.4.2 MPR MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 -6.2.5 under Table 6.2.3-1. #### 9.4.3 A-MPR A-MPR (Addition MPR) has been disable for all SAR tests by setting NS=01 on the base station simulator. #### 9.4.4 Required RB Size and RB Offsets for SAR Testing According to FCC KDB 941225 D05v02r05: - a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth - i. The required channel and offset combination with the highest maximum output power is required for SAR. Report No.: DRRFCC1804-0046(1) - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channel is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel. - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel. - b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1. - c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to 0.5 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/kg.</p> #### 9.5 SAR Testing with 802.11 Transmitters The normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02r02 for more details. #### 9.5.1 General Device Setup Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements. A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. #### 9.5.2 Initial Test Position Procedure For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured. Report No.: DRRFCC1804-0046(1) #### 9.5.3 2.4 GHz SAR Test Requirements SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: - When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. #### 9.5.4 OFDM Transmission Mode and SAR Test Channel Selection For the 2.4 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel. #### 9.5.5 Initial Test Configuration Procedure For OFDM, in both 2.4 bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration. When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. # 10. RF CONDUCTED POWERS This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06 Report No.: DRRFCC1804-0046(1) # 10.1 GSM Nominal and Maximum Output Power Spec and Conducted Powers | Band & Mode | | Voice[dBm] | | Burst Average | GMSK [dBm] | | Burst Average GMSK [dBm] | | | | | |---------------|---------|------------|-----------|---------------|------------|-----------|--------------------------|-----------|-----------|-----------|--| | | | 1 TX Slot | 1 TX Slot | 2 TX Slot | 3 TX Slot | 4 TX Slot | 1 TX Slot | 2 TX Slot | 3 TX Slot | 4 TX Slot | | | GSM/GPRS/EDGE | Maximum | 33.7 | 33.7 | 32.7 | 30.7 | 29.7 | 27.2 | 26.2 | 24.2 | 22.7 | | | 850 | Nominal | 33.2 | 33.2 | 32.2 | 30.2 | 29.2 | 26.7 | 25.7 | 23.7 | 22.2 | | | GSM/GPRSEDGE | Maximum | 30.7 | 30.7 | 29.7 | 27.7 | 26.7 | 26.2 | 24.7 | 22.7 | 21.7 | | | 1900 | Nominal | 30.2 | 30.2 | 29.2 | 27.2 | 26.2 | 25.7 | 24.2 | 22.2 | 21.2 | | Table 10.1.1 GSM Nominal and Maximum Output Power Spec | | | | | М | aximum Burst- | Averaged Out | put
Power(dB | lm) | | | | | |----------|------------------|---------------------|-------------------|-------------------|-------------------|-------------------|----------------------|----------------------|----------------------|----------------------|--|--| | | | Voice | | GPRS/EDGE | Data (GMSK) | | | EDGE Date | ta (8-PSK) | | | | | Band | Channel | GSM
CS
1 Slot | GPRS
1 TX Slot | GPRS
2 TX Slot | GPRS
3 TX Slot | GPRS
4 TX Slot | EDGE
1 TX
Slot | EDGE
2 TX
Slot | EDGE
3 TX
Slot | EDGE
4 TX
Slot | | | | | 128 | 33.68 | 33.64 | 32.65 | 30.69 | 29.69 | 26.97 | 26.04 | 24.12 | 22.55 | | | | GSM850 | 190 | 33.62 | 33.65 | 32.55 | 30.67 | 29.65 | 27.13 | 26.18 | 24.14 | 22.63 | | | | | 251 | 33.69 | 33.54 | 32.63 | 30.54 | 29.64 | 27.19 | 26.19 | 24.18 | 22.68 | | | | | 512 | 30.53 | 30.54 | 29.62 | 27.52 | 26.65 | 26.20 | 24.16 | 22.18 | 21.18 | | | | PCS 1900 | 661 | 30.42 | 30.43 | 29.63 | 27.42 | 26.63 | 26.18 | 24.11 | 22.13 | 21.11 | | | | | 810 | 30.43 | 30.44 | 29.61 | 27.53 | 26.62 | 26.19 | 24.14 | 22.20 | 21.19 | | | | | | | | Calcula | ted Maximum F | rame-Average | d Output Pov | ver(dBm) | | | | | | | | Voice | | GPRS/EDGE | Data (GMSK) | | | EDGE Dat | ta (8-PSK) | B-PSK) | | | | Band | Channel | GSM
CS
1 Slot | GPRS
1 TX Slot | GPRS
2 TX Slot | GPRS
3 TX Slot | GPRS
4 TX Slot | EDGE
1 TX
Slot | EDGE
2 TX
Slot | EDGE
3 TX
Slot | EDGE
4 TX
Slot | | | | | 128 | 24.65 | 24.61 | 26.63 | 26.43 | 26.68 | 17.94 | 20.02 | 19.86 | 19.54 | | | | GSM850 | 190 | 24.59 | 24.62 | 26.53 | 26.41 | 26.64 | 18.10 | 20.16 | 19.88 | 19.62 | | | | | 251 | 24.66 | 24.51 | 26.61 | 26.28 | 26.63 | 18.16 | 20.17 | 19.92 | 19.67 | | | | | 512 | 21.50 | 21.51 | 23.60 | 23.26 | 23.64 | 17.17 | 18.14 | 17.92 | 18.17 | | | | PCS 1900 | 661 | 21.39 | 21.40 | 23.61 | 23.16 | 23.62 | 17.15 | 18.09 | 17.87 | 18.10 | | | | | 810 | 21.40 | 21.41 | 23.59 | 23.27 | 23.61 | 17.16 | 18.12 | 17.94 | 18.18 | | | | GSM850 | Frame | 24.17 | 24.17 | 26.18 | 25.94 | 26.19 | 17.67 | 19.68 | 19.44 | 19.19 | | | | PCS 1900 | Avg.
Targets: | 21.17 | 21.17 | 23.18 | 22.94 | 23.19 | 16.67 | 18.18 | 17.94 | 18.19 | | | #### Table 10.1.2 GSM Conducted Power #### Note: - 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots. - GPRS (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes. - 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power. GPRS Multislot class: 33 (max 4 TX Uplink slots) EDGE Multislot class: 33 (max 4 TX Uplink slots) DTM Multislot Class: N/A Figure 10.1 Power Measurement Setup ### 10.2 WCDMA Nominal and Maximum Output Power Spec and Conducted Powers | | | Modulated Average [dBm] | | | | | | | | |--------------------|---------|-------------------------|---------------|---------------|------------------|--|--|--|--| | Band & Mode | | 3GPP WCDMA
(Rel.99) | 3GPP
HSDPA | 3GPP
HSUPA | 3GPP
DC-HSDPA | | | | | | WCDMA 850 (Cell) | Maximum | 25.2 | | | | | | | | | WCDIVIA 650 (Cell) | Nominal | 24.7 | | | | | | | | | WCDMA 1000 (DCS) | Maximum | 24.2 | | | | | | | | | WCDMA 1900 (PCS) | Nominal | | 23 | 3.7 | | | | | | Table 10.2.1 WCDMA Nominal and Maximum Output Power Spec | 3GPP | | 3GPP | Cell | ular Band (| dBm) | PCS | Band (dB | m) | 3GPP MPR | |--------------------|----------|-------------------|-------|-------------|-------|-------|----------|-------|----------| | Release
Version | Mode | 34.121
Subtest | 4132 | 4183 | 4233 | 9262 | 9400 | 9538 | (dB) | | 99 | WCDMA | 12.2 kbps
RMC | 24.96 | 24.99 | 25.20 | 23.23 | 23.14 | 23.17 | - | | 99 | VVCDIVIA | 12.2 kbps
AMR | 24.90 | 24.97 | 25.20 | 23.16 | 23.08 | 23.11 | - | | 5 | | Subtest 1 | 24.00 | 24.00 | 24.17 | 22.32 | 22.21 | 22.34 | 0 | | 5 | HSDPA | Subtest 2 | 23.94 | 23.95 | 24.16 | 22.36 | 22.25 | 22.34 | 0 | | 5 | ПЭПРА | Subtest 3 | 23.50 | 23.49 | 23.71 | 21.82 | 21.72 | 21.79 | 0.5 | | 5 | | Subtest 4 | 23.38 | 23.45 | 23.66 | 21.76 | 21.72 | 21.71 | 0.5 | | 6 | | Subtest 1 | 23.23 | 23.26 | 23.28 | 22.24 | 22.25 | 22.35 | 0 | | 6 | | Subtest 2 | 22.04 | 22.03 | 22.23 | 21.24 | 21.08 | 21.15 | 2 | | 6 | HSUPA | Subtest 3 | 22.97 | 23.05 | 23.19 | 22.19 | 22.05 | 22.17 | 1 | | 6 | | Subtest 4 | 21.55 | 21.56 | 21.77 | 20.81 | 20.64 | 20.69 | 2 | | 6 | | Subtest 5 | 23.25 | 23.32 | 23.33 | 22.28 | 22.24 | 22.25 | 0 | | 8 | | Subtest 1 | 23.93 | 23.95 | 24.13 | 22.94 | 22.75 | 22.74 | 0 | | 8 | DO HODDA | Subtest 2 | 23.90 | 23.92 | 24.11 | 22.74 | 22.82 | 22.71 | 0 | | 8 | DC-HSDPA | Subtest 3 | 23.41 | 23.46 | 23.62 | 22.22 | 22.22 | 22.22 | 0.5 | | 8 | | Subtest 4 | 23.33 | 23.43 | 23.58 | 22.25 | 22.30 | 22.23 | 0.5 | Table 10.2.2 WCDMA Conducted Power WCDMA SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg. The manufacturer declares that the HSDPA, HSUPA and DC-HSDPA transmitter's power will not exceed the R99 maximum transmit power in devices based on Qualcomm's HSPA chipset solutions. #### DC-HSDPA considerations - 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance. - H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements. - The DUT supports UE category 24 for HSDPA. Figure 10.2 Power Measurement Setup # 10.3 LTE Nominal and Maximum Output Power Spec and Conducted Powers | Band & Mode | 9 | Modulated Average[dBm] | |-------------|---------|------------------------| | LTE Band 12 | Maximum | 25.2 | | LIE Band 12 | Nominal | 24.7 | Table 10.3.1 Nominal and Maximum Output Power Spec #### 1) LTE Band 12 | | | LTE Band 12 Co | nducted Power- 10 MHz Bandwidth | | | |------------|---------|----------------|---------------------------------|-----------------------------|-------------| | | | | Mid Channel | | | | Modulation | RB Size | RB Offset | 23095
(707.5 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | Conducted Power (dBm) | | | | | 1 | 0 | 24.62 | | | | | 1 | 25 | 24.70 | 0 | 0 | | | 1 | 49 | 24.90 | | | | QPSK | 25 | 0 | 23.74 | | | | | 25 | 12 | 23.79 | 0-1 | 1 | | | 25 | 25 | 23.91 | | | | | 50 | 0 | 23.85 | 0-1 | 1 | | | 1 | 0 | 23.81 | | | | | 1 | 25 | 23.79 | 0-1 | 1 | | | 1 | 49 | 23.88 | | | | 16QAM | 25 | 0 | 22.71 | | | | | 25 | 12 | 22.95 | 0-2 | 2 | | | 25 | 25 | 22.82 | | | | | 50 | 0 | 23.01 | 0-2 | 2 | **Table 10.3.2 LTE Conducted Power** Note 1: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. | | | | LTE Band 12 Co | nducted Power- 5 MHz Bandwid | lth | | | |------------|---------|-----------|---|------------------------------|--------------|-----------------------------|-------------| | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | RB Offset 23035 23095 23155 (701.5 MHz) (707.5 MHz) (713.5 MHz) | | | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 24.89 | 24.77 | 24.76 | | | | | 1 | 12 | 24.84 | 24.59 | 24.85 | 0 | 0 | | | 1 | 24 | 24.79 | 24.82 | 24.97 | | | | QPSK | 12 | 0 | 23.80 | 23.69 | 23.74 | | | | | 12 | 6 | 23.82 | 23.61 | 23.83 | 0-1 | 1 | | | 12 | 13 | 23.88 | 23.68 | 23.85 | | | | | 25 | 0 | 23.88 | 23.72 | 23.84 | 0-1 | 1 | | | 1 | 0 | 24.00 | 23.86 | 23.94 | | | | | 1 | 12 | 24.01 | 23.69 | 23.95 | 0-1 | 1 | | | 1 | 24 | 23.95 | 23.95 | 23.93 | 7 | | | 16QAM | 12 | 0 | 22.88 | 22.72 | 22.79 | 0-2 | | | | 12 | 6 | 22.92 | 22.78 | 22.82 | | 2 | | | 12 | 13 | 22.94 | 22.83 | 22.88 | | | | | 25 | 0 | 22.88 | 22.91 | 23.03 | 0-2 | 2 | Table 10.3.3 LTE Conducted Power | | | | LTE Band 12 Cor | nducted Power- 3 MHz Bandwid | lth | | | |------------|---------|-----------|----------------------|------------------------------|----------------------|-----------------------------|-------------| | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 23025
(700.5 MHz) | 23095
(707.5 MHz) | 23165
(714.5 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 24.95 | 24.80 | 24.89 | | | | | 1 | 7 | 24.86 | 24.58 | 24.84 | 0 | 0 | | | 1 | 14 | 24.90 | 24.82 | 24.98 | | | | QPSK | 8 | 0 | 23.94 | 23.70 | 23.90 | | | | | 8 | 4 | 23.91 | 23.64 | 23.90 | 0-1 | 1 | | | 8 | 7 | 23.91 | 23.71 | 23.93 | | | | | 15 | 0 | 23.95 | 23.74 | 23.93 | 0-1 | 1 | | | 1 | 0 | 24.05 | 23.88 | 24.07 | | | | | 1 | 7 | 24.03 | 23.65 | 23.86 | 0-1 | 1 | | | 1 | 14 | 24.03 | 23.88 | 23.94 | | | | 16QAM | 8 | 0 | 23.00 | 22.75 | 22.90 | 0-2 | | | | 8 | 4 | 23.00 | 22.78 | 22.93 | | 2 | | | 8 | 7 | 22.99 | 22.87 | 23.06 | | | | | 15 | 0 | 23.00 | 22.84 | 23.10 | 0-2 | 2 | Table 10.3.4 LTE Conducted Power | | | | LTE Band 12 Cor | nducted Power- 1.4 MHz Bandwid | dth | | | |------------|---------|-------------------|----------------------|--------------------------------
----------------------|-----------------------------|-------------| | Modulation | RB Size | RB Size RB Offset | Low Channel | Mid Channel | High Channel | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | 23017
(699.7 MHz) | 23095
(707.5 MHz) | 23173
(715.3 MHz) | | | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 24.84 | 24.93 | 24.89 | | 0 | | | 1 | 2 | 24.82 | 24.92 | 24.83 | 0 | | | | 1 | 5 | 24.86 | 24.96 | 24.89 | | | | QPSK | 3 | 0 | 24.94 | 24.95 | 24.93 | | | | | 3 | 2 | 24.89 | 24.98 | 24.92 | 0 | 0 | | | 3 | 3 | 24.94 | 24.93 | 24.98 | 7 | | | | 6 | 0 | 23.91 | 23.58 | 23.90 | 0-1 | 1 | | 16QAM | 1 | 0 | 24.01 | 23.95 | 23.89 | | | | | 1 | 2 | 24.01 | 23.87 | 23.85 | 0-1 | 1 | | | 1 | 5 | 24.05 | 23.89 | 23.92 | 7 | | | | 3 | 0 | 24.00 | 23.92 | 23.88 | 0-1 | | | | 3 | 2 | 24.07 | 23.94 | 23.97 | | 1 | | | 3 | 3 | 24.05 | 23.86 | 23.96 | | | | | 6 | 0 | 23.02 | 22.75 | 22.90 | 0-2 | 2 | Table 10.3.5 LTE Conducted Power | Band & Mod | Modulated Average[dBm] | | | |------------|------------------------|------|--| | LTE Dand E | Maximum | 25.2 | | | LTE Band 5 | Nominal | 24.7 | | Table 10.3.6 Nominal and Maximum Output Power Spec #### 2) LTE Band 5 (Cell) | LTE Band 5 (Cell) Conducted Power- 10 MHz Bandwidth | | | | | | | | | |---|---------|-----------|---|-----------------------------|-------------|--|--|--| | | RB Size | RB Offset | Mid Channel | MPR Allowed
Per 3GPP(dB) | | | | | | Modulation | | | 20525
(836.5 MHz)
Conducted Power | | MPR
(dB) | | | | | | | | (dBm) | | | | | | | | 1 | 0 | 24.57 | | | | | | | | 1 | 25 | 24.90 | 0 | 0 | | | | | | 1 | 49 | 24.94 | | | | | | | QPSK | 25 | 0 | 23.68 | | | | | | | | 25 | 12 | 23.89 | 0-1 | 1 | | | | | | 25 | 25 | 23.92 | | | | | | | | 50 | 0 | 23.81 | 0-1 | 1 | | | | | | 1 | 0 | 23.76 | | | | | | | | 1 | 25 | 24.03 | 0-1 | 1 | | | | | | 1 | 49 | 24.05 | | | | | | | 16QAM | 25 | 0 | 22.65 | | | | | | | | 25 | 12 | 22.84 | 0-2 | 2 | | | | | | 25 | 25 | 22.90 | 1 | | | | | | | 50 | 0 | 22.78 | 0-2 | 2 | | | | Table 10.3.7 LTE Conducted Power Note: LTE Band 5(Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. | | | | LTE Band 5 (Cell) (| Conducted Power- 5 MHz Bandv | vidth | | | |------------|---------|------------------|----------------------|------------------------------|--------------------------------------|-----------------------------|-------------| | Modulation | RB Size | B Size RB Offset | 20425
(826.5 MHz) | Mid Channel | High Channel
20625
(846.5 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | 20525
(836.5 MHz) | | | | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 24.52 | 24.57 | 24.57 | | | | | 1 | 12 | 24.52 | 24.90 | 24.90 | 0 | 0 | | | 1 | 24 | 24.83 | 24.92 | 24.91 | | | | QPSK | 12 | 0 | 23.51 | 23.68 | 23.68 | | | | | 12 | 6 | 23.58 | 23.89 | 23.89 | 0-1 | 1 | | | 12 | 13 | 23.74 | 23.92 | 23.92 | | | | | 25 | 0 | 23.66 | 23.81 | 23.81 | 0-1 | 1 | | | 1 | 0 | 23.70 | 23.75 | 23.77 | 0-1 | 1 | | | 1 | 12 | 23.66 | 24.07 | 24.01 | | | | 16QAM | 1 | 24 | 24.01 | 24.05 | 24.05 | | | | | 12 | 0 | 22.53 | 22.65 | 22.65 | 0-2 | | | | 12 | 6 | 22.63 | 22.84 | 22.84 | | 2 | | | 12 | 13 | 22.76 | 22.90 | 22.90 | | 1 | | | 25 | 0 | 22.64 | 22.78 | 22.78 | 0-2 | 2 | Table 10.3.8 LTE Conducted Power | | | | LTE Band 5 (Cell) C | Conducted Power- 3 MHz Bandw | vidth | | | |------------|---------|-----------|----------------------|-------------------------------------|--------------------------------------|-----------------------------|-------------| | Modulation | RB Size | | Low Channel | Mid Channel
20525
(836.5 MHz) | High Channel
20635
(847.5 MHz) | MPR Allowed
Per 3GPP(dB) | | | | | RB Offset | 20415
(825.5 MHz) | | | | MPR
(dB) | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 24.56 | 24.57 | 24.57 | 0 | | | | 1 | 7 | 24.50 | 24.90 | 24.90 | | 0 | | | 1 | 14 | 24.58 | 24.93 | 24.90 | | | | QPSK | 8 | 0 | 23.59 | 23.68 | 23.68 | | | | | 8 | 4 | 23.57 | 23.89 | 23.89 | 0-1 | 1 | | | 8 | 7 | 23.57 | 23.92 | 23.92 | | | | | 15 | 0 | 23.59 | 23.81 | 23.81 | 0-1 | 1 | | | 1 | 0 | 23.76 | 23.75 | 23.71 | 0-1 | | | | 1 | 7 | 23.68 | 24.02 | 24.02 | | 1 | | | 1 | 14 | 23.77 | 24.05 | 24.05 | | | | 16QAM | 8 | 0 | 22.64 | 22.65 | 22.65 | | | | | 8 | 4 | 22.66 | 22.84 | 22.84 | 0-2 | 2 | | | 8 | 7 | 22.63 | 22.90 | 22.90 | | | | | 15 | 0 | 22.67 | 22.78 | 22.78 | 0-2 | 2 | Table 10.3.9 LTE Conducted Power | | | | LTE Band 5 (Cell) Co | onducted Power- 1.4 MHz Band | width | | | |------------|---------|------------------|----------------------|-------------------------------------|--------------------------------------|-----------------------------|-------------| | Modulation | RB Size | B Size RB Offset | Low Channel | Mid Channel
20525
(836.5 MHz) | High Channel
20643
(848.3 MHz) | MPR Allowed
Per 3GPP(dB) | | | | | | 20407
(824.7 MHz) | | | | MPR
(dB) | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 24.49 | 24.57 | 24.57 | | | | | 1 | 2 | 24.79 | 24.90 | 24.90 | 0 | 0 | | | 1 | 5 | 24.51 | 24.94 | 24.94 | | <u> </u> | | QPSK | 3 | 0 | 24.48 | 24.58 | 24.58 | | | | | 3 | 2 | 24.50 | 24.89 | 24.89 | 0 | 0 | | | 3 | 3 | 24.54 | 24.92 | 24.92 | | | | | 6 | 0 | 23.54 | 23.81 | 23.81 | 0-1 | 1 | | | 1 | 0 | 23.69 | 23.72 | 23.72 | 0-1 | | | | 1 | 2 | 23.79 | 24.02 | 24.04 | | 1 | | | 1 | 5 | 23.63 | 24.05 | 24.05 | | | | 16QAM | 3 | 0 | 23.59 | 23.65 | 23.65 | 0-1 | | | | 3 | 2 | 23.66 | 23.84 | 23.84 | | 1 | | | 3 | 3 | 23.65 | 23.90 | 23.90 | | | | | 6 | 0 | 22.66 | 22.78 | 22.78 | 0-2 | 2 | Table 10.3.10 LTE Conducted Power | Band & Mode | Modulated Average[dBm] | | |-------------|------------------------|------| | LTE Double | Maximum | 24.2 | | LTE Band 4 | Nominal | 23.7 | Table 10.3.11 Nominal and Maximum Output Power Spec ## 3) LTE Band 4 | • | LTE Band 4 (AWS) Conducted Power- 20 MHz Bandwidth | | | | | | | | | | |---|--|-----------|-----------------------|-----------------------------|-------------|--|--|--|--|--| | | | | Mid Channel | | | | | | | | | Modulation | RB Size | RB Offset | 20175
(1732.5 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | | | | | Conducted Power (dBm) | ` , | , , | | | | | | | | 1 | 0 | 24.01 | | | | | | | | | | 1 | 50 | 23.75 | 0 | 0 | | | | | | | | 1 | 99 | 24.18 | | | | | | | | | QPSK | 50 | 0 | 23.18 | | | | | | | | | | 50 | 25 | 23.16 | 0-1 | 1 | | | | | | | | 50 | 50 | 23.05 | | l | | | | | | | | 100 | 0 | 23.00 | 0-1 | 1 | | | | | | | | 1 | 0 | 23.14 | | | | | | | | | | 1 | 50 | 22.86 | 0-1 | 1 | | | | | | | | 1 | 99 | 23.14 | | | | | | | | | 16QAM | 50 | 0 | 22.08 | | | | | | | | | | 50 | 25 | 22.04 | 0-2 | 2 | | | | | | | | 50 | 50 | 21.89 | | | | | | | | | | 100 | 0 | 21.98 | 0-2 | 2 | | | | | | Table 10.3.12 LTE Conducted Power | | LTE Band 4 (AWS) Conducted Power- 15 MHz Bandwidth | | | | | | | | | | |------------|--|-----------|-----------------------|-----------------------|-----------------------|-----------------------------|-------------|--|--|--| | | | | Low Channel | Mid Channel | High Channel | | | | | | | Modulation | RB Size | RB Offset | 20025
(1717.5 MHz) | 20175
(1732.5 MHz) | 20325
(1747.5 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | | | | Conducted Power (dBm) | | | | | | | | | 1 | 0 | 23.99 | 24.03 | 24.02 | | | | | | | | 1 | 36 | 23.88 | 23.81 | 24.00 | 0 | 0 | | | | | | 1 | 74 | 23.98 | 24.00 | 23.91 | | | | | | | QPSK | 36 | 0 | 22.91 | 22.94 | 22.95 | | 1 | | | | | | 36 | 18 | 22.91 | 22.84 | 22.90 | 0-1 | | | | | | | 36 | 37 | 22.91 | 22.84 | 22.95 | | | | | | | | 75 | 0 | 22.88 | 22.82 | 22.96 | 0-1 | 1 | | | | | | 1 | 0 | 23.13 | 23.15 | 23.20 | | | | | | | | 1 | 36 | 23.03 | 22.96 | 23.16 | 0-1 | 1 | | | | | | 1 | 74 | 23.12 | 23.14 | 23.07 | 1 | | | | | | 16QAM | 36 | 0 | 21.98 | 21.99 | 22.01 | | | | | | | | 36 | 18 | 21.94 | 21.85 | 21.96 | 0-2 | 2 | | | | | | 36 | 37 | 22.00 | 21.86 | 21.99 | | | | | | | | 75 | 0 | 22.01 | 21.95 | 22.01 | 0-2 | 2 | | | | Table 10.3.13 LTE Conducted Power | | | | LTE Band 4 (AWS) C | onducted Power- 10 MHz Band | width | | | |------------|---------|-----------|-----------------------|-----------------------------|-----------------------|-----------------------------|-------------| | | | | Low Channel | Mid Channel | High Channel | | | | Modulation | RB Size | RB Offset | 20000
(1715.0 MHz) | 20175
(1732.5 MHz) | 20350
(1750.0 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 23.94 | 23.97 | 23.98 | | | | | 1 | 25 | 23.89 | 23.71 | 23.94 | 0 | 0 | | | 1 | 49 | 23.88 | 23.93 | 23.90 | 1 | l | | QPSK | 25 | 0 | 22.87 | 22.87 | 22.93 | | | | | 25 | 12 | 22.88 | 22.82 | 22.93 | 0-1 | 1 | | | 25 | 25 | 22.99 | 22.82 | 22.85 | | | | | 50 | 0 | 22.92 | 22.90 | 22.93 | 0-1 | 1 | | | 1 | 0 | 23.11 | 23.12 | 23.12 | | | | | 1 | 25 | 23.00 | 22.89 | 23.10 | 0-1 | 1 | | | 1 | 49 | 23.00 | 23.06 | 23.07 | | | | 16QAM | 25 | 0 | 21.95 | 21.94 | 22.04 | | | | | 25 | 12 | 21.95 | 21.86 | 22.02 | 0-2 | 2 | | | 25 | 25 | 22.03 | 21.83 | 22.03 | | | | | 50 | 0 | 22 03 | 21 89 | 22 02 | 0-2 | 2 | Table 10.3.14 LTE Conducted Power | | | | LTE Band 4 (AWS) C | Conducted Power- 5 MHz Band | width | | | |------------|---------|-------------|-----------------------|-----------------------------|-----------------------|-----------------------------|-------------| | | | Low Channel | Mid Channel | High Channel | | | | | Modulation | RB Size | RB Offset | 19975
(1712.5 MHz) |
20175
(1732.5 MHz) | 20375
(1752.5 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | Conducted Power (dBm) | | | | | | 1 | 0 | 23.84 | 23.83 | 23.88 | | | | | 1 | 12 | 23.79 | 23.71 | 23.89 | 0 | 0 | | | 1 | 24 | 23.82 | 23.82 | 23.82 | | | | QPSK | 12 | 0 | 22.84 | 22.79 | 22.91 | | | | | 12 | 6 | 22.84 | 22.75 | 22.91 | 0-1 | 1 | | | 12 | 13 | 22.86 | 22.76 | 22.92 | 1 | | | | 25 | 0 | 22.84 | 22.83 | 22.87 | 0-1 | 1 | | | 1 | 0 | 22.99 | 23.02 | 23.02 | | | | | 1 | 12 | 22.98 | 22.88 | 23.04 | 0-1 | 1 | | | 1 | 24 | 23.01 | 23.00 | 23.01 | 7 | | | 16QAM | 12 | 0 | 21.98 | 21.84 | 22.02 | | | | | 12 | 6 | 21.99 | 21.81 | 22.05 | 0-2 | 2 | | | 12 | 13 | 22.00 | 21.83 | 22.02 | 7 | | | | 25 | 0 | 21.94 | 21.84 | 21.97 | 0-2 | 2 | Table 10.3.15 LTE Conducted Power Pages: 39 /159 Report No.: DRRFCC1804-0046(1) | | LTE Band 4 (AWS) Conducted Power- 3 MHz Bandwidth | | | | | | | | | | | | |------------|---|-----------|-----------------------|-----------------------|-----------------------|-----------------------------|-------------|--|--|--|--|--| | | | | Low Channel | Mid Channel | High Channel | | | | | | | | | Modulation | RB Size | RB Offset | 19965
(1711.5 MHz) | 20175
(1732.5 MHz) | 20385
(1753.5 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | | | | | | Conducted Power (dBm) | | | | | | | | | | | 1 | 0 | 23.94 | 23.85 | 23.93 | | | | | | | | | | 1 | 7 | 23.84 | 23.75 | 23.88 | 0 | 0 | | | | | | | | 1 | 14 | 23.89 | 23.81 | 23.86 | | | | | | | | | QPSK | 8 | 0 | 23.00 | 22.82 | 22.92 | | | | | | | | | | 8 | 4 | 22.90 | 22.76 | 22.92 | 0-1 | 1 | | | | | | | | 8 | 7 | 22.90 | 22.79 | 22.92 | | | | | | | | | | 15 | 0 | 22.89 | 22.81 | 22.95 | 0-1 | 1 | | | | | | | | 1 | 0 | 23.05 | 23.05 | 23.12 | | | | | | | | | | 1 | 7 | 23.01 | 22.93 | 23.02 | 0-1 | 1 | | | | | | | | 1 | 14 | 23.06 | 22.99 | 23.00 | | | | | | | | | 16QAM | 8 | 0 | 22.11 | 21.88 | 22.12 | | | | | | | | | | 8 | 4 | 22.09 | 21.91 | 22.09 | 0-2 | 2 | | | | | | | | 8 | 7 | 22.05 | 21.90 | 22.07 | 7 | | | | | | | | | 15 | 0 | 22.04 | 21.89 | 22.07 | 0-2 | 2 | | | | | | Table 10.3.16 LTE Conducted Power | | | | TE Band 4 (AWS) Co | nducted Power- 1.4 MHz Bandw | idth | | | | |------------|---------|-----------|-----------------------|------------------------------|-----------------------|-----------------------------|-------------|---| | | | | Low Channel | Mid Channel | High Channel | | | | | Modulation | RB Size | RB Offset | 19957
(1710.7 MHz) | 20175
(1732.5 MHz) | 20393
(1754.3 MHz) | MPR Allowed
Per 3GPP(dB) | MPR
(dB) | | | | | | | Conducted Power (dBm) | | | | | | | 1 | 0 | 23.73 | 23.66 | 23.84 | | | | | | 1 | 2 | 23.73 | 23.61 | 23.85 | 0 | 0 | 0 | | | 1 | 5 | 23.78 | 23.67 | 23.81 | | <u> </u> | | | QPSK | 3 | 0 | 24.13 | 23.68 | 23.81 | | | | | | 3 | 2 | 23.78 | 23.65 | 23.86 | 0 | 0 | | | | 3 | 3 | 23.80 | 23.71 | 23.85 | | | | | | 6 | 0 | 22.83 | 22.68 | 22.87 | 0-1 | 1 | | | | 1 | 0 | 22.92 | 22.58 | 23.04 | | | | | | 1 | 2 | 22.91 | 22.55 | 23.03 | 0-1 | 1 | | | | 1 | 5 | 22.97 | 22.59 | 22.98 | | | | | 16QAM | 3 | 0 | 23.15 | 22.66 | 23.01 | | · | | | | 3 | 2 | 22.94 | 22.61 | 22.98 | 0-1 | 1 | | | | 3 | 3 | 23.00 | 22.75 | 23.03 | | | | | | 6 | 0 | 22.02 | 21.65 | 22.06 | 0-2 | 2 | | Table 10.3.17 LTE Conducted Power ## 10.4 WLAN Nominal and Maximum Output Power Spec and Conducted Powers | Band
(GHz) | Mode (h | Ch | Modulated Average[dBm] | | | |---------------|---|------|------------------------|---------|--| | ` ' | | | Maximum | Nominal | | | | 802.11b | 1~11 | 19.0 | 18.0 | | | | 000.44.5 | 1 | 14.5 | 13.5 | | | | 802.11g
(6~36Mbps)
802.11g
(48~54Mbps) | 2~10 | 17.5 | 16.5 | | | | | 11 | 14.5 | 13.5 | | | | | 1 | 14.0 | 13.0 | | | | | 2~10 | 17.0 | 16.0 | | | 2.4 | | 11 | 14.0 | 13.0 | | | | 000 44 - LITO | 1 | 14.0 | 13.0 | | | | 802.11n HT20 | 2~10 | 16.0 | 15.0 | | | | (MCS0~MCS4) | 11 | 14.0 | 13.0 | | | | | 1 | 13.0 | 12.0 | | | | 802.11n HT20 | 2~10 | 15.0 | 14.0 | | | | (MCS5~MCS7) | 11 | 13.0 | 12.0 | | Table 10.4.1 Nominal and Maximum Output Power Spec | Mode | Freq. | Ch | IEEE 802.11 (2.4 GHz) Conducted Power (dBm) | |----------|-------|----|---| | | 2412 | 1 | <u>18.35</u> | | 802.11b | 2437 | 6 | <u>18.63</u> | | | 2462 | 11 | 18.14 | | | 2412 | 1 | 14.10 | | 802.11g | 2437 | 6 | 16.80 | | 30g | 2462 | 11 | 13.61 | | 902 11 n | 2412 | 1 | 13.38 | | 802.11n | 2437 | 6 | 15.43 | | (HT-20) | 2462 | 11 | 13.25 | Table 10.4.2 IEEE 802.11 Average RF Power Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r02: - Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units. - For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate. - For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations. - For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured. - Output Power and SAR is not required for 802.11 g/n HT20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjust SAR is ≤ 1.2 W/kg. - The underlined data rate and channel above were tested for SAR. The average output powers of this device were tested by below configuration. Figure 10.4 Power Measurement Setup ## 10.5 Bluetooth Conducted Powers | | Modulated Average[dBm] | | | | | | | | | |-----------|------------------------|------|--|--|--|--|--|--|--| | Bluetooth | Maximum | 11.5 | | | | | | | | | 1 Mbps | Nominal | 10.5 | | | | | | | | | Bluetooth | Maximum | 9.5 | | | | | | | | | 2 Mbps | Nominal | 8.5 | | | | | | | | | Bluetooth | Maximum | 9.5 | | | | | | | | | 3 Mbps | Nominal | 8.5 | | | | | | | | | Bluetooth | Maximum | 8.0 | | | | | | | | | LE | Nominal | 7.0 | | | | | | | | Table 10.5.1 Nominal and Maximum Output Power Spec | Channel | Frequency | Burst AVG
Output Power
(1Mbps) | Frame AVG
Output Power
(1Mbps) | Burst AVG
Output Power
(2Mbps) | Frame AVG
Output Power
(2Mbps) | Burst AVG
Output Power
(3Mbps) | Frame AVG
Output Power
(3Mbps) | |---------|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | (MHz) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | | Low | 2402 | 9.25 | 8.10 | 7.02 | 5.87 | 7.02 | 5.87 | | Mid | 2441 | 11.30 | 10.15 | 8.96 | 7.81 | 8.96 | 7.81 | | High | 2480 | 10.37 | 9.22 | 7.91 | 6.76 | 7.92 | 6.77 | Table 10.5.2 Bluetooth Frame Average RF Power | Channel | Frequency | Burst AVG Output Power(LE) | Frame AVG Output Power(LE) | |---------|-----------|----------------------------|----------------------------| | Channel | (MHz) | (dBm) | (dBm) | | Low | 2402 | 6.71 | 4.57 | | Mid | 2440 | 7.46 | 5.32 | | High | 2480 | 7.05 | 4.91 | Table 10.5.3 Bluetooth LE Frame Average RF Power #### Bluetooth Conducted Powers procedures - 1. Bluetooth (BDR, EDR) - 1) Enter DUT mode in EUT and operate it. - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 10.5.1(A). - 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester. - 4) Power levels were measured by a Power Meter. - 2. Bluetooth (LE) - 1) Enter LE mode in EUT and operate it. - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 10.5.1(B). - 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT. - 4) Power levels were measured by a Power Meter. Figure 10.5.1 Average Power Measurement Setup The average conducted output powers of Bluetooth were measured using above test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level. #### Bluetooth Transmission Plot Figure 10.5.2 Bluetooth Transmission Plot Bluetooth Duty Cycle Calculation Duty Cycle = Pulse/Period * 100% = (2.880/3.750) * 100 = 76.8% # 11. SYSTEM VERIFICATION ## 11.1 Tissue Verification | Mar. 27. 2018 Prop. Mars | | | | | | MEASURED TISSUE P | ARAMETERS | | | | |
---|-----------------|--------|----------|------|--------------------------------|-------------------|---------------|--------|--------------------------------------|-------|-------| | Mar. 27, 2018 Head 21.5 21.6 75.0 41.900 0.880 41.903 0.917 0.15 3.03 Mar. 27, 2018 750 21.5 21.8 707.5 56.999 0.9800 64.903 53.37 0.986 2.46 1.46 Mar. 19, 2018 835 1.60 21.4 21.4 21.8 23.4 41.502 0.999 42.016 0.876 1.21 2.98 Mar. 19, 2018 835 21.4 21.4 21.8 23.4 41.502 0.999 42.016 0.876 1.21 0.996 1.56 Mar. 20, 2018 838 21.3 21.9 24.4 24.8 24.8 24.9 24.9 24.9 24.9 24.9 24.9 24.9 Mar. 20, 2018 838 21.3 24.9 24 | Date(s) | | | | Measured
Frequency
[MHz] | Dielectric | Conductivity, | | Measured
Conductivity,
σ (S/m) | | | | Mar. 27. 2018 760 | Mar 27 2018 | 750 | 21.5 | 21.7 | 707.5 | 42.129 | 0.887 | 42.279 | 0.876 | 0.36 | -1.24 | | Mar. 27, 2018 Body 21,5 21,6 75,0 65,531 0,963 53,370 0,986 2,280 2,39 | IVIAI. 27. 2010 | Head | 21.5 | 21.7 | 750.0 | 41.900 | 0.890 | 41.963 | 0.917 | 0.15 | 3.03 | | Mar. 19, 2018 Mar. 20, 2 | Mar 27 2018 | | 21.5 | 21.8 | 707.5 | 55.699 | 0.960 | 54.337 | 0.946 | -2.45 | -1.46 | | Mar. 19. 2018 Mar. 21. 2018 Mar. 22. 23. 2018 Mar. 24. 201 | IVIAI. 27. 2010 | Body | 21.5 | 21.0 | 750.0 | 55.531 | 0.963 | 53.976 | 0.986 | -2.80 | 2.39 | | Mar. 19, 2018 20, 2 | | | | | 824.2 | 41.552 | 0.899 | 42.056 | 0.876 | 1.21 | -2.56 | | Mar. 19. 2018 Mar. 29. 2018 Mar. 20. 2 | | | | | 826.4 | 41.542 | 0.899 | 42.031 | 0.878 | 1.18 | -2.34 | | Mar. 29, 2018 Mar. 20, 2 | | 005 | | | 835.0 | 41.500 | 0.900 | 41.934 | 0.886 | 1.05 | -1.56 | | Mar. 20. 2018 2 | Mar. 19. 2018 | | 21.0 | 21.3 | 836.5 | 41.500 | 0.901 | 41.921 | 0.887 | 1.01 | -1.55 | | Mar. 20. 2018 835 21.3 21.9 838 41.500 0.914 41.791 0.898 0.70 1.75 | | rieau | | | 836.6 | 41.500 | 0.901 | 41.920 | 0.887 | 1.01 | -1.55 | | Mar. 20. 2018 2 | | | | | 846.6 | 41.500 | 0.912 | 41.818 | 0.896 | 0.77 | -1.75 | | Mar. 20, 2018 Body 21.3 21.9 Body 21.4 21.9 Body 21.4 21.9 Body 21.1 21.5 Body 21.4 21.8 | | | | | 848.8 | 41.500 | 0.914 | 41.791 | 0.898 | 0.70 | -1.75 | | Mar. 20. 2018 835 21.3 21.9 835.0 55.200 0.970 54.772 0.974 -0.78 0.41 | | | | | 824.2 | 55.243 | 0.969 | 54.893 | 0.962 | -0.63 | -0.72 | | Mar. 20, 2018 Body 21.3 21.9 83.6 85.197 0.971 54.753 0.976 -0.80 0.51 | | | | | 826.4 | 55.235 | 0.969 | 54.871 | 0.964 | -0.66 | -0.52 | | Mar. 21, 2018 Body Body Balés S5.166 S5.166 O.984 S6.651 O.987 O.937 O.30 O.51 | M 00 0040 | 835 | 04.0 | 04.0 | 835.0 | 55.200 | 0.970 | 54.772 | 0.974 | -0.78 | 0.41 | | Mar. 21. 2018 835 21.1 21.5 836.0 55.160 0.986 54.626 0.990 -0.97 0.41 Mar. 21. 2018 80dy 21.1 21.5 836.5 55.200 0.970 55.030 0.977 -0.31 0.72 836.5 55.197 0.971 55.013 0.979 -0.33 0.82 1720.0 40.114 1.354 40.501 1.311 0.996 3.318 1720.0 40.114 1.354 40.501 1.311 0.996 3.318 1720.0 40.007 1.381 40.447 1.322 0.87 2.287 1800 40.007 1.381 40.447 1.322 0.87 2.287 1800 40.009 40.009 40.005 1.332 0.811 2.270 1800 40.009 40.009 40.001 40.001 40.001 40.001 1800 40.000 40.000 40.001 40.001 1800 53.300 1.520 52.968 1.539 -0.62 0.54 1800 40.000 40.000 40.000 40.004 40.004 1800 40.000 40.000 40.004 40.004 40.004 1800 40.000 40.000 40.000 40.004 40.004 1800 40.000 40.000 40.004 40.004 40.004 1800 40.000 40.000 40.004 40.004 1800 40.000 40.000 40.004 40.004 1800 40.000 40.000 40.004 40.004 1800 40.000 40.004 40.004 40.004 1800 40.000 40.004 40.004 1800 40.000 40.004 40.004 1800 40.000 40.004 40.004 1800 40.000 40.004 40.004 1800 40.000 40.004 40.004 1800 40.000 40.004 40.004 1800 40.000 40.004 40.004 1800 40.004 40.004 40.004 1800 40.004 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 1800 40.004 40.004 1800 40.004 40.004 1800 40.004 1800 40.004 1800 40.004 40.004 1800 40.004 1800 40.004 1800 40.004 1800 40.004 1800 40.004 1800 40.004 1800 | Mar. 20. 2018 | Body | 21.3 | 21.9 | 836.6 | 55.197 | 0.971 | 54.753 | 0.976 | -0.80 | 0.51 | | Mar. 21. 2018 835 836.0 855.600 9.986 \$64.626 0.990 -0.97 0.41 Mar. 21. 2018 80dy 21.1 21.5 836.5 55.200 0.970 55.030 0.977 -0.31 0.72 836.5 55.197 0.971 55.013 0.979 -0.33 0.92 1720.0 40.114 1.354 40.501 1.311 0.996 3.318 1800 1800 21.4 21.8 1732.5 40.097 1.361 40.447 1.322 0.87 -2.87 1800 1800 21.4 21.6 1720.0 40.000 1.400 40.405 1.332 0.81 -2.70 1800 40.000 1.400 40.178 1.332 0.81 -2.70 1800 40.000 1.400 40.178 1.337 0.44 -1.56 1800 53.580 1.469 53.250 1.474 -0.56 0.34 1800 1742.0 53.580 1.469 53.250 1.474 -0.56 0.34 1800 1800 21.2 1850 40.000 1.400 40.348 1.336 0.62 0.54 1800 40.000 1.400 40.348 1.336 0.67 -3.77 1800 40.000 1.400 40.348 1.336 0.67 -3.77 1800 40.000 1.400 40.348 1.335 0.66 -0.43 1807 8 40.000 1.400 40.264 1.394 0.66 -0.43 1807 8 40.000 1.400 40.264 1.394 0.66 -0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66
0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.66 0.43 1807 8 40.000 1.400 40.264 1.394 0.00 1807 8 40.000 1.400 40 | | | | | | | | | | | | | Mar. 26. 2018 1800 21.4 21.8 1720.0 40.114 1.354 40.501 1.311 0.96 3.18 1800 1.420 1.220 1 | | | | | | 55.160 | 0.986 | | 0.990 | -0.97 | 0.41 | | Mar. 26. 2018 1800 21.4 21.8 1720.0 40.114 1.354 40.501 1.311 0.96 3.18 1800 1.420 1.220 1 | NA 04 0040 | 835 | 04.4 | 04.5 | 835.0 | 55.200 | 0.970 | 55.030 | 0.977 | -0.31 | 0.72 | | Mar. 26. 2018 1800 Head 21.4 21.8 1732.5 Aug. 97 Aug. 1.361 Aug. 1.322 Aug | Mar. 21. 2018 | | 21.1 | 21.5 | | 55.197 | | | 0.979 | -0.33 | 0.82 | | Mar. 26. 2018 Head 21.4 21.8 1745.0 40.079 1.389 40.405 1.332 0.81 2.70 | | | | | 1720.0 | 40.114 | 1.354 | 40.501 | 1.311 | 0.96 | -3.18 | | Mar. 26. 2018 1800 21.4 21.6 1800.0 40.000 1.400 40.178 1.379 0.44 -1.50 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.500 0.34 1.340 0.067 0.74 1.500 0.35.500 1.485 53.173 1.496 -0.67 0.74 1.500 0.35.500 1.500 0.34 1.340 0.067 0.74 1.500 0.34 1.340 0.66 0.34 1.340 0.66 0.34 1.340 1.340 | Mar 20 2010 | 1800 | 04.4 | 04.0 | 1732.5 | 40.097 | 1.361 | 40.447 | 1.322 | 0.87 | -2.87 | | Mar. 26. 2018 Mar. 26. 2018 Mar. 27. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 29. 24. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 25. 2018 Mar. 26. 2018 Mar. 26. 2018 Mar. 26. 2018 Mar. 27. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 25. 2018 Mar. 26. 2018 Mar. 26. 2018 Mar. 27. 2018 Mar. 28. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2 | Mai. 26. 2016 | Head | 21.4 | 21.0 | 1745.0 | 40.079 | 1.369 | 40.405 | 1.332 | 0.81 | -2.70 | | Mar. 26. 2018 1800 Body 21.4 21.6 1732.5 153.556 1.477 147. 153.225 1.485 173 1496 1-0.62 15.4 0.62 15.4 0.54 1745 15.0 53.350 1.485 153.173 1496 1-0.67 0.74 1496 1-0.67 0.74 1800.0 0.67 0.74 1496 1-0.67 0.74 1496 1-0.67 0.74 1496 1-0.67 0.74 1800.0 1.485 153.373 1496 1-0.62 1125 125 125 125 125 1400.00 1.400 140.04 140.04 140.04 140.04 140.04 140.04 140.04 140.04 140.04 140.04 140.08 11.05 11. | | | | | 1800.0 | 40.000 | 1.400 | 40.178 | 1.379 | 0.44 | -1.50 | | Mar. 24. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 29. 24. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 29. 2 | | | | | 1720.0 | 53.580 | 1.469 | 53.280 | 1.474 | -0.56 | 0.34 | | Mar. 22. 2018 1900 1900 1400 1400 40,348 1,350 1 | Mar 26 2018 | 1800 | 21 / | 21.6 | 1732.5 | 53.556 | 1.477 | 53.225 | 1.485 | -0.62 | | | Mar. 22. 2018 Mar. 22. 2018 Mar. 22.
2018 Mar. 24. 2018 Mar. 25. 2018 Mar. 24. 25. 2018 Mar. 26. 2018 Mar. 27. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 29. 2 | Mai. 20. 2010 | Body | 21.4 | 21.0 | | | | | | | | | Mar. 22. 2018 1900 Head 21.2 21.3 21.4 1850.0 40.000 1.400 40.348 1.350 0.87 -3.57 1.66 1.64 1.000 1.400 40.305 1.377 0.76 -1.64 1.64 1.000 1.400 40.264 1.394 0.66 -0.43 1.000 1.400 40.245 1.400 0.61 0.00 1.000 40.245 1.400 0.61 0.00 0.14 1.000 1.400 40.245 1.400 0.61 0.00 0.14 1.000 1.400 40.245 1.400 0.61 0.00 0.14 1.000 1.400 40.245 1.400 0.61 0.00 0.14 1.000 1.400 40.245 1.400 0.61 0.00 0.14 1.000 1.400 40.245 1.400 0.61 0.00 0.14 1.000 1.400 1.400 40.245 1.400 0.61 0.00 0.14 1.000 1.4 | | | | | 1800.0 | 53.300 | 1.520 | 52.968 | 1.539 | -0.62 | | | Mar. 22. 2018 Head | | | | | | | | | | | | | Mar. 22. 2018 Head 21.2 21.3 1900.0 40.000 1.400 40.264 1.394 0.66 -0.43 Mar. 23. 2018 1900 21.3 1907.6 40.000 1.400 40.245 1.400 0.60 0.14 Mar. 23. 2018 1900 21.3 21.4 1850.2 53.300 1.520 53.253 1.494 -0.09 -1.71 Mar. 24. 2018 1900 21.3 1850.2 53.300 1.520 53.170 1.521 -0.24 0.07 Mar. 24. 2018 1900 21.1 21.6 1850.4 53.300 1.520 53.060 1.548 -0.45 1.84 Mar. 24. 2018 1900 21.1 21.6 1880.0 53.300 1.520 53.060 1.548 -0.45 1.84 Mar. 24. 2018 1900 21.1 21.6 1880.0 53.300 1.520 53.163 1.522 -0.26 0.13 Mar. 24. 2018 2450 1.4 24.0 1.4 < | | | | | | | | | | | | | Mar. 23. 2018 1900 21.3 21.4 1850.2 53.300 1.520 53.253 1.494 -0.09 -1.71 | Mar. 22. 2018 | | 21.2 | 21.3 | | | | | | | | | Mar. 23. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 28. 2018 Mar. 29. 2018 Mar. 24. 2 | | Head | | | | | | | | | | | Mar. 23. 2018 1900 21.3 21.4 21.4 1850.2 53.300 1.520 53.253 1.494 -0.09 -1.71 | | | | | | | | | | | | | Mar. 23. 2018 1900 Body 21.3 21.4 1880.0 53.300 1.520 53.170 1.521 -0.24 0.07 1900.0 53.300 1.520 53.093 1.539 -0.39 1.25 1900.0 53.300 1.520 53.060 1.548 -0.45 1.84 Mar. 24. 2018 1900.0 21.1 21.6 1880.0 53.300 1.520 53.259 1.499 -0.08 -1.38 Mar. 24. 2018 1900.0 53.300 1.520 53.163 1.522 -0.26 0.13 1900.0 53.300 1.520 53.068 1.550 -0.45 1.97 1907.6 53.300 1.520 53.068 1.550 -0.45 1.97 1907.6 53.300 1.520 53.068 1.550 -0.45 1.97 1907.6 53.300 1.520 53.068 1.550 -0.45 1.97 1907.6 52.32 1.880 1.550 0.02 1.97 1.97 | | | | | | | | | | | | | Mar. 23. 2018 Body 21.3 21.4 1900.0 53.300 1.520 53.093 1.539 -0.39 1.25 1909.8 53.300 1.520 53.060 1.548 -0.45 1.84 1852.4 53.300 1.520 53.060 1.548 -0.45 1.84 1852.4 53.300 1.520 53.060 1.548 -0.45 1.84 1852.4 53.300 1.520 53.060 1.548 -0.45 1.84 1852.4 53.300 1.520 53.060 1.548 -0.45 1.84 1852.4 53.300 1.520 53.060 1.548 -0.45 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.8 | | 4000 | | | | | | | | | | | Mar. 24. 2018 28. 2018 Mar. 28. 2018 Mar. 29. 20 | Mar. 23. 2018 | | 21.3 | 21.4 | | | | | | | | | Mar. 24. 2018 28. 2018 Mar. 28. 2018 Mar. 29. 2018 Mar. 24. 2018 Mar. 24. 2018 Mar. 26. 2018 Mar. 26. 2018 Mar. 27. 2018 Mar. 28. 2018 Mar. 28. 2018 Mar. 29. 2 | | Бойу | | | | | | | | | | | Mar. 24. 2018 | | | | | | | , | | | | | | Mar. 24. 2018 Body 21.1 21.6 1900.0 53.300 1.520 53.084 1.542 -0.41 1.45 1907.6 53.300 1.520 53.084 1.550 -0.45 1.97 2402.0 39.282 1.757 39.380 1.785 0.25 1.59 2412.0 39.285 1.766 39.351 1.796 0.22 1.70 2437.0 39.222 1.788 39.276 1.824 0.14 2.01 2441.0 39.215 1.792 39.263 1.829 0.12 2.06 2450.0 39.200 1.800 39.229 1.839 0.07 2.17 2462.0 39.184 1.813 39.190 1.853 0.02 2.21 2472.0 39.171 1.823 39.153 1.863 -0.05 2.19 2480.0 39.160 1.832 39.119 1.872 -0.10 2.18 2402.0 52.764 1.904 51.153 1.850 -3.05 -2.84 2412.0 52.751 1.914 51.127 1.862 -3.08 -2.72 2437.0 52.717 1.938 51.062 1.892 -3.14 -2.37 2441.0 52.717 1.938 51.062 1.892 -3.14 -2.37 2441.0 52.712 1.941 51.050 1.896 -3.15 -2.32 2472.0 52.662 1.991 50.974 1.932 -3.20 -2.29 2472.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | | 4000 | | | | | | | | | | | Mar. 28. 2018 Mar. 29. 2018 Mar. 29. 2018 Body Head 1907.6 53.300 1.520 53.058 1.550 -0.45 1.97 2402.0 39.282 1.757 39.380 1.786 0.25 1.59 2412.0 39.265 1.766 39.351 1.796 0.22 1.70 2437.0 39.222 1.788 39.276 1.824 0.14 2.01 1.824 0.14 2.01 2441.0 39.215 1.792 39.263 1.829 0.12 2.06 2450.0 39.200 1.800 39.229 1.839 0.07 2.17 2462.0 39.184 1.813 39.190 1.853 0.02 2.21 2472.0 39.171 1.823 39.153 1.863 -0.05 2.19 2480.0 39.160 1.832 39.119 1.872 -0.10 2.18 2402.0 52.764 1.904 51.153 1.860 -3.05 -2.84 2412.0 52.771 1.938 51.062 1.892 -3.14 -2.37 2447.0 52.772 1.941 51.127 1.862 -3.08 -2.72 2437.0 52.771 1.938 51.062 1.892 -3.14 -2.37 2441.0 52.772 1.941 51.050 1.896 -3.15 -2.32 2462.0 52.665 1.967 51.001 1.922 -3.20 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.20 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.20 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 -2.29 | Mar. 24. 2018 | | 21.1 | 21.6 | | | | | | | | | Mar. 28. 2018 2450
Head 21.8 24.1 24.1 39.282
2412.0 1.757
39.265 39.380
1.766 1.785
39.351 0.25
1.796 1.59
0.22 1.70
1.70 Mar. 28. 2018 2450
Head 21.8 22.1 2412.0 39.265
39.222 1.788
1.792 39.263
39.263 1.824
1.829 0.12
0.12 2.06
2.06
2.06 2440.0 39.200
2462.0 1.800
39.184 39.299
1.803
39.190 1.839
1.839 0.07
0.07 2.17
2.17 2480.0 39.160 1.832
39.190 39.153
1.863 1.863
0.05
0.05
2.19 -0.05
2.19 Mar. 29. 2018 2450
Body 2462.0
2412.0 52.764
2412.0 1.904
52.751 51.153
1.914 1.850
51.026 -3.05
-3.05
-3.15
-3.14 -2.37
-2.32 2450
Body 21.6 2472.0
2437.0 52.717
2441.0 1.914
52.700 51.050
51.026 1.896
1.998 -3.14
-3.18 -2.15
-2.32 2462.0 52.685
2472.0 1.993
50.974 1.932
1.941 -3.25
-3.22 -2.47
-2.47 2480.0 52.662
1.993 1.993
50.949 1.941
1.941 -3.25
-3.25 -2.61 <td></td> <td>Вобу</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | Вобу | | | | | | | | | | | Mar. 28. 2018 2450 Head 21.8 2412.0 39.265 1.766 39.351 1.796 0.22 1.70 Mar. 28. 2018 2450 Head 21.8 22.1 2437.0 39.222 1.788 39.276 1.824 0.14 2.01 2441.0 39.215 1.792 39.263 1.829 0.12 2.06 2450.0 39.200 1.800 39.229 1.839 0.07 2.17 2462.0 39.184 1.813 39.190 1.853 0.02 2.21 2472.0 39.171 1.823 39.153 1.863 -0.05 2.19 2480.0 39.160 1.832 39.119 1.872 -0.10 2.18 4241.0 52.764 1.904 51.153 1.850 -3.05 -2.84 2450 2450 52.764 1.904 51.153 1.862 -3.08 -2.72 2437.0 52.717 1.938 51.062 1.892 -3.14 -2.37 2450 80dy 2450.0 52.751 1.941 51.050 1.896 -3. | | | | | | | , | | | | | | Mar. 28. 2018 2450 Head 24.8 2437.0 39.222 1.788 39.276 1.824 0.14 2.01 Mar. 28. 2018 2450 Head 21.8 2441.0 39.215 1.792 39.263 1.829 0.12 2.06 2450.0 39.200 1.800 39.229 1.839 0.07 2.17 2462.0 39.184 1.813 39.190 1.853 0.02 2.21 2472.0 39.171 1.823 39.153 1.863 -0.05 2.19 2480.0 39.160 1.832 39.119 1.872 -0.10 2.18 2450 2480.0 52.764 1.904 51.153 1.850 -3.05 -2.84 2412.0 52.751 1.914 51.127 1.862 -3.08 -2.72 2437.0 52.717 1.938 51.062 1.892 -3.14 -2.37 2450.0 52.700 1.950 51.026 1.896 -3.15 -2.32 2462.0 52.662 1.981 50.974 1.932 -3.22 -3.24 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | 1 | | | | | | | | | | Mar. 28. 2018 2450 Head 21.8 22.1 2441.0 39.215 1.792 39.263 1.829 0.12 2.06 2450.0 39.200 1.800 39.229 1.839 0.07 2.17 2462.0 39.184 1.813 39.190 1.853 0.02 2.21 2472.0 39.171 1.823 39.153 1.863 -0.05 2.19 2480.0 39.160 1.832 39.119 1.872 -0.10 2.18 2450 2412.0 52.764 1.904 51.153 1.850 -3.05 -2.84 2412.0 52.751 1.914 51.127 1.862 -3.08 -2.72 2437.0 52.717 1.938 51.062 1.892 -3.14 -2.37 2450.0 52.700 1.950 51.026 1.908 -3.15 -2.32 2450.0 52.685 1.967 51.001 1.922 -3.20 -2.29 2472.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | | | 1 | | | | | | | | | | Mar. 28. 2018 Head | | 2450 | 1 | | | | | | | | 1 | | Mar. 29. 2018 Mar. 29. 2018 Body A | Mar. 28. 2018 | | 21.8 | 22.1 | | | | | | | | | Mar. 29. 2018 Mar. 29. 2018 Body 2472.0 2480.0 39.171 1.823 39.153 1.863 -0.05 2.19 2480.0 39.160 1.832 39.119 1.872 -0.10 2.18 2402.0 52.764 1.904 51.153 1.850 -3.05 -2.84 2412.0 52.751 1.914 51.127 1.862 -3.08 -2.72 2437.0 52.717 1.938 51.062 1.892 -3.14 -2.37 2441.0 52.712 1.941 51.050 1.896 -3.15 -2.32 2450.0 52.602 1.903 51.026 1.908 -3.18 -2.15 2462.0 52.662 1.903 50.974 1.932 -3.22 -2.47 2480.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | | i ieau | 1 | | | | | | | | | | Mar. 29. 2018 Page 1.6 Page 1.6 Page 1.7 Page 1.8 1. | | | 1 | | | | | | | | | | Mar. 29. 2018 Page 1.6 Page 1.7 1. | | | 1 | | | | | | | | | | Mar. 29. 2018 Mar. 29. 2018 April 2450 Body Body 21.6 241.0 2412.0 52.751 1.914 51.127 1.862 -3.08 -2.72 2437.0 52.717 1.938 51.062 1.892 -3.14 -2.37 2441.0 52.712 1.941 51.050 1.896 -3.15 -2.32 2450.0 52.600 1.950 51.026 1.908 -3.18 -2.15 2462.0 52.685 1.967 51.001 1.922 -3.20 -2.29 2472.0 52.672 1.981 50.974 1.932 -3.22 -2.47 2480.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | | | | | | | | | | | | | Mar. 29. 2018 Pady Pady Pady Pady Pady Pady Pady Pady | | | 1 | | | | | | | | | | Mar. 29. 2018 Body 21.6
2450 Body 21.6 21.7 2441.0 52.712 1.941 51.050 1.896 -3.15 -2.32 2450.0 52.700 1.950 51.026 1.908 -3.18 -2.15 2462.0 52.685 1.967 51.001 1.922 -3.20 -2.29 2472.0 52.672 1.981 50.974 1.932 -3.22 -2.47 2480.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | | | 1 | | | | | | | | | | Mar. 29. 2018 Body Body 21.6 21.7 2450.0 52.700 1.950 51.026 1.908 -3.18 -2.15 2462.0 52.685 1.967 51.001 1.922 -3.20 -2.29 2472.0 52.672 1.981 50.974 1.932 -3.22 -2.47 2480.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | | | 1 | | | | | | | | | | Body 2450.0 52.700 1.950 51.026 1.908 -3.18 -2.15
2462.0 52.685 1.967 51.001 1.922 -3.20 -2.29
2472.0 52.672 1.981 50.974 1.932 -3.22 -2.47
2480.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | Mar. 29 2018 | | 21.6 | 21 7 | | | | | | | | | 2472.0 52.672 1.981 50.974 1.932 -3.22 -2.47 2480.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | 25. 2010 | Body | | | | | | | | | | | 2480.0 52.662 1.993 50.949 1.941 -3.25 -2.61 | | | 1 | | | | (| | | | | | | | | 1 | | 2472.0 | 52.672 | 1.981 | 50.974 | 1.932 | -3.22 | -2.47 | | | | | <u> </u> | | | | | | | | | Report No.: DRRFCC1804-0046(1) The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. #### Measurement Procedure for Tissue verification: The network analyzer and probe system was configured and calibrated. The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight $= \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^s \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho'$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \mu^2 + \mu^{3/2} - 2\rho p^2 \cos \phi^2$, ϕ is the angular frequency, and $f = \sqrt{-1}$ angle. 3) The complex admittance with respect to the probe aperture was measured. 4) The complex relative permittivity , for example from the below equation (Pournaropoulos and ## 11.2 Test System Verification Prior to assessment, the system is verified to the ± 10 % of the specifications at below listed frequencies by using the SAR Dipole kit(s). (Graphic Plots Attached) Table 11.2.1 System Verification Results (1g) | | | | S | YSTEM DIF | OLE VERIFI | CATION TAR | GET & ME | ASURED | | | | | |--------------------|----------------|----------------------|---------------|----------------|--------------------------|-------------------------|--------------|------------------------|--|---|--|------------------| | SAR
System
| Freq.
[MHz] | SAR
Dipole kits | Date(s) | Tissue
Type | Ambient
Temp.
[°C] | Liquid
Temp.
[°C] | Probe
S/N | Input
Power
(mW) | 1 W
Target
SAR _{1g}
(W/kg) | Measured
SAR _{1g}
(W/kg) | 1 W
Normalized
SAR _{1g}
(W/kg) | Deviation
[%] | | Α | 750 | D750V3,
SN:1049 | Mar. 27. 2018 | Head | 21.5 | 21.7 | 3327 | 250 | 8.32 | 2.10 | 8.40 | 0.96 | | Α | 750 | D750V3,
SN:1049 | Mar. 27. 2018 | Body | 21.5 | 21.8 | 3327 | 250 | 8.70 | 2.21 | 8.84 | 1.61 | | Α | 835 | D835V2,
SN:464 | Mar. 19. 2018 | Head | 21.0 | 21.3 | 3327 | 250 | 9.38 | 2.28 | 9.12 | -2.77 | | А | 835 | D835V2,
SN:464 | Mar. 20. 2018 | Body | 21.3 | 21.9 | 3327 | 250 | 9.45 | 2.36 | 9.44 | -0.11 | | Α | 835 | D835V2,
SN:464 | Mar. 21. 2018 | Body | 21.1 | 21.5 | 3327 | 250 | 9.45 | 2.35 | 9.40 | -0.53 | | А | 1800 | D1800V2,
SN:2d047 | Mar. 26. 2018 | Head | 21.4 | 21.8 | 3327 | 250 | 39.9 | 9.68 | 38.72 | -2.96 | | Α | 1800 | D1800V2,
SN:2d047 | Mar. 26. 2018 | Body | 21.4 | 21.6 | 3327 | 250 | 39.2 | 9.61 | 38.44 | -1.94 | | А | 1900 | D1900V2,
SN:5d029 | Mar. 22. 2018 | Head | 21.2 | 21.3 | 3327 | 250 | 39.2 | 9.14 | 36.56 | -6.73 | | Α | 1900 | D1900V2,
SN:5d029 | Mar. 23. 2018 | Body | 21.3 | 21.4 | 3327 | 250 | 39.6 | 9.75 | 39.00 | -1.52 | | Α | 1900 | D1900V2,
SN:5d029 | Mar. 24. 2018 | Body | 21.1 | 21.6 | 3327 | 250 | 39.6 | 9.77 | 39.08 | -1.31 | | А | 2450 | D2450V2,
SN: 726 | Mar. 28. 2018 | Head | 21.8 | 22.1 | 3327 | 100 | 51.9 | 5.26 | 52.60 | 1.35 | | Α | 2450 | D2450V2,
SN: 726 | Mar. 29. 2018 | Body | 21.6 | 21.7 | 3327 | 100 | 50.3 | 5.16 | 51.60 | 2.58 | Note1 : System Verification was measured with input 250 mW, 100 mW and normalized to 1W. Note2 : Full system validation status and results can be found in Attachment 3. Figure 11.1 Dipole Verification Test Setup Diagram & Photo # **12. SAR TEST RESULTS** ## 12.1 Head SAR Results Table 12.1.1 GSM/GPRS 850 Head SAR Report No.: DRRFCC1804-0046(1) | | | | | | | MEASU | JREMENT RES | ULTS | | | | | | | |-------|------|--------|---------|---------------------|----------------------------|---------------|-------------|------------------|---------------|---------|--------------------------------|---------|---------------|-------| | FREQU | ENCY | Mode/ | O-miles | Maximum
Allowed | Conducted | Drift | Phantom | Device | # of | Duty | 1g | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | Service | Power
[dBm] | Power
[dBm] | Power
[dB] | Position | Serial
Number | Time
Slots | Cycle | SAR
(W/kg) | Factor | SAR
(W/kg) | # | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.62 | 0.190 | Left Touch | FCC #1 | 1 | 1:8.3 | 0.155 | 1.019 | 0.158 | A1 | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.62 | 0.170 | Right Touch | FCC #1 | 1 | 1:8.3 | 0.100 | 1.019 | 0.102 | | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.62 | 0.110 | Left Tilt | FCC #1 | 1 | 1:8.3 | 0.066 | 1.019 | 0.067 | | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.62 | -0.080 | Right Tilt | FCC #1 | 1 | 1:8.3 | 0.069 | 1.019 | 0.070 | | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | 0.150 | Left Touch | FCC #1 | 4 | 1:2.075 | 0.236 | 1.012 | 0.239 | A2 | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | 0.170 | Right Touch | FCC #1 | 4 | 1:2.075 | 0.145 | 1.012 | 0.147 | | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | 0.150 | Left Tilt | FCC #1 | 4 | 1:2.075 | 0.102 | 1.012 | 0.103 | | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | 0.020 | Right Tilt | FCC #1 | 4 | 1:2.075 | 0.110 | 1.012 | 0.111 | | | | | | | Spatial Peak | AFETY LIMIT Population Exp | osure | | | | | Head
W/kg (mW
ged over 1 | 0, | | | #### Table 12.1.2 PCS/GPRS 1900 Head SAR | | | | | | | MEASU | REMENT RESU | ILTS | | | | | | | |--------|------|---------|---------|--------------------|----------------------------|---------------|-------------|------------------|---------------|---------|--------------------------------|---------|---------------|-------| | FREQUI | ENCY | Mode/ | Camilaa | Maximum
Allowed | Conducted | Drift | Phantom | Device | # of | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | Service | Power
[dBm] | Power
[dBm] | Power
[dB] | Position | Serial
Number | Time
Slots | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 1880.0 | 661 | PCS1900 | PCS | 30.70 | 30.42 | 0.100 | Left Touch | FCC #1 | 1 | 1:8.3 | 0.110 | 1.067 | 0.117 | А3 | | 1880.0 | 661 | PCS1900 | PCS | 30.70 | 30.42 | -0.070 | Right Touch | FCC #1 | 1 | 1:8.3 | 0.069 | 1.067 | 0.074 | | | 1880.0 | 661 | PCS1900 | PCS | 30.70 | 30.42 | -0.120 | Left Tilt | FCC #1 | 1 | 1:8.3 | 0.025 | 1.067 | 0.027 | | | 1880.0 | 661 | PCS1900 | PCS | 30.70 | 30.42 | -0.020 | Right Tilt | FCC #1 | 1 | 1:8.3 | 0.063 | 1.067 | 0.067 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.140 | Left Touch | FCC #1 | 4 | 1:2.075 | 0.173 | 1.016 | 0.176 | A4 | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.010 | Right Touch | FCC #1 | 4 | 1:2.075 | 0.117 | 1.016 | 0.119 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.130 | Left Tilt | FCC #1 | 4 | 1:2.075 | 0.045 | 1.016 | 0.046 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.030 | Right Tilt | FCC #1 | 4 | 1:2.075 | 0.116 | 1.016 | 0.118 | | | | | | | Spatial Peak | AFETY LIMIT Population Exp | osure | | | | | Head
W/kg (mV
ged over 1 | | | | ## Table 12.1.3 WCDMA 850 Head SAR | | | | | | M | IEASUREN | MENT RESULTS | | | | | | | |-------|-------|-----------|---------|--------------------|----------------|---------------|--------------|------------------|-------|---------------|---------|---------------|-------| | FREQU | JENCY | Mode/ | | Maximum
Allowed | Conducted | Drift | Phantom | Device | Dutv | 1g | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | Service | Power
[dBm] | Power
[dBm] | Power
[dB] | Position | Serial
Number | Cycle | SAR
(W/kg) | Factor | SAR
(W/kg) | # | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | 0.090 | Left Touch | FCC #1 | 1:1 | 0.250 | 1.050 | 0.263 | A5 | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | -0.120 | Right Touch | FCC #1 | 1:1 | 0.157 | 1.050 | 0.165 | | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | 0.060 | Left Tilt | FCC #1 | 1:1 | 0.108 | 1.050 | 0.113 | | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | -0.010 | Right Tilt | FCC #1 | 1:1 | 0.113 | 1.050 | 0.119 | | | | | | | | | - | • | | | = | · | - | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram ## Table 12.1.4 WCDMA 1900 Head SAR | | | | | | MEA | SUREME | NT RESULTS | | | | | | | |--------|------|------------|---------|--------------------|----------------|---------------|-------------|------------------|-------|---------------|---------|---------------|-------| | FREQU
 ENCY | Mode/ | | Maximum
Allowed | Conducted | Drift | Phantom | Device | Duty | 1g | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | Service | Power
[dBm] | Power
[dBm] | Power
[dB] | Position | Serial
Number | Cycle | SAR
(W/kg) | Factor | SAR
(W/kg) | # | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.060 | Left Touch | FCC #1 | 1:1 | 0.083 | 1.276 | 0.106 | A6 | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.000 | Right Touch | FCC #1 | 1:1 | 0.045 | 1.276 | 0.057 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | -0.040 | Left Tilt | FCC #1 | 1:1 | 0.020 | 1.276 | 0.026 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.040 | Right Tilt | FCC #1 | 1:1 | 0.042 | 1.276 | 0.054 | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram ## Table 12.1.5 LTE Band 12 Head SAR | | | | | | | | MEA | SUREMEN | T RESULT | rs | | | | | | | | |-------|----------|------------|-------|----------------|--------------|----------------|---------------|----------------|------------------|-------|------|-------|-------|-----------|---------|---------------|-------| | FREQU | JENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | WIFK | Fosition | Number | wiou. | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.080 | 0 | Left
Touch | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.143 | 1.072 | 0.153 | A7 | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | -0.150 | 1 | Left
Touch | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.105 | 1.069 | 0.112 | | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.130 | 0 | Right
Touch | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.098 | 1.072 | 0.105 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | 0.160 | 1 | Right
Touch | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.072 | 1.069 | 0.077 | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.110 | 0 | Left Tilt | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.058 | 1.072 | 0.062 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | 0.170 | 1 | Left Tilt | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.043 | 1.069 | 0.046 | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.180 | 0 | Right
Tilt | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.062 | 1.072 | 0.066 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | 0.150 | 1 | Right
Tilt | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.049 | 1.069 | 0.052 | | | | <u> </u> | | | | | | - | - | | | | - | | | - | | - | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram Table 12.1.6 LTE Band 5 (Cell) Head SAR | | | | | | | | MEAS | SUREMEN | T RESULT | S | | | | | | | | |-------|-------|-----------|-------|----------------|--------------|----------------|--------|----------------|------------------|-------|------|-------|-------|-----------|---------|---------------|-------| | FREQ | UENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | WII IX | 1 Gallion | Number | wiou. | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.190 | 0 | Left
Touch | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.277 | 1.062 | 0.294 | A8 | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.170 | 1 | Left
Touch | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.210 | 1.067 | 0.224 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | -0.180 | 0 | Right
Touch | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.199 | 1.062 | 0.211 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | -0.120 | 1 | Right
Touch | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.141 | 1.067 | 0.150 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.150 | 0 | Left Tilt | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.093 | 1.062 | 0.099 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.120 | 1 | Left Tilt | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.090 | 1.067 | 0.096 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.040 | 0 | Right
Tilt | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.141 | 1.062 | 0.150 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.030 | 1 | Right
Tilt | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.112 | 1.067 | 0.120 | | | | - | | | -
· · | | - | - | - | [| - | - | - | | - | - | - | - | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram ## Table 12.1.7 LTE Band 4 (AWS) Head SAR | | | | | | | | MEAS | SUREMEN | T RESULT | s | | | | | | | | |--------|-------|-----------|-------|----------------|--------------|----------------|------|----------------|------------------|--------|------|-------|-------|-----------|---------|---------------|-------| | FREQU | UENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | | , comen | Number | illou. | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | -0.070 | 0 | Left
Touch | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.087 | 1.005 | 0.087 | A9 | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.110 | 1 | Left
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.072 | 1.005 | 0.072 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | 0.130 | 0 | Right
Touch | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.080 | 1.005 | 0.080 | | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.190 | 1 | Right
Touch | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.057 | 1.005 | 0.057 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | 0.020 | 0 | Left Tilt | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.030 | 1.005 | 0.030 | | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | -0.020 | 1 | Left Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.024 | 1.005 | 0.024 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | 0.160 | 0 | Right
Tilt | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.037 | 1.005 | 0.037 | | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | -0.140 | 1 | Right
Tilt | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.030 | 1.005 | 0.030 | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram Table 42.4.0 DTC Head CAD | | | | | | | 1 abie 12.1.8 | DIS Head | I SAR | | | | | | | | |--------|-----|-------------------|-----------------------------|--------------------|----------------|---------------------|------------------|--------------------------|--------------|---------------|-----------|-------------------|----------------------------|---------------------|-----------| | | | | | | | MEASURE | MENT RESU | LTS | | | | | | | | | FREQUE | NCY | Mode
(Antenna) | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plot
s | | MHz | Ch | (Antenna) | [dBm] | [dBm] | [dB] | rosition | Number | Arca ocan | [Mbps] | Oyolo | (W/kg) | 1 dotor | Cycle) | (W/kg) | # | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | 0.010 | Left Touch | FCC #1 | 0.292 | 1 | 99.8 | 0.302 | 1.089 | 1.002 | 0.330 | | | 2412.0 | 1 | 802.11b | 19.00 | 18.35 | -0.070 | Right Touch | FCC #1 | 0.666 | 1 | 99.8 | 0.655 | 1.161 | 1.002 | 0.762 | | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | 0.040 | Right Touch | FCC #1 | 0.788 | 1 | 99.8 | 0.787 | 1.089 | 1.002 | 0.859 | A10 | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | 0.100 | Left Tilt | FCC #1 | 0.277 | 1 | 99.8 | 0.282 | 1.089 | 1.002 | 0.308 | | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | 0.040 | Right Tilt | FCC #1 | 0.671 | 1 | 99.8 | 0.724 | 1.089 | 1.002 | 0.790 | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure Head 1.6 W/kg (mW/g) averaged over 1 gram | | | | | | Adjı | usted SAR results fo | r OFDM SAR | | | | | | |--------|-----|-------------------------------|-------------|---------------------------|-------------------------|----------------------|------------|---------|------------------------------|-----------------|---------------------------|-----------------------| | FREQUE | NCY | | | Maximum | 1g | | | | Maximum | Ratio of | 1g | | | MHz | Ch | Mode/ Antenna | Service | Allowed
Power
[dBm] | Scaled
SAR
(W/kg) | FREQUENCY
[MHz] | Mode | Service | Allowed
Power
[dBm | OFDM to
DSSS | Adjusted
SAR
(W/kg) | Determine
OFDM SAR | | 2462.0 | 11 | 802.11b | DSSS | 19.0 | 0.859 | 2437 | 802.11g | OFDM | 17.5 | 0.708 | 0.608 | X | | 2462.0 | 11 | 802.11b | DSSS | 19.0 | 0.859 | 2437 | 802.11n | OFDM | 16.0 | 0.501 | 0.430 | Х | | | | ANSI / IEEE Uncontrolled Expo | Spatial Pea | | | | | | He
1.6 W/kg
averaged o | (mW/g) | | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. ## Table 12.1.9 Bluetooth Head SAR | | | | | | | MEASURE | MENT RESULT | s | | | | | | | |--------|-----|-----------|-----------------------------|--------------------|----------------|---------------------|------------------|----------------|---------------|-----------|-------------------|----------------------------|---------------------|-------| | FREQUE | NCY | Mode | Maximum
Allowed
Power | Conducted
Power |
Drift
Power | Phantom
Position | Device
Serial | Rate
[Mbps] | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | r comon | Number | [po] | (%) | (W/kg) | 1 40101 | Cycle) | (W/kg) | " | | 2441.0 | 39 | Bluetooth | 11.50 | 10.15 | -0.150 | Left Touch | FCC #1 | 1 | 76.8 | 0.054 | 1.365 | 1.302 | 0.096 | | | 2441.0 | 39 | Bluetooth | 11.50 | 10.15 | 0.070 | Right Touch | FCC #1 | 1 | 76.8 | 0.189 | 1.365 | 1.302 | 0.336 | A11 | | 2441.0 | 39 | Bluetooth | 11.50 | 10.15 | 0.160 | Left Tilt | FCC #1 | 1 | 76.8 | 0.052 | 1.365 | 1.302 | 0.092 | | | 2441.0 | 39 | Bluetooth | 11.50 | 10.15 | -0.030 | Right Tilt | FCC #1 | 1 | 76.8 | 0.152 | 1.365 | 1.302 | 0.270 | | | | _ | Α | NSI / IEEE C9 | 5.1-1992- SAFE | TY LIMIT | = | _ | | - | | Head | = | = | _ | | | | | | patial Peak | | | | | | 1.6 | W/kg (mW/ | g) | | l | | | | Uncontr | olled Exposur | e/General Popul | lation Exp | osure | | | | avera | iged over 1 g | ram | | | # 12.2 Standalone Body-Worn SAR Worn SAR Results Table 12.2.1 GSM/PCS/GPRS/WCDMA Body-Worn SAR | | | | | | ME | ASUREM | ENT RESUL | TS | | | | | | | |--------|------------|---------------|---------|---|-----------------------------|------------------------|----------------------------|----------------------------|----------------------|---------------|---------------------------------|-------------------|---------------------|------------| | FREQU | ENCY
Ch | Mode/
Band | Service | Maximum
Allowed
Power | Conducted
Power
[dBm] | Drift
Power
[dB] | Spacing
[Side] | Device
Serial
Number | # of
Time
Slot | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | 1g
Scaled
SAR | Plots
| | 836.6 | 190 | GSM850 | GSM | [dBm]
33.70 | 33.62 | 0.010 | 10 mm | FCC #1 | s | 1:8.3 | 0.461 | 1.019 | (W/kg)
0.470 | A12 | | 836.6 | 190 | GSM850 | GSM | 33.70 | 33.62 | 0.020 | [Front]
10 mm
[Rear] | FCC #1 | 1 | 1:8.3 | 0.440 | 1.019 | 0.448 | | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | -0.190 | 10 mm
[Front] | FCC #1 | 4 | 1:2.075 | 0.667 | 1.012 | 0.675 | A13 | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | -0.010 | 10 mm
[Rear] | FCC #1 | 4 | 1:2.075 | 0.665 | 1.012 | 0.673 | | | 1880.0 | 661 | PCS1900 | PCS | 30.70 | 30.42 | 0.040 | 10 mm
[Front] | FCC #1 | 1 | 1:8.3 | 0.329 | 1.067 | 0.351 | A14 | | 1880.0 | 661 | PCS1900 | PCS | 30.70 | 30.42 | 0.000 | 10 mm
[Rear] | FCC #1 | 1 | 1:8.3 | 0.290 | 1.067 | 0.309 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | -0.000 | 10 mm
[Front] | FCC #1 | 4 | 1:2.075 | 0.527 | 1.016 | 0.535 | A15 | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.010 | 10 mm
[Rear] | FCC #1 | 4 | 1:2.075 | 0.462 | 1.016 | 0.469 | | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | -0.170 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.751 | 1.050 | 0.789 | A16 | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | 0.020 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.649 | 1.050 | 0.681 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.120 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.240 | 1.276 | 0.306 | A17 | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.000 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.238 | 1.276 | 0.304 | | | | | ANSI / I | Spat | -1992– SAFE
ial Peak
eneral Popul | | e | | | | | Body
W/kg (mW/
ged over 1 | | | | Pages: 50 /159 Report No.: DRRFCC1804-0046(1) # Table 12.2.2 LTE B12, B5, B4 Body-Worn SAR | | | | | | | | MEAS | SUREMEN | T RESULT | s | | | | | | | | |--------|-------|------------|-------|--|--------------|--------------------|------|------------------|------------------|------|------|-------|------------------------------|-----------|---------|---------------|-------| | FREQU | UENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | | rosition | Number | wou. | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.010 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.666 | 1.072 | 0.714 | A18 | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | -0.030 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.528 | 1.069 | 0.564 | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | -0.040 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.646 | 1.072 | 0.693 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | -0.020 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.480 | 1.069 | 0.513 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | -0.020 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.942 | 1.062 | 1.000 | A19 | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.000 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.737 | 1.067 | 0.786 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.81 | 0.010 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.706 | 1.094 | 0.772 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.030 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.893 | 1.062 | 0.948 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.010 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.684 | 1.067 | 0.730 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.81 | -0.030 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.667 | 1.094 | 0.730 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.000 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.937 | 1.062 | 0.995 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | -0.040 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.259 | 1.005 | 0.260 | | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.030 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.209 | 1.005 | 0.210 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | 0.060 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.314 | 1.005 | 0.316 | A20 | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.070 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.258 | 1.005 | 0.259 | | | | Unco | | ; | 95.1-1992-
Spatial Pe
ire/Genera | ak | LIMIT
on Exposi | ıre | - | | - | - | | Bod
6 W/kg (
aged over | | - | - | - | Note: Blue entries represent variability measurements. Pages: 51 /159 Report No.: DRRFCC1804-0046(1) ## Table 12.2.3 DTS Body-Worn SAR | | | | | | | MEASURE | EMENT RESULT | rs | | | | | | | | |--------|-----------|---------|--------------------------------------|---|------------------------|---------------------|----------------------------|--------------------------|------------------------|---------------|------------------------------|-------------------|--------------------------------------|---------------|------------| | FREQUE | NCY
Ch | Mode | Maximum
Allowed
Power
[dBm] | Conducted
Power
[dBm] | Drift
Power
[dB] | Phantom
Position | Device
Serial
Number | Peak SAR of
Area Scan | Data
Rate
[Mbps] | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | Scaling
Factor
(Duty
Cycle) | SAR
(W/kg) | Plots
| | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | 0.020 | 10 mm
[Front] | FCC #1 | 0.131 | 1 | 99.8 | 0.133 | 1.089 | 1.002 | 0.145 | | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | -0.070 | 10 mm
[Rear] | FCC #1 | 0.202 | 1 | 99.8 | 0.249 | 1.089 | 1.002 | 0.272 | A21 | | | | | s | 5.1-1992– SAFE
patial Peak
e/General Popu | | osure | | | | | Boo
I.6 W/kg
eraged ov | , | 1 | | _ | | | | | | | Adju | sted SAR results fo | r OFDM SAR | | | | | | |--------|-----|-------------------------------|-------------|---------------------------|-------------------------|---------------------|------------|---------|------------------------------|-----------------|---------------------------|-----------------------| | FREQUE | NCY | | | Maximum | 1g | EDECUENCY | | | Maximum | Ratio of | 1g | 5.4 | | MHz | Ch | Mode/ Antenna | Service | Allowed
Power
[dBm] | Scaled
SAR
(W/kg) | FREQUENCY
[MHz] | Mode | Service | Allowed
Power
[dBm | OFDM to
DSSS | Adjusted
SAR
(W/kg) | Determine
OFDM SAR | | 2462.0 | 11 | 802.11b | DSSS | 19.0 | 0.272 | 2437 | 802.11g | OFDM | 17.5 | 0.708 | 0.193 | X | | 2462.0 | 11 | 802.11b | DSSS | 19.0 | 0.272 | 2437 | 802.11n | OFDM | 16.0 | 0.501 | 0.136 | X | | | _ | ANSI / IEEE Uncontrolled Expo | Spatial Pea | | | - | | | Bo
1.6 W/kg
averaged o | (mW/g) | | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. ## Table 12.2.4 Bluetooth Body-Worn SAR | | | | | | | MEASURE | EMENT RESULT | ·s | | | | | | | |--------|-----------|-----------|--------------------------------------|--|------------------------|---------------------|----------------------------|----------------|----------------------|---------------------|---------------------------------------|--------------------------------------|-------------------------------|------------| | FREQUE | NCY
Ch | Mode | Maximum
Allowed
Power
[dBm] | Conducted
Power
[dBm] | Drift
Power
[dB] | Phantom
Position | Device
Serial
Number | Rate
[Mbps] | Duty
Cycle
(%) | 1g
SAR
(W/kg) | Scaling
Factor | Scaling
Factor
(Duty
Cycle) | 1g
Scaled
SAR
(W/kg) | Plots
| | 2441.0 | 39 | Bluetooth | 11.50 | 10.15 | -0.090 | 10 mm
[Front] | FCC #1 | 1 | 76.8 | 0.024 | 1.365 | 1.302 | 0.043 | | | 2441.0 | 39 | Bluetooth |
11.50 | 10.15 | 0.010 | 10 mm
[Rear] | FCC #1 | 1 | 76.8 | 0.052 | 1.365 | 1.302 | 0.092 | A22 | | | - | | s | 5.1-1992– SAFE
patial Peak
e/General Popul | | osure | - | | • | | Body
6 W/kg (mW/g
aged over 1 g | | | | # 12.3 Standalone Hotspot SAR Results Table 12.3.1 GPRS/WCDMA Hotspot SAR | | | | | | ME | | ENT RESUL | | 4IN | | | | | | |--------|------|----------------------------|---------|--|-----------------------------|------------------------|-------------------|----------------------------|---------------------------|---------------|--------------------------------|-------------------|-------------------------------|------------| | FREQU | ENCY | Mode/
Band | Service | Maximum
Allowed
Power
[dBm] | Conducted
Power
[dBm] | Drift
Power
[dB] | Spacing
[Side] | Device
Serial
Number | # of
Time
Slot
s | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | 1g
Scaled
SAR
(W/kg) | Plots
| | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | -0.010 | 10 mm
[Bottom] | FCC #1 | 4 | 1:2.075 | 0.455 | 1.012 | 0.460 | | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | -0.190 | 10 mm
[Front] | FCC #1 | 4 | 1:2.075 | 0.667 | 1.012 | 0.675 | A13 | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | -0.010 | 10 mm
[Rear] | FCC #1 | 4 | 1:2.075 | 0.665 | 1.012 | 0.673 | | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | 0.140 | 10 mm
[Right] | FCC #1 | 4 | 1:2.075 | 0.081 | 1.012 | 0.082 | | | 836.6 | 190 | GSM850 | GPRS | 29.70 | 29.65 | -0.020 | 10 mm
[Left] | FCC #1 | 4 | 1:2.075 | 0.324 | 1.012 | 0.328 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.020 | 10 mm
[Bottom] | FCC #1 | 4 | 1:2.075 | 0.711 | 1.016 | 0.722 | A23 | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | -0.000 | 10 mm
[Front] | FCC #1 | 4 | 1:2.075 | 0.527 | 1.016 | 0.535 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.010 | 10 mm
[Rear] | FCC #1 | 4 | 1:2.075 | 0.462 | 1.016 | 0.469 | | | 1880.0 | 661 | PCS1900 | GPRS | 26.70 | 26.63 | 0.180 | 10 mm
[Left] | FCC #1 | 4 | 1:2.075 | 0.186 | 1.016 | 0.189 | | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | 0.130 | 10 mm
[Bottom] | FCC #1 | N/A | 1:1 | 0.442 | 1.050 | 0.464 | | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | -0.170 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.751 | 1.050 | 0.789 | A16 | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | 0.020 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.649 | 1.050 | 0.681 | | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | 0.080 | 10 mm
[Right] | FCC #1 | N/A | 1:1 | 0.084 | 1.050 | 0.088 | | | 836.6 | 4183 | WCDMA 850 | RMC | 25.20 | 24.99 | 0.120 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.312 | 1.050 | 0.328 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.120 | 10 mm
[Bottom] | FCC #1 | N/A | 1:1 | 0.367 | 1.276 | 0.468 | A24 | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.120 | 10 mm
[Front] | FCC #1 | N/A | 1:1 | 0.240 | 1.276 | 0.306 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | 0.000 | 10 mm
[Rear] | FCC #1 | N/A | 1:1 | 0.238 | 1.276 | 0.304 | | | 1880.0 | 9400 | WCDMA 1900 | RMC | 24.20 | 23.14 | -0.040 | 10 mm
[Left] | FCC #1 | N/A | 1:1 | 0.074 | 1.276 | 0.094 | | | | | ANSI / I
Uncontrolled E | Spat | -1992– SAFE
ial Peak
Seneral Popul | | e | | | | | Body
W/kg (mW
ged over 1 | | | | Table 12.3.2 LTE B12, B5 Hotspot SAR | | | | | | | | MEAS | SUREMEN | T RESULT | s | | | | | | | | |-------|-------|------------|-------|--------------------------|--------------|----------------|---------|-------------------|------------------|------|------|-------|-----------------------------|--------------------|---------|---------------|-------| | FREQU | JENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | iiii ix | 1 Control | Number | mou. | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.000 | 0 | 10 mm
[Bottom] | FCC
#1 | QPSK | 1 | 25 | 1:1 | 0.416 | 1.072 | 0.446 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | -0.130 | 1 | 10 mm
[Bottom] | FCC
#1 | QPSK | 25 | 0 | 1:1 | 0.312 | 1.069 | 0.334 | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.020 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 25 | 1:1 | 0.666 | 1.072 | 0.714 | A18 | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | -0.030 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 25 | 0 | 1:1 | 0.528 | 1.069 | 0.564 | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | -0.040 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 25 | 1:1 | 0.646 | 1.072 | 0.693 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | -0.020 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 25 | 0 | 1:1 | 0.480 | 1.069 | 0.513 | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.060 | 1 | 10 mm
[Right] | FCC
#1 | QPSK | 1 | 25 | 1:1 | 0.134 | 1.072 | 0.144 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | 0.060 | 0 | 10 mm
[Right] | FCC
#1 | QPSK | 25 | 0 | 1:1 | 0.110 | 1.069 | 0.118 | | | 707.5 | 23095 | LTE
B12 | 10 | 25.20 | 24.90 | 0.100 | 0 | 10 mm
[Left] | FCC
#1 | QPSK | 1 | 25 | 1:1 | 0.235 | 1.072 | 0.252 | | | 707.5 | 23095 | LTE
B12 | 10 | 24.20 | 23.91 | 0.100 | 1 | 10 mm
[Left] | FCC
#1 | QPSK | 25 | 0 | 1:1 | 0.167 | 1.069 | 0.179 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.160 | 0 | 10 mm
[Bottom] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.555 | 1.062 | 0.589 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.150 | 1 | 10 mm
[Bottom] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.419 | 1.067 | 0.447 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | -0.020 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.942 | 1.062 | 1.000 | A19 | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.000 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.737 | 1.067 | 0.786 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.81 | 0.010 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.706 | 1.094 | 0.772 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.030 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.893 | 1.062 | 0.948 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.010 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.684 | 1.067 | 0.730 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.81 | -0.030 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.667 | 1.094 | 0.730 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.110 | 0 | 10 mm
[Right] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.125 | 1.062 | 0.133 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | -0.180 | 1 | 10 mm
[Right] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.099 | 1.067 | 0.106 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.070 | 0 | 10 mm
[Left] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.424 | 1.062 | 0.450 | | | 836.5 | 20525 | LTE
B5 | 10 | 24.20 | 23.92 | 0.070 | 1 | 10 mm
[Left] | FCC
#1 | QPSK | 25 | 25 | 1:1 | 0.317 | 1.067 | 0.338 | | | 836.5 | 20525 | LTE
B5 | 10 | 25.20 | 24.94 | 0.000 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 49 | 1:1 | 0.937 | 1.062 | 0.995 | | | | | ANSI | | 95.1-1992- | | LIMIT | | | | | | _ | Bod | | _ | | | | | Unco | ntrolled | | Spatial Pe
ire/Genera | | on Exposi | ıre | | | | | | 6 W/kg (
aged ove | mw/g)
er 1 gram | | | | Note: Blue entries represent variability measurements. Pages: 54 /159 Report No.: DRRFCC1804-0046(1) Table 12.3.3 LTE B4 Hotspot SAR | | | | | | | | MEAS | SUREMEN | T RESULT | S | | | | | | | | |--------|-------|-----------|-------|--|--------------|----------------|------|-------------------|------------------|------|------|-------|-----------------------------------|-----------|---------|---------------|-------| | FREQU | JENCY | Mode/ | BW | Max
Allowed | Cond.
PWR | Drift
Power | MPR | Position | Device
Serial | Mod. | RB | RB | Duty | 1g
SAR | Scaling | 1g
Scaled | Plots | | MHz | Ch | Band | [MHz] | Power
[dBm] | [dBm] | [dB] | | | Number | | Size | Offs. | Cycle | (W/kg) | Factor | SAR
(W/kg) | # | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | -0.190 | 0 | 10 mm
[Bottom] | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.502 | 1.005 | 0.505 | A25 | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.060 | 1 | 10 mm
[Bottom] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.415 | 1.005 | 0.417 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | -0.040 | 0 | 10 mm
[Front] | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.259 | 1.005 | 0.260 | | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.030 | 1 | 10 mm
[Front] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.209 | 1.005 | 0.210 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | 0.060 | 0 | 10 mm
[Rear] | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.314 | 1.005 | 0.316 | | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.070 | 1 | 10 mm
[Rear] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.258 | 1.005 | 0.259 | | | 1732.5 | 20175 | LTE
B4 | 20 | 24.20 | 24.18 | 0.180 | 0 | 10 mm
[Left] | FCC
#1 | QPSK | 1 | 99 | 1:1 | 0.150 | 1.005 | 0.151 | | | 1732.5 | 20175 | LTE
B4 | 20 | 23.20 | 23.18 | 0.190 | 1 | 10 mm
[Left] | FCC
#1 | QPSK | 50 | 0 | 1:1 | 0.126 | 1.005 | 0.127 | | | | | | | C95.1-1992–
Spatial Pea
sure/General | k | | | | | | | | Body
1.6 W/kg (
eraged over | mW/g) | - | | | Table 12.3.4 DTS Hotspot SAR | | | | | | | MEASURE | MENT RESULT | 's | | | | | | | | |--------|-----|---------|-----------------------------|---|---------------------|---------------------|------------------|--------------------------|--------------
---------------|-------------------------------|-------------------|----------------------------|---------------|-------| | FREQUE | NCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift Power
[dB] | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | SAR
(W/kg) | Plots | | MHz | Ch | | [dBm] | [dBm] | [ub] | Position | Number | Area Scan | [Mbps] | Cycle | (W/kg) | 1 actor | Cycle) | (VV/Kg) | " | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | 0.070 | 10 mm
[Top] | FCC #1 | 0.106 | 1 | 99.8 | 0.115 | 1.089 | 1.002 | 0.125 | | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | 0.020 | 10 mm
[Front] | FCC #1 | 0.131 | 1 | 99.8 | 0.133 | 1.089 | 1.002 | 0.145 | | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | -0.070 | 10 mm
[Rear] | FCC #1 | 0.202 | 1 | 99.8 | 0.249 | 1.089 | 1.002 | 0.272 | | | 2437.0 | 6 | 802.11b | 19.00 | 18.63 | -0.140 | 10 mm
[Left] | FCC #1 | 0.257 | 1 | 99.8 | 0.275 | 1.089 | 1.002 | 0.300 | A26 | | | _ | Unc | | 95.1-1992– SAFETY
Spatial Peak
ıre/General Populati | | | - | | | а | Bod
1.6 W/kg
veraged ov | (mW/g) | | | | | | | | | | Adjı | usted SAR results fo | r OFDM SAR | | | | | | |--------|-----|-------------------------------|-------------|---------------------------|-------------------------|----------------------|------------|---------|------------------------------|-----------------|---------------------------|-----------------------| | FREQUE | NCY | | | Maximum | 1g | | | | Maximum | Ratio of | 1g | | | MHz | Ch | Mode/ Antenna | Service | Allowed
Power
[dBm] | Scaled
SAR
(W/kg) | FREQUENCY
[MHz] | Mode | Service | Allowed
Power
[dBm | OFDM to
DSSS | Adjusted
SAR
(W/kg) | Determine
OFDM SAR | | 2462.0 | 11 | 802.11b | DSSS | 19.0 | 0.300 | 2437 | 802.11g | OFDM | 17.5 | 0.708 | 0.212 | Х | | 2462.0 | 11 | 802.11b | DSSS | 19.0 | 0.300 | 2437 | 802.11n | OFDM | 16.0 | 0.501 | 0.150 | X | | | | ANSI / IEEE Uncontrolled Expo | Spatial Pea | | | | | | Bo
1.6 W/kg
averaged o | (mW/g) | | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. **Table 12.3.5 Bluetooth Hotspot SAR** | | | | | | | rs . | EMENT RESULT | MEASUR | | | | | | | |----------|---------------------|----------------------------|-------------------|-----------|---------------|----------------|------------------|---------------------|---------------------|--------------------|-----------------------------|-----------|-----|--------| | ed Plots | 1g
Scaled
SAR | Scaling
Factor
(Duty | Scaling
Factor | 1g
SAR | Duty
Cycle | Rate
[Mbps] | Device
Serial | Phantom
Position | Drift Power
[dB] | Conducted
Power | Maximum
Allowed
Power | Mode | NCY | FREQUE | | | (W/kg) | Cycle) | i actor | (W/kg) | (%) | [wipha] | Number | Fosition | [GD] | [dBm] | [dBm] | | Ch | MHz | | 50 | 0.050 | 1.302 | 1.365 | 0.028 | 76.8 | 1 | FCC #1 | 10 mm
[Top] | -0.120 | 10.15 | 11.50 | Bluetooth | 39 | 2441.0 | | 13 | 0.043 | 1.302 | 1.365 | 0.024 | 76.8 | 1 | FCC #1 | 10 mm
[Front] | -0.090 | 10.15 | 11.50 | Bluetooth | 39 | 2441.0 | | 92 | 0.092 | 1.302 | 1.365 | 0.052 | 76.8 | 1 | FCC #1 | 10 mm
[Rear] | 0.010 | 10.15 | 11.50 | Bluetooth | 39 | 2441.0 | | 10 A27 | 0.110 | 1.302 | 1.365 | 0.062 | 76.8 | 1 | FCC #1 | 10 mm
[Left] | 0.070 | 10.15 | 11.50 | Bluetooth | 39 | 2441.0 | | _ | | | Body | | | | _ | | LIMIT | 95.1-1992- SAFETY | | - | _ | | | | | | | | | | | | ion Evnosuro | | | Unac | | | | | | 1.302 | 1.365 | 0.062 | | 1 | | [Rear]
10 mm | 0.070 | 10.15 | 11.50 | Bluetooth | | | #### 12.4 SAR Test Notes #### General Notes: The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06. Report No.: DRRFCC1804-0046(1) - 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements. - 3. Liquid tissue depth was at least 15.0 cm for all frequencies. - 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units - 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06. - 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance. - 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported boy-worn SAR was not > 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were performed. - 8. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated. - 9. SAR measurements were performed using the DASY5 automated system. The procedure for spatial peak SAR evaluation has been implemented according to the IEEE 1528 standard. During a maximum search, global and local maxima searches are automatically performed in 2-D after each area scan measurement. The algorithm will find the global maximum and all local maxima within 2 dB of the global maximum for all SAR distributions. All local maxima within 2 dB of the global maximum were searched and passed for the Zoom Scan measurement. ### **GSM Notes:** - 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR - 2. This device supports GSM VOIP in the head and body-worn configurations; therefore GPRS was additionally evaluated for head and body-worn compliance. - 3. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. - 4. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). Since the maximum output power variation across the required test channels is not > ½ dB, the middle channel was used for testing. #### WCDMA (UMTS) Notes: - WCDMA (UMTS) mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg. - 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used. #### LTE Notes: - 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r05. The general test procedures used for testing can be found in Section 5. - 2. According to FCC KDB 941225 D05v02r05, when the reported SAR is ≤ 0.8 W/kg, testing of the 100% RB allocation and required test channels is not required. - Otherwise, SAR is required for the remaining required test channels using the 1 RB, 50% RB and 100% RB allocation with highest output power for that channel. - Only one channel, and as reported SAR values for 1 RB allocation and 50% RB allocation were less than 1.45 W/kg only the highest power RB offset for each allocation was required. - 3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 6.2.5 under Table 6.2.3-1. - 4. A-MPR was disabled for all SAR tests by setting NS=1 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI). - 5. Per KDB Publication 941225 D05Av01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not > 0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. - 6. SAR test reduction is applied using the following criteria: - Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is > 0.8 W/kg, testing for other channels is performed at the highest output power level for 1 RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg, Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. Testing for 16QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/kg and
its output power is not more than 0.5 dB higher than that a QPSK. Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth. Report No.: DRRFCC1804-0046(1) FCC ID: ZNFQ710EM #### WLAN Notes: - The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. - 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg. - 3. When the maximum reported 1g averaged SAR ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured. - 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance. #### Bluetooth Notes: Bluetooth SAR was measured with the device connected to a call with hopping disabled with DH5 operation. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. Refer to section 10.5 for the time-domain plot and calculation for the duty factor of the device. # 13. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS #### 13.1 Introduction The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter. #### 13.2 Simultaneous Transmission Procedures This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the sum 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The different test positon in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR. ## 13.3 Simultaneous Transmission Capabilities According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 13.1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another. Figure 13.1 Simultaneous Transmission Paths This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06. #### Table 13.3.1 Simultaneous Transmission Scenarios | No. | Capable TX
Configuration | GSM
850/1900
(Voice) | GPRS
850/1900
(Data) | WCDMA
B5/B2
(Voice) | WCDMA
B5/B2
(Data) | LTE
B12/B17/B5/B4 | WIFI 2.4GHz
802.11b/g/n | Bluetooth
2.4GHz | |-----|-----------------------------|----------------------------|----------------------------|---------------------------|--------------------------|----------------------|----------------------------|---------------------| | 1 | GSM
850/1900
(Voice) | | No | No | No | No | Yes | Yes | | 2 | GPRS
850/1900
(Data) | No | | No | No | No | Yes | Yes | | 3 | WCDMA
B5/B2
(Voice) | No | No | | No | No | Yes | Yes | | 4 | WCDMA
B5/B2
(Data) | No | No | No | | No | Yes | Yes | | 5 | LTE
B12/B17/B5/B4 | No | No | No | No | | Yes | Yes | | 6 | WIFI 2.4GHz
802.11b/g/n | Yes | Yes | Yes | Yes | Yes | | No | | 7 | Bluetooth
2.4GHz | Yes | Yes | Yes | Yes | Yes | No | | #### Table 13.3.2 Simultaneous SAR Cases | | | | .u.s.o . 0.0.1 e | minantaniooao | 0, 0 | | |-----|--------------------------------|-------------|------------------|----------------|-----------------|------| | No. | Capable Transmit Configuration | Head
SAR | Body-Worn
SAR | Hotspot
SAR | Phablet
SAR | Note | | 1 | GSM Voice + Wi-Fi 2.4 GHz | Yes | Yes | N/A | Yes | | | 2 | GSM Voice + Bluetooth 2.4 GHz | Yes | Yes | N/A | Yes | | | 3 | WCDMA + Wi-Fi 2.4 GHz | Yes | Yes | Yes | Yes | | | 4 | WCDMA + Bluetooth 2.4 GHz | Yes | Yes | Yes | Yes | | | 5 | LTE + Wi-Fi 2.4 GHz | Yes | Yes | Yes | Yes | | | 6 | LTE + Bluetooth 2.4 GHz | Yes | Yes | Yes | Yes | | | 7 | GPRS/EDGE + Wi-Fi 2.4 GHz | Yes | Yes | Yes | Yes | | | 8 | GPRS/EDGE + Bluetooth 2.4 GHz | Yes | Yes | Yes | Yes | | #### Notes: - WiFi 2.4Ghz is supported Hotspot and WiFi-Direct(GO/GC). - LTE, WCDMA, GPRS/EDGE is supported Hotspot. - VoIP is supported in LTE, WCDMA, GSM - Bluetooth and WiFi can not transmit simultaneously at 2.4G band. - GSM, WCDMA and LTE can not transmit simultaneously since they share the same chip. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario. - Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Simultaneous transmission scenarios involving WIFI direct are included in the above table. # 13.4 Head SAR Simultaneous Transmission Analysis Table 13.4.1 Simultaneous Transmission Scenario : 2G/3G/4G + 2.4 GHz W-LAN (Held to Ear) | Exposure | Mode | Configuration | 2G/3G/4G SAR (W/kg) | 2.4G W-LAN SAR (W/kg) | ΣSAR (W/kg) | |-----------|--------------|---------------|---------------------|-----------------------|-------------| | Condition | Wiode | Comiguration | 1 | 2 | 1+2 | | | | Left Touch | 0.158 | 0.330 | 0.487 | | | | Right Touch | 0.102 | 0.859 | 0.961 | | | GSM 850 | Left Tilt | 0.067 | 0.308 | 0.375 | | | | Right Tilt | 0.070 | 0.790 | 0.860 | | | | Left Touch | 0.239 | 0.330 | 0.568 | | | | Right Touch | 0.147 | 0.859 | 1.006 | | | GPRS 850 | Left Tilt | 0.103 | 0.308 | 0.411 | | | | Right Tilt | 0.111 | 0.790 | 0.901 | | | | Left Touch | 0.117 | 0.330 | 0.447 | | | 0011.4000 | Right Touch | 0.074 | 0.859 | 0.932 | | | GSM 1900 | Left Tilt | 0.027 | 0.308 | 0.334 | | | | Right Tilt | 0.067 | 0.790 | 0.857 | | | GPRS 1900 | Left Touch | 0.176 | 0.330 | 0.505 | | | | Right Touch | 0.119 | 0.859 | 0.978 | | | | Left Tilt | 0.046 | 0.308 | 0.353 | | | | Right Tilt | 0.118 | 0.790 | 0.908 | | | WCDMA 850 | Left Touch | 0.263 | 0.330 | 0.592 | | Head | | Right Touch | 0.165 | 0.859 | 1.024 | | SAR | | Left Tilt | 0.113 | 0.308 | 0.421 | | | | Right Tilt | 0.119 | 0.790 | 0.909 | | | | Left Touch | 0.106 | 0.330 | 0.435 | | | WCDMA 4000 | Right Touch | 0.057 | 0.859 | 0.916 | | | WCDMA 1900 | Left Tilt | 0.026 | 0.308 | 0.333 | | | | Right Tilt | 0.054 | 0.790 | 0.844 | | | | Left Touch | 0.153 | 0.330 | 0.483 | | | LTE Band 12 | Right Touch | 0.105 | 0.859 | 0.964 | | | LIE Ballu 12 | Left Tilt | 0.062 | 0.308 | 0.370 | | | | Right Tilt | 0.066 | 0.790 | 0.856 | | | | Left Touch | 0.294 | 0.330 | 0.624 | | | LTE Band 5 | Right Touch | 0.211 | 0.859 | 1.070 | | | LIE Band 5 | Left Tilt | 0.099 | 0.308 | 0.406 | | | | Right Tilt | 0.150 | 0.790 | 0.940 | | | | Left Touch | 0.087 | 0.330 | 0.417 | | | LTE Band 4 | Right Touch | 0.080 | 0.859 | 0.939 | | | LIE Danu 4 | Left Tilt | 0.030 | 0.308 | 0.338 | | | | Right Tilt | 0.037 | 0.790 | 0.827 | Table 13.4.2 Simultaneous Transmission Scenario : 2G/3G/4G + Bluetooth (Held to Ear) | Exposure | Mode | Configuration | 2G/3G/4G SAR (W/kg) | Bluetooth SAR (W/kg) | ΣSAR (W/kg) | |-----------|-------------|---------------|---------------------|----------------------|-------------| | Condition | Mode | Configuration | 1 | 2 | 1+2 | | | | Left Touch | 0.158 | 0.096 | 0.254 | | | | Right Touch | 0.102 | 0.336 | 0.438 | | | GSM 850 | Left Tilt | 0.067 | 0.092 | 0.160 | | | | Right Tilt | 0.070 | 0.270 | 0.340 | | | | Left Touch | 0.239 | 0.096 | 0.335 | | | | Right Touch | 0.147 | 0.336 | 0.483 | | | GPRS 850 | Left Tilt | 0.103 | 0.092 | 0.196 | | | | Right Tilt | 0.111 | 0.270 | 0.381 | | | | Left Touch | 0.117 | 0.096 | 0.213 | | | | Right Touch | 0.074 | 0.336 | 0.410 | | | GSM 1900 | Left Tilt | 0.027 | 0.092 | 0.119 | | | | Right Tilt | 0.067 | 0.270 | 0.337 | | | GPRS 1900 | Left Touch | 0.176 | 0.096 | 0.272 | | | | Right Touch | 0.119 | 0.336 | 0.455 | | | | Left Tilt | 0.046 | 0.092 | 0.138 | | | | Right Tilt | 0.118 | 0.270 | 0.388 | | | WCDMA 850 | Left Touch | 0.263 | 0.096 | 0.358 | | Head | | Right Touch | 0.165 | 0.336 | 0.501 | | SAR | | Left Tilt | 0.113 | 0.092 | 0.206 | | | | Right Tilt | 0.119 | 0.270 | 0.389 | | | | Left Touch | 0.106 | 0.096 | 0.202 | | | WCDMA 4000 | Right Touch | 0.057 | 0.336 | 0.393 | | | WCDMA 1900 | Left Tilt | 0.026 | 0.092 | 0.118 | | | | Right
Tilt | 0.054 | 0.270 | 0.324 | | | | Left Touch | 0.153 | 0.096 | 0.249 | | | LTE Band 12 | Right Touch | 0.105 | 0.336 | 0.441 | | | LIE Band 12 | Left Tilt | 0.062 | 0.092 | 0.155 | | | | Right Tilt | 0.066 | 0.270 | 0.337 | | | | Left Touch | 0.294 | 0.096 | 0.390 | | | LTE David 5 | Right Touch | 0.211 | 0.336 | 0.547 | | | LTE Band 5 | Left Tilt | 0.099 | 0.092 | 0.191 | | | | Right Tilt | 0.150 | 0.270 | 0.420 | | | | Left Touch | 0.087 | 0.096 | 0.183 | | | LTE Band 4 | Right Touch | 0.080 | 0.336 | 0.416 | | | LIE Band 4 | Left Tilt | 0.030 | 0.092 | 0.123 | | | | Right Tilt | 0.037 | 0.270 | 0.307 | # 13.5 Body-Worn Simultaneous Transmission Analysis Table 13.5.1 Simultaneous Transmission Scenario: 2G/3G/4G + 2.4 GHz W-LAN (Body-Worn at 10 mm) | Exposure | Mode | Configuration | 2G/3G/4G SAR (W/kg) | 2.4G W-LAN SAR (W/kg) | ΣSAR (W/kg) | |-----------|--------------|---------------|---------------------|-----------------------|-------------| | Condition | Mode | Comigaration | 1 | 2 | 1+2 | | | CCM 050 | Front | 0.470 | 0.145 | 0.615 | | | GSM 850 | Rear | 0.448 | 0.272 | 0.720 | | | GPRS 850 | Front | 0.675 | 0.145 | 0.820 | | | GPR5 850 | Rear | 0.673 | 0.272 | 0.945 | | | CSM 1000 | Front | 0.351 | 0.145 | 0.496 | | | GSM 1900 | Rear | 0.309 | 0.272 | 0.581 | | | GPRS 1900 | Front | 0.535 | 0.145 | 0.681 | | | | Rear | 0.469 | 0.272 | 0.741 | | Body-Worn | WCDMA 850 | Front | 0.789 | 0.145 | 0.934 | | SAR | | Rear | 0.681 | 0.272 | 0.953 | | | WCDMA 1900 | Front | 0.306 | 0.145 | 0.451 | | | WCDIVIA 1900 | Rear | 0.304 | 0.272 | 0.575 | | | LTE Band 12 | Front | 0.714 | 0.145 | 0.859 | | | LIE Ballu 12 | Rear | 0.693 | 0.272 | 0.964 | | | LTE Band 5 | Front | 1.000 | 0.145 | 1.146 | | | Li L Dallu 3 | Rear | 0.948 | 0.272 | 1.220 | | | LTE Band 4 | Front | 0.260 | 0.145 | 0.405 | | | LI L Dallu 4 | Rear | 0.316 | 0.272 | 0.587 | Table 13.5.2 Simultaneous Transmission Scenario : 2G/3G/4G + Bluetooth (Body-Worn at 10 mm) | Exposure | Mode | Configuration | 2G/3G/4G SAR (W/kg) | Bluetooth SAR (W/kg) | ΣSAR (W/kg) | |-----------|--------------|---------------|---------------------|----------------------|-------------| | Condition | Wode | Configuration | 1 | 2 | 1+2 | | | 0011.050 | Front | 0.470 | 0.043 | 0.512 | | | GSM 850 | Rear | 0.448 | 0.092 | 0.541 | | | GPRS 850 | Front | 0.675 | 0.043 | 0.718 | | | | Rear | 0.673 | 0.092 | 0.765 | | | CCM 4000 | Front | 0.351 | 0.043 | 0.394 | | | GSM 1900 | Rear | 0.309 | 0.092 | 0.402 | | | GPRS 1900 | Front | 0.535 | 0.043 | 0.578 | | | | Rear | 0.469 | 0.092 | 0.562 | | Body-Worn | WCDMA 850 | Front | 0.789 | 0.043 | 0.831 | | SAR | | Rear | 0.681 | 0.092 | 0.774 | | | WODMA 4000 | Front | 0.306 | 0.043 | 0.349 | | | WCDMA 1900 | Rear | 0.304 | 0.092 | 0.396 | | | LTE Band 12 | Front | 0.714 | 0.043 | 0.757 | | | LIE Dallu 12 | Rear | 0.693 | 0.092 | 0.785 | | | LTE Band 5 | Front | 1.000 | 0.043 | 1.043 | | | LIE Dand 5 | Rear | 0.948 | 0.092 | 1.041 | | | LTE Band 4 | Front | 0.260 | 0.043 | 0.303 | | | LIE Band 4 | Rear | 0.316 | 0.092 | 0.408 | # 13.6 Hotspot SAR Simultaneous Transmission Analysis Per FCC KDB Publication 941225 D06v02r01, the device edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-"). Report No.: DRRFCC1804-0046(1) Table 13.6.1 Simultaneous Transmission Scenario: 2G/3G/4G + 2.4 GHz W-LAN (Hotspot at 10 mm) | Exposure | Mode | Configuration | 2G/3G/4G SAR (W/kg) | 2.4G W-LAN SAR (W/kg) | ΣSAR (W/kg) | |-----------|-------------|---------------|---------------------|-----------------------|-----------------------| | Condition | mode | Comiguration | 1 | 2 | 1+2 | | | | Тор | - | 0.125 | 0.125 | | | | Bottom | 0.460 | - | 0.460 | | | | Front | 0.675 | 0.145 | 0.820 | | | GPRS 850 | Rear | 0.673 | 0.272 | 0.945 | | | | Right | 0.082 | - | 0.082 | | | | Left | 0.328 | 0.300 | 0.628 | | | | | | | | | | | Top
Bottom | 0.722 | 0.125 | 0.125
0.722 | | | | Front | 0.722 | 0.145 | 0.722 | | | GPRS 1900 | Rear | 0.469 | 0.145 | 0.680 | | | | Right | 0.409 | - | - 0.741 | | | | Left | 0.189 | 0.300 | 0.489 | | | | | 0.189 | 0.300 | 0.469 | | | | Top
Bottom | 0.464 | | 0.125 | | | WCDMA 850 | Front | 0.464 | 0.145 | 0.464 | | | | Rear | 0.789 | 0.145 | 0.934 | | | | Right | 0.088 | 0.272 | 0.088 | | | | Left | 0.328 | 0.300 | 0.628 | | | | Тор | | 0.300 | 0.628 | | | WCDMA 1900 | | 0.468 | 0.125 | 0.125 | | Hotspot | | Bottom | 0.468 | 0.145 | _ | | SAR | | Front
Rear | 0.304 | 0.145 | 0.451
0.576 | | | | Right | 0.304 | 0.272 | 0.576 | | | | Left | 0.094 | 0.300 | 0.394 | | | | | 0.094 | | | | | | Top
Bottom | 0.446 | 0.125 | 0.125
0.446 | | | | Front | 0.446 | 0.145 | 0.446 | | | LTE Band 12 | Rear | 0.693 | 0.143 | 0.965 | | | | Right | 0.144 | - | 0.144 | | | | Left | 0.252 | 0.300 | 0.552 | | | | Тор | - | 0.125 | 0.125 | | | | Bottom | 0.589 | 0.125 | 0.125 | | | | Front | 1.000 | 0.145 | 1.145 | | | LTE Band 5 | Rear | 0.948 | 0.143 | 1.143 | | | | Right | 0.133 | - 0.272 | 0.133 | | | | Left | 0.450 | 0.300 | 0.750 | | | | Тор | - | 0.125 | 0.125 | | | | Bottom | 0.505 | 0.125 | 0.505 | | | | Front | 0.260 | 0.145 | 0.303 | | | LTE Band 4 | Rear | 0.260 | 0.143 | 0.403 | | | | Right | 0.510 | V.E1E | 0.500 | | | | Left | 0.151 | 0.300 | 0.451 | Table 13.6.14 Simultaneous Transmission Scenario : 2G/3G/4G + Bluetooth (Hotspot at 10 mm) | Exposure | Mode | Configuration | 2G/3G/4G SAR (W/kg) | Bluetooth SAR (W/kg) | ΣSAR (W/kg) | |-----------|-------------|---------------|---------------------|----------------------|-------------| | Condition | mode | Comiguration | 1 | 2 | 1+2 | | | | Тор | - | 0.050 | 0.050 | | | | Bottom | 0.460 | - | 0.460 | | | | Front | 0.675 | 0.043 | 0.718 | | | GPRS 850 | Rear | 0.673 | 0.092 | 0.765 | | | | Right | 0.082 | - | 0.082 | | | | Left | 0.328 | 0.110 | 0.438 | | | | Тор | - | 0.050 | 0.050 | | | | Bottom | 0.722 | 0.030 | 0.030 | | | | Front | 0.535 | 0.043 | 0.722 | | | GPRS 1900 | Rear | 0.469 | 0.043 | 0.561 | | | | Right | 0.409 | - | - 0.501 | | | | Left | 0.189 | 0.110 | 0.299 | | | | Top | - | 0.050 | 0.050 | | | WCDMA 850 | Bottom | 0.464 | - | 0.464 | | | | Front | 0.789 | 0.043 | 0.832 | | | | Rear | 0.681 | 0.092 | 0.773 | | | | Right | 0.088 | - | 0.088 | | | | Left | 0.328 | 0.110 | 0.438 | | | | Top | - | 0.050 | 0.050 | | | WCDMA 1900 | Bottom | 0.468 | 0.030 | 0.468 | | Hotspot | | Front | 0.306 | 0.043 | 0.349 | | SAR | | Rear | 0.304 | 0.092 | 0.396 | | | | Right | - | - | - | | | | Left | 0.094 | 0.110 | 0.204 | | | | Тор | - | 0.050 | 0.050 | | | | Bottom | 0.446 | - | 0.446 | | | | Front | 0.714 | 0.043 | 0.757 | | | LTE Band 12 | Rear | 0.693 | 0.092 | 0.785 | | | | Right | 0.144 | - | 0.144 | | | | Left | 0.252 | 0.110 | 0.362 | | | | Тор | - | 0.050 | 0.050 | | | | Bottom | 0.589 | - | 0.589 | | | LTE Dand E | Front | 1.000 | 0.043 | 1.043 | | | LTE Band 5 | Rear | 0.948 | 0.092 | 1.041 | | | | Right | 0.133 | - | 0.133 | | | | Left | 0.450 | 0.110 | 0.560 | | | | Тор | - | 0.050 | 0.050 | | | | Bottom | 0.505 | - | 0.505 | | | LTE Band 4 | Front | 0.260 | 0.043 | 0.303 | | | LIE Danu 4 | Rear | 0.316 | 0.092 | 0.408 | | | | Right | - | - | - | | | | Left | 0.151 | 0.110 | 0.261 | ## 13.7 Phablet SAR Simultaneous Transmission Analysis Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required of Hotspot 1g SAR (scaled to maximum output power, including tolerance) < 1.2 W/kg. Therefore no further analysis was required to for Phablet Simultaneous Transmission Analysis. ## 13.8 Simultaneous Transmission Conclusion The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2. # 14. SAR MEASUREMENT VARIABILITY ## 14.1 Measurement Variability Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. SAR Measurement Variability was assessed using the following procedures for each frequency band: - 1. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once. - 2. A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. - 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg - 5. The same procedures should be adapted for measurements according to extremity exposure limits by applying a factor of 2.5 for extremity exposure to the corresponding SAR thresholds. Table 14.1 Body-worn SAR Measurement Variability Results | Frequ |
iency | Mode | Service | # of
Time
Slots | Spacing
[Side] | Measured
SAR (1g) | 1st
Repeated
SAR(1g) | Ratio | 2nd
Repeated
SAR(1g) | Ratio | 3rd
Repeated
SAR(1g) | Ratio | |-------|---|--------|---------|-----------------------|-------------------|----------------------|----------------------------|---|----------------------------|-------|----------------------------|-------| | MHz | Ch. | | | Olots | | (W/kg) | (W/kg) | | (W/kg) | | (W/kg) | | | 836.5 | 20525 | LTE B5 | - | - | 10 mm
[Front] | 0.942 | 0.937 | 1.01 | | | | | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure | | | | | | | Body
1.6 W/kg (mW/g)
averaged over 1 gram | | | | | **Table 14.2 Hotspot SAR Measurement Variability Results** | Frequ | iency | Mode | Service | # of
Time
Slots | Spacing
[Side] | Measured
SAR (1g) | 1st
Repeated
SAR(1g) | Ratio | 2nd
Repeated
SAR(1g) | Ratio | 3rd
Repeated
SAR(1g) | Ratio | |-------|---|--------|---------|-----------------------|-------------------|----------------------|----------------------------|---|----------------------------|-------|----------------------------|-------| | MHz | Ch. | | | Ciolo | | (W/kg) | (W/kg) | | (W/kg) | | (W/kg) | | | 836.5 | 20525 | LTE B5 | - | -1 | 10 mm
[Front] | 0.942 | 0.937 | 1.01 | | | | | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure | | | | | | | Body
1.6 W/kg (mW/g)
averaged over 1 gram | | | | | # 15. MEASUREMENT UNCERTAINTIES ## 750 MHz Head | From Decembring | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.9 | Normal | 1 | 0.64 | ± 3.9 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.1 | Normal | 1 | 0.6 | ± 4.1 % | 10 | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.1 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | Report No.: DRRFCC1804-0046(1) ## 750 MHz Body | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.1 | Normal | 1 | 0.64 | ± 4.1 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.1 | Normal | 1 | 0.6 | ± 4.1 % | 10 | | Temp. unc Conductivity | ± 2.0 | Rectangular | √3 | 0.78 | ± 1.2 % | ∞ | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.0 % | 8 | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | # 835 MHz Head | Free Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.7 | Normal | 1 | 0.64 | ± 3.7 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.2 | Normal | 1 | 0.6 | ± 4.2 % | 10 | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | ± 1.0 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | Report No.: DRRFCC1804-0046(1) ## 835 MHz Body | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Elloi Description | value ±% | Distribution | DIVISUI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1
 ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.0 | Normal | 1 | 0.64 | ± 4.0 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 3.9 | Normal | 1 | 0.6 | ± 3.9 % | 10 | | Temp. unc Conductivity | ± 1.7 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | ± 1.0 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | ## 1800 MHz Head | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | | value ±% | Distribution | DIVISUI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.9 | Normal | 1 | 0.64 | ± 3.9 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.0 | Normal | 1 | 0.6 | ± 4.0 % | 10 | | Temp. unc Conductivity | ± 1.9 | Rectangular | √3 | 0.78 | ± 1.1 % | ∞ | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.1 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | ## 1800 MHz Body | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.3 | Normal | 1 | 0.64 | ± 4.3 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 3.7 | Normal | 1 | 0.6 | ± 3.7 % | 10 | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | ± 1.0 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | ## 1900 MHz Head | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | | value ±% | Distribution | DIVISOR | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.1 | Normal | 1 | 0.64 | ± 4.1 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.0 | Normal | 1 | 0.6 | ± 4.0 % | 10 | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.1 % | 8 | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | - | | ± 24 % | | ## 1900 MHz Body | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | • | • | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.0 | Normal | 1 | 0.64 | ± 4.0 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular |
√3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 3.8 | Normal | 1 | 0.6 | ± 3.8 % | 10 | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | ± 1.0 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | ## 2450 MHz Head | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | • | • | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.9 | Normal | 1 | 0.64 | ± 3.9 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.1 | Normal | 1 | 0.6 | ± 4.1 % | 10 | | Temp. unc Conductivity | ± 2.0 | Rectangular | √3 | 0.78 | ± 1.2 % | ∞ | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.1 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | ## 2450 MHz Body | Error Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | • | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.3 | Normal | 1 | 0.64 | ± 4.3 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.0 | Normal | 1 | 0.6 | ± 4.0 % | 10 | | Temp. unc Conductivity | ± 1.9 | Rectangular | √3 | 0.78 | ± 1.1 % | ∞ | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.1 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | ## 16. CONCLUSION #### **Measurement Conclusion** The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Report No.: DRRFCC1804-0046(1) Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. ## 17. REFERENCES - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2003,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. - [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate
(SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005. - [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015. - [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009 - [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225,D01-D07 - [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02 - [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04 - [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 - [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02 - [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 - [29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009 - [30] Anexo à Resolução No. 533, de 10 de September de 2009. - [31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010.