MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 2105RSU006-U4 Report Version: V01 Issue Date: 09-30-2021 # DFS MEASUREMENT REPORT FCC 15.407 WLAN 802.11a/n/ac FCC ID: SFK-WF808 **APPLICANT:** CIG Shanghai Co., Ltd. **Application Type:** Certification **Product:** WiFi 6 Extender Model No.: WF-808 Brand Name: CIG **FCC Classification:** Unlicensed National Information Infrastructure (NII) FCC Rule Part(s): Part 15 Subpart E - 15.407 Section (h)(2) KDB 905462 D02v02, KDB 905462 D04v01 **Test Date:** May 25 ~ 27, 2021 Approved By: Reviewed By: Sunny Sun Approved By: Robin Wu Robin Wu The test results relate only to the samples tested. This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 905462 D02v02. Test results reported herein relate only to the item(s) tested. The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd. # **Revision History** | Report No. | Version | Description | Issue Date | Note | |---------------|---------|----------------|------------|-------| | 2105RSU006-U4 | Rev. 01 | Initial Report | 09-30-2021 | Valid | | | | | | | # **CONTENTS** | ь | scripti | on Pa | age | |----|---------|---|-----| | 1. | Gene | eral Information | 5 | | | 1.1. | Applicant | 5 | | | 1.2. | Manufacturer | 5 | | | 1.3. | Testing Facility | 5 | | | 1.4. | Product Information | 6 | | | 1.5. | Radio Specification under Test | 6 | | | 1.6. | DFS Band Carrier Frequencies Operation | 7 | | | 1.7. | Description of Available Antennas | 7 | | | 1.8. | Test Mode | 8 | | | 1.9. | Test Environment Condition | 8 | | 2. | DFS | DETECTION THRESHOLDS AND RADAR TEST WAVEFORMS | 9 | | | 2.1. | Applicability | 9 | | | 2.2. | DFS Devices Requirements | 10 | | | 2.3. | DFS Detection Threshold Values | 11 | | | 2.4. | Parameters of DFS Test Signals | 12 | | | 2.5. | Conducted Test Setup | 15 | | 3. | TES1 | EQUIPMENT CALIBRATION DATE | 16 | | 4. | TES1 | RESULT | 17 | | | 4.1. | Summary | 17 | | | 4.2. | Radar Waveform Calibration | 18 | | | 4.2.1 | . Calibration Setup | 18 | | | 4.2.2 | 2. Calibration Procedure | 18 | | | 4.2.3 | 3. Calibration Result | 19 | | | 4.2.4 | Channel Loading Test Result | 21 | | | 4.3. | NII Detection Bandwidth Measurement | 22 | | | 4.3.1 | . Test Limit | 22 | | | 4.3.2 | 2. Test Procedure | 22 | | | 4.3.3 | 3. Test Result | 24 | | | 4.4. | Initial Channel Availability Check Time Measurement | 27 | | | 4.4.1 | . Test Limit | 27 | | | 4.4.2 | 2. Test Procedure | 27 | | | 4.4.3 | 3. Test Result | 28 | | | 4.5. | Radar Burst at the Beginning of the Channel Availability Check Time Measurement | 29 | | | 4.5.1 | . Test Limit | 29 | | | 4.5.2 | P. Test Procedure | 29 | | | 4.5.3 | 3. Test Result | 30 | | | 4.6. | Radar Burst at the End of the Channel Availability Check Time Measurement | 31 | | | 4.6.1. | Test Limit | 31 | |----|----------|---|-----| | | 4.6.2. | Test Procedure | 31 | | | 4.6.3. | Test Result | 32 | | | 4.7. I | n-Service Monitoring for Channel Move Time, Channel Closing Transmission Time | and | | | Non-O | ccupancy Period Measurement | 33 | | | 4.7.1. | Test Limit | 33 | | | 4.7.2. | Test Procedure Used | 33 | | | 4.7.3. | Test Result | 34 | | | 4.8. | Statistical Performance Check Measurement | 35 | | | 4.8.1. | Test Limit | 35 | | | 4.8.2. | Test Procedure | 35 | | | 4.8.3. | Test Result | 36 | | 5. | CONC | _USION | 117 | | Аp | pendix A | A - Test Setup Photograph | 118 | | Аp | pendix E | 3 - EUT Photograph | 119 | # 1. General Information # 1.1. Applicant CIG Shanghai Co., Ltd. 5F, Building 8, NO.2388 CHENGHANG ROAD, MINHANG DISTRTCT, SHANGHAI ## 1.2. Manufacturer CIG Shanghai Co., Ltd. 5F, Building 8, NO.2388 CHENGHANG ROAD, MINHANG DISTRTCT, SHANGHAI # 1.3. Testing Facility | \boxtimes | Test Site – MRT Suzhou Laboratory | | | | |-------------|---|---|--|--| | | Laboratory Location (Suzhou – Wuzhong) | | | | | | D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China | | | | | | Laboratory Location (Suzhou – SIP) | | | | | | 4b Building, Liando U Valley, No.200 Xingpu Rd. | , Shengpu Town, Suzhou Industrial Park, China | | | | | Laboratory Accreditations | | | | | | A2LA: 3628.01 | CNAS: L10551 | | | | | FCC: CN1166 | ISED: CN0001 | | | | | VCCI: R-20025, G-20034, C-20020, T-20020 | | | | | | Test Site – MRT Shenzhen Laboratory | | | | | | Laboratory Location (Shenzhen) | | | | | | 1G, Building A, Junxiangda Building, Zhongshanyuan Road West, Nanshan District, Shenzhen, C Laboratory Accreditations | | | | | | | | | | | | A2LA: 3628.02 | CNAS: L10551 | | | | | FCC: CN1284 | ISED: CN0105 | | | | | Test Site – MRT Taiwan Laboratory | | | | | | Laboratory Location (Taiwan) | | | | | | No. 38, Fuxing 2 nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) | | | | | | Laboratory Accreditations | | | | | | TAF: L3261-190725 | | | | | | FCC: 291082, TW3261 | ISED: TW3261 | | | ## 1.4. Product Information | Product Name | WiFi 6 Extender | | |-------------------------|--------------------------------|--| | Model No. | WF-808 | | | Brand Name | CIG | | | Operating Temperature | 0 ~ 40°C | | | Wi-Fi Specification | 802.11a/b/g/n/ac | | | Bluetooth Specification | v4.0 single mode | | | Antenna Information | Refer to section 1.7 | | | Power Type | AC/DC Adapter | | | Accessory | | | | AC to DC Adapter | Model: ADS0248T-W050250 | | | | Input: 100-240V ~ 50-60Hz 0.6A | | | | Output: 5V, 2.5A | | | Remark: | | | #### Remark: # 1.5. Radio Specification under Test | Frequency Range | For 802.11a/n-HT20/ac-VHT20: | |----------------------------|--| | | 5260 ~ 5320MHz, 5500 ~ 5720MHz | | | For 802.11n-HT40/ac-VHT40: | | | 5270 ~ 5310MHz, 5510 ~ 5710MHz | | | For 802.11ac-VHT80: | | | 5290MHz, 5530MHz, 5610MHz, 5690MHz | | Type of Modulation | 802.11a/n/ac: OFDM | | Data Rate | 802.11a: 6/9/12/18/24/36/48/54Mbps | | | 802.11n: up to 600Mbps | | | 802.11ac: up to 1733.2Mbps | | Power-on cycle | Requires 11.18 seconds to complete its power-on cycle | | Uniform Spreading (For DFS | For the 5250-5350MHz, 5470-5725 MHz bands, the Master device | | Frequency Band) | provides, on aggregate, uniform loading of the spectrum across all | | | devices by selecting an operating channel among the available channels | | | using a random algorithm. | ^{1.} The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer. # 1.6. DFS Band Carrier Frequencies Operation #### 802.11a/n-HT20/ac-VHT20 | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 52 | 5260 MHz | 56 | 5280 MHz | 60 | 5300 MHz | | 64 | 5320 MHz | 100 | 5500 MHz | 104 | 5520 MHz | | 108 | 5540 MHz | 112 | 5560 MHz | 116 | 5580 MHz | | 120 | 5600 MHz | 124 | 5620 MHz | 128 | 5640 MHz | | 132 | 5660 MHz | 136 | 5680 MHz | 140 | 5700 MHz | | 144 | 5720 MHz | | | | | #### 802.11n-HT40/ac-VHT40 | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 54 | 5270 MHz | 62 | 5310 MHz | 102 | 5510 MHz | | 110 | 5550 MHz | 118 | 5590 MHz | 126 | 5630 MHz | | 134 | 5670 MHz | 142 | 5710 MHz | | | #### 802.11ac-VHT80 | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 58 | 5290 MHz | 106 | 5530 MHz | 122 | 5610 MHz | | 138 | 5690 MHz | | | | | # 1.7. Description of Available Antennas | Antenna Type | Frequency | TX Path | Max Antenna | Uncorrelated Antenna | |-------------------|---------------|---------|-------------|----------------------| | | (MHz) | | Gain (dBi) | Gain (dBi) | | Wi-Fi Antenna | | | | | | PCB Antenna | 2400 ~ 2483.5 | 2 | 3.0 | 0.51 | | PCB Antenna | 5150 ~ 5350 | 4 | 6.5 | 1.95 | | PCB Antenna | 5470 ~ 5725 | 4 | 7.2 | 1.97 | | Bluetooth Antenna | | | | | | PCB Antenna | 2400 ~ 2483.5 | 1 | 1.9 | | ## Remark - The device supports SISO Mode for 802.11a and support MIMO mode for 802.11b/g/n/ac and supports the STBC mode only. - 2. Due to the same modulation & power setting between 802.11n and 802.11ac, so 802.11n-HT20 and HT40 are covered by 802.11ac-VHT20 and VHT40 in this report. ## 1.8. Test Mode | Test Mode 1: Operating under AP mode | | |--------------------------------------|--| |--------------------------------------|--| # 1.9. Test Environment Condition | Ambient Temp. | 15 ~ 35°C | |-------------------|------------| | Relative Humidity | 20 ~ 75%RH | ## 2. DFS DETECTION THRESHOLDS AND RADAR TEST WAVEFORMS ## 2.1. Applicability The following table from FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 lists the applicable requirements for the DFS testing. | Requirement | Operational Mode | | | | |---------------------------------|---------------------------------------|-----------------|--------------|--| | | Master Client Without Client With Rac | | | | | | | Radar Detection | Detection | | | Non-Occupancy Period | Yes | Not required | Yes | | | DFS Detection Threshold | Yes | Not required | Yes | | | Channel Availability Check Time | Yes | Not required | Not required | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | Table 3-1: Applicability of DFS Requirements Prior to Use of a Channel | Requirement | Operational Mode | | | |-----------------------------------|-------------------------|----------------------|--| | | Master
Device or Client | Client Without Radar | | | | With Radar Detection | Detection | | | DFS Detection Threshold | Yes | Not required | | | Channel Closing Transmission Time | Yes | Yes | | | Channel Move Time | Yes | Yes | | | U-NII Detection Bandwidth | Yes | Not required | | | Additional requirements for devices with | Master Device or Client | Client Without Radar | | |--|---------------------------|-----------------------------|--| | multiple bandwidth modes | with Radar Detection | Detection | | | U-NII Detection Bandwidth and | All BW modes must be | Not required | | | Statistical Performance Check | tested | Not required | | | Channel Move Time and Channel | Test using widest BW mode | Test using the widest BW | | | Closing Transmission Time | available | mode available for the link | | | All other tests | Any single BW mode | Not required | | Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. Table 3-2: Applicability of DFS Requirements during normal operation ## 2.2. DFS Devices Requirements # Per FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 the following are the requirements for Master Devices: - (a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 ~ 5350 MHz and 5470 ~ 5725 MHz bands. DFS is not required in the 5150 ~ 5250 MHz or 5725 ~ 5825 MHz bands. - (b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above. - (c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device. - (d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a). - (e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time. - (f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period. - (g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above. # Channel Move Time and Channel Closing Transmission Time requirements are listed in the following table. | Parameter | Value | | | |-----------------------------------|---|--|--| | Non-occupancy period | Minimum 30 minutes | | | | Channel Availability Check Time | 60 seconds | | | | Channel Move Time | 10 seconds | | | | Channel wove Time | See Note 1. | | | | | 200 milliseconds + an aggregate of 60 | | | | Channel Closing Transmission Time | milliseconds over remaining 10 second period. | | | | | See Notes 1 and 2. | | | | U-NII Detection Bandwidth | Minimum 100% of the U-NII 99% transmission | | | | 0-Mil Detection Danawatti | power bandwidth. See Note 3. | | | Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. **Table 3-3: DFS Response Requirements** #### 2.3. DFS Detection Threshold Values The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection thresholds are listed in the following table. | Maximum Transmit Power | Value | |---|-------------------------| | | (See Notes 1, 2, and 3) | | EIRP ≥ 200 milliwatt | -64 dBm | | EIRP < 200 milliwatt and | -62 dBm | | power spectral density < 10 dBm/MHz | | | EIRP < 200 milliwatt that do not meet the power | -64 dBm | | spectral density requirement | | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. Table 3-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection ## 2.4. Parameters of DFS Test Signals This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms. **Short Pulse Radar Test Waveforms** | Radar
Type | Pulse
Width
(µsec) | PRI
(µsec) | Number of Pulses | Minimum Percentage of Successful Detection | Minimum
Number of
Trials | |---------------|--------------------------|--|--|--|--------------------------------| | 0 | 1 | 1428 | 18 | See Note 1 | See Note 1 | | 1 | 1 | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 3-6 Test B: 15 unique PRI values randomly selected within the | $\begin{array}{c} \text{Roundup} \left\{ \hspace{-0.5cm} \left(\frac{1}{360} \right) \hspace{-0.5cm} \cdot \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\text{usec}}} \right) \hspace{-0.5cm} \right\} \end{array}$ | 60% | 30 | | | | range of 518-3066 µsec, with a minimum increment | | | | | | | of 1 µsec, excluding PRI values selected | | | | | | | in Test A | | | | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggregate | (Radar Typ | oes 1-4) | | 80% | 120 | Note: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. Table 3-5: Parameters for Short Pulse Radar Waveforms A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. | Pulse Repetition Frequency | Pulse Repetition Frequency | Pulse Repetition Interval | |----------------------------|----------------------------|---------------------------| | Number | (Pulses Per Second) | (Microseconds) | | 1 | 1930.5 | 518 | | 2 | 1858.7 | 538 | | 3 | 1792.1 | 558 | | 4 | 1730.1 | 578 | | 5 | 1672.2 | 598 | | 6 | 1618.1 | 618 | | 7 | 1567.4 | 638 | | 8 | 1519.8 | 658 | | 9 | 1474.9 | 678 | | 10 | 1432.7 | 698 | | 11 | 1392.8 | 718 | | 12 | 1355 | 738 | | 13 | 1319.3 | 758 | | 14 | 1285.3 | 778 | | 15 | 1253.1 | 798 | | 16 | 1222.5 | 818 | | 17 | 1193.3 | 838 | | 18 | 1165.6 | 858 | | 19 | 1139 | 878 | | 20 | 1113.6 | 898 | | 21 | 1089.3 | 918 | | 22 | 1066.1 | 938 | | 23 | 326.2 | 3066 | Table 3-6: Pulse Repetition Intervals Values for Test A #### Long Pulse Radar Test Waveform | Radar
Type | Pulse
Width
(µsec) | Chirp
Width
(MHz) | PRI
(µsec) | Number
of Pulses
per Burst | Number of
Bursts | Minimum Percentage of Successful | Minimum Number of Trials | |---------------|--------------------------|-------------------------|----------------|----------------------------------|---------------------|----------------------------------|----------------------------| | | | | | | | Detection | | | 5 | 50 - 100 | 5 - 20 | 1000 -
2000 | 1 - 3 | 8 - 20 | 80% | 30 | **Table 3-7: Parameters for Long Pulse Radar Waveforms** The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms. ### **Frequency Hopping Radar Test Waveform** | Rada | | PRI
(µsec) | Pulses
Per
Hop | Hopping
Rate
(kHz) | Hopping Sequence Length (msec) | Minimum Percentage of Successful Detection | Minimum
Number
of
Trials | |------|---|---------------|----------------------|--------------------------|--------------------------------|--|--------------------------------| | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | **Table 3-8: Parameters for Frequency Hopping Radar Waveforms** For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely. ## 2.5. Conducted Test Setup The FCC KDB 905462 D02 NII DFS Compliance Procedures New Rules v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 3-1 shows the typical test setup. Figure 3-1: Conducted Test Setup where UUT is a Master and Radar Test Waveforms are injected into the Masters # 3. TEST EQUIPMENT CALIBRATION DATE Dynamic Frequency Selection (WZ-SR4) | . , | , | | | | | |-----------------------------|--------------|----------|-------------|----------------|----------------| | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | | Signal Analyzer | R&S | FSV40 | MRTSUE06218 | 1 year | 2022/04/13 | | Vector Signal Generator | Agilent | E4438C | MRTSUE06026 | 1 year | 2021/10/22 | | Vector Signal Generator | R&S | SMBV100A | MRTSUE06279 | 1 year | 2022/04/13 | | MXG Vector Signal Generator | KEYSIGHT | N5182B | MRTSUE06451 | 1 year | 2022/06/24 | | Thermal Hygrometer | testo | 608-H1 | MRTSUE06222 | 1 year | 2021/10/25 | # Dynamic Frequency Selection (SIP-TR2) | Instrument | Manufacturer | Type No. | Asset No. | Cali. Interval | Cali. Due Date | |-------------------------|--------------|----------|-------------|----------------|----------------| | EXA Signal Analyzer | KEYSIGHT | N9010B | MRTSUE06603 | 1 year | 2021/11/23 | | Vector Signal Generator | Keysight | N5182B | MRTSUE06605 | 1 year | 2021/11/23 | | Thermal Hygrometer | testo | 622 | MRTSUE06628 | 1 year | 2021/11/25 | | Software | Version | Manufacturer | Function | |-------------------------|----------|--------------|----------------------------------| | Pulse Building | N/A | Agilent | Radar Signal Generation Software | | R&S Pulse Sequencer DFS | V 1.4 | R&S | DFS Test Software | | DFS Tool | V 6.9.2 | Agilent | DFS Test Software | | N7606C Signal Studio | V2.0.0.0 | Keysight | DFS Test Software | # 4. TEST RESULT # 4.1. Summary | Parameter | Limit | Test Result | Reference | | |-------------------------------------|-----------------|-------------|-------------|--| | NII Detection Bandwidth | Refer Table 3-3 | Pass | Section 4.4 | | | Measurement | Relei Table 3-3 | Pa55 | Section 4.4 | | | Initial Channel Availability Check | Refer Table 3-3 | Pass | Section 4.5 | | | Time | Neier Table 3-3 | F 435 | Section 4.5 | | | Radar Burst at the Beginning of the | Refer Table 3-3 | Pass | Section 4.6 | | | Channel Availability Check Time | Neier Table 3-3 | F 433 | 3ection 4.0 | | | Radar Burst at the End of the | Refer Table 3-3 | Pass | Section 4.7 | | | Channel Availability Check Time | Neier Table 3-3 | F 433 | Section 4.7 | | | In-Service Monitoring for Channel | | | | | | Move Time, Channel Closing | Refer Table 3-3 | Pass | Section 4.8 | | | Transmission Time | | | | | | Non-Occupancy Period | Refer Table 3-3 | Pass | Section 4.8 | | | Statistical Performance Check | Refer Table 3-3 | Pass | Section 4.9 | | #### 4.2. Radar Waveform Calibration #### 4.2.1. Calibration Setup The conducted test setup was used for this calibration testing. Figure 3-2 shows the typical test setup. Figure 3-2: Conducted Test Setup #### 4.2.2. Calibration Procedure The Interference Radar Detection Threshold Level is (-64dBm) + (0) [dBi] + 1 dB= -63 dBm that had been taken into account the output power range and antenna gain. The above equipment setup was used to calibrate the conducted Radar Waveform. A vector signal generator was utilized to establish the test signal level for each radar type. During this process there were replace 50ohm terminal form Master and Client device and no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to at least 3MHz. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was (-64dBm) + (0) [dBi] + 1 dB= -63dBm. Capture the spectrum analyzer plots on short pulse radar types, long pulse radar type and hopping radar waveform. ## 4.2.3. Calibration Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | |-----------|----------------------------|---------------|------------| | Test Site | WZ-SR4 | Test Date | 2021/05/25 | | Test Item | Radar Waveform Calibration | | | ## 4.2.4. Channel Loading Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | |-----------|-----------------|---------------|-----------------------| | Test Site | WZ-SR4 | Test Date | 2021/05/26~2021/05/27 | | Test Item | Channel Loading | | | Note: System testing was performed with the designated iperf test file. This file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Packet ratio = Time On / (Time On + Off Time). #### 4.3. NII Detection Bandwidth Measurement #### 4.3.1. Test Limit Minimum 100% of the NII 99% transmission power bandwidth. During the U-NII Detection Bandwidth detection test, each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. #### 4.3.2. Test Procedure - 1. Adjust the equipment to produce a single Burst of any one of the Short Pulse Radar Types 0-4 in Table 3-5 at the center frequency of the EUT Operating Channel at the specified DFS Detection Threshold level. - 2. The generating equipment is configured as shown in the Conducted Test Setup above section 3.5. - 3. The EUT is set up as a stand-alone device (no associated Client or Master, as appropriate) and no traffic. Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test. - 4. Generate a single radar Burst, and note the response of the EUT. Repeat for a minimum of 10 trials. The EUT must detect the Radar Waveform using the specified U-NII Detection Bandwidth criterion shown in Table 3-5. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge. - 5. Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 3-3. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as FH) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above FH is not required to demonstrate compliance. - 6. Starting at the center frequency of the EUT operating Channel, decrease the radar frequency in 1 MHz steps, repeating the above item 4 test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion. Record the lowest frequency (denote as FL) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below FL is not required to demonstrate compliance. - 7. The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = FH FL - 8. The U-NII Detection Bandwidth must be at least 100% of the EUT transmitter 99% power, otherwise, the EUT does not comply with DFS requirements. #### 4.3.3. Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | | | |-----------|---|---------------|------------|--|--|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/05/27 | | | | | | | Test Item | Detection Bandwidth (802.11ac-VHT20 mode - 5500MHz) | | | | | | | | | Radar Frequency | | DFS Detection Trials (1=Detection, 0= No Detection) | | | | | | | | | | |---------------------|---|---|---|---|---|---|---|---|---|----|--------------------| | (MHz) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) | | 5490 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0% | | 5491 F∟ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5492 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5493 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5494 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5495 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5500 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5505 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5506 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5507 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5508 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5509 F _н | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5510 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0% | Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5500MHz. The 99% channel bandwidth is 17.59MHz. (See the 99% BW section of the RF report for further measurement details). Note 2: Detection Bandwidth = F_H - F_L = 5509MHz - 5491MHz = 18MHz. Note 3: NII Detection Bandwidth Min. Limit (MHz): 17.59MHz x 100% = 17.59MHz. | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | | |-----------|---|---------------|------------|--|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/05/27 | | | | | | Test Item | Detection Bandwidth (802.11ac-VHT40 mode - 5510MHz) | | | | | | | | Radar Frequency | | | DF | S Det | ection | Trials | (1=D | etectio | on, 0= | No D | etection) | |---------------------|---|---|----|-------|--------|--------|------|---------|--------|------|--------------------| | (MHz) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) | | 5490 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0% | | 5491 F _L | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5492 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5493 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5494 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5495 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5500 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5505 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5510 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5515 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5520 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5525 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5526 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5527 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5528 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5529 F _н | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5530 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0% | Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5510MHz. The 99% channel bandwidth is 35.92MHz. (See the 99% BW section of the RF report for further measurement details). Note 2: Detection Bandwidth = F_H - F_L = 5529MHz - 5491MHz = 38MHz. Note 3: NII Detection Bandwidth Min. Limit (MHz):35.92MHz x 100% = 35.92MHz. | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | | |-----------|---|---------------|------------|--|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/05/27 | | | | | | Test Item | Detection Bandwidth (802.11ac-VHT80 mode - 5530MHz) | | | | | | | | Radar Frequency | | DFS Detection Trials (1=Detection, 0= No Detection) | | | | | | | etection) | | | |---------------------|---|---|---|---|---|---|---|---|-----------|----|--------------------| | (MHz) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Detection Rate (%) | | 5490 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0% | | 5491 F _L | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5492 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5493 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5494 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5495 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5500 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5505 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5510 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5515 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5520 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5525 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5530 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5535 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5540 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5545 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5550 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5555 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5560 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5565 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5566 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5567 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5568 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5569 F _н | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100% | | 5570 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0% | Note 1: All NII channels for this device have identical Channel bandwidths. Therefore, all DFS testing was done at 5530MHz. The 99% channel bandwidth is 75.43MHz. (See the 99% BW section of the RF report for further measurement details). Note 2: Detection Bandwidth = F_H - F_L = 5569MHz - 5491MHz = 78MHz. Note 3: NII Detection Bandwidth Min. Limit (MHz): 75.43MHz x 100% = 75.43MHz. # 4.4. Initial Channel Availability Check Time Measurement #### 4.4.1. Test Limit The EUT shall perform a Channel Availability Check to ensure that there is no radar operating on the channel. After power-up sequence, receive at least 1 minute on the intended operating frequency. #### 4.4.2. Test Procedure - 1. The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the EUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device. - 2. The EUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle. - 3. Confirm that the EUT initiates transmission on the channel. Measurement system showing its nominal noise floor is marker1. #### 4.4.3. Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | | |-----------|---|---------------|------------|--|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/05/27 | | | | | | Test Item | Initial Channel Availability Check Time (802.11ac-VHT20 mode - 5500MHz) | | | | | | | Note: The EUT does not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle (11.18sec). Initial beacons/data transmissions are indicated by marker 1 (71.18sec). # 4.5. Radar Burst at the Beginning of the Channel Availability Check Time Measurement #### 4.5.1. Test Limit In beginning of the Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel. #### 4.5.2. Test Procedure - 1. The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time. - 2. The EUT is in completion power-up cycle (from T0 to T1). T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner than T1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1. - 3. Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred. #### 4.5.3. Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | | | |--|---------------------------------|---------------|------------|--|--|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/05/27 | | | | | | | Beginning of the Channel Availability Check Time | | | | | | | | | | Test Item | (802.11ac-VHT20 mode - 5500MHz) | | | | | | | | ## 4.6. Radar Burst at the End of the Channel Availability Check Time Measurement #### 4.6.1. Test Limit In the end of Channel Availability Check (CAC) Time, radar is detected on this channel, select another intended channel and perform a CAC on that channel. #### 4.6.2. Test Procedure - 1. The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time. - 2. The EUT is powered on at T0. T1 denotes the instant when the EUT has completed its power-up sequence. The Channel Availability Check Time commences at instant T1 and will end no sooner thanT1 + 60 seconds. A single Burst of one of Short Pulse Radar Types 0-4 at DFS Detection Threshold + 1 dB will commence within a 6 second window starting at T1+ 54 seconds. - 3. Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions will continue for 2.5 minutes after the radar Burst has been generated. Verify that during the 2.5 minutes measurement window no EUT transmissions occurred. #### 4.6.3. Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | | |--|---------------------------------|---------------|------------|--|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/05/27 | | | | | | End of the Channel Availability Check Time | | | | | | | | | Test Item | (802.11ac-VHT20 mode - 5500MHz) | | | | | | | # 4.7. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period Measurement #### 4.7.1. Test Limit The EUT has In-Service Monitoring function to continuously monitor the radar
signals. If the radar is detected, must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec. The total duration of Channel Closing Transmission Time is 260ms, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time. The Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel. #### 4.7.2. Test Procedure Used - 1. The test should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0. - 2. When the radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device. A U-NII device operating as a Master Device will associate with the Client Device at Channel. Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test. At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at Detection Threshold + 1dB. - 3. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). - 4. Measurement of the aggregate duration of the Channel Closing Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (1.5ms) = S (12 sec) / B (8000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C = N X Dwell; where C is the Closing Time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and Dwell is the dwell time per bin. - 5. Measure the EUT for more than 30 minutes following the channel close/move time to verify that the EUT does not resume any transmissions on this Channel. #### 4.7.3. Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | |-----------|---|---------------|------------| | Test Site | WZ-SR4 | Test Date | 2021/05/26 | | Toot Itom | Channel Move Time and Channel Closing Transmission Time | | | | Test Item | (802.11ac-VHT80 mode - 5530MHz) | | | | Parameter | Test Result | Limit | |--|-------------|----------| | Channel Move Time (s) | 0.594s | <10s | | Channel Closing Transmission Time (ms) | 25.5ms | < 60ms | | (Note) | 25.5008 | < 60IIIS | | Non-Occupancy Period (min) | ≥ 30min | ≥ 30 min | Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions. #### 4.8. Statistical Performance Check Measurement #### 4.8.1. Test Limit The minimum percentage of successful detection requirements found in below table when a radar burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring). | Radar Type | Minimum Number of Trails | Detection Probability | |-----------------------------|-----------------------------------|-----------------------| | 0 | 30 | Pd > 60% | | 1 | 30(15 of test A and 15 of test B) | Pd > 60% | | 2 | 30 | Pd > 60% | | 3 | 30 | Pd > 60% | | 4 | 30 | Pd > 60% | | Aggregate (Radar Types 1-4) | 120 | Pd > 80% | | 5 | 30 | Pd > 80% | | 6 | 30 | Pd > 70% | Note: The percentage of successful detection is calculated by: (Total Waveform Detections / Total Waveform Trails) * 100 = Probability of Detection Radar Waveform In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows: (Pd1 + Pd2 + Pd3 + Pd4) / 4. #### 4.8.2. Test Procedure - 1. Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test. - 2. At time T0 the Radar Waveform generator sends the individual waveform for each of the Radar Types 1-6, at levels equal to the DFS Detection Threshold + 1dB, on the Operating Channel. - 3. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 0 to ensure detection occurs. - 4. Observe the transmissions of the EUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs. - 5. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. - 6. The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in below table. ## 4.8.3. Test Result | Product | WiFi 6 Extender | Test Engineer | Jake Lan | |-----------|---|---------------|------------| | Test Site | WZ-SR4 | Test Date | 2021/05/26 | | Test Item | Radar Statistical Performance Check (802.11ac-VHT20 mode - 5500MHz) | | | | Test Mode | AP mode | | | Radar Type 1 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5498.0 | 1.0 | 678 | 78 | 1 | | 2 | 5509.0 | 1.0 | 858 | 62 | 1 | | 3 | 5496.0 | 1.0 | 738 | 72 | 1 | | 4 | 5493.0 | 1.0 | 878 | 61 | 1 | | 5 | 5509.0 | 1.0 | 938 | 57 | 1 | | 6 | 5500.0 | 1.0 | 918 | 58 | 1 | | 7 | 5501.0 | 1.0 | 538 | 99 | 1 | | 8 | 5508.0 | 1.0 | 618 | 86 | 1 | | 9 | 5500.0 | 1.0 | 798 | 67 | 1 | | 10 | 5509.0 | 1.0 | 898 | 59 | 1 | | 11 | 5490.0 | 1.0 | 518 | 102 | 1 | | 12 | 5503.0 | 1.0 | 718 | 74 | 1 | | 13 | 5497.0 | 1.0 | 3066 | 18 | 1 | | 14 | 5500.0 | 1.0 | 598 | 89 | 1 | | 15 | 5491.0 | 1.0 | 838 | 63 | 1 | | 16 | 5495.0 | 1.0 | 2846 | 19 | 1 | | 17 | 5495.0 | 1.0 | 562 | 94 | 1 | | 18 | 5504.0 | 1.0 | 1335 | 40 | 1 | | 19 | 5497.0 | 1.0 | 1748 | 31 | 1 | | 20 | 5507.0 | 1.0 | 3047 | 18 | 1 | | 21 | 5493.0 | 1.0 | 850 | 63 | 1 | | 22 | 5505.0 | 1.0 | 2404 | 22 | 1 | | 23 | 5509.0 | 1.0 | 1611 | 33 | 1 | | 24 | 5503.0 | 1.0 | 2904 | 19 | 1 | | 25 | 5503.0 | 1.0 | 2736 | 20 | 1 | | 26 | 5491.0 | 1.0 | 3044 | 18 | 1 | | 27 | 5509.0 | 1.0 | 1604 | 33 | 1 | | 28 | 5508.0 | 1.0 | 2695 | 20 | 1 | | 29 | 5504.0 | 1.0 | 2004 | 27 | 1 | |----|--------|----------|------|----|---| | 30 | 5495.0 | 1.0 2642 | | 20 | 1 | | | 100% | | | | | Radar Type 2 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5495.0 | 2.8 | 164 | 26 | 1 | | 2 | 5500.0 | 3.9 | 160 | 27 | 1 | | 3 | 5494.0 | 4.8 | 215 | 29 | 1 | | 4 | 5497.0 | 4.1 | 202 | 28 | 0 | | 5 | 5494.0 | 3.5 | 203 | 27 | 1 | | 6 | 5505.0 | 3.7 | 154 | 27 | 1 | | 7 | 5494.0 | 1.1 | 230 | 23 | 1 | | 8 | 5492.0 | 4.2 | 204 | 28 | 1 | | 9 | 5495.0 | 1.0 | 166 | 23 | 0 | | 10 | 5490.0 | 2.7 | 169 | 25 | 1 | | 11 | 5508.0 | 4.5 | 190 | 29 | 1 | | 12 | 5505.0 | 4.4 | 195 | 28 | 1 | | 13 | 5497.0 | 2.8 | 185 | 26 | 1 | | 14 | 5497.0 | 3.0 | 181 | 26 | 1 | | 15 | 5504.0 | 1.0 | 218 | 23 | 1 | | 16 | 5509.0 | 3.5 | 173 | 27 | 1 | | 17 | 5495.0 | 1.1 | 227 | 23 | 1 | | 18 | 5508.0 | 2.5 | 193 | 25 | 1 | | 19 | 5506.0 | 2.4 | 205 | 25 | 1 | | 20 | 5494.0 | 5.0 | 208 | 29 | 1 | | 21 | 5506.0 | 2.5 | 152 | 25 | 1 | | 22 | 5498.0 | 4.9 | 210 | 29 | 1 | | 23 | 5501.0 | 4.5 | 211 | 29 | 1 | | 24 | 5500.0 | 1.5 | 158 | 23 | 0 | | 25 | 5509.0 | 3.7 | 179 | 27 | 1 | | 26 | 5499.0 | 3.9 | 199 | 27 | 1 | | 27 | 5491.0 | 3.9 | 222 | 28 | 1 | | 28 | 5501.0 | 1.6 | 171 | 24 | 1 | | 29 | 5498.0 | 2.6 | 225 | 25 | 0 | | 30 | 5492.0 | 4.5 | 216 | 29 | 1 | | | Det | ection Percentage | (%) | | 86.7% | Radar Type 3 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5502.0 | 7.8 | 333 | 17 | 1 | | 2 | 5501.0 | 8.9 | 349 | 18 | 1 | | 3 | 5503.0 | 9.8 | 228 | 18 | 1 | | 4 | 5501.0 | 9.1 | 256 | 18 | 1 | | 5 | 5509.0 | 8.5 | 402 | 17 | 0 | | 6 | 5506.0 | 8.7 | 340 | 17 | 1 | | 7 | 5506.0 | 6.1 | 392 | 16 | 0 | | 8 | 5493.0 | 9.2 | 383 | 18 | 1 | | 9 | 5492.0 | 6.0 | 460 | 16 | 1 | | 10 | 5504.0 | 7.7 | 336 | 17 | 1 | | 11 | 5496.0 | 9.5 | 381 | 18 | 0 | | 12 | 5495.0 | 9.4 | 306 | 18 | 1 | | 13 | 5492.0 | 7.8 | 210 | 17 | 1 | | 14 | 5491.0 | 8.0 | 222 | 17 | 1 | | 15 | 5496.0 | 6.0 | 480 | 16 | 1 | | 16 | 5500.0 | 8.5 | 358 | 17 | 1 | | 17 | 5494.0 | 6.1 | 470 | 16 | 1 | | 18 | 5500.0 | 7.5 | 465 | 17 | 1 | | 19 | 5502.0 | 7.4 | 217 | 17 | 1 | | 20 | 5493.0 | 10.0 | 278 | 18 | 1 | | 21 | 5508.0 | 7.5 | 407 | 17 | 1 | | 22 | 5508.0 | 9.9 | 281 | 18 | 1 | | 23 | 5501.0 | 9.5 | 226 | 18 | 1 | | 24 | 5502.0 | 6.5 | 297 | 16 | 1 | | 25 | 5505.0 | 8.7 | 406 | 17 | 1 | | 26 | 5509.0 | 8.9 | 235 | 18 | 1 | | 27 | 5508.0 | 8.9 | 479 | 18 | 1 | | 28 | 5501.0 | 6.6 | 401 | 16 | 1 | | 29 | 5499.0 | 7.6 | 219 | 17 | 1 | | 30 | 5491.0 | 9.5 | 354 | 18 | 1 | | | Det | ection Percentage | (%) | | 90% |
Radar Type 4 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5492.0 | 15.1 | 333 | 14 | 1 | | 2 | 5502.0 | 17.4 | 349 | 15 | 1 | | 3 | 5507.0 | 19.6 | 228 | 16 | 1 | | 4 | 5505.0 | 18.0 | 256 | 15 | 1 | | 5 | 5494.0 | 16.5 | 402 | 15 | 1 | | 6 | 5506.0 | 17.0 | 340 | 15 | 1 | | 7 | 5502.0 | 11.2 | 392 | 12 | 1 | | 8 | 5504.0 | 18.1 | 383 | 15 | 1 | | 9 | 5495.0 | 11.1 | 460 | 12 | 1 | | 10 | 5502.0 | 14.7 | 336 | 14 | 1 | | 11 | 5498.0 | 18.8 | 381 | 16 | 1 | | 12 | 5504.0 | 18.5 | 306 | 16 | 1 | | 13 | 5504.0 | 15.1 | 210 | 14 | 1 | | 14 | 5502.0 | 15.5 | 222 | 14 | 1 | | 15 | 5496.0 | 11.0 | 480 | 12 | 1 | | 16 | 5501.0 | 16.5 | 358 | 15 | 1 | | 17 | 5500.0 | 11.2 | 470 | 12 | 0 | | 18 | 5501.0 | 14.3 | 465 | 13 | 0 | | 19 | 5496.0 | 14.2 | 217 | 13 | 1 | | 20 | 5507.0 | 19.8 | 278 | 16 | 0 | | 21 | 5492.0 | 14.5 | 407 | 13 | 0 | | 22 | 5507.0 | 19.8 | 281 | 16 | 1 | | 23 | 5491.0 | 18.9 | 226 | 16 | 1 | | 24 | 5499.0 | 12.2 | 297 | 12 | 1 | | 25 | 5502.0 | 16.9 | 406 | 15 | 1 | | 26 | 5497.0 | 17.4 | 235 | 15 | 1 | | 27 | 5506.0 | 17.5 | 479 | 15 | 1 | | 28 | 5495.0 | 12.3 | 401 | 12 | 1 | | 29 | 5500.0 | 14.6 | 219 | 14 | 1 | | 30 | 5493.0 | 18.9 | 354 | 16 | 1 | | | Det | ection Percentage | (%) | | 86.7% | Note: In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is as follows: $\frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4} = (100\% + 86.7\% + 90\% + 86.7\%)/4 = 90.85\% (>80\%)$ Radar Type 5 - Radar Statistical Performance | Trail # | Test Freq. | 1=Detection | Trail # | Test Freq. | 1=Detection | |---------|------------|-------------------|---------|------------|----------------| | | (MHz) | 0=No Detection | | (MHz) | 0=No Detection | | 1 | 5500.0 | 1 | 16 | 5497.0 | 1 | | 2 | 5500.0 | 1 | 17 | 5494.2 | 1 | | 3 | 5500.0 | 1 | 18 | 5495.8 | 1 | | 4 | 5500.0 | 1 | 19 | 5495.8 | 1 | | 5 | 5500.0 | 1 | 20 | 5499.0 | 1 | | 6 | 5500.0 | 1 | 21 | 5503.8 | 1 | | 7 | 5500.0 | 0 | 22 | 5501.0 | 1 | | 8 | 5500.0 | 1 | 23 | 5501.4 | 1 | | 9 | 5500.0 | 1 | 24 | 5505.4 | 1 | | 10 | 5500.0 | 1 | 25 | 5502.6 | 1 | | 11 | 5498.6 | 1 | 26 | 5502.2 | 1 | | 12 | 5498.2 | 1 | 27 | 5502.2 | 1 | | 13 | 5496.2 | 1 | 28 | 5505.4 | 0 | | 14 | 5496.6 | 1 | 29 | 5503.8 | 1 | | 15 | 5494.2 | 1 | 30 | 5501.4 | 1 | | | Det | ection Percentage | (%) | | 93.3% | | Type 5 Radar Waveform_1 | | | | | | | | | | | | |------------------------------------|--|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------|--|--| | Downlos 0 Type 5 13 0.92 12.0 5.50 | | | | | | | | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | 0 | 6441 | 72. 8 | 12 | 2 | 1089.0 | 1169.0 | _ | | | | | | 1 | 8650 | 85. 5 | 12 | 3 | 1476. 0 | 1358. 0 | 1992. 0 | | | | | | 2 | 1695 | 97. 5 | 12 | 3 | 1112.0 | 1742.0 | 1581. 0 | | | | | | 3 | 3925 | 88. 7 | 12 | 3 | 1216.0 | 1568. 0 | 1160.0 | | | | | | 4 | 6158 | 80. 6 | 12 | 2 | 1475. 0 | 1906. 0 | _ | | | | | | 5 | 8399 | 83. 2 | 12 | 2 | 1152. 0 | 1034.0 | _ | | | | | | 6 | 1426 | 51. 2 | 12 | 1 | 1022.0 | _ | _ | | | | | | 7 | 3647 | 89. 3 | 12 | 3 | 1368. 0 | 1722. 0 | 1623.0 | | | | | | 8 | 5894 | 51. 0 | 12 | 1 | 1617.0 | _ | _ | | | | | | 9 | 8115 | 70.8 | 12 | 2 | 2000.0 | 1223.0 | _ | | | | | | 10 | 1146 | 93. 1 | 12 | 3 | 1751. 0 | 1199. 0 | 1656. 0 | | | | | | 11 | 3373 | 91. 6 | 12 | 3 | 1453.0 | 1829. 0 | 1329. 0 | | | | | | 12 | 5607 | 72. 8 | 12 | 2 | 1830.0 | 1763. 0 | _ | | | | Type 5 | Radar | Waveform_ | _2 | |--------|-------|-----------|----| |--------|-------|-----------|----| | Downloa | Type 5 | 17 | 0. 70 | 12. 0 | 5. 50 | | | | |---------|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 5997 | 75. 1 | 16 | 2 | 1180.0 | 1063.0 | _ | | | 1 | 66838. 0 | 50. 0 | 16 | 1 | 1817. 0 | _ | _ | | | 2 | 2370 | 80.8 | 16 | 2 | 1747.0 | 1603.0 | _ | | | 3 | 4084 | 51.6 | 16 | 1 | 1704.0 | _ | _ | | | 4 | 5786 | 68. 4 | 16 | 2 | 1033.0 | 1352.0 | _ | | | 5 | 45703.0 | 67. 7 | 16 | 2 | 1657. 0 | 1723.0 | _ | | | 6 | 2155 | 98. 9 | 16 | 3 | 1898. 0 | 1472.0 | 1613. 0 | | | 7 | 3871 | 69. 5 | 16 | 2 | 1010.0 | 1038. 0 | _ | | | 8 | 5556 | 98. 5 | 16 | 3 | 1113.0 | 1819. 0 | 1916. 0 | | | 9 | 24683.0 | 93. 7 | 16 | 3 | 1240.0 | 1904. 0 | 1171.0 | | | 10 | 1956 | 57. 1 | 16 | 1 | 1338. 0 | _ | _ | | | 11 | 3658 | 83. 0 | 16 | 2 | 1511.0 | 1119.0 | _ | | | 12 | 5348 | 85. 7 | 16 | 3 | 1673.0 | 1910. 0 | 1159. 0 | | | 13 | 3723. 0 | 86. 2 | 16 | 3 | 1589. 0 | 1914. 0 | 1166. 0 | | | 14 | 1746 | 57. 3 | 16 | 1 | 1252. 0 | _ | - | | | 15 | 3448 | 70. 0 | 16 | 2 | 1641.0 | 1058. 0 | _ | | | 16 | 5138 | 93. 6 | 16 | 3 | 1982. 0 | 1412.0 | 1342.0 | | □ Downloa | 2 | Type 5 | 20 | 0. 60 | 12. 0 | 5. 50 | | | | |-----------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 5822 | 79. 8 | 20 | 2 | 1407.0 | 1686.0 | _ | | | | 1 | 1304 | 62. 9 | 20 | 1 | 1573.0 | _ | _ | | | | 2 | 2755 | 56. 7 | 20 | 1 | 1588. 0 | _ | _ | | | | 3 | 4186 | 83. 5 | 20 | 3 | 1219.0 | 1896. 0 | 1355. 0 | | | | 4 | 5656 | 53. 9 | 20 | 1 | 1753.0 | _ | _ | | | | 5 | 1126 | 54. 9 | 20 | 1 | 1138.0 | _ | _ | | | | 6 | 2564 | 84. 8 | 20 | 3 | 1811.0 | 1161.0 | 1543.0 | | | | 7 | 4005 | 84. 4 | 20 | 3 | 1636.0 | 1678.0 | 1590.0 | | | | 8 | 5447 | 84. 6 | 20 | 3 | 1861.0 | 1262.0 | 1980. 0 | | | | 9 | 94426.0 | 71. 0 | 20 | 2 | 1306.0 | 1881.0 | _ | | | | 10 | 2388 | 84. 9 | 20 | 3 | 1183.0 | 1047.0 | 1876. 0 | | | | 11 | 3828 | 83. 8 | 20 | 3 | 1016.0 | 1998. 0 | 1810.0 | | | | 12 | 5300 | 50. 6 | 20 | 1 | 1646.0 | _ | _ | | | | 13 | 76503.0 | 90. 0 | 20 | 3 | 1084.0 | 1808.0 | 1030.0 | | | | 14 | 2210 | 87. 0 | 20 | 3 | 1024.0 | 1665. 0 | 1230.0 | | | | 15 | 3670 | 65. 7 | 20 | 1 | 1586. 0 | _ | _ | | | | 16 | 5119 | 60. 5 | 20 | 1 | 1907. 0 | _ | _ | | | | 17 | 58930.0 | 55. 0 | 20 | 1 | 1534. 0 | _ | _ | | | | 18 | 2032 | 99. 4 | 20 | 3 | 1205.0 | 1444. 0 | 1409.0 | | | | 19 | 3476 | 89. 2 | 20 | 3 | 1621. 0 | 1535. 0 | 1099. 0 | | Downloa | 3 | Type 5 | 18 | 0. 66 | 12. 0 | 5. 50 | | | | |---------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 5496 | 54. 3 | 17 | 1 | 1251.0 | _ | _ | | | | 1 | 45658.0 | 63. 6 | 17 | 1 | 1046.0 | _ | _ | | | | 2 | 2067 | 73. 4 | 17 | 2 | 1278.0 | 1000.0 | _ | | | | 3 | 3672 | 77. 7 | 17 | 2 | 1304.0 | 1973. 0 | _ | | | | 4 | 5296 | 64. 5 | 17 | 1 | 1434.0 | _ | _ | | | | 5 | 25704. 0 | 74. 4 | 17 | 2 | 1036.0 | 1781.0 | - | | | | 6 | 1860 | 91. 9 | 17 | 3 | 1503. 0 | 1526. 0 | 1967. 0 | | | | 7 | 3466 | 90. 4 | 17 | 3 | 1860. 0 | 1339. 0 | 1711.0 | | | | 8 | 5095 | 55. 7 | 17 | 1 | 1669. 0 | _ | _ | | | | 9 | 5859. 0 | 95. 0 | 17 | 3 | 1585. 0 | 1519. 0 | 1224. 0 | | | | 10 | 1663 | 97. 0 | 17 | 3 | 1938. 0 | 1345. 0 | 1685. 0 | | | | 11 | 3272 | 93. 9 | 17 | 3 | 1580. 0 | 1057. 0 | 1536. 0 | | | | 12 | 4891 | 69. 2 | 17 | 2 | 1150.0 | 1260. 0 | _ | | | | 13 | 6507 | 57. 4 | 17 | 1 | 1903. 0 | _ | _ | | | | 14 | 1463 | 91. 1 | 17 | 3 | 1950. 0 | 1878. 0 | 1972. 0 | | | | 15 | 3080 | 80. 1 | 17 | 2 | 1720.0 | 1070.0 | _ | | | | 16 | 4677 | 84. 8 | 17 | 3 | 1782. 0 | 1609. 0 | 1312. 0 | | | | 17 | 6283 | 89. 3 | 17 | 3 | 1447. 0 | 1990. 0 | 1137. 0 | | Type 5 Radar waveform_5 | | | | | | | | | | | | |-------------------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------|--|--|--|--| | Downloa 4 Typ | e 5 15 | 0.80 | 12. 0 | 5. 50 | | | | | | | | | Bui | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | 0 | 1528 | 71. 1 | 14 | 2 | 1060.0 | 1193.0 | | | | | | | 1 | 3448 | 95. 1 | 14 | 3 | 1929. 0 | 1984. 0 | 1700.0 | | | | | | 2 | 5378 | 96. 0 | 14 | 3 | 1954. 0 | 1952. 0 | 1320.0 | | | | | | 3 | 7323 | 67. 2 | 14 | 2 | 1718.0 | 1529. 0 | _ | | | | | | 4 | 1287 | 83. 9 | 14 | 3 | 1307. 0 | 1064. 0 | 1484. 0 | | | | | | 5 | 3217 | 96. 7 | 14 | 3 | 1874. 0 | 1151.0 | 1139.0 | | | | | | 6 | 5164 | 63. 9 | 14 | 1 | 1521.0 | _ | _ | | | | | | 7 | 7067 | 85. 7 | 14 | 3 | 1602.0 | 1831.0 | 1890.0 | | | | | | 8 | 1048 | 97. 8 | 14 | 3 | 1505. 0 | 1531.0 | 1894. 0 | | | | | | 9 | 2991 | 53. 6 | 14 | 1 | 1140.0 | _ | _ | | | | | | 10 | 4921 | 70. 1 | 14 | 2 | 1229. 0 | 1088. 0 | _ | | | | | | 11 | 6856 | 67. 3 | 14 | 2 | 1087. 0 | 1209.0 | _ | | | | | | 12 | 81269. 0 | 75. 1 | 14 | 2 | 1538. 0 | 1745. 0 | _ | | | | | | 13 | 2746 | 81. 2 | 14 | 2 | 1653. 0 | 1075.0 | <u> </u> | | | | | | 14 | 4688 | 58. 0 | 14 | 1 | 1431.0 | _ | _ | | | | | #### Type 5 Radar Waveform_6 | Downloa | 5 |
Type 5 | 16 | 0. 75 | 12. 0 | 5. 50 | | | | |---------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 6197 | 80. 9 | 15 | 2 | 1452.0 | 1561.0 | _ | | | | 1 | 53790.0 | 89. 2 | 15 | 3 | 1204. 0 | 1630.0 | 1443.0 | | | | 2 | 2354 | 66. 1 | 15 | 1 | 1666. 0 | _ | _ | | | | 3 | 4149 | 89. 5 | 15 | 3 | 1999. 0 | 1651. 0 | 1549.0 | | | | 4 | 5976 | 79. 1 | 15 | 2 | 1102.0 | 1618.0 | _ | | | | 5 | 31582. 0 | 68. 9 | 15 | 2 | 1380.0 | 1231.0 | _ | | | | 6 | 2127 | 79. 6 | 15 | 2 | 1853. 0 | 1039.0 | _ | | | | 7 | 3945 | 63. 1 | 15 | 1 | 1732.0 | _ | _ | | | | 8 | 5743 | 94. 5 | 15 | 3 | 1059.0 | 1065.0 | 1883.0 | | | | 9 | 9249.0 | 78. 6 | 15 | 2 | 1220.0 | 1857. 0 | _ | | | | 10 | 1899 | 89. 6 | 15 | 3 | 1221.0 | 1841.0 | 1942. 0 | | | | 11 | 3715 | 74. 1 | 15 | 2 | 1962. 0 | 1201.0 | _ | | | | 12 | 5519 | 91. 0 | 15 | 3 | 1182.0 | 1092.0 | 1787. 0 | | | | 13 | 7349 | 64. 6 | 15 | 1 | 1981. 0 | _ | _ | | | | 14 | 1677 | 93. 3 | 15 | 3 | 1494. 0 | 1071.0 | 1794. 0 | | | | 15 | 3483 | 99. 0 | 15 | 3 | 1682. 0 | 1471.0 | 1867. 0 | | Downloa | 6 | Type 5 | 8 | 1. 50 | 12. 0 | 5. 50 | | | | |---------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 1064 | 56.8 | 5 | 1 | 1598.0 | - | - | | | | 1 | 1426 | 80. 9 | 5 | 2 | 1604.0 | 1393.0 | _ | | | | 2 | 2921 | 71. 2 | 5 | 2 | 1749.0 | 1483.0 | _ | | | | 3 | 6543 | 83. 9 | 5 | 3 | 1779.0 | 1532.0 | 1698. 0 | | | | 4 | 1019 | 54. 2 | 5 | 1 | 1446.0 | _ | _ | | | | 5 | 1380 | 93. 2 | 5 | 3 | 1142.0 | 1389. 0 | 1020.0 | | | | 6 | 2470 | 87. 2 | 5 | 3 | 1812. 0 | 1415.0 | 1911. 0 | | | | 7 | 6101 | 79.8 | 5 | 2 | 1924. 0 | 1847. 0 | _ | | Downloa | 7 | Type 5 | 18 | 0. 66 | 12. 0 | 5. 50 | | | | |----------|----------|------------------------|--|---|----------------------------------|---|--|---|--------------------| | Downie | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3 | | | | 0 | 4316 | 76. 7 | 17 | 2 | 1640.0 | 1295. 0 | _ | | | | 1 | 5943 | 63. 7 | 17 | 1 | 1006.0 | - | _ | | | | 3 | 89930. 0
2508 | 78. 9
76. 6 | 17 | 2 | 1086. 0
1571. 0 | 1482. 0
1279. 0 | | | | | 4 | 4109 | 88. 2 | 17 | 3 | 1145. 0 | 1986. 0 | 1243. | | | | 5 | 5731 | 70. 2 | 17 | 2 | 1118. 0 | 1466. 0 | - | | | | 6 | 69860.0 | | 17 | 3 | 1421.0 | 1424.0 | 1905. | | | | 7 | 2310 | 69. 8 | 17 | 2 | 1002.0 | 1901. 0 | _ | | | | 8 | 3927 | 65. 8 | 17 | 1 | 1645. 0 | - | - | | | - | 9 | 5515 | 85. 8 | 17 | 3 | 1170.0 | 1696. 0 | 1727. | | | | 10
11 | 50098. 0
2113 | 88. 3
68. 2 | 17 | 2 | 1514. 0
1100. 0 | 1267. 0
1277. 0 | 1815. | | | | 12 | 3720 | 74. 9 | 17 | 2 | 1273. 0 | 1960. 0 | _ | | | | 13 | 5321 | 90. 7 | 17 | 3 | 1562. 0 | 1663. 0 | 1001. | | | | 14 | 30478.0 | 55. 7 | 17 | 1 | 1127.0 | _ | _ | | | | 15 | 1914 | 70. 4 | 17 | 2 | 1697. 0 | 1116.0 | _ | | | | 16 | 3515 | 91. 5 | 17 | 3 | 1497. 0 | 1554. 0 | 1413. | | | <u> </u> | 17 | 5132 | 81. 9 | 17 | 2 | 1569. 0 | 1445. 0 | | | | | True 5 | | | Waveform | | | | | | Downloa | 8 | Type 5 | 8 | 1. 50 | 12. 0 | 5. 50 | | | | | Downloa | 8 | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp Width (MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3 | | Down102 | 8 | Burst | Burst
Offset | Pulse
Width | Chirp Width (MHz) | Number
of
Pulses
per | | | | | Downloa | 8 | Burst
ID
0 | Burst
Offset
(us) | Pulse
Width
(us) | Chirp Width (MHz) | Number
of
Pulses
per | (us) | (us)
-
1019.0 | (us) | | Down102 | 8 | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us)
51.5
88.6
94.3 | Chirp Width (MHz) 5 5 5 | Number
of
Pulses
per
Burst | 1563. 0
1608. 0
1994. 0 | (us) | (us)
-
1845. | | Down loa | 8 | Burst
ID
0 | Burst
Offset
(us)
23854.0
3865
7491 | Pulse Width (us) 51.5 88.6 94.3 72.6 | Chirp Width (MHz) 5 5 5 5 | Number of Pulses per Burst 1 3 3 2 | (us)
1563. 0
1608. 0 | (us)
-
1019.0 | (us)
-
1845. | | Down10a | 8 | Burst
ID 0 1 2 3 4 | Burst
Offset
(us)
23854.0
3865
7491 | Pulse
Width
(us)
51.5
88.6
94.3 | Chirp Width (MHz) 5 5 5 5 5 | Number of Pulses per Burst 1 3 3 2 2 2 | 1563. 0
1608. 0
1994. 0 | (us) - 1019. 0 1652. 0 | (us)
-
1845. | | Downloa | 8 | Burst ID 0 1 2 3 4 5 | Burst
Offset
(us)
23854.0
3865
7491
1113
1476 | Pulse Width (us) 51.5 88.6 94.3 72.6 73.0 71.0 | Chirp Width (MHz) 5 5 5 5 5 | Number of Pulses per Burst 1 3 3 2 | 1563. 0
1608. 0
1994. 0
1124. 0
1121. 0
1805. 0 | (us) - 1019. 0 1652. 0 1179. 0 | | | Downloa | 8 | Burst
ID 0 1 2 3 4 | Burst
Offset
(us)
23854.0
3865
7491
1113 | Pulse
Width
(us)
51. 5
88. 6
94. 3
72. 6
73. 0 | Chirp Width (MHz) 5 5 5 5 5 | Number of Pulses per Burst 1 3 3 2 2 2 | 1563. 0
1608. 0
1994. 0
1124. 0
1121. 0 | (us) - 1019. 0 1652. 0 1179. 0 1014. 0 | (us)
-
1845. | | Downloa | 9 | Type 5 | 13 | 0. 92 | 12. 0 | 5. 50 | | | | |---------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3 (us) | | | | 0 | 8807 | 63. 2 | 11 | 1 | 1928. 0 | _ | _ | | | | 1 | 1824 | 86. 4 | 11 | 3 | 1395. 0 | 1314.0 | 1947. 0 | | | | 2 | 4067 | 53. 9 | 11 | 1 | 1256.0 | _ | _ | | | | 3 | 6278 | 97. 3 | 11 | 3 | 1401.0 | 1792. 0 | 1671.0 | | | | 4 | 8536 | 53. 8 | 11 | 1 | 1457.0 | _ | _ | | | | 5 | 1549 | 87.8 | 11 | 3 | 1430.0 | 1912.0 | 1804. 0 | | | | 6 | 3791 | 52. 0 | 11 | 1 | 1271.0 | _ | _ | | | | 7 | 6002 | 86. 4 | 11 | 3 | 1995. 0 | 1731.0 | 1319.0 | | | | 8 | 8265 | 62. 7 | 11 | 1 | 1076.0 | _ | _ | | | | 9 | 1280 | 65. 3 | 11 | 1 | 1761.0 | _ | _ | | | | 10 | 3501 | 90. 0 | 11 | 3 | 1939. 0 | 1376.0 | 1793. 0 | | | | 11 | 5753 | 53. 0 | 11 | 1 | 1077.0 | _ | _ | | | | 12 | 7977 | 74. 9 | 11 | 2 | 1284. 0 | 1153.0 | _ | | | Type 5 Radar Waveform_11 | | | | | | | | | | | | | |-------------------|--------------------------|------------------------|-------------------------|--|---------------|---------------|---------------|--|--|--|--|--|--| | Downlos 10 Type 5 | 19 | 0. 63 | 12. 0 | 5. 49 | | | | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | | | 0 | 68581. 0 | 74. 2 | 18 | 2 | 1210.0 | 1642.0 | _ | | | | | | | | 1 | 2207 | 90. 2 | 18 | 3 | 1143.0 | 1181.0 | 1559. 0 | | | | | | | | 2 | 3739 | 69. 8 | 18 | 2 | 1041.0 | 1123.0 | _ | | | | | | | | 3 | 5272 | 58. 2 | 18 | 1 | 1416. 0 | _ | _ | | | | | | | | 4 | 49925. 0 | 55. 1 | 18 | 1 | 1250.0 | _ | _ | | | | | | | | 5 | 2019 | 76. 3 | 18 | 2 | 1949. 0 | 1870. 0 | _ | | | | | | | | 6 | 3545 | 75. 0 | 18 | 2 | 1360.0 | 1951. 0 | _ | | | | | | | | 7 | 5075 | 74. 1 | 18 | 2 | 1396. 0 | 1052.0 | _ | | | | | | | | 8 | 31080.0 | 66. 2 | 18 | 1 | 1552. 0 | _ | _ | | | | | | | | 9 | 1835 | 75. 1 | 18 | 2 | 1237. 0 | 1356. 0 | _ | | | | | | | | 10 | 3364 | 50. 8 | 18 | 1 | 1983. 0 | _ | _ | | | | | | | | 11 | 4871 | 92. 5 | 18 | 3 | 1649.0 | 1490.0 | 1462.0 | | | | | | | | 12 | 12245. 0 | 72. 3 | 18 | 2 | 1178. 0 | 1040.0 | _ | | | | | | | | 13 | 1645 | 91.6 | 18 | 3 | 1021.0 | 1451.0 | 1173.0 | | | | | | | | 14 | 3166 | 98. 6 | 18 | 3 | 1550. 0 | 1177. 0 | 1234. 0 | | | | | | | | 15 | 4684 | 85. 5 | 18 | 3 | 1507. 0 | 1852. 0 | 1108.0 | | | | | | | | 16 | 6237 | 54. 1 | 18 | 1 | 1232.0 | _ | - | | | | | | | | Downloa 11 | Type 5 | 18 | 0. 66 | 12. 0 | 5. 49 | | | | |------------|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 4754 | 72. 0 | 18 | 2 | 1965. 0 | 1767. 0 | _ | | | 1 | 6354 | 83. 6 | 18 | 3 | 1714.0 | 1587. 0 | 1215.0 | | | 2 | 1344 | 56. 9 | 18 | 1 | 1661.0 | _ | _ | | | 3 | 2960 | 52. 0 | 18 | 1 | 1141.0 | _ | _ | | | 4 | 4568 | 65. 8 | 18 | 1 | 1974. 0 | _ | _ | | | 5 | 6167 | 68. 5 | 18 | 2 | 1766. 0 | 1634.0 | _ | | | 6 | 1144 | 82. 0 | 18 | 2 | 1300.0 | 1198. 0 | _ | | | 7 | 2761 | 50. 5 | 18 | 1 | 1132.0 | _ | _ | | | 8 | 4369 | 66. 2 | 18 | 1 | 2000.0 | _ | _ | | | 9 | 5963 | 88. 5 | 18 | 3 | 1548. 0 | 1375. 0 | 1066.0 | | | 10 | 94606. 0 | 77. 9 | 18 | 2 | 1594. 0 | 1126.0 | _ | | | 11 | 2552 | 90. 4 | 18 | 3 | 1184. 0 | 1258. 0 | 1241.0 | | | 12 | 4165 | 80. 4 | 18 | 2 | 1293. 0 | 1582. 0 | _ | | | 13 | 5755 | 88. 5 | 18 | 3 | 1762. 0 | 1777. 0 | 1628. 0 |
 | 14 | 74927. 0 | 57. 0 | 18 | 1 | 1336. 0 | _ | _ | | | 15 | 2355 | 77. 4 | 18 | 2 | 1991. 0 | 1461.0 | _ | | | 16 | 3954 | 98. 5 | 18 | 3 | 1557. 0 | 1575. 0 | 1826. 0 | | | 17 | 5580 | 74. 4 | 18 | 2 | 1131.0 | 1344. 0 | _ | | □ Downlos 12 Type : | 5 13 | 0. 92 | 12. 0 | 5. 49 | | | | |---------------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | Burst | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | 0 | 76279. 0 | 64. 3 | 12 | 1 | 1185. 0 | _ | - | | 1 | 2991 | 67.8 | 12 | 2 | 1290.0 | 1987. 0 | _ | | 2 | 5214 | 94. 7 | 12 | 3 | 1744. 0 | 1025.0 | 1899. 0 | | 3 | 7454 | 79. 6 | 12 | 2 | 1217.0 | 1918. 0 | _ | | 4 | 48685.0 | 80. 6 | 12 | 2 | 1120.0 | 1062.0 | _ | | 5 | 2710 | 97. 1 | 12 | 3 | 1959. 0 | 1814. 0 | 1605. 0 | | 6 | 4959 | 61. 3 | 12 | 1 | 1197.0 | _ | _ | | 7 | 7193 | 53. 1 | 12 | 1 | 1391.0 | _ | _ | | 8 | 21188. 0 | 54. 8 | 12 | 1 | 1551.0 | _ | _ | | 9 | 2444 | 81. 5 | 12 | 2 | 1311.0 | 1244.0 | _ | | 10 | 4671 | 96. 2 | 12 | 3 | 1301.0 | 1098.0 | 1125.0 | | 11 | 6915 | 53. 5 | 12 | 1 | 1709.0 | _ | _ | | 12 | 9152 | 50. 9 | 12 | 1 | 1463.0 | _ | _ | | | Type 5 Radar Waveform_14 | | | | | | | | | | | |--------------|--------------------------|-------------------------|------------------------|-------------------------|---|--------------------|--------------------|---------------|--|--|--| | Downlos 13 | Tana 5 | | 0. 85 | 1 | | | | | | | | | DOWITOS 13 | Type 5 Burst | Burst
Offset
(us) | Pulse
Width
(us) | Chirp Width (MHz) | 5. 49
Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | 0 | 2017 | 58. 6 | 13 | 1 | 1035. 0 | _ | _ | | | | | | 2 | 4087
6154 | 74. 7
82. 1 | 13
13 | 2 | 1353. 0
1276. 0 | 1073. 0
1985. 0 | _ | | | | | | 3 | 8234 | 81. 1 | 13 | 2 | 1028. 0 | 1286. 0 | _ | | | | | | 4 | 1754 | 91. 4 | 13 | 3 | 1439. 0 | 1774. 0 | 1341.0 | | | | | | 5 | 3830 | 67. 2 | 13 | 2 | 1495. 0 | 1155. 0 | - | | | | | | 7 | 5894
7989 | 88. 1
53. 9 | 13
13 | 3 | 1564. 0
1187. 0 | 1265. 0 | 1043. 0 | | | | | | 8 | 1499 | 89. 8 | 13 | 3 | 1206. 0 | 1788. 0 | 1706. 0 | | | | | | 9 | 3572 | 73. 2 | 13 | 2 | 1619. 0 | 1712. 0 | | | | | | | 10 | 5645 | 75. 7 | 13 | 2 | 1743. 0 | 1331. 0 | _ | | | | | | 11
12 | 7726
1243 | 58. 8
85. 6 | 13 | 3 | 1979. 0
1659. 0 | 1679. 0 | 1964. 0 | | | | | | 13 | 3309 | 88. 4 | 13 | 3 | 1886. 0 | 1650. 0 | 1909. 0 | | | | | | · | Туре | 5 Radar | Waveform | _15 | | | · . | | | | | □ Downloa 14 | Type 5 | 8 | 1. 50 | 12. 0 | 5. 49 | | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | 0 | 9439 | 84. 7 | 5 | 3 | 1577.0 | 1164.0 | 1539. 0 | | | | | | 1 | 1307 | 70. 4 | 5 | 2 | 1746. 0 | 1332. 0 | _ | | | | | | 2 | 1740 | 54. 0 | 5 | 1 | 1489. 0 | _ | _ | | | | | | 3 | 5376 | 65. 3 | 5 | 1 | 1146. 0 | 1_ | _ | | | | | | 4 | 9007 | 64. 2 | 5 | 1 | 1789. 0 | + | | | | | | | | | | | 1 | | | | | | | | | 5 | 1264 | 50. 0 | 5 | 1 | 1862. 0 | - | _ | | | | | | 6 | 1293 | 61. 0 | 5 | 1 | 1082. 0 | _ | _ | | | | | | 7 | 4914 | 89.8 | 5 | 3 | 1567. 0 | 1948. 0 | 1825. 0 | | | | | | · | Туре | 5 Radar | Waveform | _16 | • | • | | | | | | □ Downloa 15 | Type 5 | 15 | 0. 80 | 12. 0 | 5. 49 | | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | 0 | 4554 | 72. 9 | 14 | 2 | 1639. 0 | 1287. 0 | _ | | | | | | 2 | 6495
44867.0 | 63. 2
92. 5 | 14 | 3 | 1957. 0 | 1684. 0 | 1227 0 | | | | | | 3 | 2386 | 53. 0 | 14 | 1 | 1626. 0
1786. 0 | - | 1227. 0 | | | | | | 4 | 4324 | 59. 9 | 14 | 1 | 1374. 0 | _ | _ | | | | | | 5 | 6239 | 90. 8 | 14 | 3 | 1689. 0 | 1468. 0 | 1023. 0 | | | | | | 7 | 21193. 0 | 62. 7
63. 7 | 14 | 1 | 1165. 0
1676. 0 | _ | _ | | | | | | 8 | 4083 | 50. 5 | 14 | 1 | 1843. 0 | | | | | | | | 9 | 6023 | 54. 4 | 14 | 1 | 1245. 0 | _ | _ | | | | | | 10
11 | 7961
1902 | 62. 6
87. 6 | 14 | 3 | 1176. 0
1485. 0 | 1798. 0 | 1383. 0 | | | | | | 12 | 3839 | 69. 2 | 14 | 2 | 1597. 0 | 1397. 0 | - | | | | | | 13 | 5779 | 65. 7 | 14 | 1 | 1940. 0 | _ | _ | | | | | | 14 | 7696 | 98. 3 | 14 | 3 | 1078.0 | 1270.0 | 1558. 0 | | | | | To | Type 5 Radar Waveform_17 | | | | | | | | | | | | |--|--------------------------|--|--------|-----------------|----------------|-----------------|-------------------------------|--|---------|---------------|--|--| | Burst D | Downloa | 16 | Type 5 | 8 | 1. 50 | 12. 0 | 5. 49 | | | | | | | 0 | | | Burst | Burst
Offset | Pulse
Width | Chirp
Width | Number
of
Pulses
per | | | PRI-3
(us) | | | | 1 6769 65.6 5 1 1859.0 | | Ī | 0 | 3136 | 57. 3 | 5 | 1 | 1670. 0 | - | | | | | 2 | | 1 | 1 | 6769 | 65. 6 | 5 | 1 | 1859. 0 | _ | <u> </u> | | | | 3 | | í | | | | | 1 | | _ | _ | | | | 4 | | ĺ | | | | | 1 | | _ | _ | | | | S | | (| | | | | 2 | | 1759. 0 | +- | | | | Type 5 Radar Waveform_18 Type 5 12 1.00 12.0 5.49 | | <u> </u> | | | | | | | | _ | | | | Type 5 Radar Waveform_18 | | ſ | | | | | | | | 1032 (| | | | Type 5 Radar Waveform_18 | | | | | | | | | | 1002. | | | | Downlos 17 Type 5 12 1,00 12,0 5,49 Number of Offset (us) Pulse Width (us) Pulse Burst Pulse (us) Pulse Burst | | | | 1 | | + | + | 1780.0 | 1034. v | 1- | | | | Burst D Offset Width Chirp Width Chirp Width Chirp Width Chirp | | | | Туре | 5 Radar V | Waveform | _18 | | | | | | | Burst Offset Chirp Width (us) (u | Downloa | 17 | Type 5 | 12 | 1. 00 | 12. 0 | | | | | | | | 1 | | | | Offset
(us) | Width
(us) | Width
(MHz) | of
Pulses
per | | | PRI-3
(us) | | | | 2 | | | | | | | 2 | | _ | - | | | | 3 | | | | | _ | _ | | | 1750. 0 | 1202.0 | | | | 4 | | | | | | | | | 1206 0 | - | | | | 5 | - | | | | | | | | | _ | | | | 6 | | | | | | _ | 1 | | - | _ | | | | Second | | † | 6 | 6038 | 66. 1 | 10 | 1 | 1506. 0 | | | | | | 9 3308 89.9 10 3 1128.0 1915.0 1422. 10 5730 68.8 10 2 1349.0 1885.0 | | | | | | | | | | _ | | | | 10 | | | | | | _ | | | | - | | | | Downlos 18 | | | | | | + | | | | 1422.0 | | | | Type 5 Radar Waveform_19 Downloa 18 | | + | | | | | 1 | | 1880. 0 | -
 - | | | | Downlos 18 Type 5 12 1.00 12.0 5.49 Number of Pulses per Burst Number of Pulses per Burst PRI-1 (us) PRI-2 (us) PRI-2 (us) PRI-3 (us) PRI-3 (us) PRI-1 (us) PRI-2 (us) PRI-3 | | | | | | | 10 | 1001. | | | | | | Burst ID Burst Offset (us) Pulse Width (us) Chirp Width (MHz) Pulses per Burst PRI-1 (us) PRI-2 (us) PRI-2 (us) 0 59777.0 68.9 10 2 1042.0 1692.0 - 1 3008 88.7 10 3 1944.0 1627.0 1837. 2 5424 88.4 10 3 1595.0 1268.0 1892. 3 7864 57.2 10 1 1350.0 - - 4 29909.0 97.4 10 3 1887.0 1418.0 1930. 5 2713 91.3 10 3 1136.0 1856.0 1469. 6 5135 76.0 10 2 1129.0 1932.0 - 7 7554 72.7 10 2 1875.0 1103.0 - 8 191.0 71.3 10 2 1797.0 1486.0 - 9 2416 </th <th>Down los</th> <th>1.10</th> <th>Type 5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> | Down los | 1.10 | Type 5 | | | | | | 1 | | | | | 1 3008 88.7 10 3 1944.0 1627.0 1837. 2 5424 88.4 10 3 1595.0 1268.0 1892. 3 7864 57.2 10 1 1350.0 - - - 4 29909.0 97.4 10 3 1887.0 1418.0 1930. 5 2713 91.3 10 3 1136.0 1856.0 1469. 6 5135 76.0 10 2 1129.0 1932.0 - 7 7554 72.7 10 2 1875.0 1103.0 - 8 191.0 71.3 10 2 1797.0 1486.0 - 9 2416 96.2 10 3 1523.0 1327.0 1458. 10 4830 98.1 10 3 1233.0 1540.0 1780. | DONIZE | 10 | Burst | Burst
Offset |
Pulse
Width | Chirp
Width | Number
of
Pulses
per | | | PRI-3
(us) | | | | 2 5424 88. 4 10 3 1595. 0 1268. 0 1892. 3 7864 57. 2 10 1 1350. 0 - - - 4 29909. 0 97. 4 10 3 1887. 0 1418. 0 1930. 5 2713 91. 3 10 3 1136. 0 1856. 0 1469. 6 5135 76. 0 10 2 1129. 0 1932. 0 - 7 7554 72. 7 10 2 1875. 0 1103. 0 - 8 191. 0 71. 3 10 2 1797. 0 1486. 0 - 9 2416 96. 2 10 3 1523. 0 1327. 0 1458. 10 4830 98. 1 10 3 1233. 0 1540. 0 1780. | | | 0 | | | 10 | 2 | | | | | | | 3 7864 57.2 10 1 1350.0 - - 4 29909.0 97.4 10 3 1887.0 1418.0 1930. 5 2713 91.3 10 3 1136.0 1856.0 1469. 6 5135 76.0 10 2 1129.0 1932.0 - 7 7554 72.7 10 2 1875.0 1103.0 - 8 191.0 71.3 10 2 1797.0 1486.0 - 9 2416 96.2 10 3 1523.0 1327.0 1458. 10 4830 98.1 10 3 1233.0 1540.0 1780. | | | | | | | | | | 1837. | | | | 4 29909. 0 97. 4 10 3 1887. 0 1418. 0 1930. 5 2713 91. 3 10 3 1136. 0 1856. 0 1469. 6 5135 76. 0 10 2 1129. 0 1932. 0 - 7 7554 72. 7 10 2 1875. 0 1103. 0 - 8 191. 0 71. 3 10 2 1797. 0 1486. 0 - 9 2416 96. 2 10 3 1523. 0 1327. 0 1458. 10 4830 98. 1 10 3 1233. 0 1540. 0 1780. | | | | | | | | | 1268. 0 | 1892. (| | | | 5 2713 91.3 10 3 1136.0 1856.0 1469. 6 5135 76.0 10 2 1129.0 1932.0 - 7 7554 72.7 10 2 1875.0 1103.0 - 8 191.0 71.3 10 2 1797.0 1486.0 - 9 2416 96.2 10 3 1523.0 1327.0 1458. 10 4830 98.1 10 3 1233.0 1540.0 1780. | | | | | | | _ | | 1418 0 | 1930 (| | | | 6 5135 76.0 10 2 1129.0 1932.0 - 7 7554 72.7 10 2 1875.0 1103.0 - 8 191.0 71.3 10 2 1797.0 1486.0 - 9 2416 96.2 10 3 1523.0 1327.0 1458. 10 4830 98.1 10 3 1233.0 1540.0 1780. | | + | | | | _ | | | | 1469. (| | | | 7 7554 72.7 10 2 1875.0 1103.0 - 8 191.0 71.3 10 2 1797.0 1486.0 - 9 2416 96.2 10 3 1523.0 1327.0 1458. 10 4830 98.1 10 3 1233.0 1540.0 1780. | | | | | | | | | | _ | | | | 9 2416 96.2 10 3 1523.0 1327.0 1458. 10 4830 98.1 10 3 1233.0 1540.0 1780. | | | 7 | | | 10 | 2 | | | _ | | | | 10 4830 98 . 1 10 3 1233. 0 1540. 0 1780. | | | | | | - | | | | Ī- | | | | | | | | | | | | | | 1458. (| | | | | | | | | | | | | | 1780. 0 | | | | Type | 5 | Radar | Wavefori | n_20 | |------|---|-------|----------|------| |------|---|-------|----------|------| | | Downloa | 19 | Type 5 | 20 | 0. 60 | 12. 0 | 5. 49 | | | | |---|---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | 0 | 5789 | 69. 0 | 20 | 2 | 1674. 0 | 1695. 0 | _ | | | | | 1 | 1271 | 72. 1 | 20 | 2 | 1596. 0 | 1053.0 | _ | | | | | 2 | 2710 | 96. 7 | 20 | 3 | 1802. 0 | 1556. 0 | 1425.0 | | | | | 3 | 4161 | 99. 7 | 20 | 3 | 1517. 0 | 1095.0 | 1117.0 | | | | | 4 | 5632 | 54. 0 | 20 | 1 | 1091.0 | _ | _ | | | | | 5 | 1088 | 89. 8 | 20 | 3 | 1996. 0 | 1574. 0 | 1340.0 | | | | | 6 | 2535 | 90. 6 | 20 | 3 | 1011.0 | 1699. 0 | 1348. 0 | | | | | 7 | 3999 | 65. 2 | 20 | 1 | 1296. 0 | _ | _ | | | | | 8 | 5442 | 78. 3 | 20 | 2 | 1122. 0 | 1147. 0 | _ | | l | | | 9 | 91298. 0 | 94. 3 | 20 | 3 | 1009.0 | 1051.0 | 1616. 0 | | | | | 10 | 2361 | 71. 6 | 20 | 2 | 1610. 0 | 1387. 0 | _ | | | | | 11 | 3817 | 58. 0 | 20 | 1 | 1725. 0 | _ | _ | | | | | 12 | 5271 | 51. 2 | 20 | 1 | 1404. 0 | _ | _ | | | | | 13 | 73780.0 | 64. 1 | 20 | 1 | 1266. 0 | _ | _ | | | | | 14 | 2184 | 80. 1 | 20 | 2 | 1351.0 | 1520.0 | _ | | | | | 15 | 3639 | 62. 9 | 20 | 1 | 1703.0 | _ | _ | | | | | 16 | 5068 | 84. 4 | 20 | 3 | 1454. 0 | 1513. 0 | 1370.0 | | | | | 17 | 55815. 0 | | 20 | 2 | 1061.0 | 1044.0 | _ | | | | | 18 | 2010 | 59. 1 | 20 | 1 | 1378. 0 | _ | _ | | | | | 19 | 3439 | 97. 7 | 20 | 3 | 1736. 0 | 1734. 0 | 1851. 0 | | Downloa | 20 | Type 5 | 13 | 0. 92 | 12. 0 | 5. 50 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 7567 | 50. 4 | 11 | 1 | 1283. 0 | _ | _ | | | | 1 | 58488. 0 | 64. 0 | 11 | 1 | 1687. 0 | _ | _ | | | | 2 | 2815 | 79. 4 | 11 | 2 | 1195.0 | 1955. 0 | _ | | | | 3 | 5042 | 68. 7 | 11 | 2 | 1840.0 | 1913. 0 | _ | | | | 4 | 7279 | 77. 3 | 11 | 2 | 1510.0 | 1373.0 | _ | | | | 5 | 30963.0 | 52.8 | 11 | 1 | 1647. 0 | _ | _ | | | | 6 | 2545 | 62. 9 | 11 | 1 | 1281.0 | _ | _ | | | | 7 | 4772 | 79. 3 | 11 | 2 | 1406.0 | 1525. 0 | _ | | | | 8 | 6986 | 98. 6 | 11 | 3 | 1863.0 | 1542.0 | 1869. 0 | | | | 9 | 3432.0 | 71. 9 | 11 | 2 | 1432.0 | 1365. 0 | _ | | | | 10 | 2261 | 97. 7 | 11 | 3 | 1713. 0 | 1096.0 | 1908. 0 | | | | 11 | 4497 | 74. 6 | 11 | 2 | 1248.0 | 1677. 0 | _ | | | | 12 | 6715 | 97. 0 | 11 | 3 | 1402.0 | 1946. 0 | 1479. 0 | | Downloa | 21 | Type 5 | 20 | 0. 60 | 12. 0 | 5. 50 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 5799 | 89. 6 | 20 | 3 | 1369. 0 | 1809.0 | 1285. 0 | | | | 1 | 1296 | 57. 6 | 20 | 1 | 1017.0 | _ | _ | | | | 2 | 2746 | 60. 5 | 20 | 1 | 1620.0 | _ | _ | | | | 3 | 4197 | 54. 2 | 20 | 1 | 1570.0 | _ | _ | | | | 4 | 5647 | 66. 4 | 20 | 1 | 1688. 0 | _ | _ | | | | 5 | 1113 | 77. 9 | 20 | 2 | 1816. 0 | 1282. 0 | _ | | | | 6 | 2566 | 63. 7 | 20 | 1 | 1897. 0 | _ | _ | | | | 7 | 3996 | 99. 4 | 20 | 3 | 1796. 0 | 1818. 0 | 1294. 0 | | | | 8 | 5473 | 53. 6 | 20 | 1 | 1192. 0 | _ | _ | | | | 9 | 93573.0 | 73. 5 | 20 | 2 | 1298. 0 | 1317.0 | _ | | | | 10 | 2384 | 74. 7 | 20 | 2 | 1487. 0 | 1055. 0 | _ | | | | 11 | 3834 | 67. 0 | 20 | 2 | 1222. 0 | 1242. 0 | _ | | | | 12 | 5278 | 80. 3 | 20 | 2 | 1188. 0 | 1801.0 | _ | | | | 13 | 75846. 0 | 55. 9 | 20 | 1 | 1675. 0 | _ | | | | | 14 | 2203 | 83. 3 | 20 | 2 | 1478. 0 | 1824. 0 | | | | | 15 | 3659 | 61. 1 | 20 | 1 | 1806. 0 | _ | _ | | | | 16 | 5111 | 63. 1 | 20 | 1 | 1768. 0 | _ | _ | | | | 17 | 57666. 0 | 88. 3 | 20 | 3 | 1196. 0 | 1868. 0 | 1760. 0 | | | | 18 | 2019 | 98. 8 | 20 | 3 | 1880. 0 | 1323. 0 | 1820. 0 | | | | 19 | 3463 | 87. 1 | 20 | 3 | 1110.0 | 1769. 0 | 1988. 0 | | | | | | Туре | 5 Radar | Waveform | _23 | | | | |---|---------|----|---|---|---|---|--|---|--|--| | = | Downloa | 22 | Type 5 | 19 | 0. 63 | 12. 0 | 5. 50 | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | 0 | 5191 | 50. 3 | 18 | 1 | 1873. 0 | 1947 0 | _ | | | | | 2 | 42163. 0
1950 | 68. 7
55. 0 | 18 | 2 | 1175. 0
1508. 0 | 1247. 0 | _ | | | | | 3 | 3463 | 92. 8 | 18 | 3 | 1717. 0 | 1186. 0 | 1308. 0 | | | | | 4 | 4994 | 77. 9 | 18 | 2 | 1584. 0 | 1390. 0 | _ | | | | | 5 | 23329. 0 | | 18 | 2 | 1705. 0 | 1755. 0 | _ | | | | | 7 | 3282 | 51. 1
76. 8 | 18 | 2 | 1953. 0
1450. 0 | 1516. 0 | | | | | | 8 | 4821 | 61. 3 | 18 | 1 | 1158. 0 | - | _ | | | | | 9 | 4576.0 | 66. 6 | 18 | 1 | 1739. 0 | _ | _ | | | | | 10 | 1573 | 56. 3 | 18 | 1 | 1631.0 | - | - | | | | | 11
12 | 4609 | 96. 6
97. 1 | 18 | 3 | 1545. 0
1726. 0 | 1807. 0
1502. 0 | 1398. 0
1135. 0 | | | | | 13 | 6158 | 61. 1 | 18 | 1 | 1433. 0 | - | - | | | | | 14 | 1386 | 61. 7 | 18 | 1 | 1249. 0 | _ | _ | | | | | 15 | 2913 | 56. 5 | 18 | 1 | 1465.0 | _ | _ | | | | | 16 | 4431 | 69. 5 | 18 | 2 | 1162. 0 | 1756. 0 | _ | | | | | 17
18 | 5971 | 58. 6
67. 9 | 18 | 1 | 1394. 0
1764. 0 | 1496. 0 | = | | | | | 10 | 1194 | 67. 9 | 18 | | 1704.0 | 1490.0 | | | | | | | Туре | 5 Radar | Waveform | _24 | | | | | | Downloa | 23 | Type 5 | 9 | 1. 33 | 12. 0 | 5. 50 | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2 (us) | PRI-3
(us) | | | | | 0 | 5748 | 94. 6 | 7 | 3 | 1728. 0 | 1437. 0 | 1357. 0 | | | | - | | | | | | | | | | | | | 1 | 8970 | 95. 4 | 7 | 3 | 1388. 0 | 1624. 0 | 1576. 0 | | | | | 2 | 1219 | 98. 4 | 7 | 3 | 1773.0 | 1212.0 | 1467.0 | | | | | 3 | 2129 | 96. 8 | 7 | 3 | 1664. 0 | 1156.0 | 1236. 0 | | | - | | | | | | | | | | | | | | 4 | 5351 | 90. 6 | 7 | 3 | 1931. 0 | 1372. 0 | 1130.0 | | | | | 5 | 8591 | 54. 7 | 7 | 1 | 1839. 0 | _ | _ | | | | | 6 | 1182 | 51. 7 | 7 | 1 | | _ | 1_ | | | | | O | 1104 | 101.7 | | | | | | | | | | | | | | 1 | 1565. 0 | | | | | | | 7 | 1730 | 97. 1 | 7 | 3 | 1833. 0 | 1361. 0 | 1827. 0 | | | | | 7
8 | | | | 3 | | 1361. 0
1546. 0 | 1827. 0
1366. 0 | | | | | | 1730
4953 | 97. 1
96. 9 | | 3 | 1833. 0 | | | | | Downlos | 24 | | 1730
4953 | 97. 1
96. 9 | 7
7
Waveform | 25
5. 50 | 1833. 0 | | | | | Downloa | 24 | 8 | 1730
4953 | 97. 1
96. 9
• 5
Radar | 7
7
Waveform | 2 5 | 1833. 0 | | | | | Downloa | 24 | Type 5 Burst | 1730
4953
Type
16
Burst
Offset
(us) | 97. 1
96. 9
5 Radar
0. 75
Pulse
Width
(us)
79. 7 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 | 25 5.50 Number of Pulses per Burst | 1833. 0
1724. 0
PRI-1
(us) | PRI-2 (us) | 1366. 0 | | | Downloa | 24 | Type 5 Burst ID O | 1730 4953 Type 16 Burst Offset (us) 4600 6414 | 97. 1
96. 9
5 Radar
0. 75
Pulse
Width
(us)
79. 7
68. 1 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 | 25
5.50
Number
of
Pulses
per
Burst
2 | 1833. 0
1724. 0
PRI-1
(us)
1085. 0
1174. 0 | PRI-2 (us) 1347. 0 1068. 0 | PRI-3
(us) | | | Downlos | 24 | Type 5 Burst ID 0 1 2 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 | 97. 1
96. 9
• 5 Radar
0. 75
Pulse
Width
(us)
79. 7
68. 1
85. 4 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 | 25
5.50
Number
of
Pulses
per
Burst
2
2
3 | PRI-1
(us) 1085. 0 1174. 0 1770. 0 | PRI-2
(us)
1347. 0
1068. 0
1937. 0 | PRI-3
(us) 1784. 0 | | | Downloa | 24 | 8 Type 5 Burst ID 0 1 2 3 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 | 97. 1
96. 9
5 Radar
0. 75
Pulse
Width
(us)
79. 7
68. 1
85. 4
83. 7 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 | 25 5.50 Number of Pulses per Burst 2 2 3 3 3 | PRI-1
(us) 1085. 0 1174. 0 11770. 0 1442. 0 | PRI-2 (us) 1347. 0 1068. 0 1937. 0 1799. 0 | PRI-3 (us) - 1784. 0 1069. 0 | | | Downloa | 24 | Type 5 Burst 10 0 1 2 3 4 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 | 97. 1
96. 9
• 5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9 | 7
7
Waveform
12.0
Chirp
Width
(MHz)
15
15
15
15 | 25 5.50 Number of Pulses per Burst 2 2 3 3 3 3 | PRI-1
(us)
1085. 0
1174. 0
1770. 0
1442. 0
1660. 0 | PRI-2
(us)
1347. 0
1068. 0
1937. 0
1799. 0
1997. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 | | | Downloa | 24 | 8 Type 5 Burst 10 0 1 2 3 4 5 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 6176 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 | 25 5.50 Number of Pulses per Burst 2 2 3 3 3 3 3 | PRI-1
(us) 1085. 0 1174. 0 1770. 0 1442. 0 1660. 0 1328. 0 | PRI-2
(us)
1347. 0
1068. 0
1937. 0
1799. 0
1997. 0
1528. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 1235. 0 | | | Downloa | 24 | 8 Type 5 Burst 10 1 2 3 4 5 6 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 6176 52582.0 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 | 25
5.50
Number of Pulses per Burst 2 2 3 3 3 3 3 3 3 3 3 3 | PRI-1
(us)
1085. 0
1174. 0
11770. 0
1442. 0
1660. 0
1328. 0
1758. 0 | PRI-2
(us)
1347. 0
1068. 0
1937. 0
1799. 0
1997. 0
1528. 0
1941. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 | | | Downloa | 24 | 8 Type 5 Burst ID 0 1 2 3 4 5 6 7 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 6176 52582.0 2337 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6
70. 9 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 15 | 25
5.50
Number of Pulses per Burst 2 2 3 3 3 3 3 3 3 3 2 | 1833. 0
1724. 0
1724. 0
1085. 0
1174. 0
1770. 0
1442. 0
1660. 0
1328. 0
1758. 0
1633. 0 | PRI-2
(us)
1347. 0
1068. 0
1937. 0
1799. 0
1997. 0
1528. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 1235. 0 | | | Downloa | 24 | 8 Type 5 Burst ID 0 1 2 3 4 5 6 7 8 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 6176 52582.0 2337 4159 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6
70. 9
52. 5 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 15 15 | 25 5.50 Number of Pulses per Burst 2 2 3 3 3 3 2 1 | PRI-1
(us) 1085. 0 1174. 0 11770. 0 1442. 0 1660. 0 1328. 0 1758. 0 1633. 0 1392. 0 | PRI-2 (us) 1347. 0 1068. 0 1937. 0 1799. 0 1528. 0 1941. 0 1701. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 1235. 0 | | | Downloa | 24 | 8 Type 5 Burst 1D 0 1 2 3 4 5 6 7 8 9 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 6176 52582.0 2337 4159 5960 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6
70. 9
52. 5
67. 8 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 15 15 15 15 | 25
5.50
Number of Pulses per Burst 2 2 3 3 3 3 3 3 3 2 1 1 2 2 | PRI-1
(us)
1085. 0
1174. 0
1770. 0
1442. 0
1660. 0
1328. 0
1758. 0
1633. 0
1637. 0 | PRI-2
(us) 1347. 0 1068. 0 1799. 0 1997. 0 1528. 0 1701. 0 - 1522. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 1235. 0 | | | Downloa | 24 | 8 Type 5 Burst 10 1 2 3 4 5 6 7 8 9 10 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 6176 52582.0 2337 4159 5960 30396.0 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6
70. 9
52. 5
67. 8
76. 3 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 15 15 15 15 | 25
5.50
Number of Pulses per Burst 2 2 3 3 3 3 3 3 2 2 1 2 2 2 | PRI-1
(us) 1085. 0 1174. 0 1770. 0 1442. 0 1660. 0 1328. 0 1758. 0 1633. 0 1392. 0 1637. 0 1213. 0 | PRI-2 (us) 1347. 0 1068. 0 1937. 0 1799. 0 1528. 0 1941. 0 1701. 0 - 1522. 0 1544. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 1235. 0 1007. 0 | | | Downloa | 24 | 8 Type 5 Burst 1D 0 1 2 3 4 5 6 7 8 9 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 52582.0 2337 4159 5960 30396.0 2111 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6
70. 9
52. 5
67. 8 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 15 15 15 15 | 25
5.50
Number of Pulses per Burst 2 2 3 3 3 3 3 3 3 2 1 1 2 2 | PRI-1
(us) 1085. 0 1174. 0 1770. 0 1442. 0 1660. 0 1328. 0 1758. 0 1633. 0 1637. 0 1213. 0 1591. 0 | PRI-2
(us) 1347. 0 1068. 0 1937. 0 1799. 0 1528. 0 1941. 0 1701. 0 - 1522. 0 1544. 0 1752. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 1235. 0 | | | Downloa | 24 | 8 Type 5 Burst 10 1 2 3 4 5 6 7 8 9 10 11 12 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 52582.0 2337 4159 5960 30396.0 2111 3931 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6
70. 9
52. 5
67. 8
76. 3
94. 1
76. 7 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 15 15 15 15 15 15 15 | 25
5.50
Number of Pulses per Burst 2 2 3 3 3 3 3 2 2 1 2 2 3 3 | PRI-1
(us) 1085. 0 1174. 0 11770. 0 1442. 0 1660. 0 1328. 0 1758. 0 1633. 0 1392. 0 1637. 0 1213. 0 1591. 0 1056. 0 | PRI-2
(us) 1347. 0 1068. 0 1937. 0 1799. 0 1528. 0 1941. 0 1701. 0 - 1522. 0 1544. 0 1752. 0 1079. 0 | PRI-3 (us) | | | Downloa | 24 | 8 Type 5 Burst 10 1 2 3 4 5 6 7 8 9 10 11 | 1730 4953 Type 16 Burst Offset (us) 4600 6414 74768.0 2557 4361 52582.0 2337 4159 5960 30396.0 2111 | 97. 1
96. 9
5 Radar
0. 75
Pulse Width (us)
79. 7
68. 1
85. 4
83. 7
98. 9
87. 5
96. 6
70. 9
52. 5
67. 8
76. 3
94. 1 | 7 7 Waveform 12.0 Chirp Width (MHz) 15 15 15 15 15 15 15 15 15 15 | 25
5.50 Number of Pulses per Burst 2 2 3 3 3 3 2 1 2 2 3 2 2 | PRI-1
(us) 1085. 0 1174. 0 1770. 0 1442. 0 1660. 0 1328. 0 1758. 0 1633. 0 1637. 0 1213. 0 1591. 0 | PRI-2
(us) 1347. 0 1068. 0 1937. 0 1799. 0 1528. 0 1941. 0 1701. 0 - 1522. 0 1544. 0 1752. 0 | PRI-3 (us) 1784. 0 1069. 0 1435. 0 1235. 0 1007. 0 | | Type | 5 F | ?adar | Wave | form | 26 | |------|-----|-------|--------------------|------|----| | IVDE | J 1 | lauai | vva v c | | 20 | | | Downloa | 25 | Type 5 | 17 | 0. 70 | 12. 0 | 5. 50 | | | | |---|---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | 0 | 3483 | 67. 1 | 16 | 2 | 1926. 0 | 1438.0 | _ | | | | | 1 | 5184 | 78. 1 | 16 | 2 | 1966. 0 | 1721.0 | _ | | | | | 2 | 6895 | 70. 0 | 16 | 2 | 1611.0 | 1354. 0 | | | | | | 3 | 1571 | 69. 1 | 16 | 2 | 1333.0 | 1263.0 | | | | | | 4 | 3269 | 94. 3 | 16 | 3 | 1470.0 | 1272.0 | 1423.0 | | | | | 5 | 4978 | 76. 7 | 16 | 2 | 1871.0 | 1379.0 | _ | | _ | | | 6 | 6669 | 91.6 | 16 | 3 | 1480.0 | 1785. 0 | 1310.0 | | _ | | | 7 | 1364 | 54. 4 | 16 | 1 | 1005.0 | _ | _ | | _ | | | 8 | 3064 | 70. 3 | 16 | 2 | 1693. 0 | 1606. 0 | _ | | _ | | | 9 | 4780 | 54. 1 | 16 | 1 | 1530.0 | _ | _ | | _ | | | 10 | 6464 | 91.8 | 16 | 3 | 1473.0 | 1499. 0 | 1111.0 | | _ | | | 11 | 1153 | 51. 9 | 16 | 1 | 1337. 0 | _ | _ | | _ | | | 12 | 2853 | 71. 9 | 16 | 2 | 1518. 0 | 1922. 0 | _ | | | | | 13 | 4569 | 64. 5 | 16 | 1 | 1599. 0 | _ | _ | | | | | 14 | 6247 | 88. 0 | 16 | 3 | 1923. 0 | 1168. 0 | 1872. 0 | | l | | | 15 | 94084. 0 | 76. 1 | 16 | 2 | 1322. 0 | 1583. 0 | _ | | | | | 16 | 2645 | 75. 3 | 16 | 2 | 1157. 0 | 1771.0 | _ | | Downlos 26 | Type 5 | 17 | 0. 70 | 12. 0 | 5. 50 | | | | |------------|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst |
PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 4360 | 54. 2 | 16 | 1 | 1269. 0 | _ | _ | | | 1 | 6036 | 97. 2 | 16 | 3 | 1572. 0 | 1772.0 | 1836. 0 | | | 2 | 72911.0 | 93. 2 | 16 | 3 | 1417.0 | 1846.0 | 1302.0 | | | 3 | 2435 | 81. 2 | 16 | 2 | 1655. 0 | 1194.0 | _ | | | 4 | 4141 | 72. 7 | 16 | 2 | 1403.0 | 1399. 0 | _ | | | 5 | 5835 | 97. 7 | 16 | 3 | 1254.0 | 1429.0 | 1408.0 | | | 6 | 52163.0 | 59. 5 | 16 | 1 | 1822. 0 | _ | _ | | | 7 | 2228 | 64. 5 | 16 | 1 | 1975. 0 | _ | _ | | | 8 | 3922 | 90. 9 | 16 | 3 | 1449.0 | 1504.0 | 1364.0 | | | 9 | 5644 | 53. 9 | 16 | 1 | 1803.0 | _ | | | | 10 | 31161.0 | 51. 7 | 16 | 1 | 1105.0 | _ | _ | | | 11 | 2015 | 82. 4 | 16 | 2 | 1850. 0 | 1288. 0 | _ | | | 12 | 3724 | 73. 9 | 16 | 2 | 1190.0 | 1037.0 | _ | | | 13 | 5422 | 67.8 | 16 | 2 | 1524. 0 | 1776.0 | _ | | | 14 | 10098.0 | 58. 4 | 16 | 1 | 1691.0 | _ | _ | | | 15 | 1809 | 60. 3 | 16 | 1 | 1318.0 | _ | _ | | | 16 | 3519 | 59.8 | 16 | 1 | 1239. 0 | _ | _ | | Downloa | 27 | Type 5 | 9 | 1. 33 | 12. 0 | 5. 50 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 9867 | 73. 4 | 7 | 2 | 1848.0 | 1555.0 | _ | | | | 1 | 1309 | 76. 6 | 7 | 2 | 1172.0 | 1694. 0 | _ | | | | 2 | 3018 | 81.8 | 7 | 2 | 1615.0 | 1855.0 | _ | | | | 3 | 6245 | 78. 0 | 7 | 2 | 1969. 0 | 1292.0 | _ | | | | 4 | 9483 | 52.6 | 7 | 1 | 1537.0 | | _ | | | | 5 | 1271 | 52. 9 | 7 | 1 | 1459.0 | _ | _ | | | | 6 | 2620 | 76. 5 | 7 | 2 | 1828.0 | 1882.0 | _ | | | | 7 | 5848 | 80. 9 | 7 | 2 | 1464.0 | 1579.0 | _ | | | | 8 | 9084 | 63. 3 | 7 | 1 | 1683. 0 | _ | - | | | Type 5 Radar Waveform_29 | | | | | | | | | | | | |---|--------------------------|---|--|---|--|---|--|--|--|--|--|--| | | Downloa 28 | Type 5 | 13 | 0. 92 | 12. 0 | 5. 50 | | | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | | 0 | 8494 | 94. 7 | 11 | 3 | 1849.0 | 1440.0 | 1214.0 | | | | | | | 1 | 1536 | 95. 8 | 11 | 3 | 1821.0 | 1512.0 | 1346.0 | | | | | | | 2 | 3765 | 94. 6 | 11 | 3 | 1405.0 | 1456.0 | 1289. 0 | | | | | | | 3 | 5994 | 99. 1 | 11 | 3 | 1029.0 | 1509.0 | 1553. 0 | | | | | | | 4 | 8223 | 88. 1 | 11 | 3 | 1149.0 | 1800.0 | 1148.0 | | | | | | | 5 | 1263 | 79.8 | 11 | 2 | 1313. 0 | 1917. 0 | _ | | | | | | | 6 | 3501 | 50. 2 | 11 | 1 | 1377. 0 | _ | _ | | | | | | | 7 | 5727 | 68. 8 | 11 | 2 | 1668. 0 | 1200.0 | + | | | | | | | 8 | 7955 | 72. 5 | 11 | 2 | 1662. 0 | 1719. 0 | | | | | | _ | | 9 | | | | | | | 1000 0 | | | | | _ | | _ | 98723. 0 | 89. 9 | 11 | 3 | 1775. 0 | 1735. 0 | 1208. 0 | | | | | _ | | 10 | 3212 | 94. 9 | 11 | 3 | 1488. 0 | 1945. 0 | 1978. 0 | | | | | | | 11 | 5458 | 55. 7 | 11 | 1 | 1936. 0 | _ | _ | | | | | | | 12 | 7665 | 94. 5 | 11 | 2 | 1010 0 | 1720 0 | 1607 0 | | | | | | | 12 | 1000 | 34. 0 | 11 | 3 | 1813. 0 | 1730. 0 | 1607. 0 | | | | | | <u> </u> | 12 | | | Waveform | | 1813. 0 | 1730.0 | 1607.0 | | | | | | Downlos 29 | Type 5 | | | + | _30 | 1813. 0 | 1730.0 | 1607.0 | | | | | | Downlos 29 | Type 5 Burst | Type | o. 63 Pulse Width (us) | Waveform 12.0 Chirp Width (MHz) | _30 | PRI-1 | PRI-2 | PRI-3 (us) | | | | | | Downlos 29 | Type 5 Burst ID | Type 19 Burst Offset (us) 48775.0 | 0.63 Pulse Width (us) | Waveform 12.0 Chirp Width (MHz) 18 | 5.50
Number
of
Pulses
per
Burst | PRI-1 (us) | PRI-2 | PRI-3 | | | | | | Downlos 29 | Type 5 Burst ID O | Type 19 Burst Offset (us) 48775.0 2015 | 0.63
Pulse Width (us)
80.5 | Waveform 12.0. Chirp Width (MHz) 18 18 | 5.50 Number of Pulses per Burst 2 | PRI-1
(us) | PRI-2 | PRI-3 | | | | | | Downlos 29 | Type 5 Burst ID | Type 19 Burst Offset (us) 48775.0 | 0.63 Pulse Width (us) | Waveform 12.0 Chirp Width (MHz) 18 | 5.50
Number
of
Pulses
per
Burst | PRI-1 (us) | PRI-2 | PRI-3 | | | | | | Downlos 29 | Type 5 Burst 1D 0 1 2 3 4 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 | Maveform 12.0 Chirp Width (MHz) 18 18 18 18 | 5.50 Number of Pulses per Burst 2 1 1 2 | PRI-1
(us)
1601. 0
1970. 0
1109. 0
1783. 0
1167. 0 | PRI-2
(us)
1643. 0
-
-
1253. 0 | PRI-3 (us) | | | | | | Downlos 29 | Type 5 Burst ID 0 1 2 3 4 5 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 | 12.0 Chirp Width (MHz) 18 18 18 18 18 18 | 5.50 Number of Pulses per Burst 2 1 1 1 2 2 3 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 | PRI-2 (us) 1643.0 1253.0 1031.0 | PRI-3 | | | | | | Downlos 29 | Type 5 Burst ID 0 1 2 3 4 5 6 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 3349 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 72.1 | 12.0 Chirp Width (MHz) 18 18 18 18 18 18 | 5.50
Number
of
Pulses
per
Burst
2
1
1
2
3
2 | PRI-1
(us) 1601.0 1970.0 1109.0 1783.0 1167.0 1225.0 1748.0 | PRI-2
(us) 1643.0 1253.0 1031.0 1226.0 | PRI-3 (us) | | | | | | Downlos 29 | Type 5 Burst 1D 0 1 2 3 4 5 6 7 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 4860 | 0. 63 Pulse width (us) 80. 5 60. 4 54. 5 53. 3 72. 7 89. 9 72. 1 96. 5 | 12.0 Chirp Width (MHz) 18 18 18 18 18 18 18 | 30
5.50
Number
of
Pulses
per
Burst
2
1
1
2
3
2
3 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 1748. 0 1259. 0 | PRI-2
(us) 1643.0 1253.0 1031.0 1226.0 1612.0 | PRI-3
(us) 1635.0 - 1834.0 | | | | | | Downlos 29 | Type 5 Burst ID 0 1 2 3 4 5 6 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 3349 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 72.1 | 12.0 Chirp Width (MHz) 18 18 18 18 18 18 | 5.50
Number
of
Pulses
per
Burst
2
1
1
2
3
2 | PRI-1
(us) 1601.0 1970.0 1109.0 1783.0 1167.0 1225.0 1748.0 | PRI-2
(us) 1643.0 1253.0 1031.0 1226.0 | PRI-3 (us) | | | | | | Downlos 29 | Type 5 Burst ID 0 1 2 3 4 5 6 7 8 9 10 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 4860 11206.0 1631 3156 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 72.1 96.5 86.3 83.4 91.7 | Waveform 12.0 Chirp Width (MHz) 18 18 18 18 18 18 18 18 18 1 | 30 5.50 Number of Pulses per Burst 2 1 1 2 3 3 3 3 3 3 3 3 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 1748. 0 1259. 0 1638. 0 1958. 0 1203. 0 | PRI-2
(us) 1643.0 - - 1253.0 1031.0 1226.0 1612.0 1382.0 1012.0 1385.0 | PRI-3
(us) 1635.0 - 1834.0 1716.0 | | | | | | Downlos 29 | Type 5 Burst 1D 0 1 2 3 4 5 6 7 8 9 10 11 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 3349 4860 11206.0 1631 3156 4697 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 72.1 96.5 86.3 83.4 91.7 62.0 | ## Waveform 12.0 Chirp Width (MHz) 18 | 30 5.50 Number of Pulses per Burst 2 1 1 2 3 2 3 3 3 1 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 1748. 0 1259. 0 1638. 0 1958. 0 1203. 0 1474. 0 | PRI-2
(us) 1643. 0 1253. 0 1031. 0 1226. 0 1612. 0 1382. 0 1012. 0 1385. 0 - | PRI-3
(us) 1635.0 - 1834.0 1716.0 1920.0 1334.0 | | | | | | Downlos 29 | Type 5 Burst 1D 0 1 2 3 4 5 6 7 8 9 10 11 12 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 3349 4860 11206.0 1631 3156 4697 6208 | 80. 5
60. 4
54. 5
53. 3
72. 7
89. 9
72. 1
96. 5
86. 3
83. 4
91. 7
62. 0
91. 1 | ## Waveform 12.0 Chirp Width (MHz) 18 | 5.50 Number of Pulses per Burst 2 1 1 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 1748. 0 1259. 0 1638. 0 1958. 0 1203. 0 1474. 0 1045. 0 | PRI-2
(us) 1643.0 - - 1253.0 1031.0 1226.0 1612.0 1382.0 1012.0 1385.0 | PRI-3
(us) 1635.0 - 1834.0 1716.0 1920.0 | | | | | | Downlos 29 | Type 5 Burst 1D 0 1 2 3 4 5 6 7 8 9 10 11 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 3349 4860 11206.0 1631 3156 4697 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 72.1 96.5 86.3 83.4 91.7 62.0 | ## Waveform 12.0 Chirp Width (MHz) 18 | 30 5.50 Number of Pulses per Burst 2 1 1 2 3 2 3 3 3 1 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 1748. 0 1259. 0 1638. 0 1958. 0 1203. 0 1474. 0 | PRI-2
(us) 1643.0 - - 1253.0 1031.0 1226.0 1612.0 1382.0 1012.0 1385.0 - 1013.0 | PRI-3
(us) 1635.0 - 1834.0 1716.0 1920.0 1334.0 | | | | | | Downlos 29 | Type 5 Burst ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 4860 11206.0 1631 3156 4697 6208 1451 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 72.1 96.5 86.3 83.4 91.7 62.0 91.1 61.3 | Waveform 12.0 Chirp Width (MHz) 18 18 18 18 18 18 18 18 18 1 | 5.50 Number of Pulses per Burst 2 1 1 2 2 3 3 3 3 3 1 3 1 3 1 1 | PRI-1
(us) 1601.0 1970.0 1109.0 1783.0 1167.0 1225.0 1748.0 1259.0 1638.0 1958.0 1203.0 1474.0 1045.0 1838.0 |
PRI-2
(us) 1643.0 - - 1253.0 1031.0 1226.0 1612.0 1382.0 1012.0 1385.0 - 1013.0 | PRI-3
(us) 1635.0 - 1834.0 1716.0 1920.0 1334.0 - 1114.0 | | | | | | Downlos 29 | Type 5 Burst 1D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 11206.0 1631 4860 1156 4697 6208 1451 2971 | 80. 5
60. 4
54. 5
53. 3
72. 7
89. 9
72. 1
96. 5
86. 3
83. 4
91. 7
62. 0
91. 1
61. 3
94. 4 | ## Waveform 12.0 Chirp Width (MHz) 18 | 30
5.50
Number
of
Pulses
per
Burst
2
1
1
2
3
2
3
3
3
3
3
1
3 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 1638. 0 1958. 0 1203. 0 1474. 0 1045. 0 1838. 0 1026. 0 | PRI-2
(us) 1643. 0 - 1253. 0 1031. 0 1226. 0 1612. 0 1382. 0 1012. 0 1385. 0 - 1013. 0 - 1050. 0 | PRI-3 (us) | | | | | | Downlos 29 | Type 5 Burst 1D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Type 19 Burst Offset (us) 48775.0 2015 3547 5071 30043.0 1822 3349 4860 11206.0 1631 3156 4697 6208 1451 2971 4491 | 0.63 Pulse Width (us) 80.5 60.4 54.5 53.3 72.7 89.9 72.1 96.5 86.3 83.4 91.7 62.0 91.1 61.3 94.4 | Waveform 12.0 Chirp Width (MHz) 18 18 18 18 18 18 18 18 18 1 | 30 5.50 Number of Pulses per Burst 2 1 1 2 3 2 3 3 3 1 3 1 3 1 3 3 1 3 3 | PRI-1
(us) 1601. 0 1970. 0 1109. 0 1783. 0 1167. 0 1225. 0 1748. 0 1259. 0 1638. 0 1958. 0 1203. 0 1474. 0 1045. 0 1838. 0 1026. 0 1592. 0 | PRI-2
(us) 1643. 0 - 1253. 0 1031. 0 1226. 0 1612. 0 1382. 0 1012. 0 1385. 0 - 1013. 0 - 1050. 0 | PRI-3 (us) | | | | Radar Type 6 - Radar Statistical Performance | Trail # | 1=Detection | Trail # | 1=Detection | |---------|--------------------------|---------|----------------| | | 0=No Detection | | 0=No Detection | | 1 | 1 | 16 | 1 | | 2 | 1 | 17 | 1 | | 3 | 1 | 18 | 1 | | 4 | 1 | 19 | 1 | | 5 | 1 | 20 | 1 | | 6 | 1 | 21 | 1 | | 7 | 1 | 22 | 1 | | 8 | 1 | 23 | 1 | | 9 | 1 | 24 | 1 | | 10 | 1 | 25 | 1 | | 11 | 1 | 26 | 1 | | 12 | 1 | 27 | 1 | | 13 | 1 | 28 | 1 | | 14 | 1 | 29 | 1 | | 15 | 1 | 30 | 1 | | | Detection Percentage (%) | | 100% | | | Type 5 Radar Waveform_1 | | | | | | | | | | | | |-------------------|-------------------------|-----|--------|------|---------|------|---|--|--|--|--|--| | O Typ | e 6 1. | . 0 | 333. 3 | 9 | 0. 3333 | 300 | 4 | | | | | | | Fre
Lis
(MH | | | 1 | 2 | 3 | 4 | | | | | | | | 0 | 56 | 624 | 5513 | 5554 | 5305 | 5628 | | | | | | | | 5 | 54 | 422 | 5470 | 5499 | 5407 | 5306 | | | | | | | | 10 | 54 | 485 | 5466 | 5478 | 5479 | 5420 | | | | | | | | 15 | 56 | 636 | 5661 | 5264 | 5720 | 5279 | | | | | | | | 20 | 56 | 649 | 5325 | 5596 | 5287 | 5386 | | | | | | | | 25 | 5: | 262 | 5389 | 5297 | 5321 | 5648 | | | | | | | | 30 | 54 | 476 | 5643 | 5274 | 5630 | 5599 | | | | | | | | 35 | 56 | 679 | 5398 | 5662 | 5269 | 5313 | | | | | | | | 40 | 54 | 498 | 5312 | 5416 | 5540 | 5647 | | | | | | | | 45 | 5 | 544 | 5388 | 5383 | 5434 | 5358 | | | | | | | | 50 | 5 | 586 | 5441 | 5412 | 5347 | 5322 | | | | | | | | 55 | 5 | 535 | 5683 | 5268 | 5589 | 5507 | | | | | | | | 60 | 5- | 428 | 5452 | 5433 | 5480 | 5259 | | | | | | | | 65 | 5 | 548 | 5551 | 5574 | 5304 | 5610 | | | | | | | | 70 | 5- | 424 | 5323 | 5403 | 5603 | 5587 | | | | | | | | 75 | 56 | 634 | 5365 | 5567 | 5353 | 5685 | | | | | | | | 80 | 56 | 688 | 5382 | 5578 | 5652 | 5655 | | | | | | | | 85 | 54 | 411 | 5343 | 5380 | 5584 | 5707 | | | | | | | | 90 | 5: | 296 | 5701 | 5283 | 5531 | 5446 | | | | | | | | 95 | 5: | 340 | 5465 | 5477 | 5570 | 5509 | | | | | | | | | | Type 5 Rada | ır Waveform | _2 | | | |--------------------------|--------------|--------------|--------------|--------------|--------------|--| | 1 Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 2 | | Frequen
List
(MHz) | | 1 | 2 | 3 | 4 | | | 0 | 5404 | 5277 | 5490 | 5466 | 5373 | | | 5 | 5464 | 5492 | 5574 | 5570 | 5513 | | | 10
15 | 5319
5724 | 5255
5313 | 5519
5367 | 5674
5290 | 5441
5658 | | | 20 | 5287 | 5718 | 5266 | 5685 | 5260 | | | 25 | 5652 | 5589 | 5592 | 5401 | 5355 | | | 30 | 5690 | 5462 | 5600 | 5489 | 5419 | | | 35 | 5343 | 5458 | 5422 | 5702 | 5337 | | | 40 | 5354
5395 | 5683
5411 | 5644
5317 | 5473
5588 | 5368
5398 | | | 50 | 5261 | 5530 | 5456 | 5543 | 5625 | | | 55 | 5423 | 5562 | 5645 | 5679 | 5380 | | | 60 | 5377 | 5520 | 5369 | 5253 | 5646 | | | 65 | 5634 | 5593 | 5681 | 5675 | 5573 | | | 70
75 | 5259 | 5252
5669 | 5341
5564 | 5526 | 5471
5408 | - | | 80 | 5256
5538 | 5283 | 5262 | 5359
5547 | 5327 | + | | 85 | 5655 | 5434 | 5351 | 5611 | 5346 | 1 | | 90 | 5347 | 5587 | 5449 | 5632 | 5448 | | | 95 | 5660 | 5349 | 5267 | 5379 | 5499 | | | | | Type 5 Rada | r Waveform | _3 | | | | 2 Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | 3 | | Frequer
List
(MHz) | o | 1 | 2 | 3 | 4 | | | 0 | 5659 | 5516 | 5426 | 5530 | 5690 | | | 5 | 5506 | 5514 | 5649 | 5258 | 5342 | | | 10 | 5250 | 5519 | 5560 | 5394 | 5462 | | | 15
20 | 5715
5673 | 5440
5409 | 5470
5682 | 5335
5677 | 5375
5708 | | | 25 | 5540 | 5538 | 5320 | 5602 | 5389 | | | 30 | 5354 | 5351 | 5557 | 5607 | 5556 | | | 35 | 5714 | 5385 | 5580 | 5254 | 5672 | | | 40 | 5616 | 5651 | 5575 | 5670 | 5448 | | | 45 | 5263 | 5305 | 5348 | 5549 | 5453 | | | 50
55 | 5464
5559 | 5571
5474 | 5289
5644 | 5449
5400 | 5500
5315 | | | 60 | 5444 | 5691 | 5624 | 5687 | 5678 | | | 65 | 5563 | 5570 | 5585 | 5466 | 5388 | | | 70 | 5484 | 5369 | 5262 | 5576 | 5317 | | | 75 | 5485 | 5593 | 5399 | 5650 | 5341 | | | 80 | 5505 | 5615 | 5306 | 5405 | 5283 | | | 85
90 | 5579
5598 | 5604
5619 | 5706
5627 | 5301
5427 | 5704
5288 | | | 95 | 5547 | 5720 | 5674 | 5697 | 5719 | | | | <u> </u> | • | | | <u> </u> | | | 3 Type 6 | 1. 0 | Type 5 Rada | r Wavetorm | _4 | 300 | 4 | | 3 Type 6
Frequen | | 555. 5 | | 0. 3333 | 300 | - | | List
(MHz) | 0 | 1 | 2 | 3 | 4 | | | 5 | 5342
5645 | 5280
5439 | 5362
5724 | 5691
5421 | 5435
5549 | 1 | | 10 | 5656 | 5308 | 5601 | 5492 | 5580 | | | 15 | 5328 | 5567 | 5573 | 5283 | 5681 | | | 20 | 5478 | 5720 | 5291 | 5331 | 5390 | | | 25 | 5523 | 5706 | 5326 | 5396 | 5715 | | | 30 | 5514
5671 | 5347
5622 | 5330
5350 | 5437
5627 | 5524
5490 | + | | 40 | 5658 | 5608 | 5688 | 5260 | 5709 | <u> </u> | | 45 | 5632 | 5511 | 5517 | 5625 | 5447 | 1 | | 50 | 5465 | 5500 | 5686 | 5382 | 5321 | | | 55 | 5357 | 5354 | 5505 | 5263 | 5268 | | | 60 | 5345 | 5666 | 5519 | 5509 | 5393 | - | | 65
70 | 5626
5545 | 5621
5293 | 5676
5444 | 5287
5409 | 5441
5713 | + | | 75 | 5542 | 5631 | 5593 | 5615 | 5572 | <u> </u> | | 80 | 5466 | 5402 | 5453 | 5661 | 5518 | | | 85 | 5570 | 5711 | 5569 | 5660 | 5455 | | | 90 | 5369 | 5544 | 5489 | 5707 | 5674 | | | 95 | 5525 | 5406 | 5391 | 5367 | 5718 | | | | | Type 5 Rad | ar Waveforn | n_5 | | | |--------------------------|--------------|--------------|--------------|--------------|--------------|-----| | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | . 3 | | Frequer
List
(MHz) | o | 1 | 2 | 3 | 4 | | | 0 | 5597 | 5519 | 5298 | 5377 | 5277 | | | 5 | 5687 | 5461 | 5324 | 5584 | 5281 | | | 10 | 5490 | 5572 | 5264 | 5601 | 5416 | | | 15
20 | 5694
5644 | 5579
5661 | 5328
5283 | 5284
5654 | 5689
5717 | | | 25 | 5251 | 5335 | 5360 | 5438 | 5701 | | | 30 | 5471 | 5562 | 5482 | 5257 | 5663 | | | 35 | 5384 | 5418 | 5503 | 5541 | 5426 | | | 40 | 5363 | 5546 | 5453 | 5638 | 5308 | | | 45 | 5715 | 5472 | 5570 | 5415 | 5323 | | | 50 | 5641 | 5551 | 5300 | 5680 | 5265 | | | 55 | 5545 | 5695 | 5460 | 5714 | 5474 | _ | | 60
65 | 5665
5594 | 5611
5575 | 5448
5657 | 5427
5508 | 5455
5550 | | | 70 | 5468 | 5610 | 5628 | 5365 | 5652 | | | 75 | 5647 | 5403 | 5261 | 5588 | 5612 | | | 80 | 5273 | 5529 | 5302 | 5648 | 5564 | | | 85 | 5630 | 5331 | 5437 | 5614 | 5703 | | | 90 | 5567 | 5631 | 5578 | 5371 | 5719 | | |
95 | 5260 | 5254 | 5498 | 5423 | 5288 | | | | | Type 5 Rad | ar Waveforn | ո_6 | | | | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 5 | | Frequer
List
(MHz) | o | 1 | 2 | 3 | 4 | | | 0 | 5377 | 5283 | 5709 | 5538 | 5497 | | | 5 | 5254 | 5386 | 5399 | 5650 | 5585 | | | 10 | 5421 | 5458 | 5305 | 5407 | 5622 | | | 15 | 5504 | 5724 | 5682 | 5373 | 5476 | | | 20 | 5600 | 5713 | 5602 | 5372 | 5627 | | | 25 | 5582 | 5666 | 5357 | 5439 | 5394 | | | 30 | 5480 | 5590 | 5428 | 5302 | 5256 | | | 35 | 5455 | 5705 | 5475 | 5689 | 5278 | | | 40 | 5265 | 5446
5323 | 5484 | 5596 | 5470 | | | 45
50 | 5288
5342 | 5389 | 5530
5406 | 5623
5587 | 5674
5258 | | | 55 | 5262 | 5410 | 5279 | 5685 | 5506 | | | 60 | 5355 | 5556 | 5280 | 5350 | 5498 | | | 65 | 5417 | 5524 | 5718 | 5442 | 5271 | | | 70 | 5614 | 5465 | 5501 | 5362 | 5250 | | | 75 | 5381 | 5593 | 5525 | 5263 | 5433 | | | 80 | 5425 | 5592 | 5299 | 5564 | 5523 | | | 85 | 5402 | 5665 | 5387 | 5321 | 5467 | | | 90
95 | 5612 | 5631 | 5353
5597 | 5277 | 5309 | | | 90 | 5579 | 5267 | 10097 | 5360 | 5722 | | | | | Type 5 Rad | ar Waveforn | 1_7 | | | | Type 6 Frequen | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 2 | | List
(MHz) | O | 1 | 2 | 3 | 4 | | | 0 | 5632 | 5522 | 5645 | 5699 | 5339 | | | 5 | 5296 | 5408 | 5474 | 5338 | 5317 | | | 10 | 5255 | 5722 | 5346 | 5602 | 5643 | | | 15
20 | 5495
5608 | 5376
5404 | 5310
5543 | 5418
5364 | 5668
5600 | | | 25 | 5373 | 5518 | 5560 | 5640 | 5428 | | | 30 | 5619 | 5479 | 5385 | 5420 | 5275 | | | 35 | 5369 | 5566 | 5582 | 5431 | 5466 | | | 40 | 5579 | 5529 | 5422 | 5361 | 5251 | | | 45 | 5399 | 5646 | 5406 | 5588 | 5567 | | |
50 | 5453 | 5653 | 5478 | 5704 | 5531 | | |
55 | 5349 | 5691 | 5573 | 5656 | 5635 | | | 60 | 5520 | 5501 | 5587 | 5651 | 5444 | | | 65 | 5618 | 5473 | 5550 | 5712 | 5549 | | | 70
75 | 5279
5597 | 5468
5302 | 5350
5574 | 5599
5689 | 5321
5589 | | | | 5277 | 5660 | 5467 | 5616 | 5270 | _ | | 80 | | | 1 - 1 - 1 | | | | | 80
85 | | | 5486 |
5513 | 5365 | | | 80
85
90 | 5724
5294 | 5585
5563 | 5486
5694 | 5513
5624 | 5365
5700 | | | | | T CD 1 | 10/ | • | | |--------------------------|--------------|---------------|--------------|--------------|--------------| | | | Type 5 Rada | r Waveform_ | _8 | | | 7 Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 5 | | Frequer
List
(MHz) | o | 1 | 2 | 3 | 4 | | O | 5315 | 5286 | 5581 | 5385 | 5559 | | 5 | 5435 | 5333 | 5549 | 5501 | 5524 | | 10 | 5661 | 5511 | 5387 | 5322 | 5664 | | 20 | 5583
5473 | 5503
5453 | 5413
5573 | 5366
5261 | 5616
5467 | | 25 | 5288 | 5269 | 5462 | 5465 | 5342 | | 30 | 5635 | 5657 | 5508 | 5378 | 5584 | | 35 | 5380 | 5418 | 5612 | 5360 | 5601 | | 40 | 5345 | 5706 | 5626 | 5489 | 5632 | | 45 | 5454 | 5329 | 5694 | 5704 | 5527 | | 50 | 5537 | 5645 | 5392 | 5530 | 5289 | | 55
60 | 5685
5441 | 5543
5422 | 5419
5571 | 5477
5285 | 5390
5507 | | 65 | 5352 | 5448 | 5586 | 5568 | 5674 | | 70 | 5575 | 5280 | 5566 | 5621 | 5445 | | 75 | 5555 | 5554 | 5386 | 5470 | 5656 | | 80 | 5340 | 5293 | 5370 | 5458 | 5335 | | 85 | 5710 | 5670 | 5497 | 5405 | 5651 | | 90 | 5576 | 5395 | 5474 | 5311 | 5547 | | 95 | 5592 | 5603 | 5328 | 5306 | 5526 | | | | ,, | r Waveform_ | _ | | | 8 Type 6 Frequer | 1.0 | 333. 3 | 9 | 0. 3333 | 300 4 | | List
(MHz) | o | 1 | 2 | 3 | 4 | | 0 | 5570 | 5525 | 5517 | 5546 | 5401 | | 5 | 5477 | 5355 | 5624 | 5664 | 5353 | | 10 | 5592 | 5300 | 5428 | 5420 | 5685 | | 15 | 5671 | 5630 | 5516 | 5411 | 5674 | | 20 | 5527
5491 | 5639
5373 | 5522
5496 | 5445
5703 | 5319
5354 | | 30 | 5299 | 5375 | 5334 | 5293 | 5647 | | 35 | 5273 | 5649 | 5359 | 5294 | 5317 | | 40 | 5298 | 5366 | 5342 | 5635 | 5606 | | 45 | 5572 | 5607 | 5719 | 5680 | 5395 | | 50 | 5280 | 5278 | 5350 | 5322 | 5250 | | 55
60 | 5599
5488 | 5408
5348 | 5589
5400 | 5501
5336 | 5418
5642 | | 65 | 5371 | 5399 | 5520 | 5669 | 5571 | | 70 | 5426 | 5551 | 5714 | 5438 | 5266 | | 75 | 5633 | 5331 | 5251 | 5345 | 5403 | | 80 | 5290 | 5575 | 5370 | 5397 | 5676 | | 85 | 5578 | 5648 | 5603 | 5341 | 5582 | | 90 | 5655
5490 | 5583
5485 | 5425
5431 | 5474
5504 | 5628
5621 | | 33 | 0430 | | | • | 3021 | | | | Type 5 Rada | | _ | | | 9 Type 6 Frequen | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 4 | | List
(MHz) | o | 1 | 2 | 3 | 4 | | 0 | 5350 | 5289 | 5453 | 5707 | 5621 | | 5 | 5519 | 5280 | 5699 | 5255 | 5560 | | 10 | 5426 | 5564 | 5469 | 5615 | 5706 | | 15 | 5284 | 5282
5708 | 5522
5463 | 5456 | 5391 | | 20 | 5535
5646 | 5694 | 5477 | 5534
5530 | 5415
5367 | | 30 | 5340 | 5256 | 5590 | 5583 | 5491 | | 35 | 5689 | 5364 | 5445 | 5512 | 5305 | | 40 | 5668 | 5400 | 5711 | 5509 | 5339 | | 45 | 5586 | 5655 | 5665 | 5263 | 5606 | | 50 | 5556 | 5571 | 5331 | 5551 | 5644 | | 55
60 | 5438
5547 | 5553
5540 | 5598
5433 | 5408
5701 | 5472
5379 | | 65 | 5465 | 5320 | 5643 | 5327 | 5669 | | 70 | 5336 | 5574 | 5275 | 5527 | 5673 | | 75 | 5407 | 5634 | 5614 | 5507 | 5466 | | 80 | 5287 | 5392 | 5273 | 5714 | 5639 | | 85 | 5622 | 5446 | 5675 | 5421 | 5423 | | 90 | 5506 | 5588 | 5554 | 5537 | 5595 | | 95 | 5442 | 5529 | 5612 | 5485 | 5464 | | | | Type 5 Radar | Waveform_1 | 1 | | |---------------|-----------------------|--------------|--------------|--------------|--------------| | 10 Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 4 | | Frequen | | 333. 3 | 9 | 0. 3333 | 300 4 | | List
(MHz) | O | 1 | 2 | 3 | 4 | | 0 | 5605 | 5528 | 5389 | 5296 | 5463 | | 5 | 5561 | 5302 | 5299 | 5418 | 5292 | | 10 | 5357 | 5450 | 5510 | 5335 | 5252 | | 15
20 | 5275
55 4 3 | 5312
5399 | 5625
5501 | 5404
5526 | 5583
5492 | | 25 | 5681 | 5595 | 5325 | 5581 | 5564 | | 30 | 5409 | 5704 | 5688 | 5708 | 5311 | | 35 | 5353 | 5552 | 5338 | 5665 | 5694 | | 40 | 5507 | 5483 | 5274 | 5336 | 5396 | | 45 | 5566 | 5263 | 5723 | 5316 | 5272 | | 50 | 5382 | 5456 | 5374 | 5588 | 5626 | | 55 | 5313 | 5702 | 5443 | 5676 | 5705 | | 60
65 | 5475
5582 | 5487
5634 | 5527
5614 | 5666
5286 | 5269
5641 | | 70 | 5674 | 5599 | 5406 | 5632 | 5279 | | 75 | 5680 | 5619 | 5288 | 5673 | 5662 | | 80 | 5587 | 5651 | 5556 | 5699 | 5339 | | 85 | 5411 | 5629 | 5669 | 5621 | 5671 | | 90 | 5594 | 5491 | 5322 | 5459 | 5584 | | 95 | 5596 | 5383 | 5346 | 5637 | 5522 | | | | Гуре 5 Radar | Waveform_1 | 2 | | | 11 Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 4 | | Frequen | | | | | | | List
(MHz) | 0 | 1 | 2 | 3 | 4 | | 0 | 5385 | 5389 | 5325 | 5457 | 5683 | | 5 | 5700 | 5702 | 5374 | 5581 | 5596 | | 10 | 5288 | 5714 | 5551 | 5530 | 5273 | | 15 | 5363 | 5439 | 5253 | 5449 | 5300 | | 20 | 5454
5569 | 5565
5447 | 5442
5528 | 5615
5307 | 5465
5598 | | 30 | 5451 | 5593 | 5645 | 5448 | 5509 | | 35 | 5606 | 5492 | 5643 | 5609 | 5440 | | 40 | 5608 | 5346 | 5663 | 5490 | 5514 | | 45 | 5333 | 5546 | 5684 | 5369 | 5283 | | 50 | 5686 | 5433 | 5642 | 5672 | 5435 | | 55 | 5339 | 5461 | 5503 | 5424 | 5317 | | 60 | 5708 | 5395 | 5420 | 5319 | 5450 | | 65 | 5271 | 5392 | 5693 | 5618 | 5356 | | 70 | 5417 | 5455 | 5627 | 5677 | 5382 | | 75
80 | 5591
5515 | 5723
5254 | 5529
5544 | 5348
5265 | 5576
5689 | | 85 | 5659 | 5651 | 5495 | 5662 | 5434 | | 90 | 5279 | 5680 | 5344 | 5361 | 5697 | | 95 | 5525 | 5679 | 5338 | 5476 | 5639 | | | | | | | | | 12 Type 6 | 1. 0 | lype 5 Radar | Waveform_1 | 0. 3333 | 300 7 | | Frequen | | 333. 3 | | 0. 5555 | 300 | | List
(MHz) | 0 | 1 | 2 | 3 | 4 | | 0 | 5543 | 5628 | 5261 | 5618 | 5525 | | 5 | 5267 | 5724 | 5449 | 5269 | 5328 | | 10 | 5597 | 5503 | 5689 | 5250 | 5294 | | 20 | 5451
5462 | 5566
5634 | 5356
5383 | 5494
5607 | 5492
5438 | | 25 | 5457 | 5396 | 5256 | 5411 | 5632 | | 30 | 5590 | 5579 | 5602 | 5663 | 5283 | | 35 | 5329 | 5534 | 5259 | 5405 | 5593 | | 40 | 5619 | 5660 | 5271 | 5428 | 5657 | | 45 | 5427 | 5526 | 5429 | 5325 | 5548 | | 50 | 5562 | 5527 | 5484 | 5495 | 5379 | | 55 | 5415 | 5693 | 5718 | 5288 | 5362 | | 60 | 5560 | 5365 | 5626 | 5276 | 5314 | | 65 | 5690 | 5642 | 5557 | 5676 | 5695 | | 70 | 5710 | 5302
5649 | 5675
5491 | 5358 | 5550
5277 | | 75
80 | 5692
5656 | 5502 | 5554 | 5292
5337 | 5722 | | 85 | 5719 | 5639 | 5703 | 5464 | 5350 | | 90 | 5493 | 5694 | 5661 | 5654 | 5682 | | 95 | 5368 | 5540 | 5419 | 5348 | 5416 | | | | | | | | | | | | Type 5 Rada | r Waveform | _14 | | | |----|--------------------------|--------------|--------------|--------------|--------------|--------------|-----| | 13 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | . 4 | | | Frequer
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5323 | 5392 | 5672 | 5304 | 5270 | | | | 5 | 5309 | 5649 | 5427 | 5335 | 5535 | | | | 10 | 5528 | 5292 | 5255 | 5348 | 5315 | | | | 15
20 | 5539
5325 | 5693
5421 | 5459
5696 | 5684
5411 | 5470
5723 | | | | 25 | 5515 | 5666 | 5632 | 5468 | 5559 | | | | 30 | 5403 | 5435 | 5624 | 5673 | 5350 | | | | 35 | 5298 | 5271 | 5533 | 5596 | 5354 | | | | 40 | 5366 | 5422 | 5424 | 5561 | 5409 | | | | 45 | 5512 | 5378 | 5438 | 5703 | 5345 | | | | 50
55 | 5701
5259 | 5618
5491 | 5369
5250 | 5408
5310 | 5537
5555 | | | | 60 | 5674 | 5260 | 5416 | 5591 | 5593 | | | | 65 | 5518 | 5498 | 5305 | 5524 | 5334 | | | | 70 | 5509 | 5564 | 5538 | 5544 | 5377 | | | | 75 | 5581 | 5437 | 5653 | 5697 | 5457 | | | | 80 | 5276 | 5685 | 5343 | 5587 | 5463 | | | | 85
90 | 5362
5607 | 5691
5274 | 5709
5645 | 5496
5552 | 5346
5661 | | | | 95 | 5374 | 5263 | 5631 | 5585 | 5569 | | | | | 100.1 | Type 5 Rada | | | 0000 | | | 4 | Туре 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 3 | | | Frequer
List
(MHz) | | 1 | 2 | 3 | 4 | | | | 0 | 5578 | 5631 | 5608 | 5465 | 5587 | | | | 5 | 5351 | 5671 | 5502 | 5498 | 5267 | | | | 10 | 5362 | 5556 | 5296 | 5543 | 5336 | | | | 15 | 5530 | 5345 | 5487 | 5401 | 5478 | | | | 20 | 5394 | 5688 | 5384 | 5611 | 5575 | | | | 25
30 | 5662
5516 | 5619
5521 | 5700
5684 | 5674
5347 | 5357
5337 | | | | 35 | 5441 | 5569 | 5447 | 5435 | 5437 | | | | 40 | 5304 | 5421 | 5490 | 5389 | 5595 | | | | 45 | 5286 | 5431 | 5692 | 5404 | 5586 | | | | 50 | 5434 | 5519 | 5645 | 5331 | 5701 | | | | 55 | 5598 | 5356 | 5705 | 5620 | 5415 | | | | 60 | 5352 | 5387 | 5500 | 5681 | 5714 | | | | 65
70 | 5540
5293 | 5629
5682 | 5718
5405 | 5313
5373 | 5679
5310 | | | | 75 | 5468 | 5533 | 5317 | 5680 | 5321 | | | | 80 | 5282 | 5650 | 5514 | 5457 | 5593 | | | | 85 | 5270 | 5438 | 5552 | 5639 | 5711 | | | | 90 | 5657 | 5381 | 5715 | 5703 | 5568 | | | | 95 | 5624 | 5329 | 5251 | 5450 | 5640 | | | | | | Type 5 Rada | r Waveform | _16 | | | | .5 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 2 | | | Frequent List (MHz) | o | 1 | 2 | 3 | 4 | | | | O | 5358 | 5395 | 5544 | 5626 | 5332 | | | | 5 | 5490 | 5596 | 5577 | 5661 | 5571 | | | | 10 | 5293 | 5442 | 5337 | 5263 | 5357 | | | | 15
20 | 5618
5389 | 5375
5560 | 5568
5303 | 5532
5302 | 5593
5402 | | | | 25 | 5524 | 5345 | 5259 | 5338 | 5343 | + | | | 30 | 5473 | 5261 | 5361 | 5642 | 5476 | | | | 35 | 5629 | 5365 | 5674 | 5458 | 5274 | | | | 40 | 5617 | 5717 | 5427 | 5418 | 5322 | | | | 45 | 5369 | 5678 | 5344 | 5484 | 5587 | | | | 50 | 5580 | 5637 | 5523 | 5342 | 5492 | | | | 55 | 5519 | 5655 | 5691 | 5553 | 5579 | | | | 60
65 | 5297
5489 | 5694
5550 | 5326
5680 | 5627
5482 | 5440
5462 | | | | | 5290 | 5408 | 5697 | 5286 | 5405 | | | | 100 | | | | | | | | | 70
75 | 5437 | 5251 | 5500 | 5349 | 5563 | | | | | | | | 5349
5708 | | | | | 75 | 5437 | 5251 | 5500 | | 5563 | | | | | Type 5 Rada | r Waveform ₋ | _17 | | |--------------------------|--------------|--------------|-------------------------|--------------|--------------| | 16 Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 3 | | Frequer
List
(MHz) | o | 1 | 2 | 3 | 4 | | 0 | 5516 | 5634 | 5480 | 5312 | 5649 | | 5 | 5532 | 5618 | 5652 | 5349 | 5303 | | 10 | 5699
5671 | 5706
5577 | 5378
5407 | 5458
5397 | 5502
5629
 | 20 | 5341 | 5294 | 5330 | 5290 | 5376 | | 25 | 5496 | 5449 | 5293 | 5380 | 5707 | | 30 | 5430 | 5476 | 5610 | 5365 | 5518 | | 35 | 5720
5700 | 5636
5655 | 5352
5570 | 5372
5415 | 5588
5251 | | 45 | 5286 | 5402 | 5537 | 5377 | 5444 | | 50 | 5281 | 5688 | 5709 | 5640 | 5436 | | 55 | 5609 | 5406 | 5550 | 5306 | 5270 | | 60 | 5717
5438 | 5526
5604 | 5724
5285 | 5670
5475 | 5263
5534 | | 70 | 5276 | 5411 | 5546 | 5386 | 5374 | | 75 | 5557 | 5394 | 5481 | 5253 | 5399 | | 80 | 5513 | 5626 | 5547 | 5429 | 5250 | | 85 | 5385 | 5644 | 5635 | 5675 | 5711 | | 90 | 5501
5694 | 5370
5343 | 5689
5683 | 5658
5479 | 5439
5712 | | 33 | 3094 | | | | 3112 | | | | Type 5 Rada | | _ | | | Type 6 Frequen | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 4 | | List
(MHz) | 0 | 1 | 2 | 3 | 4 | | 0 | 5296 | 5398 | 5416 | 5376 | 5394 | | 10 | 5574
5533 | 5543
5495 | 5252 | 5415 | 5510
5399 | | 15 | 5319 | 5629 | 5419
5299 | 5653
5622 | 5599 | | 20 | 5405 | 5320 | 5282 | 5383 | 5303 | | 25 | 5556 | 5325 | 5699 | 5553 | 5327 | | 30 | 5422 | 5596 | 5387 | 5691 | 5287 | | 35
40 | 5660
5286 | 5657
5524 | 5336
5308 | 5529
5496 | 5602
5335 | | 45 | 5412 | 5558 | 5329 | 5369 | 5363 | | 50 | 5590 | 5264 | 5698 | 5457 | 5323 | | 55 | 5463 | 5283 | 5420 | 5563 | 5666 | | 60 | 5521
5616 | 5435
5464 | 5662
5640 | 5358
5592 | 5550
5270 | | 70 | 5606 | 5262 | 5511 | 5298 | 5723 | | 75 | 5721 | 5677 | 5440 | 5559 | 5505 | | 80 | 5623 | 5655 | 5311 | 5544 | 5624 | | 85 | 5263 | 5256 | 5442 | 5253 | 5598 | | 90 | 5408
5297 | 5401
5494 | 5355
5678 | 5438
5716 | 5630
5710 | | | 3231 | | | | 3710 | | | | Type 5 Rada | _ | _ | | | Type 6 Frequen | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 2 | | List
(MHz) | O | 1 | 2 | 3 | 4 | | 0 | 5551 | 5637 | 5352 | 5537 | 5711 | | 5 | 5713
5464 | 5565 | 5327 | 5578
5276 | 5339
5420 | | 10 | 5310 | 5284
5281 | 5460
5402 | 5570 | 5316 | | 20 | 5389 | 5698 | 5375 | 5444 | 5652 | | 25 | 5427 | 5657 | 5361 | 5582 | 5344 | | 30 | 5334 | 5536 | 5480 | 5321 | 5325 | | 35
40 | 5280
5575 | 5297
5506 | 5363
5487 | 5391
5309 | 5434
5452 | | 45 | 5421 | 5643 | 5529 | 5574 | 5633 | | 50 | 5315 | 5412 | 5664 | 5702 | 5608 | | 55 | 5517 | 5311 | 5485 | 5492 | 5564 | | 60 | 5600 | 5704 | 5287 | 5376 | 5562 | | 70 | 5665
5723 | 5336
5514 | 5579
5622 | 5366
5592 | 5300
5682 | | 75 | 5690 | 5700 | 5583 | 5540 | 5282 | | 80 | 5258 | 5436 | 5374 | 5541 | 5641 | | 85 | 5533 | 5694 | 5634 | 5693 | 5649 | | 90 | 5656
5314 | 5566
5549 | 5472
5614 | 5512
5362 | 5335
5414 | | 90 | 0014 | 0040 | 2014 | 0002 | O TIT | | | | | Type 5 Radaı | · Wayoform ' | 20 | | | |---|-----------------|--------------|--------------|--------------|--------------|--------------|--| | | | | | 1 | | 1 | | | 19 | Type 6 Frequen | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 4 | | | List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5331 | 5401 | 5288 | 5698 | 5456 | | | | 5 | 5280 | 5490 | 5402 | 5266 | 5546 | | | | 10
15 | 5395
5398 | 5548
5408 | 5501
5615 | 5471
5508 | 5441
5324 | | | | 20 | 5555 | 5261 | 5464 | 5724 | 5332 | | | | 25 | 5504 | 5630 | 5383 | 5603 | 5301 | | | | 30 | 5549 | 5688 | 5678 | 5363 | 5518 | | | | 35
40 | 5596
5372 | 5433
5340 | 5686
5503 | 5677
5416 | 5571
5667 | | | | 45 | 5535 | 5479 | 5599 | 5450 | 5334 | _ | | | 50 | 5366 | 5487 | 5699 | 5682 | 5693 | | | l | 55 | 5290 | 5649 | 5594 | 5299 | 5605 | | | - | 60
65 | 5488
5614 | 5285
5568 | 5634
5641 | 5432
5562 | 5644
5345 | | | | 70 | 5251 | 5521 | 5534 | 5368 | 5692 | | | | 75 | 5437 | 5538 | 5636 | 5544 | 5472 | | | l | 80 | 5279 | 5254 | 5561 | 5429 | 5367 | | | l | 85
90 | 5409
5512 | 5394
5719 | 5444
5517 | 5604
5695 | 5268
5425 | | | 1 | 95 | 5478 | 5664 | 5684 | 5462 | 5519 | <u> </u> | | | | | Type 5 Radaı | Waveform 2 | | | | | 20 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 5 | | | Frequer | 1 | | | | | | | | List
(MHz) | О | 1 | 2 | 3 | 4 | | | 1 | 0 | 5586 | 5640 | 5699 | 5384 | 5298 | | | | 5
10 | 5322
5704 | 5512
5434 | 5477
5639 | 5429
5666 | 5278
5462 | | | | 15 | 5486 | 5438 | 5511 | 5660 | 5700 | | | | 20 | 5332 | 5624 | 5677 | 5456 | 5697 | | | | 25 | 5598 | 5453 | 5261 | 5487 | 5645 | | | - | 30
35 | 5457
5706 | 5258
5489 | 5289
5683 | 5498
5600 | 5502
5516 | | | + | 40 | 5654 | 5310 | 5483 | 5500 | 5723 | | | | 45 | 5647 | 5618 | 5440 | 5652 | 5681 | | | | 50 | 5326 | 5510 | 5417 | 5687 | 5493 | | | 1 | 55
60 | 5412
5347 | 5425
5455 | 5691
5594 | 5501
5426 | 5337
5551 | | | + | 65 | 5689 | 5709 | 5554 | 5369 | 5324 | | | | 70 | 5350 | 5541 | 5317 | 5617 | 5320 | | | | 75 | 5544 | 5531 | 5465 | 5297 | 5381 | | | 1 | 80 | 5473 | 5597 | 5356 | 5314 | 5717 | | | | 85
90 | 5446
5348 | 5526
5659 | 5711
5252 | 5470
5410 | 5443
5698 | | | + | 95 | 5620 | 5418 | 5520 | 5690 | 5550 | | | | | | Type 5 Radaı | · Waveform 2 | 22 | | | | 21 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 6 | | | Frequer
List | o | 1 | 2 | 3 | 4 | | | | (MHz) | 5260 | 5404 | 5625 | 5545 | 5519 | | | | 5 | 5269
5364 | 5404 | 5635
5552 | 5495 | 5518
5582 | | | | 10 | 5698 | 5680 | 5386 | 5483 | 5574 | | | | 15 | 5565 | 5614 | 5608 | 5417 | 5718 | | | | 20 | 5315
5464 | 5618
5591 | 5670 | 5486 | 5305 | | | l | 25
30 | 5690 | 5504 | 5463
5696 | 5687
5641 | 5346
5322 | + | | | 35 | 5285 | 5361 | 5611 | 5355 | 5262 | | | <u> </u> | 40 | 5723 | 5497 | 5652 | 5627 | 5701 | | | l | 45
50 | 5498
5468 | 5705
5301 | 5568
5340 | 5580
5600 | 5686
5379 | + | | | 55 | 5406 | 5320 | 5308 | 5620 | 5539 | + | | | 60 | 5258 | 5523 | 5512 | 5658 | 5590 | | | <u> </u> | 65 | 5676 | 5594 | 5628 | 5613 | 5303 | | | l | 70
75 | 5717
5585 | 5547
5440 | 5520
5466 | 5559
5491 | 5500
5254 | | | l | 80 | 5286 | 5660 | 5435 | 5551 | 5447 | + | | | 85 | 5631 | 5302 | 5541 | 5394 | 5450 | | | | 90 | 5434 | 5489 | 5476 | 5380 | 5536 | | | l | 95 | 5462 | 5617 | 5333 | 5405 | 5616 | | | | | | Type 5 Rada | r Waveform | _23 | | | |----|--|--|--|--|--|--|-----| | 22 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 5 | | | Frequent List (MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5524 | 5643 | 5571 | 5706 | 5360 | | | | 5 | 5503 | 5459 | 5627 | 5658 | 5314 | | | | 10 | 5566 | 5487 | 5721 | 5581 | 5504 | | | | 15
20 | 5565
5251 | 5692
5481 | 5717
5559 | 5653
5634 | 5609
5277 | | | | 25 | 5254 | 5667 | 5695 | 5400 | 5351 | | | | 30 | 5710 | 5647 | 5622 | 5388 | 5516 | | | | 35 | 5305 | 5413 | 5556 | 5514 | 5525 | | | | 40 | 5291 | 5442 | 5661 | 5488 | 5494 | | | | 45
50 | 5484
5456 | 5607
5387 | 5309
5519 | 5283
5390 | 5358
5334 | | | - | 55 | 5284 | 5313 | 5333 | 5499 | 5517 | | | | 60 | 5279 | 5508 | 5310 | 5662 | 5349 | | | | 65 | 5443 | 5713 | 5626 | 5411 | 5486 | | | | 70 | 5431 | 5307 | 5289 | 5720 | 5396 | | | | 75 | 5399 | 5518 | 5372 | 5705 | 5464 | | | | 80 | 5718 | 5601 | 5510 | 5450 | 5723 | | | | 85
90 | 5432
5258 | 5271
5359 | 5350
5659 | 5570
5698 | 5265
5654 | + | | + | 95 | 5482 | 5414 | 5321 | 5674 | 5479 | | | , | | | Type 5 Rada | | _ | | ' | | 23 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 6 | | 23 | Freque | n | | | | | | | | List
(MHz) | 0 | 1 | 2 | 3 | 4 | | | | 0 | 5304 | 5407
5384 | 5507 | 5392 | 5580 | | | | 5
10 | 5545
5400 | 5276 | 5702
5287 | 5346
5679 | 5521
5525 | | | | 15 | 5653 | 5344 | 5345 | 5698 | 5326 | | | | 20 | 5259 | 5550 | 5597 | 5626 | 5616 | | | | 25 | 5640 | 5581 | 5395 | 5421 | 5434 | | | | 30 | 5393 | 5696 | 5604 | 5362 | 5540 | | | | 35 | 5714 | 5347 | 5504 | 5352 | 5667 | | | | 40
45 | 5439
5413 | 5605
5587 | 5599
5517 | 5631
5336 | 5588
5720 | | | | 50 | 5332 | 5563 | 5570 | 5479 | 5632 | | | | 55 | 5606 | 5501 | 5689 | 5628 | 5637 | | | | 60 | 5475 | 5526 | 5494 | 5650 | 5486 | | | | 65 | 5536 | 5556 | 5565 | 5718 | 5281 | | | | 70
75 | 5709
5341 | 5379
5253 | 5372
5629 | 5375
5445 | 5477
5495 | | | | 80 | 5614 | 5291 | 5311 | 5429 | 5350 | | | | 85 | 5412 | 5325 | 5450 | 5613 | 5374 | | | | 90 | 5452 | 5488 | 5448 | 5678 | 5686 | | | | 95 | 5496 | 5252 | 5301 | 5676 | 5538 | | | | | | - | | | | | | | | | IVDE 5 Rada | r Wavetorm | 25 | | | | 24 | Type 6 | 1.0 | | r Waveform | _ | 300 | 3 | | 24 | Type 6 Frequen | | 333. 3 | 9 | 0. 3333 | 300 | . 3 | | 24 | Frequer
List
(MHz) | o | 333. 3 | 9 | 0. 3333
3 | 4 | . 3 | | 24 | Frequer
List
(MHz) | o 5559 | 333. 3
1
5646 | 9
2
5443 | 0. 3333
3
5456 | 4
5422 | . 3 | | 24 | Frequer
List
(MHz)
0 | 5559
5587 | 333. 3
1
5646
5406 | 9
2
5443
5302 | 0. 3333
3
5456
5509 | 4 5422 5350 | . 3 | | 24 | Frequentist (MHz) 0 5 | 5559
5587
5331 | 333.
3
1
5646
5406
5540 | 9
2
5443
5302
5328 | 0. 3333
3
5456 | 4 5422 5350 5546 | . 3 | | 24 | Frequer
List
(MHz)
0 | 5559
5587 | 333. 3
1
5646
5406 | 9
2
5443
5302 | 0. 3333
3
5456
5509
5399 | 4 5422 5350 | . 3 | | 24 | Frequer
List
(MHz)
0
5
10 | 5559
5587
5331
5266 | 333. 3
1
5646
5406
5540
5471
5716
5433 | 9
2
5443
5302
5328
5351 | 0. 3333
3
5456
5509
5399
5268 | 5422
5350
5546
5615 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 | 5559
5587
5331
5266
5645
5431
5435 | 333. 3
1
5646
5406
5540
5471
5716
5433
5585 | 9
2
5443
5302
5328
5351
5538
5598
5561 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577 | 5422
5350
5546
5615
5589
5468
5314 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 | 5559
5587
5331
5266
5645
5431
5435
5534 | 333. 3
1
5646
5406
5540
5471
5716
5433
5585
5486 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720 | 5422
5350
53546
5615
5589
5468
5314
5442 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 | 5559
5587
5331
5266
5645
5431
5435
5534
5450 | 333. 3
1
5646
5406
5540
5471
5716
5433
5585
5486
5444 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537 | 5422
5350
5546
5615
5589
5468
5314
5442
5396 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 40 | 5559
5587
5331
5266
5645
5431
5435
5534
5450 | 333. 3
1
5646
5406
5540
5471
5716
5433
5585
5486
5444
5567 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608
5475 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537
5575 | 5422
5350
5546
5615
5589
5468
5314
5442
5396
5389 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 | 5559
5587
5331
5266
5645
5431
5435
5534
5450
5342
5510 | 333. 3
1
5646
5406
5540
5471
5716
5433
5585
5486
5444
5567
5683 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537
5575
5621 | 5422
5350
5546
5615
5589
5468
5314
5442
5396 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 | 5559
5587
5331
5266
5645
5431
5435
5534
5450 | 333. 3
1
5646
5406
5540
5471
5716
5433
5585
5486
5444
5567 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608
5475
5264 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537
5575 | \$\frac{4}{22}\$ 5350 5546 5615 5589 5468 5314 5442 5396 5389 5665 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 60 65 | 5559
5587
5331
5266
5645
5431
5435
5534
5450
5342
5510
5455
5599
5432 | 333. 3 1 5646 5406 5540 55471 5716 5433 5585 5486 5444 5567 5683 5550 5291 5262 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608
5475
5264
5689
5640
5505 | 0. 3333 3 5456 5509 5399 5268 5715 5525 5577 5720 5537 5575 5621 5404 5326 5601 | 5422
5350
5546
5615
5589
5468
5314
5442
5396
5389
5665
5630
5573
5453 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 65 70 | 5559
5587
5331
5266
5645
5431
5435
5534
5450
5342
5510
5455
5599
5432
5551 | 333. 3 1 5646 5406 5540 5471 5716 5433 5585 5486 5444 5567 5683 5550 5291 5262 5512 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608
5475
5264
5689
5640
5505
5548 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537
5575
5621
5404
5326
5601
5358 | 5422
5350
5546
5615
5589
5468
5314
5442
5396
5389
5665
5630
5573
5453
5348 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 60 65 70 | 5559
5587
5331
5266
5645
5431
5435
5534
5450
5342
5510
5455
5599
5432
5551
5569 | 5646
5406
5540
5471
5716
5433
5585
5486
5444
5567
5683
5550
5291
5262
5512
5436 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608
5475
5264
5689
5640
5505
5548 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537
5575
5621
5404
5326
5601
5358
5373 | \$\frac{4}{5422}\$ 5350 5546 5615 5589 5468 5314 5442 5396 5389 5665 5630 5573 5453 5348 5675 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 60 65 70 75 | 5559
5587
5331
5266
5645
5431
5435
5534
5450
5342
5510
5455
5599
5432
5551
5569
5426 | 333. 3 1 5646 5406 5540 5471 5716 5433 5585 5486 5444 5567 5683 5550 5291 5262 5512 5436 5272 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608
5475
5264
5689
5640
5505
5548
5688
5724 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537
5575
5621
5404
5326
5601
5358
5373
5547 | 5422
5350
5546
5615
5589
5468
5314
5442
5396
5389
5665
5630
5573
5453
5348
5675
5681 | . 3 | | 24 | Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 60 65 70 | 5559
5587
5331
5266
5645
5431
5435
5534
5450
5342
5510
5455
5599
5432
5551
5569 | 5646
5406
5540
5471
5716
5433
5585
5486
5444
5567
5683
5550
5291
5262
5512
5436 | 9
2
5443
5302
5328
5351
5538
5598
5561
5595
5608
5475
5264
5689
5640
5505
5548 | 0. 3333
3
5456
5509
5399
5268
5715
5525
5577
5720
5537
5575
5621
5404
5326
5601
5358
5373 | \$\frac{4}{5422}\$ 5350 5546 5615 5589 5468 5314 5442 5396 5389 5665 5630 5573 5453 5348 5675 | . 3 | 5643 5702 75 80 95 | Type 5 Radar Waveform_26 | | | | | | | | | |--------------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|--------------|---|--| | :5 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 3 | | | | Frequen
List
(MHz) | | 1 | 2 | 3 | 4 | | | | | 0 | 5717 | 5410 | 5379 | 5617 | 5642 | | | | | 5 | 5629 | 5331 | 5377 | 5672 | 5557 | | | | | 10 | 5640 | 5329 | 5369 | 5594 | 5567 | 1 | | | | 15 | 5354 | 5501 | 5454 | 5691 | 5332 | | | | | 20 | 5653 | 5310 | 5479 | 5707 | 5562 | | | | | 25 | 5319 | 5382 | 5704 | 5502 | 5574 | | | | | 30 | 5474 | 5518 | 5317 | 5466 | 5625 | | | | | 35 | 5686 | 5516 | 5595 | 5364 | 5283 | | | | | 40 | 5378 | 5636 | 5582 | 5649 | 5450 | | | | | 45 | 5558 | 5633 | 5345 | 5397 | 5462 | | | | | 50 | 5440 | 5279 | 5278 | 5402 | 5670 | | | | | 55 | 5449 | 5570 | 5420 | 5330 | 5513 | | | | | 60 | 5399 | 5463 | 5551 | 5540 | 5285 | 1 | | | | 65 | 5443 | 5693 | 5620 | 5344 | 5351 | 1 | | | | 70 | 5418 | 5327 | 5395 | 5657 | 5493 | | | | | 75 | 5343 | 5407 | 5524 | 5359 | 5328 | | | | | 80 | 5370 | 5534 | 5423 | 5478 | 5631 | _ | | | | | | | | | | _ | | | | 85 | 5668 | 5348 | 5262 | 5535 | 5618 | | | | | 90
95 | 5470 | 5674 | 5597 | 5419 | 5429 | _ | | | | 95 | 5530 | 5362 | 5366 | 5472 | 5660 | | | | | | | Type 5 Rada | | | | | | | 3 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | 5 | | | | Frequen
List
(MHz) | О | 1 | 2 | 3 | 4 | | | | | 0 | 5497 | 5271 | 5315 | 5303 | 5484 | | | | | 5 | 5293 | 5353 | 5452 | 5263 | 5289 | | | | | 10 | 5571 | 5690 | 5410 | 5314 | 5588 | | | | | 15 | 5442 | 5628 | 5557 | 5261 | 5524 | | | | | 20 | 5661 | 5476 | 5517 | 5321 | 5535 | | | | | 25 | 5682 | 5709 | 5432 | 5258 | 5536 | | | | | 30 | 5616 | 5460 | 5475 | 5435 | 5715 | | | | | 35 | 5552 | 5667 | 5399 | 5312 | 5273 | | | | | 40 | 5278 | 5694 | 5396 | 5316 | 5401 | | | | | 45 | 5579 | 5578 | 5430 | 5641 | 5594 | | | | | 50 | 5398 | 5662 | 5338 | 5723 | 5368 | | | | | | | | 5493 | 5527 | 5309 | | | | | | 15479 | | | | | | | | | 55 | 5479
5646 | 5341
5444 | | | 5458 | | | | | 55
60 | 5646 | 5444 | 5549 | 5495 | 5458
5500 | | | | | 55
60
65 | 5646
5465 | 5444
5700 | 5549
5421 | 5495
5286 | 5500 | | | | | 55
60
65
70 | 5646
5465
5576 | 5444
5700
5713 | 5549
5421
5496 | 5495
5286
5692 | 5500
5427 | | | | | 55
60
65 | 5646
5465 | 5444
5700 | 5549
5421 | 5495
5286 | 5500 | | | | Type | 5 R | adar | Wave | eform | 28 | |------|-----|------|------|-------|----| | | | | | | | 5311 5364 5510 5668 | 27 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | 6 | |----|--------------------------|------|--------|------|---------|------|---| | | Frequen
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5277 | 5510 | 5251 | 5464 | 5704 | | | | 5 | 5335 | 5278 | 5527 | 5426 | 5593 | | | | 10 | 5502 | 5479 | 5451 | 5509 | 5609 | | | | 15 | 5433 | 5280 | 5660 | 5306 | 5716 | | | | 20 | 5572 | 5545 | 5458 | 5313 | 5508 | | | | 25 | 5473 | 5658 | 5635 | 5459 | 5570 | | | | 30 | 5349 | 5432 | 5650 | 5392 | 5372 | | | | 35 | 5331 | 5490 | 5680 | 5523 | 5289 | | | | 40 | 5533 | 5254 | 5544 | 5576 | 5410 | | | | 45 | 5724 | 5652 | 5549 | 5689 | 5317 | | | | 50 | 5299 | 5457 | 5302 | 5663 | 5681 | | | | 55 | 5481 | 5499 | 5465 |
5415 | 5581 | | | | 60 | 5403 | 5394 | 5623 | 5367 | 5487 | | | | 65 | 5449 | 5612 | 5327 | 5605 | 5386 | | | | 70 | 5413 | 5454 | 5494 | 5657 | 5498 | | | | 75 | 5636 | 5532 | 5466 | 5456 | 5482 | | | | 80 | 5365 | 5601 | 5320 | 5393 | 5534 | | | | 85 | 5371 | 5368 | 5416 | 5488 | 5529 | | | | 90 | 5390 | 5550 | 5661 | 5472 | 5431 | | | | 95 | 5268 | 5260 | 5391 | 5573 | 5516 | | | Type 5 Radar Waveform_29 | | | | | | | | | |--------------------------|---|--|--|--|--|--|---|--| | | | | Type 5 Rada | r Waveform | _29
 | | | | | 28 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | 3 | | | | Frequer
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | | O | 5532 | 5274 | 5662 | 5625 | 5449 | | | | | 5 | 5377 | 5300 | 5602 | 5589 | 5325 | | | | | 10 | 5336 | 5268 | 5607 | 5630 | 5521 | | | | | 15 | 5407 | 5288 | 5351 | 5433 | 5580 | | | | | 20 | 5711 | 5399 | 5402 | 5481 | 5361 | | | | | 25 | 5510 | 5363 | 5563 | 5604 | 5322 | | | | | 30 | 5713 | 5389 | 5390 | 5641 | 5570 | | | | | 35 | 5470 | 5581 | 5476 | 5676 | 5678 | | | | | 40 | 5372 | 5562 | 5667 | 5309 | 5670 | | | | | 45 | 5339 | 5332 | 5710 | 5504 | 5565 | | | | | 50 | 5493 | 5350 | 5546 | 5600 | 5394 | | | | | 55 | 5435 | 5689 | 5284 | 5386 | 5348 | | | | | 60 | 5701 | 5313 | 5310 | 5398 | 5551 | | | | | 65 | 5537 | 5400 | 5577 | 5458 | 5554 | | | | | 70 | 5343 | 5633 | 5272 | 5467 | 5281 | | | | | 75 | 5675 | 5447 | 5708 | 5495 | 5621 | | | | | 80 | 5290 | 5345 | 5317 | 5685 | 5437 | | | | | 85 | 5291 | 5334 | 5266 | 5333 | 5674 | | | | | 90 | 5664 | 5686 | 5694 | 5615 | 5327 | | | | | 95 | 5369 | 5659 | 5527 | 5415 | 5263 | | | | | | | Type 5 Rada | r Waveform | _30 | | | | | 29 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 2 | | | | Frequer
List
(MHz) | O | 1 | 2 | 3 | 4 | | | | | | | | | | | | | | | 0 | 5312 | 5513 | 5598 | 5311 | 5291 | | | | | 5 | 5419 | 5322 | 5677 | 5277 | 5532 | | | | | 5
10 | 5419
5267 | 5322
5630 | 5677
5327 | 5277
5651 | 5532
5609 | | | | | 5
10
15 | 5419
5267
5534 | 5322
5630
5294 | 5677
5327
5299 | 5277
5651
5625 | 5532
5609
5588 | | | | | 5
10
15
20 | 5419
5267
5534
5305 | 5322
5630
5294
5437 | 5677
5327
5299
5394 | 5277
5651
5625
5454 | 5532
5609
5588
5627 | | | | | 5
10
15
20
25 | 5419
5267
5534
5305
5362 | 5322
5630
5294
5437
5566 | 5677
5327
5299
5394
5667 | 5277
5651
5625
5454
5638 | 5532
5609
5588
5627
5364 | | | | | 5
10
15
20
25
30 | 5419
5267
5534
5305
5362
5699 | 5322
5630
5294
5437
5566
5346 | 5677
5327
5299
5394
5667
5605 | 5277
5651
5625
5454
5638
5318 | 5532
5609
5588
5627
5364
5390 | | | | | 5
10
15
20
25
30
35 | 5419
5267
5534
5305
5362
5699
5672 | 5322
5630
5294
5437
5566
5346
5272 | 5677
5327
5299
5394
5667
5605
5354 | 5277
5651
5625
5454
5638
5318
5592 | 5532
5609
5588
5627
5364
5390
5686 | | | | | 5
10
15
20
25
30
35
40 | 5419
5267
5534
5305
5362
5699
5672
5549 | 5322
5630
5294
5437
5566
5346
5272
5268 | 5677
5327
5299
5394
5667
5605
5354
5370 | 5277
5651
5625
5454
5638
5318
5592
5415 | 5532
5609
5588
5627
5364
5390
5686
5671 | | | | | 5
10
15
20
25
30
35
40
45 | 5419
5267
5534
5305
5362
5699
5672
5549
5557 | 5322
5630
5294
5437
5566
5346
5272
5268
5701 | 5677
5327
5299
5394
5667
5605
5354
5370
5344 | 5277
5651
5625
5454
5638
5318
5592
5415
5669 | 5532
5609
5588
5627
5364
5390
5686
5671
5401 | | | | | 5
10
15
20
25
30
35
40
45
50 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389 | 5532
5609
5588
5627
5364
5390
5686
5671
5401 | | | | | 5
10
15
20
25
30
35
40
45
50 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5481 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5372 | | | | | 5
10
15
20
25
30
35
40
45
50
55
60 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5481
5259 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357
5511 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515
5347 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533
5587 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5307
5372
5369 | | | | | 5
10
15
20
25
30
35
40
45
50
55
60 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5481
5259
5670 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357
5511
5380 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515
5347
5385 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533
5587
5706 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5372
5369
5339 | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5481
5259
5670 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357
5511
5380
5428 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515
5347
5385
5485 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533
5587
5706
5402 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5372
5369
5339
5408 | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5481
5259
5670
5721 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357
5511
5380
5428
5405 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515
5347
5385
5485
5608 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533
5587
5706
5402
5297 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5372
5369
5339
5408 | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5481
5259
5670
5721
5314 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357
5511
5380
5428
5428
5405
5628 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515
5347
5385
5485
5608 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533
5587
5706
5402
5297 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5372
5369
5339
5408
5361
5718 | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5257
5481
5259
5670
5721
5314
5676
5251 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357
5511
5380
5428
5405
5628
5695 | 5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515
5347
5385
5485
5608
5506 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533
5587
5706
5402
5297
5384
5636 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5372
5369
5339
5408
5361
5718
5596 | | | | | 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75 | 5419
5267
5534
5305
5362
5699
5672
5549
5557
5257
5481
5259
5670
5721
5314 | 5322
5630
5294
5437
5566
5346
5272
5268
5701
5423
5357
5511
5380
5428
5428
5405
5628 |
5677
5327
5299
5394
5667
5605
5354
5370
5344
5582
5515
5347
5385
5485
5608 | 5277
5651
5625
5454
5638
5318
5592
5415
5669
5389
5533
5587
5706
5402
5297 | 5532
5609
5588
5627
5364
5390
5686
5671
5401
5307
5372
5369
5339
5408
5361
5718 | | | | Product | WiFi 6 Extender | Test Engineer | Jake Lan | | | | | |-----------|---------------------------------------|---|------------|--|--|--|--| | Test Site | WZ-SR4 | Test Date | 2021/05/26 | | | | | | Test Item | Radar Statistical Performance Check (| Radar Statistical Performance Check (802.11ac-VHT40 mode - 5510MHz) | | | | | | | Test Mode | AP mode | | | | | | | Radar Type 1 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5494.0 | 1.0 | 938 | 57 | 1 | | 2 | 5503.0 | 1.0 | 738 | 72 | 1 | | 3 | 5499.0 | 1.0 | 818 | 65 | 1 | | 4 | 5508.0 | 1.0 | 598 | 89 | 1 | | 5 | 5522.0 | 1.0 | 778 | 68 | 1 | | 6 | 5496.0 | 1.0 | 638 | 83 | 1 | | 7 | 5516.0 | 1.0 | 878 | 61 | 1 | | 8 | 5509.0 | 1.0 | 618 | 86 | 1 | | 9 | 5516.0 | 1.0 | 578 | 92 | 1 | | 10 | 5518.0 | 1.0 | 3066 | 18 | 1 | | 11 | 5498.0 | 1.0 | 758 | 70 | 1 | | 12 | 5494.0 | 1.0 | 898 | 59 | 1 | | 13 | 5528.0 | 1.0 | 718 | 74 | 1 | | 14 | 5503.0 | 1.0 | 798 | 67 | 1 | | 15 | 5529.0 | 1.0 | 838 | 63 | 1 | | 16 | 5523.0 | 1.0 | 1734 | 31 | 1 | | 17 | 5528.0 | 1.0 | 1661 | 32 | 1 | | 18 | 5518.0 | 1.0 | 2991 | 18 | 1 | | 19 | 5530.0 | 1.0 | 1027 | 52 | 1 | | 20 | 5491.0 | 1.0 | 2384 | 23 | 1 | | 21 | 5520.0 | 1.0 | 2850 | 19 | 1 | | 22 | 5491.0 | 1.0 | 842 | 63 | 1 | | 23 | 5515.0 | 1.0 | 1363 | 39 | 1 | | 24 | 5498.0 | 1.0 | 1754 | 31 | 1 | | 25 | 5501.0 | 1.0 | 589 | 90 | 1 | | 26 | 5525.0 | 1.0 | 2262 | 24 | 1 | | 27 | 5528.0 | 1.0 | 2594 | 21 | 1 | | 28 | 5520.0 | 1.0 | 2856 | 19 | 1 | | 29 | 5524.0 | 1.0 | 3041 | 18 | 1 | | 30 | 5504.0 | 1.0 | 1479 | 36 | 1 | |----|--------|-----|------|----|---| | | 100.0% | | | | | Radar Type 2 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5513.0 | 1.1 | 175 | 23 | 1 | | 2 | 5512.0 | 4.0 | 224 | 28 | 1 | | 3 | 5510.0 | 3.3 | 204 | 27 | 1 | | 4 | 5491.0 | 3.9 | 227 | 28 | 0 | | 5 | 5499.0 | 2.0 | 226 | 24 | 1 | | 6 | 5516.0 | 3.4 | 180 | 27 | 1 | | 7 | 5522.0 | 1.3 | 156 | 23 | 1 | | 8 | 5493.0 | 4.5 | 173 | 29 | 1 | | 9 | 5493.0 | 2.6 | 168 | 25 | 1 | | 10 | 5508.0 | 3.8 | 210 | 27 | 0 | | 11 | 5492.0 | 5.0 | 218 | 29 | 1 | | 12 | 5512.0 | 1.4 | 150 | 23 | 1 | | 13 | 5494.0 | 4.5 | 179 | 29 | 1 | | 14 | 5509.0 | 4.2 | 185 | 28 | 1 | | 15 | 5501.0 | 1.6 | 217 | 24 | 1 | | 16 | 5511.0 | 4.5 | 203 | 29 | 1 | | 17 | 5528.0 | 3.3 | 154 | 26 | 1 | | 18 | 5519.0 | 3.9 | 161 | 28 | 1 | | 19 | 5525.0 | 2.8 | 170 | 26 | 1 | | 20 | 5491.0 | 4.8 | 158 | 29 | 0 | | 21 | 5515.0 | 3.2 | 206 | 26 | 1 | | 22 | 5509.0 | 1.2 | 182 | 23 | 1 | | 23 | 5495.0 | 4.2 | 216 | 28 | 1 | | 24 | 5527.0 | 1.5 | 211 | 23 | 1 | | 25 | 5528.0 | 2.1 | 222 | 25 | 1 | | 26 | 5523.0 | 2.6 | 171 | 25 | 1 | | 27 | 5507.0 | 4.4 | 163 | 28 | 1 | | 28 | 5491.0 | 2.1 | 177 | 25 | 1 | | 29 | 5513.0 | 1.3 | 215 | 23 | 1 | | 30 | 5527.0 | 5.0 | 155 | 29 | 0 | | | Det | ection Percentage | (%) | | 86.7% | Radar Type 3 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5516.0 | 6.1 | 336 | 16 | 1 | | 2 | 5526.0 | 9.0 | 329 | 18 | 1 | | 3 | 5513.0 | 8.3 | 396 | 17 | 1 | | 4 | 5503.0 | 8.9 | 417 | 18 | 1 | | 5 | 5501.0 | 7.0 | 303 | 16 | 1 | | 6 | 5497.0 | 8.4 | 426 | 17 | 1 | | 7 | 5517.0 | 6.3 | 421 | 16 | 1 | | 8 | 5505.0 | 9.5 | 214 | 18 | 1 | | 9 | 5515.0 | 7.6 | 458 | 17 | 0 | | 10 | 5501.0 | 8.8 | 444 | 18 | 0 | | 11 | 5525.0 | 10.0 | 381 | 18 | 1 | | 12 | 5509.0 | 6.4 | 389 | 16 | 1 | | 13 | 5523.0 | 9.5 | 279 | 18 | 1 | | 14 | 5492.0 | 9.2 | 284 | 18 | 0 | | 15 | 5496.0 | 6.6 | 479 | 16 | 1 | | 16 | 5523.0 | 9.5 | 335 | 18 | 1 | | 17 | 5520.0 | 8.3 | 430 | 17 | 1 | | 18 | 5491.0 | 8.9 | 325 | 18 | 1 | | 19 | 5517.0 | 7.8 | 487 | 17 | 1 | | 20 | 5513.0 | 9.8 | 215 | 18 | 1 | | 21 | 5504.0 | 8.2 | 224 | 17 | 1 | | 22 | 5499.0 | 6.2 | 223 | 16 | 1 | | 23 | 5491.0 | 9.2 | 262 | 18 | 1 | | 24 | 5526.0 | 6.5 | 350 | 16 | 0 | | 25 | 5525.0 | 7.1 | 372 | 16 | 1 | | 26 | 5502.0 | 7.6 | 419 | 17 | 1 | | 27 | 5511.0 | 9.4 | 404 | 18 | 1 | | 28 | 5517.0 | 7.1 | 354 | 16 | 1 | | 29 | 5497.0 | 6.3 | 463 | 16 | 1 | | 30 | 5525.0 | 10.0 | 216 | 18 | 1 | | | Det | ection Percentage | (%) | | 86.7% | Radar Type 4 - Radar Statistical Performance | Trail # | Test Freq. | Pulse Width | PRI (us) | Pulses / Burst | 1=Detection | |---------|------------|-------------------|----------|----------------|----------------| | | (MHz) | (us) | | | 0=No Detection | | 1 | 5511.0 | 11.3 | 336 | 14 | 1 | | 2 | 5512.0 | 17.7 | 329 | 15 | 0 | | 3 | 5515.0 | 16.2 | 396 | 14 | 1 | | 4 | 5502.0 | 17.5 | 417 | 15 | 1 | | 5 | 5495.0 | 13.4 | 303 | 13 | 1 | | 6 | 5506.0 | 16.4 | 426 | 15 | 1 | | 7 | 5529.0 | 11.8 | 421 | 12 | 1 | | 8 | 5522.0 | 18.8 | 214 | 16 | 1 | | 9 | 5492.0 | 14.7 | 458 | 14 | 1 | | 10 | 5503.0 | 17.3 | 444 | 15 | 0 | | 11 | 5512.0 | 19.8 | 381 | 16 | 1 | | 12 | 5508.0 | 11.9 | 389 | 12 | 1 | | 13 | 5492.0 | 18.8 | 279 | 16 | 1 | | 14 | 5508.0 | 18.2 | 284 | 15 | 1 | | 15 | 5511.0 | 12.5 | 479 | 12 | 1 | | 16 | 5524.0 | 18.9 | 335 | 16 | 1 | | 17 | 5498.0 | 16.1 | 430 | 14 | 1 | | 18 | 5518.0 | 17.6 | 325 | 15 | 1 | | 19 | 5493.0 | 15.0 | 487 | 14 | 0 | | 20 | 5504.0 | 19.4 | 215 | 16 | 1 | | 21 | 5497.0 | 15.9 | 224 | 14 | 1 | | 22 | 5497.0 | 11.5 | 223 | 12 | 1 | | 23 | 5523.0 | 18.3 | 262 | 16 | 1 | | 24 | 5521.0 | 12.1 | 350 | 12 | 1 | | 25 | 5511.0 | 13.6 | 372 | 13 | 1 | | 26 | 5521.0 | 14.5 | 419 | 13 | 0 | | 27 | 5526.0 | 18.5 | 404 | 16 | 0 | | 28 | 5504.0 | 13.6 | 354 | 13 | 0 | | 29 | 5503.0 | 11.7 | 463 | 12 | 1 | | 30 | 5500.0 | 19.9 | 216 | 16 | 1 | | | Det | ection Percentage | (%) | | 80% | Note: In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is as follows: $\frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4} = (100.0\% + 86.7\% + 86.7\% + 80.0\%)/4 = 88.35\% (>80\%)$ Radar Type 5 - Radar Statistical Performance | Trail # | Test Freq. | 1=Detection | Trail # | Test Freq. | 1=Detection | |---------|------------|-------------------|---------|------------|----------------| | | (MHz) | 0=No Detection | | (MHz) | 0=No Detection | | 1 | 5510.0 | 1 | 16 | 5498.6 | 1 | | 2 | 5510.0 | 1 | 17 | 5497.0 | 1 | | 3 | 5510.0 | 1 | 18 | 5497.8 | 1 | | 4 | 5510.0 | 1 | 19 | 5496.2 | 1 | | 5 | 5510.0 | 1 | 20 | 5499.0 | 1 | | 6 | 5510.0 | 0 | 21 | 5523.0 | 1 | | 7 | 5510.0 | 1 | 22 | 5525.8 | 1 | | 8 | 5510.0 | 1 | 23 | 5521.8 | 1 | | 9 | 5510.0 | 1 | 24 | 5525.4 | 1 | | 10 | 5510.0 | 1 | 25 | 5524.6 | 1 | | 11 | 5499.0 | 1 | 26 | 5523.8 | 1 | | 12 | 5494.6 | 1 | 27 | 5521.8 | 1 | | 13 | 5498.6 | 1 | 28 | 5524.6 | 1 | | 14 | 5498.2 | 1 | 29 | 5525.4 | 1 | | 15 | 5495.0 | 1 | 30 | 5521.0 | 1 | | | Det | ection Percentage | (%) | | 96.7% | | | | | | Тур | e 5 Radar | Waveform | _1 | | | | |---|---------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | Ξ | Downloa | 0 | Type 5 | 8 | 1. 50 | 12. 0 | 5. 51 | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | 0 | 4135 | 51.6 | 5 | 1 | 1166.0 | _ | _ | | | | | 1 | 7755 | 87. 3 | 5 | 3 | 1755.0 | 1186.0 | 1281.0 | | | | | 2 | 1138 | 78. 9 | 5 | 2 | 1685.0 | 1660.0 | _ | | | | | 3 | 5284.0 | 85. 9 | 5 | 3 | 1960.0 | 1413.0 | 1924. 0 | | | | | 4 | 3686 | 63. 2 | 5 | 1 | 1642.0 | _ | _ | | | | | 5 | 7313 | 80.0 | 5 | 2 | 1608.0 | 1495.0 | _ | | | | | 6 | 1095 | 54. 7 | 5 | 1 | 1869. 0 | _ | _ | | | | | 7 | 1455 | 93. 3 | 5 | 3 | 1407. 0 | 1808. 0 | 1899. 0 | | | | Тур | e 5 Radar | Waveforn | n_2 | | | | |-------------|-------------|-------------------------|------------------------|-------------------------|------------------------------|---------------|---------------|---------------| | □ Downloa 1 | Type 5 | 17 | 0. 70 | 12. 0 | 5. 51 | | | | | DOWNTO | Burst
ID | Burst
Offset | Pulse
Width | Chirp
Width | Number
of
Pulses | PRI-1
(us) | PRI-2 | PRI-3 | | | 0 | (us) | (us) | (MHz) | per
Burst | 1595. 0 | 1554. 0 | _ | | | | | | | 2 | | | 1000 0 | | | 1 | 3214 | 84. 8 | 16 | 3 | 1971. 0 | 1245. 0 | 1923. 0 | | | 2 | 4919 | 98. 9 | 16 | 3 | 1458. 0 | 1596. 0 | 1297. 0 | | | 3 | 6649 | 55. 2 | 16 | 1 | 1358. 0 | | | | | 4 | 1307 | 93. 2 | 16 | 3 | 1486. 0 | 1014. 0 | 1435. 0 | | | 5 | 3004 | 89. 7 | 16 | 3 | 1510. 0 | 1922. 0 | 1747. 0 | | | 6 | 4731 | 58. 4 | 16 | 1 | 1101.0 | _ | _ | | | 7 | 6412 | 93. 8 | 16 | 3 | 1800.0 | 1109.0 | 1339.0 | | | 8 | 1099 | 78. 3 | 16 | 2 | 1827. 0 | 1261. 0 | _ | | | 9 | 2796 | 86. 4 | 16 | 3 | 1829. 0 | 1296. 0 | 1844. 0 | | | 10 | 4514 | 72. 3 | 16 | 2 | 1070. 0 | 1059. 0 | _ | | | 11 | 6194 | 96. 6 | 16 | 3 | 1644. 0 | 1845. 0 | 1709. 0 | | | | | | | 2 | | | 1709.0 | | | 12 | 88965. 0 | | 16 | _ | 1366. 0 | 1625. 0 | _ | | | 13 | 2598 | 53. 2 | 16 | 1 | 1917. 0 | _ | _ | | | 14 | 4286 | 90. 2 | 16 | 3 | 1505. 0 | 1819. 0 | 1674. 0 | | | 15 | 6013 | 56. 3 | 16 | 1 | 1913. 0 | _ | _ | | | 16 | 68157. 0 | 64. 5 | 16 | 1 | 1016.0 |
_ | _ | | | | | | | | | | | | | | | | Waveforn | | | | | | Downloa 2 | Type 5 | 15 | 0. 80 | 12. 0 | 5. 51 | | | | | | | | | | Number | | | | | | Burst
ID | Burst
Offset | Pulse
Width | Chirp
Width | of
Pulses | PRI-1
(us) | PRI-2 | PRI-3 | | | 1D | (us) | (us) | (MHz) | per
Burst | (us) | (us) | (us) | | | 0 | 2702 | 69. 8 | 14 | 2 | 1369. 0 | 1963. 0 | _ | | | 1 | 4623 | 91. 7 | 14 | 3 | 1412. 0 | 1891. 0 | 1925. 0 | | | | | | | | | 1001.0 | 1020.0 | | | 2 | 6582 | 64. 4 | 14 | 1 | 1452. 0 | _ | | | | 3 | 53338. 0 | 54. 2 | 14 | 1 | 1778. 0 | _ | - | | | 4 | 2459 | 99. 4 | 14 | 3 | 1905. 0 | 1255. 0 | 1897. 0 | | | 5 | 4406 | 63. 5 | 14 | 1 | 1507. 0 | _ | _ | | | 6 | 6325 | 75. 1 | 14 | 2 | 1950. 0 | 1760. 0 | 1_ | | | | | | | | | | 1070 0 | | | 7 | 29396. 0 | 83. 6 | 14 | 3 | 1813. 0 | 1469. 0 | 1072. 0 | | | 8 | 2221 | 90. 0 | 14 | 3 | 1334. 0 | 1980. 0 | 1928. 0 | | | 9 | 4168 | 50. 6 | 14 | 1 | 1403.0 | _ | _ | | | 10 | 6102 | 56. 5 | 14 | 1 | 1853. 0 | _ | _ | | | 11 | | 83. 9 | | 3 | | 1954. 0 | 1707 0 | | | | 5620. 0 | | 14 | | 1652. 0 | | 1707. 0 | | | 12 | 1989 | 72. 4 | 14 | 2 | 1904. 0 | 1120.0 | _ | | | 13 | 3916 | 91. 1 | 14 | 3 | 1773.0 | 1258. 0 | 1103.0 | | | 14 | 5860 | 79. 4 | 14 | 2 | 1073.0 | 1190.0 | _ | | | 1 | | | · Waveforn | n 4 | | | | | Downloa 3 | Type 5 | 17 | 0. 70 | 12. 0 | 5. 51 | | | | | | | | | | Number | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 6863 | 71. 1 | 16 | 2 | 1784. 0 | 1742. 0 | _ | | | 1 | 1546 | 66. 1 | 16 | 1 | 1888. 0 | - | 1_ | | | 2 | 3257 | 53. 3 | 16 | 1 | 1180. 0 | 1_ | + | | | | | | | 2 | | 1990 0 | + | | | 3 | 4951 | 77. 1 | 16 | 2 | 1938. 0 | 1338. 0 | | | | 4 | 6671 | 61.6 | 16 | 1 | 1630. 0 | _ | - | | | 5 | 1332 | 99. 1 | 16 | 3 | 1319.0 | 1420.0 | 1057. 0 | | | 6 | 3044 | 53. 4 | 16 | 1 | 1749.0 | _ | _ | | | 7 | 4729 | 94. 5 | 16 | 3 | 1591.0 | 1761. 0 | 1814. 0 | | | 8 | 6449 | 77. 0 | 16 | 2 | 1448.0 | 1433.0 | - | | | 9 | 1121 | 91. 9 | 16 | 3 | 1485. 0 | 1949. 0 | 1238. 0 | | | 10 | 2833 | 59. 2 | 16 | 1 | 1868. 0 | - | _ | | | 11 | 4541 | | 16 | 1 | 1771. 0 | _ | 1_ | | | | | 62. 8 | | 1 | | _ | | | | 12 | 6251 | 55. 2 | 16 | 1 | 1564. 0 | _ | _ | | | 13 | 91650.0 | | 16 | 1 | 1460.0 | _ | _ | | | 14 | 2625 | 57. 9 | 16 | 1 | 1437. 0 | _ | _ | | | 15 | 4318 | 98. 5 | 16 | 3 | 1021.0 | 1332.0 | 1508. 0 | | | 16 | 6019 | 97. 1 | 16 | 3 | 1005.0 | 1647. 0 | 1405.0 | | | | | | - | - | | | | | | | Тур | e 5 Radar | Waveform | n_5 | | | | |-------------|---------------|-------------------------|------------------------|-------------------------|--|--------------------|--------------------|--| | □ Downloa 4 | Туре 5 | 11 | 1. 09 | 12. 0 | 5. 51 | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 1090 | 72. 5 | 9 | 2 | 1824.0 | 1317.0 | _ | | | 1 | 3730 | 71. 3 | 9 | 2 | 1419.0 | 1271.0 | _ | | | 2 | 6356 | 93. 5 | 9 | 3 | 1927. 0 | 1542. 0 | 1389. 0 | | | 3 | 8990 | 88. 4 | 9 | 3 | 1998. 0 | 1603. 0 | 1276. 0 | | | 4 | 76456. 0 | 90. 4 | 9 | 3 | 1337. 0 | 1686. 0 | 1205. 0 | | | 5 | 3400 | 89. 1 | 9 | 3 | 1116. 0 | 1396. 0 | 1514. 0 | | | <u>6</u>
7 | 8683 | 71. 2 | 9 | 2 | 1832. 0
1078. 0 | 1325. 0 | _ | | | 8 | 44060. 0 | 73. 8 | 9 | 2 | 1379. 0 | 1620. 0
1169. 0 | | | | 9 | 3079 | 71. 6 | 9 | 2 | 1224. 0 | 1577. 0 | | | | 10 | 5722 | 53. 1 | 9 | 1 | 1975. 0 | - | _ | | | 10 | | | | _ | 1310.0 | | | | | | Тур | e 5 Radar | Waveform | 1_6 | | | | | Downloa 5 | Type 5 | 15 | 0. 80 | 12. 0 | 5. 51 | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 6109 | 89. 1 | 14 | 3 | 1754. 0 | 1570.0 | 1298. 0 | | | 1 | 8472. 0 | 51.8 | 14 | 1 | 1397. 0 | _ | - | | | <u>2</u>
3 | 3956 | 59. 8
55. 9 | 14
14 | 1 | 1314. 0
1775. 0 | _ | - | | | 4 | 5875 | 95. 4 | 14 | 3 | 1654. 0 | 1178.0 | 1274. 0 | | | 5 | 7807 | 92. 9 | 14 | 3 | 1590.0 | 1140.0 | 1159. 0 | | | <u>6</u>
7 | 1778
3721 | 75. 4
61. 0 | 14
14 | 2 | 1599. 0
1085. 0 | 1964. 0 | <u> </u> | | | 8 | 5631 | 99. 9 | 14 | 3 | 1321. 0 | 1880. 0 | 1820. 0 | | | 9 | 7588 | 63. 0 | 14 | 1 | 1931. 0 | _ | | | | 10 | 1537 | 94. 8 | 14 | 3 | 1935. 0 | 1822. 0 | 1038. 0 | | | 11
12 | 3479
5416 | 65. 4
66. 3 | 14 | 1 | 1698. 0
1618. 0 | _ | | | | 13 | 7331 | 97. 2 | 14 | 3 | 1250. 0 | 1300.0 | 1350. 0 | | | 14 | 1300 | 87. 4 | 14 | 3 | 1569. 0 | 1637. 0 | 1681. 0 | | | | Тур | e 5 Radar | Waveform | 1_7 | | | | | Downloa 6 | Type 5 | 9 | 1. 33 | 12. 0 | 5. 51 | | | | | | Burst
ID | Burst
Offset
(us) | (us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 5408 | 62. 4 | 6 | 1 | 1305.0 | _ | _ | | | 1 | 8621 | 90. 1 | 6 | 3 | 1132.0 | 1023.0 | 1943. 0 | | | 2 | 1187 | 50. 6 | 6 | 1 | 1280.0 | _ | _ | | | 3 | 1778 | 69. 8 | 6 | 2 | 1095.0 | 1803.0 | _ | | | 4 | 5004 | 76. 5 | 6 | 2 | 1177. 0 | 1692. 0 | _ | | | 5 | 8236 | 82. 1 | 6 | 2 | 1034. 0 | 1131. 0 | _ | | | 6 | 1146 | 52. 2 | 6 | 1 | 1782. 0 | _ | _ | | | 7 | 1382 | 59. 4 | 6 | 1 | 1243. 0 | _ | +_ + | | | 8 | | | 6 | 1 | | | + | | | 0 | 4612 | 61. 3 | O | Ţ | 1387.0 | | _ | | | | | | Тур | e 5 Radar | Waveform | 1_8 | | | | |---|---------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | = | Downloa | 7 | Type 5 | 19 | 0. 63 | 12. 0 | 5. 51 | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | 0 | 3712 | 51. 1 | 18 | 1 | 1139.0 | _ | _ | | | | | 1 | 5206 | 97. 6 | 18 | 3 | 1861. 0 | 1973. 0 | 1480.0 | | | | | 2 | 46352. 0 | 91. 0 | 18 | 3 | 1468. 0 | 1634. 0 | 1206. 0 | | | | | 3 | 1986 | 80.8 | 18 | 2 | 1735. 0 | 1911. 0 | _ | | | | | 4 | 3514 | 77. 0 | 18 | 2 | 1345. 0 | 1543.0 | - | | | | | 5 | 5040 | 82. 2 | 18 | 2 | 1043.0 | 1592. 0 | _ | | | | | 6 | 27729. 0 | 55. 7 | 18 | 1 | 1662.0 | _ | | | | | | 7 | 1798 | 87. 9 | 18 | 3 | 1061.0 | 1547.0 | 1427.0 | | | | | 8 | 3325 | 77. 5 | 18 | 2 | 1028.0 | 1977. 0 | _ | | | | | 9 | 4861 | 50. 2 | 18 | 1 | 1479.0 | _ | _ | | | | | 10 | 8919. 0 | 55. 4 | 18 | 1 | 1077.0 | _ | _ | | | | | 11 | 1613 | 75. 2 | 18 | 2 | 1896. 0 | 1239.0 | _ | | | | | 12 | 3140 | 82. 0 | 18 | 2 | 1516.0 | 1039.0 | _ | | | | | 13 | 4670 | 53. 3 | 18 | 1 | 1909. 0 | _ | _ | | | | | 14 | 6181 | 67. 5 | 18 | 2 | 1918. 0 | 1628. 0 | I – | | | | | 15 | 1429 | 62. 3 | 18 | 1 | 1161. 0 | _ | _ | | | | | 16 | 2948 | 81. 7 | 18 | 2 | 1491.0 | 1851. 0 | _ | | | | | 17 | 4466 | 97. 0 | 18 | 3 | 1204. 0 | 1242. 0 | 1666. 0 | | | | | 10 | E007 | 00.0 | 10 | 2 | 1074 0 | 1420 0 | 1711 0 | | Downloa 8 Type 5 | 13 | 0. 92 | 12. 0 | 5. 51 | | | | |------------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | 0 | 1807 | 84. 1 | 11 | 3 | 1889. 0 | 1902. 0 | 1374.0 | | 1 | 4044 | 77.8 | 11 | 2 | 1323.0 | 1488. 0 | _ | | 2 | 6282 | 55. 8 | 11 | 1 | 1881. 0 | _ | _ | | 3 | 8498 | 77. 1 | 11 | 2 | 1967. 0 | 1833. 0 | _ | | 4 | 1534 | 91. 3 | 11 | 3 | 1207.0 | 1615. 0 | 1839. 0 | | 5 | 3774 | 53. 0 | 11 | 1 | 1482.0 | _ | _ | | 6 | 5999 | 76. 7 | 11 | 2 | 1118.0 | 1962. 0 | _ | | 7 | 8232 | 81. 1 | 11 | 2 | 1536. 0 | 1382. 0 | _ | | 8 | 1261 | 70. 7 | 11 | 2 | 1996. 0 | 1821.0 | _ | | 9 | 3498 | 53. 9 | 11 | 1 | 1722.0 | _ | _ | | 10 | 5714 | 95. 1 | 11 | 3 | 1370.0 | 1956. 0 | 1430.0 | | 11 | 7959 | 71. 1 | 11 | 2 | 1040.0 | 1621.0 | _ | | 12 | 98529. 0 | 86. 8 | 11 | 3 | 1260.0 | 1942. 0 | 1667. 0 | | Downloa | 9 | Type 5 | 17 | 0. 70 | 12. 0 | 5. 51 | | | | |---------|---|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 2455 | 92. 5 | 16 | 3 | 1215.0 | 1237. 0 | 1449.0 | | | | 1 | 4157 | 98. 5 | 16 | 3 | 1106.0 | 1629.0 | 1241.0 | | | | 2 | 5880 | 54. 7 | 16 | 1 | 1526.0 | _ | _ | | | | 3 | 54318.0 | 97.8 | 16 | 3 | 1287. 0 | 1114.0 | 1983. 0 | | | | 4 | 2254 | 51. 9 | 16 | 1 | 1156.0 | _ | _ | | | | 5 | 3948 | 94. 7 | 16 | 3 | 1348.0 | 1086.0 | 1504. 0 | | | | 6 | 5650 | 84. 0 | 16 | 3 | 1019.0 | 1247.0 | 1764. 0 | | | | 7 | 33406.0 | 67. 7 | 16 | 2 | 1879. 0 | 1568. 0 | | | | | 8 | 2044 | 57. 2 | 16 | 1 | 1167. 0 | _ | _ | | | | 9 | 3751 | 56. 9 | 16 | 1 | 1579.0 | _ | _ | | | | 10 | 5443 | 88. 0 | 16 | 3 | 1143.0 | 1431.0 | 1006.0 | | | | 11 | 12458.0 | 66. 1 | 16 | 1 | 1376.0 | _ | _ | | | | 12 | 1824 | 91. 7 | 16 | 3 | 1890.0 | 1461.0 | 1445.0 | | | | 13 | 3540 | 62. 2 | 16 | 1 | 1734. 0 | _ | _ | | | | 14 | 5232 | 80. 4 | 16 | 2 | 1984. 0 | 1846. 0 | _ | | • | | 15 | 6934 | 86. 8 | 16 | 3 | 1688.0 | 1093.0 | 1137.0 | | | | 16 | 1618 | 83. 1 | 16 | 2 | 1244.0 | 1856. 0 | _ | | | | Тур | e 5 Radar | Waveform | ո_11 | | | | |------------|-------------|-------------------------|------------------------|-------------------------
--|--------------------|--------------------|--------------------| | Downlos 10 | Type 5 | 20 | 0. 60 | 12. 0 | 5. 49 | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 2828 | 57. 4 | 20 | 1 | 1751. 0 | - | - | | | 2 | 4260
5702 | 94. 9
85. 2 | 20 | 3 | 1588. 0
1728. 0 | 1664. 0
1457. 0 | 1221. 0
1540. 0 | | | 3 | 1200 | 53. 6 | 20 | 1 | 1083. 0 | - | - | | | 4 | 2643 | 75. 4 | 20 | 2 | 1635. 0 | 1534. 0 | - | | | 5 | 4074 | 83. 6 | 20 | 3 | 1993. 0 | 1847. 0 | 1837.0 | | | 6 | 5526 | 95. 3 | 20 | 3 | 1490.0 | 1574. 0 | 1451.0 | | | 8 | 1018 | 70. 5
99. 8 | 20 | 3 | 1710. 0
1920. 0 | 1265. 0
1559. 0 | 1037.0 | | | 9 | 3916 | 77. 7 | 20 | 2 | 1372. 0 | 1283. 0 | - | | | 10 | 5379 | 50. 3 | 20 | 1 | 1108.0 | _ | _ | | | 11 | 84163. 0 | 51. 0 | 20 | 1 | 1901. 0 | | | | | 12 | 2280
3725 | 85. 1
83. 9 | 20 | 3 | 1830. 0
1727. 0 | 1257. 0
1353. 0 | 1790. 0 | | | 14 | 5185 | 82. 4 | 20 | 2 | 1731. 0 | 1113. 0 | - | | | 15 | 66207. 0 | 79. 1 | 20 | 2 | 1631.0 | 1063.0 | _ | | | 16 | 2108 | 68. 6 | 20 | 2 | 1690.0 | 1498. 0 | _ | | | 17 | 3557 | 82. 7 | 20 | 2 | 1102.0 | 1857. 0 | 1700 0 | | | 18 | 4992 | 83. 5 | 20 | 3 | 1555. 0
1658. 0 | 1181. 0
1294. 0 | 1792. 0 | | <u> </u> | 13 | | | | | 1000.0 | 1231.0 | 1025. | | | | Тур | e 5 Radar | Waveform | า_12 | | | | | Downloa 11 | Type 5 | 9 | 1. 33 | 12. 0 | 5. 49 | | | | | | Domest | Burst | Pulse | Chirp | Number
of | PRI-1 | DDT 0 | PRI-3 | | | Burst | Offset | Width | Width | Pulses | | PRI-2 | | | | ID | (us) | (us) | (MHz) | per | (us) | (us) | (us) | | | | (us) | (us) | (MIIZ) | Burst | | | | | | 0 | 4302 | 69. 8 | 6 | 2 | 1377.0 | 1958. 0 | _ | | | 1 | 7536 | 60. 4 | 6 | 1 | 1900.0 | _ | _ | | | 2 | 1074 | 87. 1 | 6 | 3 | 1999. 0 | 1421.0 | 1053. (| | | 3 | 68047. 0 | 62. 9 | 6 | 1 | 1527. 0 | _ | _ | | | 4 | 3904 | 80. 9 | 6 | 2 | 1840.0 | 1648.0 | _ | | | 5 | 7134 | 76. 8 | 6 | 2 | 1277.0 | 1456. 0 | 1_ | | | | | 1 | | | + | | - | | | 6 | 1036 | 70. 9 | 6 | 2 | 1737. 0 | 1096. 0 | _ | | | 7 | 28232. 0 | 67. 8 | 6 | 2 | 1594. 0 | 1249.0 | _ | | | | | | + | 1 | | 1210.0 | | | | 8 | 3512 | 61. 0 | 6 | 11 | 1470. 0 | | | | | | Тур | e 5 Radar | Waveform | 1_13 | | | | | Downloa 12 | Type 5 | 19 | 0. 63 | 12. 0 | 5. 49
Number | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3 | | | 0 | 3175 | 99. 6 | 18 | 3 | 1422.0 | 1188. 0 | 1770. | | | 1 | 4696 | 90. 9 | 18 | 3 | 1898. 0 | 1362. 0 | 1172. | | | 3 | 6219
1467 | 96. 3
94. 4 | 18 | 3 | 1216. 0
1538. 0 | 1182. 0
1295. 0 | 1831. (| | | 4 | 2990 | 87. 6 | 18 | 3 | 1184. 0 | 1198. 0 | 1557. (| | | 5 | 4512 | 96. 6 | 18 | 3 | 1160. 0 | 1128. 0 | 1641. (| | | 6 | 6055 | 50. 2 | 18 | 1 | 1748. 0 | _ | _ | | | 7 | 1276 | 86. 0 | 18 | 3 | 1811.0 | 1906. 0 | 1944. (| | | 8 | 2807 | 83. 2 | 18 | 2 | 1286. 0 | 1601. 0 | 1- | | | 9 | 4331 | 67. 0
64. 9 | 18 | 2 | 1195. 0
1593. 0 | 1772. 0 | +- | | | 11 | 1097 | 59. 5 | 18 | 1 | 1515. 0 | 1_ | 1_ | | | | | 77. 3 | 18 | | 1478. 0 | 1756. 0 | 1_ | | | 12 | 2618 | 11.3 | 10 | _ | 1110.0 | 1100.0 | 1 | | | 13 | 4150 | 52. 2 | 18 | 1 | 1966. 0 | _ | _ | | | 13
14 | 4150
5661 | 52. 2
66. 9 | 18
18 | 1 2 | 1966. 0
1987. 0 | -
1788. 0 | | | | 13 | 4150 | 52. 2
66. 9 | 18 | 1 | 1966. 0 | _ | -
-
1033. (| | | | | Туре | 5 Radar V | Naveform_ | _14 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | Downloa | 13 | Type 5 | 18 | 0. 66 | 12. 0 | 5. 49 | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 76108. 0 | 55. 5 | 17 | 1 | 1269.0 | _ | _ | | | | 1 | 2363 | 87. 1 | 17 | 3 | 1560. 0 | 1278.0 | 1759. 0 | | | | 2 | 3982 | 73. 0 | 17 | 2 | 1217. 0 | 1009.0 | _ | | | | 3 | 5589 | 79. 5 | 17 | 2 | 1069. 0 | 1706. 0 | _ | | | | 4 | 55954. 0 | 97. 0 | 17 | 3 | 1638. 0 | 1714.0 | 1175. 0 | | | | 5 | 2164 | 88. 2 | 17 | 3 | 1946. 0 | 1473.0 | 1522. 0 | | | | 6 | 3786 | 63. 3 | 17 | 1 | 1873. 0 | _ | _ | | | | 7 | 5382 | 97. 1 | 17 | 3 | 1162.0 | 1299. 0 | 1384. 0 | | | | 8 | 36359. 0 | 57. 8 | 17 | 1 | 1122. 0 | _ | _ | | | | 9 | 1971 | 72. 2 | 17 | 2 | 1986. 0 | 1313.0 | _ | | | | 10 | 3582 | 72. 7 | 17 | 2 | 1214.0 | 1582. 0 | _ | | | | 11 | 5188 | 98. 7 | 17 | 3 | 1324. 0 | 1000.0 | 1030.0 | | | | 12 | 16472. 0 | 62. 7 | 17 | 1 | 1318. 0 | _ | _ | | | | 13 | 1773 | 77. 5 | 17 | 2 | 1459. 0 | 1838. 0 | _ | | | | 14 | 3390 | 59. 4 | 17 | 1 | 1606.0 | _ | _ | | | | 15 | 5002 | 50. 1 | 17 | 1 | 1740.0 | _ | _ | | | | 16 | 6593 | 86. 9 | 17 | 3 | 1444.0 | 1232. 0 | 1268.0 | | | | 17 | 1578 | 54. 0 | 17 | 1 | 1929. 0 | _ | _ | | = | Downloa | 14 | Type 5 | 10 | 1. 20 | 12. 0 | 5. 49 | | | | |---|---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | 0 | 5750 | 56. 7 | 7 | 1 | 1867. 0 | _ | _ | | | | | 1 | 8637 | 97. 5 | 7 | 3 | 1597. 0 | 1171.0 | 1758. 0 | | | | | 2 | 1153 | 87. 3 | 7 | 3 | 1492.0 | 1895. 0 | 1055.0 | | | | | 3 | 2483 | 82. 2 | 7 | 2 | 1997. 0 | 1464. 0 | _ | | | | | 4 | 5379 | 93. 1 | 7 | 3 | 1733.0 | 1818. 0 | 1267.0 | | | | | 5 | 8271 | 85. 5 | 7 | 3 | 1939. 0 | 1805. 0 | 1948. 0 | | | | | 6 | 1120 | 65. 7 | 7 | 1 | 1646.0 | _ | _ | | | | | 7 | 2127 | 68. 6 | 7 | 2 | 1680.0 | 1024.0 | _ | | | | | 8 | 5022 | 89. 1 | 7 | 3 | 1549.0 | 1567. 0 | 1650.0 | | | | | 9 | 7929 | 92.6 | 7 | 3 | 1066.0 | 1133.0 | 1236. 0 | |
Downloa | 15 | Type 5 | 19 | 0. 63 | 12. 0 | 5. 49 | | | | |-------------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 5702 | 58. 2 | 18 | 1 | 1655. 0 | _ | _ | | | | 1 | 92976.0 | 70. 1 | 18 | 2 | 1346.0 | 1127.0 | I – I | | | | 2 | 2454 | 79. 2 | 18 | 2 | 1098.0 | 1537. 0 | _ | | | | 3 | 3989 | 64. 3 | 18 | 1 | 1111.0 | _ | _ | | | | 4 | 5513 | 54. 5 | 18 | 1 | 1753. 0 | _ | _ | | | | 5 | 73963.0 | 97. 9 | 18 | 3 | 1600.0 | 1354.0 | 1371.0 | | | | 6 | 2272 | 62. 3 | 18 | 1 | 1209.0 | _ | _ | | | | 7 | 3794 | 74. 0 | 18 | 2 | 1196. 0 | 1071.0 | _ | | | | 8 | 5319 | 76. 6 | 18 | 2 | 1327. 0 | 1062.0 | _ | | | | 9 | 55458. 0 | | 18 | 1 | 1675. 0 | _ | _ | | | | 10 | 2071 | 99. 4 | 18 | 3 | 1952. 0 | 1801. 0 | 1291.0 | | | | 11 | 3609 | 56. 2 | 18 | 1 | 1704. 0 | _ | _ | | | | 12 | 5124 | 74. 3 | 18 | 2 | 1539. 0 | 1781. 0 | _ | | | | 13 | 36479.0 | 99. 6 | 18 | 3 | 1936. 0 | 1282. 0 | 1222. 0 | | | | 14 | 1884 | 92. 5 | 18 | 3 | 1716. 0 | 1720.0 | 1360. 0 | | | | 15 | 3423 | 63. 7 | 18 | 1 | 1342. 0 | _ | _ | | | | 16 | 4949 | 60. 5 | 18 | 1 | 1691.0 | _ | _ | | | | 17 | 17762. 0 | 68. 4 | 18 | 2 | 1797. 0 | 1990. 0 | _ | | | | 18 | 1705 | 52. 1 | 18 | 1 | 1659. 0 | _ | _ | | Type 5 Radar Waveform 17 | Τv | pe 5 | Radar | Waveform | 17 | |--------------------------|----|------|-------|----------|----| |--------------------------|----|------|-------|----------|----| | Downloa | 16 | Type 5 | 15 | 0.80 | 12. 0 | 5. 49 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 4090 | 82. 1 | 14 | 2 | 1969. 0 | 1126.0 | _ | | | | 1 | 6026 | 67.8 | 14 | 2 | 1292. 0 | 1494. 0 | _ | | | | 2 | 7973 | 52. 0 | 14 | 1 | 1359. 0 | _ | | | | | 3 | 1920 | 80. 1 | 14 | 2 | 1380.0 | 1425.0 | | | | | 4 | 3852 | 79. 7 | 14 | 2 | 1741.0 | 1344.0 | | | | | 5 | 5796 | 59. 9 | 14 | 1 | 1573.0 | _ | _ | | | | 6 | 7714 | 74. 8 | 14 | 2 | 1679.0 | 1767. 0 | _ | | | | 7 | 1680 | 85. 7 | 14 | 3 | 1200.0 | 1309.0 | 1183.0 | | | | 8 | 3613 | 73. 4 | 14 | 2 | 1604.0 | 1744. 0 | _ | | | | 9 | 5534 | 94. 0 | 14 | 3 | 1170.0 | 1870.0 | 1945. 0 | | | | 10 | 7463 | 87. 6 | 14 | 3 | 1826. 0 | 1941. 0 | 1087.0 | | | | 11 | 1447 | 63. 7 | 14 | 1 | 1150.0 | _ | _ | | | | 12 | 3375 | 78. 3 | 14 | 2 | 1884. 0 | 1483.0 | _ | | | | 13 | 5297 | 99. 1 | 14 | 3 | 1411.0 | 1440.0 | 1978. 0 | | | | 14 | 7239 | 70.8 | 14 | 2 | 1414.0 | 1937. 0 | | |
 | | | | | | | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | Downloa | 17 | Type 5 | 17 | 0. 70 | 12. 0 | 5. 49 | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 1061 | 88.8 | 16 | 3 | 1383.0 | 1363.0 | 1624. 0 | | | | 1 | 2763 | 87. 7 | 16 | 3 | 1404.0 | 1194.0 | 1626.0 | | | | 2 | 4466 | 93. 1 | 16 | 3 | 1165.0 | 1220.0 | 1695. 0 | | | | 3 | 6194 | 58. 4 | 16 | 1 | 1121.0 | _ | _ | | | | 4 | 85081.0 | 94. 1 | 16 | 3 | 1586. 0 | 1976. 0 | 1798.
0 | | | | 5 | 2565 | 64. 9 | 16 | 1 | 1065.0 | _ | _ | | | | 6 | 4269 | 65. 1 | 16 | 1 | 1933. 0 | _ | _ | | | | 7 | 5957 | 85. 5 | 16 | 3 | 1528. 0 | 1223. 0 | 1424.0 | | | | 8 | 64348.0 | 73. 5 | 16 | 2 | 1434.0 | 1794. 0 | _ | | | | 9 | 2348 | 75. 4 | 16 | 2 | 2000.0 | 1064.0 | _ | | | | 10 | 4059 | 54. 6 | 16 | 1 | 1957. 0 | _ | _ | | | | 11 | 5773 | 50. 4 | 16 | 1 | 1097. 0 | _ | _ | | | | 12 | 43345.0 | 73. 1 | 16 | 2 | 1717. 0 | 1705. 0 | _ | | | | 13 | 2134 | 87. 8 | 16 | 3 | 1556. 0 | 1089. 0 | 1683. 0 | | | | 14 | 3832 | 89. 8 | 16 | 3 | 1462.0 | 1651.0 | 1872. 0 | | | | 15 | 5547 | 79. 4 | 16 | 2 | 1264. 0 | 1836. 0 | _ | | | | 16 | 22357. 0 | 75. 0 | 16 | 2 | 1816. 0 | 1672.0 | _ | | Downloa | 18 | Type 5 | 13 | 0. 92 | 12. 0 | 5. 49 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 2517 | 97. 4 | 12 | 3 | 1892. 0 | 1739. 0 | 1893. 0 | | | | 1 | 4763 | 66. 4 | 12 | 1 | 1548. 0 | _ | _ | | | | 2 | 6995 | 57. 0 | 12 | 1 | 1940.0 | _ | _ | | | | 3 | 1798. 0 | 74. 7 | 12 | 2 | 1912. 0 | 1616. 0 | _ | | | | 4 | 2254 | 56. 1 | 12 | 1 | 1048. 0 | _ | _ | | | | 5 | 4475 | 90. 0 | 12 | 3 | 1329.0 | 1612.0 | 1225.0 | | | | 6 | 6703 | 99. 6 | 12 | 3 | 1776. 0 | 1211.0 | 1285. 0 | | | | 7 | 8958 | 54. 3 | 12 | 1 | 1532. 0 | _ | _ | | | | 8 | 1974 | 79. 8 | 12 | 2 | 1248.0 | 1584. 0 | _ | | | | 9 | 4214 | 62. 1 | 12 | 1 | 1060.0 | _ | _ | | | | 10 | 6430 | 89. 0 | 12 | 3 | 1804. 0 | 1056.0 | 1168. 0 | | | | 11 | 8666 | 80. 1 | 12 | 2 | 1520.0 | 1777.0 | _ | | | | 12 | 1696 | 89. 1 | 12 | 3 | 1607. 0 | 1084. 0 | 1842. 0 | 1330. 0 1227. 0 1489. 0 1531.0 1003. 0 1107. 0 1795. 0 1545. 0 1015. 0 1585. 0 1632. 0 1135. 0 1730. 0 | 19 | Type 5 Burst ID | Burst
Offset
(us) | O. 60
Pulse
Width
(us) | Chirp
Width
(MHz) | 5. 49 Number of Pulses per Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | |----|-----------------------|---|---|--|---|--|-----------------------------------|--| | | 0 | 2544 | 97. 7 | 19 | 3 | 1563. 0 | 1968. 0 | 1025. 0 | | | 1 | 3999 | 71. 0 | 19 | 2 | 1036. 0 | 1850. 0 | | | | 2 | 5456 | 57. 1 | 19 | 1 | 1915. 0 | _ | | | Г | 3 | 92759. 0 | | 19 | 1 | 1032. 0 | | <u> </u> | | Г | 4 | 2376 | 60. 7 | 19 | 1 | 1903. 0 | | _ | | | 5 | 3829 | 54. 7 | 19 | 1 | 1499. 0 | _ | _ | | | 6 | 5267 | 70. 7 | 19 | 2 | 1703.0 | 1423.0 | | | Г | 7 | 74818. 0 | | 19 | 1 | 1409.0 | _ | <u> </u> | | 1 | | 2195 | 74. 3 | | 2 | 1484. 0 | 1049.0 | _ | | Г | 9 | 3637 | 87. 3 | 19 | 3 | 1333. 0 | 1031.0 | 1320.0 | | | 10 | 5088 | 66. 9 | 19 | 2 | 1860. 0 | 1303. 0 | _ | | | 11 | 56825. 0 | | 19 | 2 | 1125.0 | 1441.0 | _ | | | 12 | 2016 | 78. 5 | 19 | 2 | 1436.0 | 1290.0 | | | | 13 | 3474 | 54. 7 | 19 | 1 | 1146.0 | _ | | | Г | 14 | 4910 | 75. 0 | 19 | 2 | 1388. 0 | 1684. 0 | | | | 15 | 39066. 0 | | 19 | 1 | 1210.0 | | <u> </u> | | | 16 | 1841 | 51. 6 | 19 | 1 | 1663. 0 | | | | | 17 | 3278 | 98. 0 | 19 | 3 | 1791.0 | 1155. 0 | 1375. 0 | | | 18 | 4725 | 83. 6 | 19 | 3 | 1226.0 | 1552. 0 | 1193.0 | | | 19 | 21154. 0 | 64. 5 | 19 | 1 | 1862. 0 | <u> </u> | T | | | | | | | | | | | | 20 | Type 5 | 15 | 0.80 | 12. 0 | | | | | | | Burst
ID | Burst
Offset | Pulse
Width | Chirp
Width | Number
of
Pulses | PRI-1
(us) | PRI-2
(us) | PRI-3 | | | 10 | (us) | (us) | (MHz) | per
Burst | | | | | | 0 | 2219 | (us)
62. 6 | (MHz)
13 | | 1465. 0 | | | | | | , | , | , | | 1465. 0
1187. 0 | |
 -
 - | | | 0 | 2219 | 62. 6 | 13 | | | _
_
_
_ |
 -
 -
 - | | | 0 | 2219
4157 | 62. 6
66. 4 | 13 | | 1187. 0 | -
-
-
1848. 0 | -
-
-
1176. | | | 0 1 2 | 2219
4157
6093 | 62. 6
66. 4
61. 9 | 13
13
13 | Burst 1 1 1 | 1187. 0
1293. 0 | -
-
-
1848. 0
1463. 0 | | | | 0 1 2 3 | 2219
4157
6093
4368.0 | 62. 6
66. 4
61. 9
92. 1 | 13
13
13
13 | 1
1
1
3 | 1187. 0
1293. 0
1763. 0 | _ | | | | 0
1
2
3
4 | 2219
4157
6093
4368.0
1973 | 62. 6
66. 4
61. 9
92. 1
96. 1 | 13
13
13
13
13 | Burst 1 1 1 3 3 | 1187. 0
1293. 0
1763. 0
1385. 0 | 1463.0 | -
-
-
1176. (
1614. (
-
1330. (| | | 20 | Burst ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | Burst Offset (us) 0 2544 1 3999 2 5456 3 92759.0 4 2376 5 3829 6 5267 7 74818.0 8 2195 9 3637 10 5088 11 56825.0 12 2016 13 3474 14 4910 15 39066.0 16 1841 17 3278 18 4725 19 21154.0 Type 20 Type 5 15 | Burst Offset (us) 0 2544 97.7 1 3999 71.0 2 5456 57.1 3 92759.0 53.5 4 2376 60.7 5 3829 54.7 6 5267 70.7 7 74818.0 52.0 8 2195 74.3 9 3637 87.3 10 5088 66.9 11 56825.0 82.3 12 2016 78.5 13 3474 54.7 14 4910 75.0 15 39066.0 59.4 16 1841 51.6 17 3278 98.0 18 4725 83.6 19 21154.0 64.5 Type 5 Radar 20 Type 5 15 0.80 | Burst Offset (us) Pulse Width (us) (MHz) 0 2544 97.7 19 1 3999 71.0 19 2 5456 57.1 19 3 92759.0 53.5 19 4 2376 60.7 19 5 3829 54.7 19 6 5267 70.7 19 7 74818.0 52.0 19 8 2195 74.3 19 9 3637 87.3 19 10 5088 66.9 19 11 56825.0 82.3 19 12 2016 78.5 19 13 3474 54.7 19 14 4910 75.0 19 15 39066.0 59.4 19 16 1841 51.6 19 17 3278 98.0 19 18 4725 83.6 19 19 21154.0 64.5 19 Type 5 Radar Waveform | Burst Offset (us) Pulse Width (MHz) Pulses per Burst 0 2544 97.7 19 3 1 3999 71.0 19 2 2 5456 57.1 19 1 3 92759.0 53.5 19 1 4 2376 60.7 19 1 5 3829 54.7 19 1 6 5267 70.7 19 2 7 74818.0 52.0 19 1 8 2195 74.3 19 2 9 3637 87.3 19 3 10 5088 66.9 19 2 11 56825.0 82.3 19 2 12 2016 78.5 19 2 13 3474 54.7 19 1 14 4910 75.0 19 2 15 39066.0 59.4 19 1 16 1841 51.6 19 1 17 3278 98.0 19 3 18 4725 83.6 19 3 19 21154.0 64.5 19 1 Type 5 Radar Waveform_21 | Burst Offset (us) | Burst Offset (us) Pulse Width (us) PRI-1 (us) PRI-2 (us) PRI-2 (us) PRI-1 (us) PRI-2 (us) PRI-2 (us) PRI-1 PRI-1 (us) PRI-2 PRI-1 (us) PRI-2 (us) PRI-1 (us | #### Type 5 Radar Waveform_22 13 13 13 13 93. 5 54.0 64. 3 52.8 76. 2 55. 4 84. 5 77. 8 7757. 1741. 7533. 1503. 3430. 5364. 8 10 11 12 13 14 | □ Downloa 21 Type | e 5 8 | 1. 50 | 12. 0 | 5. 52 | | | | |-------------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | Bur | Burst
Offset
(us) |
Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | 0 | 1369 | 83. 7 | 6 | 3 | 1392.0 | 1815. 0 | 1018.0 | | 1 | 2369 | 93. 4 | 6 | 3 | 1189.0 | 1129.0 | 1736.0 | | 2 | 6004 | 69.6 | 6 | 2 | 1266.0 | 1141.0 | _ | | 3 | 9629 | 77. 1 | 6 | 2 | 1972.0 | 1474.0 | _ | | 4 | 1325 | 85. 1 | 6 | 3 | 1022.0 | 1233.0 | 1828. 0 | | 5 | 1925 | 58. 6 | 6 | 1 | 1965. 0 | _ | _ | | 6 | 5553 | 72. 9 | 6 | 2 | 1246.0 | 1955. 0 | _ | | 7 | 9186 | 73. 0 | 6 | 2 | 1511.0 | 1312.0 | _ | | | | Type | 5 Radar V | Waveform _. | 23 | | | | |--------------|-----------------|-------------------------|---------------------------------|-------------------------|--|--------------------|--------------------|--------------------| | | | | | | | | | | | 1 | Type 5 Burst ID | Burst
Offset
(us) | O. 66
Pulse
Width
(us) | Chirp Width (MHz) | 5.52
Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 5682 | 79. 2 | 17 | 2 | 1415. 0 | 1475. 0 | - | | | 2 | 65309. 0
2258 | 90. 2
92. 5 | 17 | 3 | 1454. 0
1878. 0 | 1825. 0
1328. 0 | 1378. 0
1447. 0 | | | 3 | 3873 | 77. 6 | 17 | 2 | 1410. 0 | 1581. 0 | - | | | 4 | 5467 | 85. 3 | 17 | 3 | 1627.0 | 1779. 0 | 1572. 0 | | | 5 | 45657. 0 | 74. 6 | 17 | 2 | 1124. 0 | 1715. 0 | - | | | 6
7 | 3677 | 95. 0
78. 2 | 17 | 2 | 1251. 0
1007. 0 | 1029. 0
1669. 0 | 1174. 0 | | | 8 | 5298 | 64. 2 | 17 | 1 | 1361. 0 | - | - | | 9 | 9 | 25875.0 | 55. 3 | 17 | 1 | 1562. 0 | _ | _ | | | 10 | 1870 | 65. 5 | 17 | 1 | 1875. 0 | _ | _ | | | 11
12 | 3476
5084 | 76. 5
81. 3 | 17 | 2 | 1991. 0
1877. 0 | 1153. 0
1418. 0 | _ | | | 13 | 6009. 0 | 59. 1 | 17 | 1 | 1185. 0 | - | _ | | | 14 | 1672 | 65. 0 | 17 | 1 | 1907. 0 | _ | _ | | | 15 | 3285 | 57. 5 | 17 | 1 | 1762. 0 | _ | _ | | | 16 | 4889 | 78. 2 | 17 | 2 | 1340.0 | 1517. 0 | _ | | | 17 | 6512 | 56. 9 | 17 | 1 | 1521. 0 | _ | | | | | Туре | 5 Radar | Waveform _. | _24 | | | | | Downloa 23 | Type 5 | 9 | 1. 33 | 12. 0 | 5. 52 | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 2950 | 77. 2 | 7 | 2 | 1115.0 | 1110.0 | _ | | | 1 | 6164 | 98. 1 | 7 | 3 | 1932. 0 | 1865.0 | 1583.0 | | | 2 | 9413 | 60. 0 | 7 | 1 | 1438.0 | _ | _ | | | 3 | 1261 | 84. 5 | 7 | 3 | 1429.0 | 1367. 0 | 1272. 0 | | | 4 | 2549 | 90. 7 | 7 | 3 | 1228.0 | 1203.0 | 1947. 0 | | | 5 | 5778 | 76. 9 | 7 | 2 | 1575. 0 | 1315. 0 | - | | | 6 | 8994 | 94. 1 | 7 | 3 | 1310.0 | 1859. 0 | 1270.0 | | | 7 | 1223 | 77. 0 | 7 | 2 | 1149.0 | 1745. 0 | _ | | | 8 | 2153 | 91. 4 | 7 | 3 | 1076.0 | 1020.0 | 1477.0 | | | | Type | 5 Radar | | 25 | ı | <u> </u> | ' ' | | □ Downlos 24 | Type 5 | 11 | 1. 09 | 12. 0 | 5. 52 | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | 0 | 4404 | 66. 0 | 9 | 1 | 1970. 0 | - | _ | | | 1 | 7036 | 82. 1 | 9 | 2 | 1780. 0 | 1525. 0 | _ | | | 2 | 9681 | 70. 9 | 9 | 2 | 1119.0 | 1432.0 | - | | | 3 | 1434 | 98. 6 | 9 | 3 | 1279.0 | 1653. 0 | 1874. 0 | | | 4 | 4080 | 55. 8 | 9 | 1 | 1503. 0 | _ | _ | | | 5 | 6708 | 89. 7 | 9 | 3 | 1123. 0 | 1506. 0 | 1213. 0 | | | 6 | 9340 | 93. 4 | 9 | 3 | 1202. 0 | 1500. 0 | 1665. 0 | | | 7 | | | | 2 | | | 1000.0 | | | | 1111 | 82. 8 | 9 | + | 1887. 0 | 1725. 0 | _ | | | 8 | 3755 | 51. 9 | 9 | 1 | 1571. 0 | _ | _ | | | 9 | 6396 | 53. 6 | 9 | 1 | 1718. 0 | - | _ | | | 10 | 9035 | 54. 9 | 9 | 1 | 2000.0 | _ | _ | | Type 5 Radar Waveform_26 | | | | | | | | | | |--------------------------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | Downloa | 25 | Type 5 | 13 | 0. 92 | 12. 0 | 5. 52 | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 66629.0 | 62. 4 | 11 | 1 | 1694.0 | _ | _ | | | | 1 | 2897 | 68. 9 | 11 | 2 | 1307.0 | 1513.0 | _ | | | | 2 | 5137 | 59. 0 | 11 | 1 | 1273.0 | _ | _ | | | | 3 | 7339 | 86. 1 | 11 | 3 | 1678.0 | 1995. 0 | 1849.0 | | | | 4 | 38987. 0 | 88. 7 | 11 | 3 | 1613.0 | 1750.0 | 1090.0 | | | | 5 | 2622 | 70.8 | 11 | 2 | 1142.0 | 1589. 0 | _ | | | | 6 | 4844 | 90. 0 | 11 | 3 | 1806. 0 | 1930. 0 | 1017.0 | | | | 7 | 7099 | 58. 0 | 11 | 1 | 1151.0 | _ | _ | | | | 8 | 11548.0 | 96. 5 | 11 | 3 | 1218.0 | 1619. 0 | 1252.0 | | | | 9 | 2348 | 74. 6 | 11 | 2 | 1050.0 | 1231.0 | _ | | | | 10 | 4577 | 78. 4 | 11 | 2 | 1611.0 | 1640.0 | _ | | | | 11 | 6824 | 62. 0 | 11 | 1 | 1004.0 | _ | _ | | | | 12 | 9032 | 98. 9 | 11 | 3 | 1026.0 | 1852. 0 | 1075.0 | ### Type 5 Radar Waveform_27 | Downloa | 26 | Type 5 | 18 | 0. 66 | 12. 0 | 5. 52 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 1493 | 78. 1 | 18 | 2 | 1622.0 | 1841.0 | _ | | | | 1 | 3101 | 81. 5 | 18 | 2 | 1951. 0 | 1668. 0 | _ | | | | 2 | 4718 | 74. 8 | 18 | 2 | 1068.0 | 1311.0 | _ | | | | 3 | 6342 | 63. 0 | 18 | 1 | 1002.0 | _ | _ | | | | 4 | 1293 | 94. 7 | 18 | 3 | 1173.0 | 1682.0 | 1823. 0 | | | | 5 | 2900 | 99. 5 | 18 | 3 | 1351.0 | 1496.0 | 1335.0 | | | | 6 | 4527 | 65. 6 | 18 | 1 | 1288.0 | _ | _ | | | | 7 | 6111 | 83. 6 | 18 | 3 | 1863.0 | 1254.0 | 1395.0 | | | | 8 | 1100 | 58. 3 | 18 | 1 | 1598. 0 | _ | | | | | 9 | 2708 | 83. 2 | 18 | 2 | 1229.0 | 1609.0 | _ | | | | 10 | 4318 | 78. 9 | 18 | 2 | 1677. 0 | 1154.0 | _ | | | | 11 | 5911 | 96. 2 | 18 | 3 | 1693.0 | 1992. 0 | 1088.0 | | | | 12 | 89784. 0 | 93. 4 | 18 | 3 | 1858. 0 | 1219.0 | 1466.0 | | | | 13 | 2516 | 56. 8 | 18 | 1 | 1051.0 | _ | _ | | | | 14 | 4126 | 59. 6 | 18 | 1 | 1757. 0 | _ | _ | | | | 15 | 5720 | 86. 8 | 18 | 3 | 1523.0 | 1347.0 | 1044. 0 | | | | 16 | 70030.0 | 87. 9 | 18 | 3 | 1105.0 | 1442.0 | 1752. 0 | | | | 17 | 2311 | 76. 3 | 18 | 2 | 1011.0 | 1835. 0 | _ | | 3 | Downloa | 27 | Type 5 | 11 | 1. 09 | 12. 0 | 5. 52 | | | | |---|---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | 0 | 6435 | 63. 1 | 9 | 1 | 1676. 0 | _ | _ | | | | | 1 | 9075 | 53. 9 | 9 | 1 | 1886. 0 | _ | _ | | | | | 2 | 82565.0 | 73. 2 | 9 | 2 | 1331.0 | 1067. 0 | _ | | | | | 3 | 3457 | 94. 5 | 9 | 3 | 1408.0 | 1636. 0 | 1864. 0 | | | | | 4 | 6111 | 58. 2 | 9 | 1 | 1381. 0 | _ | _ | | | | | 5 | 8730 | 89. 0 | 9 | 3 | 1393. 0 | 1199. 0 | 1713. 0 | | | | | 6 | 50018.0 | 73. 9 | 9 | 2 | 1673. 0 | 1336. 0 | _ | | | | | 7 | 3135 | 95. 9 | 9 | 3 | 1145. 0 | 1894. 0 | 1148.0 | | | | | 8 | 5778 | 69. 8 | 9 | 2 | 1398. 0 | 1446. 0 | _ | | | | | 9 | 8399 | 86. 9 | 9 | 3 | 1544. 0 | 1766. 0 | 1774. 0 | | | | | 10 | 17498. 0 | 86. 0 | 9 | 3 | 1812. 0 | 1399. 0 | 1045.0 | | Type 5 Radar Waveform_29 | | | | | | | | | | | | | |--------------------------|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------|--|--|--|--| | Downloa 28 | Type 5 | 9 | 1. 33 | 12. 0 | 5. 52 | | | | | | | | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | | | | 0 | 3440 | 80. 5 | 6 | 2 | 1524. 0 | 1394. 0 | _ | | | | | | | 1 | 6665 | 66.8 | 6 | 2 | 1876.0 | 1455.0 | _ | | | | | | | 2 | 9886 | 87. 7 | 6 | 3 | 1134.0 | 1843.0 | 1046.0 | | | | | | | 3 | 1312 | 70.0 | 6 | 2 | 1138.0 | 1656.0 | _ | | | | | | | 4 | 3042 | 72.0 | 6 | 2 | 1726.0 | 1566.0 | _ | | | | | | | 5 | 6268 | 70. 5 | 6 | 2 | 1610.0 | 1633.0 | _ | | | | | | | 6 | 9497 | 74. 4 | 6 | 2 | 1406.0 | 1355.0 | _ | | | | | | | 7 | 1273 | 64. 9 | 6 | 1 | 1959. 0 | _ | _ | | | | | | | 8 | 2644 | 80. 4 | 6 | 2 | 1926. 0 | 1550. 0 | _ | | | | | | Downloa | 29 | Type 5 | 20 | 0. 60 | 12. 0 | 5. 52 | | | | |---------|----|-------------|-------------------------|------------------------|-------------------------|--|---------------|---------------|---------------| | | | Burst
ID | Burst
Offset
(us) | Pulse
Width
(us) | Chirp
Width
(MHz) | Number
of
Pulses
per
Burst | PRI-1
(us) | PRI-2
(us) | PRI-3
(us) | | | | 0 | 2629 | 88. 1 | 20 | 3 | 1541.0 | 1796. 0 | 1012.0 | | | | 1 | 4090 | 52. 4 | 20 | 1 | 1989. 0 | _ | _ | | | | 2 | 5519 | 88. 1 | 20 | 3 | 1602.0 | 1472. 0 | 1208.0 | | | | 3 | 1008 | 71.3 | 20 | 2 | 1908. 0 | 1365.0 | _ | | | | 4 | 2461 | 54. 1 | 20 | 1 | 1981. 0 | _ | _ | | | | 5 | 3898 | 85. 7 | 20 | 3 | 1284. 0 | 1164. 0 | 1533. 0 | | | | 6 | 5353 | 80. 2 | 20 | 2 | 1054. 0 | 1883. 0 | _ | | | | 7 | 83019.0 | 90. 0 | 20 | 3 | 1081.0 | 1091.0 | 1157.0 | | | | 8 | 2276 | 95. 4 | 20 | 3 | 1058. 0 | 1042.0 | 1343.0 | | | | 9 | 3736 | 64. 0 | 20 | 1 | 1373.0 | _ | _ | | | | 10 | 5167 | 80. 3 | 20 | 2 | 1871.0 | 1910. 0 | _ | | | | 11 | 65270.0 | 71. 3 | 20 | 2 | 1326.0 | 1306.0 | _ | | | | 12 | 2104 | 58. 6 | 20 | 1 | 1765. 0 | _ | _ | | | | 13 | 3536 | 98. 3 | 20 | 3 | 1565. 0 | 1687. 0 | 1783.0 | | | |
14 | 5010 | 65. 2 | 20 | 1 | 1262. 0 | _ | _ | | | | 15 | 47498.0 | 58. 1 | 20 | 1 | 1699. 0 | _ | _ | | | | 16 | 1922 | 75. 7 | 20 | 2 | 1352. 0 | 1551.0 | _ | | | | 17 | 3361 | 83. 6 | 20 | 3 | 1201.0 | 1341.0 | 1979. 0 | | | | 18 | 4820 | 73. 2 | 20 | 2 | 1082.0 | 1580.0 | _ | | | | 19 | 29505.0 | 85. 9 | 20 | 3 | 1639. 0 | 1259.0 | 1212.0 | Radar Type 6 - Radar Statistical Performance | Trail # | 1=Detection | Trail # | 1=Detection | |---------|--------------------------|---------|----------------| | | 0=No Detection | | 0=No Detection | | 1 | 1 | 16 | 1 | | 2 | 1 | 17 | 1 | | 3 | 1 | 18 | 1 | | 4 | 1 | 19 | 1 | | 5 | 1 | 20 | 1 | | 6 | 1 | 21 | 1 | | 7 | 1 | 22 | 1 | | 8 | 1 | 23 | 1 | | 9 | 1 | 24 | 1 | | 10 | 1 | 25 | 1 | | 11 | 1 | 26 | 1 | | 12 | 1 | 27 | 1 | | 13 | 1 | 28 | 1 | | 14 | 1 | 29 | 1 | | 15 | 1 | 30 | 1 | | | Detection Percentage (%) | | 100% | | | | | Type 5 Radar | · Waveform_1 | I | | | |---|--------------------------|------|--------------|--------------|---------|------|---| | 0 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 7 | | | Frequen
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5552 | 5555 | 5350 | 5602 | 5510 | | | | 5 | 5570 | 5336 | 5348 | 5288 | 5579 | | | | 10 | 5424 | 5362 | 5693 | 5318 | 5257 | | | | 15 | 5571 | 5279 | 5720 | 5383 | 5313 | | | | 20 | 5696 | 5328 | 5454 | 5655 | 5470 | | | | 25 | 5339 | 5334 | 5550 | 5305 | 5620 | | | | 30 | 5373 | 5395 | 5293 | 5617 | 5637 | | | | 35 | 5606 | 5663 | 5340 | 5721 | 5675 | | | | 40 | 5580 | 5650 | 5325 | 5657 | 5714 | | | | 45 | 5485 | 5365 | 5371 | 5440 | 5703 | | | | 50 | 5530 | 5375 | 5370 | 5474 | 5448 | | | | 55 | 5517 | 5479 | 5421 | 5583 | 5511 | | | | 60 | 5393 | 5416 | 5691 | 5548 | 5275 | | | | 65 | 5659 | 5398 | 5307 | 5390 | 5414 | | | | 70 | 5368 | 5473 | 5529 | 5538 | 5447 | | | | 75 | 5574 | 5532 | 5281 | 5527 | 5629 | | | | 80 | 5723 | 5544 | 5516 | 5492 | 5460 | | | | 85 | 5632 | 5534 | 5581 | 5359 | 5557 | | | | 90 | 5250 | 5437 | 5292 | 5646 | 5308 | | | | 95 | 5349 | 5644 | 5284 | 5666 | 5321 | | | | | | Type 5 Rada | r Waveform_ | 2 | | | |---|--------------------------|------|-------------|-------------|---------|------|---| | 1 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | 9 | | | Frequen
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | O | 5710 | 5319 | 5286 | 5288 | 5352 | | | | 5 | 5612 | 5261 | 5423 | 5354 | 5408 | | | | 10 | 5355 | 5723 | 5259 | 5416 | 5278 | | | | 15 | 5562 | 5406 | 5348 | 5428 | 5505 | | | | 20 | 5704 | 5397 | 5395 | 5647 | 5443 | | | | 25 | 5702 | 5661 | 5506 | 5654 | 5649 | | | | 30 | 5444 | 5330 | 5610 | 5445 | 5437 | | | | 35 | 5679 | 5459 | 5493 | 5635 | 5514 | | | | 40 | 5663 | 5588 | 5565 | 5546 | 5465 | | | | 45 | 5448 | 5429 | 5396 | 5309 | 5551 | | | | 50 | 5421 | 5660 | 5271 | 5461 | 5570 | | | | 55 | 5375 | 5676 | 5264 | 5425 | 5581 | | | | 60 | 5258 | 5643 | 5471 | 5318 | 5608 | | | | 65 | 5434 | 5614 | 5692 | 5440 | 5629 | | | | 70 | 5446 | 5652 | 5424 | 5605 | 5385 | | | | 75 | 5504 | 5439 | 5607 | 5513 | 5474 | | | | 80 | 5334 | 5542 | 5555 | 5597 | 5488 | | | | 85 | 5257 | 5422 | 5494 | 5510 | 5701 | | | | 90 | 5681 | 5328 | 5451 | 5367 | 5282 | | | | 95 | 5403 | 5316 | 5577 | 5500 | 5662 | | | 2 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | 10 | |---|--------------------------|------|--------|------|---------|------|----| | | Frequen
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5490 | 5558 | 5697 | 5449 | 5572 | | | | 5 | 5654 | 5283 | 5498 | 5517 | 5615 | | | | 10 | 5286 | 5512 | 5300 | 5611 | 5299 | | | | 15 | 5650 | 5436 | 5354 | 5473 | 5712 | | | | 20 | 5563 | 5336 | 5261 | 5416 | 5590 | | | | 25 | 5513 | 5481 | 5610 | 5688 | 5691 | | | | 30 | 5333 | 5287 | 5253 | 5694 | 5257 | | | | 35 | 5343 | 5410 | 5352 | 5646 | 5549 | | | | 40 | 5450 | 5368 | 5526 | 5330 | 5651 | | | | 45 | 5475 | 5445 | 5531 | 5390 | 5380 | | | | 50 | 5660 | 5252 | 5472 | 5274 | 5308 | | | | 55 | 5329 | 5391 | 5624 | 5710 | 5554 | | | | 60 | 5271 | 5678 | 5297 | 5264 | 5389 | | | | 65 | 5557 | 5373 | 5349 | 5552 | 5398 | | | | 70 | 5609 | 5542 | 5632 | 5656 | 5365 | | | | 75 | 5415 | 5675 | 5470 | 5586 | 5658 | | | | 80 | 5495 | 5285 | 5506 | 5292 | 5510 | | | | 85 | 5382 | 5377 | 5273 | 5505 | 5272 | | | | 90 | 5465 | 5539 | 5426 | 5428 | 5528 | | | | 95 | 5392 | 5423 | 5281 | 5455 | 5579 | | | 3 | Type 6 | 1.0 | 333. 3 | 9 | 0. 3333 | 300 | 9 | |---|--------------------------|------|--------|------|---------|------|---| | | Frequen
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5270 | 5322 | 5633 | 5610 | 5414 | | | | 5 | 5696 | 5683 | 5573 | 5680 | 5347 | | | | 10 | 5595 | 5301 | 5341 | 5331 | 5320 | | | | 15 | 5263 | 5563 | 5457 | 5421 | 5623 | | | | 20 | 5632 | 5374 | 5253 | 5389 | 5381 | | | | 25 | 5462 | 5587 | 5714 | 5722 | 5258 | | | | 30 | 5319 | 5719 | 5468 | 5371 | 5455 | | | | 35 | 5482 | 5501 | 5560 | 5289 | 5451 | | | | 40 | 5367 | 5473 | 5307 | 5425 | 5614 | | | | 45 | 5448 | 5502 | 5645 | 5536 | 5428 | | | | 50 | 5523 | 5363 | 5295 | 5252 | 5471 | | | | 55 | 5283 | 5581 | 5443 | 5681 | 5436 | | | | 60 | 5404 | 5695 | 5685 | 5687 | 5506 | | | | 65 | 5409 | 5656 | 5676 | 5528 | 5257 | | | | 70 | 5505 | 5466 | 5324 | 5287 | 5613 | | | | 75 | 5567 | 5435 | 5508 | 5541 | 5670 | | | | 80 | 5355 | 5507 | 5577 | 5377 | 5590 | | | | 85 | 5565 | 5430 | 5493 | 5278 | 5672 | | | | 90 | 5591 | 5434 | 5465 | 5274 | 5667 | | | | 95 | 5440 | 5336 | 5439 | 5477 | 5664 | | | | | | Type 5 Rada | ar Waveform | 1_5 | | | |---|---|--|---|--|--|--|----------| | 4 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 10 | | | Frequent List (MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5525 | 5561 | 5569 | 5674 | 5634 | | | | 5 | 5360 | 5705 | 5648 | 5368 | 5651 | | | | 10 | 5526 | 5565 | 5382 | 5341 | 5351 | | | | 15 | 5690 | 5560 | 5466 | 5606 | 5631 | | | | 20
25 | 5323
5314 | 5315
5343 | 5342
5281 | 5362
5397 | 5269
5683 | | | | 30 | 5676 | 5620 | 5275 | 5524 | 5592 | | | | 35 | 5419 | 5574 | 5474 | 5603 | 5534 | | | | 40 | 5305 | 5713 | 5267 | 5711 | 5405 | | | | 45 | 5697 | 5506 | 5555 | 5532 | 5412 | | | | 50
55 | 5604
5296 | 5452
5640 | 5593
5337 | 5659
5601 | 5712
5568 | | | | 60 | 5521 | 5413 | 5552 | 5348 | 5391 | | | | 65 | 5714 | 5479 | 5278 | 5514 | 5260 | | | | 70 | 5354 | 5442 | 5283 | 5256 | 5440 | | | | 75 | 5548 | 5590 | 5618 | 5322 | 5359 | | | | 80 | 5418 | 5407 | 5297 | 5280 | 5529 | | | | 85
90 | 5528
5537 | 5559
5499 | 5298 | 5544
5457 | 5395
5520 | | | | 95 | 5375 | 5546 | 5301
5663 | 5583 | 5567 | | | | | 100.0 | | ar Waveform | | 1000. | <u> </u> | | 5 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 12 | | 3 | Type 6 Freque | | 333. 3 | 3 | 0. 3333 | 300 | 12 | | | List
(MHz) | O | 1 | 2 | 3 | 4 | | | | 0 | 5683 | 5325 | 5505 | 5360 | 5476 | | | | 5 | 5402 | 5252 | 5723 | 5434 | 5383 | | | | 10
15 | 5457
5342 | 5354
5663 | 5423
5511 | 5721
5420 | 5362
5639 | - | | | 20 | 5489 | 5256 | 5334 | 5335 | 5535 | | | | 25 | 5263 | 5518 | 5544 | 5315 | 5439 | | | | 30 | 5572 | 5633 | 5297 | 5473 | 5690 | | | | 35 | 5388 | 5442 | 5617 | 5718 | 5478 | | | | 40 | 5264 | 5640 | 5385 | 5305 | 5467 | | | | 45 | 5608 | 5322 | 5666
5486 | 5625 | 5541
5526 | | | | 50
55 | 5416
5466 | 5372
5291 | 5610 | 5459
5543 | 5347 | | | | 60 | 5674 | 5614 | 5501 | 5384 | 5698 | | | | 65 | 5509 | 5282 | 5447 | 5597 | 5678 | | | | 70 | 5418 | 5717 | 5700 | 5560 | 5327 | | | | 75 | 5529 | 5367 | 5631 | 5578 | 5523 | | | | 80
85 | 5481
5588 | 5404
5276 | 5492 | 5658
5299 | 5371 | | | | 90 | 5436 | 5313 | 5498
5474 | 5504 | 5446
5370 | | | | 95 | 5525 | | 5565 | | 5546 | | | | | | 10300 | | 15301 | | | | | | 3323 | 5306 | | 5301 | 0010 | <u> </u> | | 6 | | | Type 5 Rada | ar Waveform | 1_7 | | | | 6 | Туре 6 | 1. 0 | | | | 300 | 11 | | 6 | Type 6 Frequent List (MHz) | 1. 0 | Type 5 Rada | ar Waveform | 0. 3333
3 | 300 | 11 | | 6 | Type 6 Frequer List (MHz) 0 | 1. 0
0
5463 | Type 5 Rada
333. 3
1
5564 | 9 2 5441 | 0. 3333
3
5521 | 300 4 5696 | 11 | | 6 | Type 6 Frequer List (MHz) 0 | 1. 0
0
5463
5444 | Type 5 Rada
333. 3
1
5564
5652 | 9
2
5441
5323 | 0. 3333
3
5521
5597 | 300
4
5696
5590 | 11 | | 6 | Type 6 Frequer List (MHz) 0 5 | 1. 0
0
5463
5444
5291 | Type 5 Rada
333. 3
1
5564
5652
5715 | 9
2
5441
5323
5464 | 0. 3333
3
5521
5597
5344 | 300
4
5696
5590
5383 | 11 | | 6 | Type 6 Frequer List (MHz) 0 | 1. 0
0
5463
5444 | Type 5 Rada
333. 3
1
5564
5652 | 9
2
5441
5323 | 0. 3333
3
5521
5597 | 300
4
5696
5590 | 11 | | 6 | Type 6 Frequer List (MHz) 0 5 10 15 20 25 | 1. 0
0
5463
5444
5291
5430
5558
5648 | Type 5 Rada
333. 3
1
5564
5652
5715
5469
5294
5349 | 9
2
5441
5323
5464
5556
5423
5481 | 0. 3333
3
5521
5597
5344
5612
5308
5541 | 300
4
5696
5590
5383
5550 | 11 | | 6 | Type 6 Frequent List (MHz) 0 5 10 15 20 25 | 1. 0
5463
5444
5291
5430
5558
5648
5293 | Type 5 Rada
333. 3
1
5564
5652
5715
5469
5294
5349
5349 |
5441
5323
5464
5556
5423
5481
5396 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583 | 300
4
5696
5590
5383
5550
5721
5546
5502 | 11 | | 6 | Type 6 Frequer List (MHz) 0 5 10 15 20 25 30 | 1. 0
0
5463
5444
5291
5430
5558
5648
5293
5399 | Type 5 Rada
333. 3
1
5564
5652
5715
5469
5294
5349
5349
5327
5281 | 9
2
5441
5323
5464
5556
5423
5481
5396
5322 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656 | 300
4
5696
5590
5383
5550
5721
5546
5502
5718 | 11 | | 6 | Type 6 Frequer List (MHz) 0 5 10 15 20 25 30 35 | 1. 0
0
5463
5444
5291
5430
5558
5648
5293
5399
5261 | Type 5 Rada
333. 3
1
5564
5652
5715
5469
5294
5349
5327
5281
5472 | 9
2
5441
5323
5464
5556
5423
5481
5396
5322
5268 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388 | 300
4
5696
5590
5383
5550
5721
5546
5502
5718
5525 | 11 | | 6 | Type 6 Frequent List (MHz) 0 5 10 15 20 25 30 35 40 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661 | Type 5 Rada
333. 3
1
5564
5652
5715
5469
5294
5349
5327
5281
5472
5684 | 2
5441
5323
5464
5556
5423
5481
5396
5322
5268
5542 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676 | 300
4
5696
5590
5383
5550
5721
5546
5502
5718
5525
5252 | 11 | | 6 | Type 6 Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661
5617 | Type 5 Rada
333. 3
1
5564
5652
5715
5469
5294
5327
5281
5472
5684
5365 | 5441
5323
5464
5556
5423
5481
5396
5322
5268
5542
5560 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676
5620 | 300 4 5696 5590 5383 5550 5721 5546 5502 5718 5525 5252 5278 | 11 | | 6 | Type 6 Frequent List (MHz) 0 5 10 15 20 25 30 35 40 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661 | Type 5 Rada
333. 3
1
5564
5652
5715
5469
5294
5349
5327
5281
5472
5684 | 2
5441
5323
5464
5556
5423
5481
5396
5322
5268
5542 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676 | 300
4
5696
5590
5383
5550
5721
5546
5502
5718
5525
5252 | 11 | | 6 | Type 6 Frequer List (MHz) 0 5 10 15 20 25 30 35 40 45 50 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661
5617
5497
5270
5304 | Type 5 Rada 333. 3 1 5564 5652 5715 5469 5294 5349 5349 5347 5281 5472 5684 5365 5595 | 5441
5323
5464
5556
5423
5481
5396
5322
5268
5542
5560
5450
5363 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676
5620
5555 | 300
4
5696
5590
5383
5550
5721
5546
5502
5718
5525
5252
5278
5375 | 11 | | 6 | Type 6 Frequer List (MHz) 0 5 10 15 20 25 30 35 40 45 50 65 60 65 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661
5617
5497
5270
5304
5572 | Type 5 Rada 333. 3 1 5564 5652 5715 5469 5294 5349 5327 5281 5472 5684 5365 5595 5437 5519 5680 | 5441
5323
5464
5556
5423
5481
5396
5322
5268
5542
5560
5456
5456
5456
5363
5373 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676
5620
5555
5420
5527
5510 | 300 4 5696 5590 5383 5550 5721 5546 5502 5718 5525 5278 5375 5433 5297 5619 | 11 | | 6 | Type 6 Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661
5661
5617
5497
5270
5304
5572
5266 | Type 5 Rada 333. 3 1 5564 5652 5715 5469 5294 5349 5327 5281 5472 5684 5365 5595 5437 5519 5680 5359 | 9
2
5441
5323
5464
5556
5423
5481
5396
5322
5268
5542
5560
5456
5456
5456
5363
5373
5641 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676
5620
5555
5420
5527
5510
5401 | 300 4 5696 5590 5383 5550 5721 5546 5502 5718 5525 5252 5278 5375 5433 5297 5619 5687 | 11 | | 6 | Type 6 Frequer List (MHz) 0 5 10 15 20 25 30 35 40 45 50 60 65 70 75 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661
5617
5497
5270
5304
5572
5266
5658 | Type 5 Rada 333. 3 1 5564 5652 5715 5469 5294 5349 5327 5281 5472 5684 5365 5595 5437 5519 5680 5359 5688 | 9
2
5441
5323
5464
5556
5423
5481
5396
5322
5268
5542
5560
5456
5450
5363
5373
5641
5551 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676
5620
5555
5420
5527
5510
5401
5371 | 300 4 5696 5590 5383 5550 5721 5546 5502 5718 5525 5278 5375 5433 5297 5619 5687 5606 | 11 | | 6 | Type 6 Frequent List (MHz) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 | 1. 0
5463
5444
5291
5430
5558
5648
5293
5399
5261
5661
5661
5617
5497
5270
5304
5572
5266 | Type 5 Rada 333. 3 1 5564 5652 5715 5469 5294 5349 5327 5281 5472 5684 5365 5595 5437 5519 5680 5359 | 9
2
5441
5323
5464
5556
5423
5481
5396
5322
5268
5542
5560
5456
5456
5456
5363
5373
5641 | 0. 3333
3
5521
5597
5344
5612
5308
5541
5583
5656
5388
5676
5620
5555
5420
5527
5510
5401 | 300 4 5696 5590 5383 5550 5721 5546 5502 5718 5525 5252 5278 5375 5433 5297 5619 5687 | 11 | | 7 | Type 6 Frequent (ist) (o) 5 10 15 20 23 35 40 45 55 60 67 75 80 89 95 | 5718
5583
5697
5518
5724
5447
5487
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708
5556 | 333. 3
1
5425
5674
5504
5499
5710
5447
5379
5547
5379
5574
5621
5621
5621
5273
5396
5511 | 9
2
5377
5398
5602
5297
5417
5678
5655
5367
5391
5391
5399
5688
5635 | 0. 3333
3
5682
5285
5539
5329
5281
5383
5491
5313
5258
5474
5475
5304
5359
5569 | 300
4
5538
5419
5404
5558
5689
5523
5466
5692
5401
5418
5309
5468
5571
5265 | 9 | |---|---|--|---|--|--|--|---| | | List
(MHz)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90 | 5718
5583
5697
5518
5724
5442
5447
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5425
5674
5504
5499
5710
5449
5547
5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5377
5398
5602
5297
5415
5277
5698
5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5682
5285
5539
5329
5281
5383
5491
5313
5258
5474
5440
5475
5304
5359 | 5538
5419
5404
5558
5689
5523
5466
5692
5401
5418
5309
5468
5571
5265 | | | | 0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85 | 5583
5697
5518
5724
5442
5447
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5674
5504
5499
5710
5449
5547
5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5398
5602
5297
5415
5277
5698
5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5285
5539
5329
5281
5383
5491
5313
5258
5474
5440
5475
5304
5359 | 5419
5404
5558
5689
5523
5466
5692
5401
5418
5309
5468
5571
5265 | | | | 10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85 | 5697
5518
5724
5442
5447
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5504
5499
5710
5449
5547
5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5602
5297
5415
5277
5698
5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5539
5329
5281
5383
5491
5313
5258
5474
5440
5475
5304
5359 | 5404
5558
5689
5523
5466
5692
5401
5418
5309
5468
5571
5265 | | | | 15
20
25
30
35
40
45
50
55
60
65
70
75
80
85 |
5518
5724
5442
5447
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5499
5710
5449
5547
5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5297
5415
5277
5698
5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5329
5281
5383
5491
5313
5258
5474
5440
5475
5304
5359 | 5558
5689
5523
5466
5692
5401
5418
5309
5468
5571
5265 | | | | 20
25
30
35
40
45
50
55
60
65
70
75
80
85
90 | 5724
5442
5447
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5710
5449
5547
5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5415
5277
5698
5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5281
5383
5491
5313
5258
5474
5440
5475
5304
5359 | 5689
5523
5466
5692
5401
5418
5309
5468
5571
5265 | | | | 25
30
35
40
45
50
55
60
65
70
75
80
85 | 5442
5447
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5449
5547
5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5277
5698
5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5383
5491
5313
5258
5474
5440
5475
5304
5359 | 5523
5466
5692
5401
5418
5309
5468
5571
5265 | | | | 30
35
40
45
50
55
60
65
70
75
80
85 | 5447
5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5547
5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5698
5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5491
5313
5258
5474
5440
5475
5304
5359 | 5466
5692
5401
5418
5309
5468
5571
5265 | | | | 35
40
45
50
55
60
65
70
75
80
85
90 | 5487
5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5379
5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5655
5386
5617
5341
5391
5500
5399
5688
5635 | 5313
5258
5474
5440
5475
5304
5359 | 5692
5401
5418
5309
5468
5571
5265 | | | | 40
45
50
55
60
65
70
75
80
85
90 | 5405
5723
5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5594
5471
5252
5574
5621
5638
5266
5273
5396 | 5386
5617
5341
5391
5500
5399
5688
5635 | 5258
5474
5440
5475
5304
5359 | 5401
5418
5309
5468
5571
5265 | | | | 50
55
60
65
70
75
80
85
90 | 5657
5651
5627
5566
5671
5279
5516
5561
5708 | 5252
5574
5621
5638
5266
5273
5396 | 5341
5391
5500
5399
5688
5635 | 5440
5475
5304
5359 | 5309
5468
5571
5265 | | | | 55
60
65
70
75
80
85
90 | 5651
5627
5566
5671
5279
5516
5561
5708 | 5574
5621
5638
5266
5273
5396 | 5391
5500
5399
5688
5635 | 5475
5304
5359 | 5468
5571
5265 | | | | 60
65
70
75
80
85 | 5627
5566
5671
5279
5516
5561
5708 | 5621
5638
5266
5273
5396 | 5500
5399
5688
5635 | 5304
5359 | 5571
5265 | | | | 65
70
75
80
85 | 5566
5671
5279
5516
5561
5708 | 5638
5266
5273
5396 | 5399
5688
5635 | 5359 | 5265 | | | | 70
75
80
85
90 | 5671
5279
5516
5561
5708 | 5266
5273
5396 | 5688
5635 | | | | | | 75
80
85
90 | 5279
5516
5561
5708 | 5273
5396 | 5635 | | 5463 | | | | 80
85
90 | 5516
5561
5708 | 5396 | | 5541 | 5703 | | | | 90 | 5708 | 5611 | 5376 | 5615 | 5704 | | | | | | | 5563 | 5503 | 5320 | | | | 95 | 5556 | 5301 | 5555 | 5434 | 5605 | | | | | • | 5641 | 5497 | 5324 | 5280 | | | | | | Type 5 Rad | ar Waveform | 1_9 | | | | | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 8 | | | Frequen | o | 1 | 2 | 3 | 4 | | | | (MHz) | 5498 | 5664 | 5313 | 5368 | 5283 | - | | | 5 | 5625 | 5599 | 5473 | 5448 | 5626 | - | | | 10 | 5531 | 5293 | 5643 | 5259 | 5425 | 1 | | | 15 | 5606 | 5400 | 5549 | 5521 | 5566 | | | | 20 | 5318 | 5651 | 5504 | 5254 | 5577 | | | | 25 | 5391 | 5555 | 5381 | 5417 | 5662 | | | | 30 | 5336 | 5496 | 5472 | 5311 | 5508 | | | | 35 | 5578 | 5650 | 5333 | 5702 | 5488 | | | | 40
45 | 5532
5544 | 5352
5670 | 5708
5361 | 5703
5294 | 5554
5358 | | | | 50 | 5303 | 5430 | 5263 | 5631 | 5364 | - | | | 55 | 5528 | 5484 | 5342 | 5281 | 5542 | | | | 60 | 5611 | 5397 | 5609 | 5461 | 5348 | | | | 65 | 5395 | 5475 | 5466 | 5285 | 5603 | | | | 70 | 5724 | 5594 | 5413 | 5659 | 5648 | | | | 75 | 5389 | 5396 | 5443 | 5292 | 5699 | | | | 80 | 5464 | 5469 | 5574 | 5658 | 5439 | _ | | | 85
90 | 5568
5622 | 5431
5553 | 5441
5539 | 5440
5365 | 5543
5600 | | | | 95 | 5522 | 5278 | 5462 | 5418 | 5505 | | | | 50 | 0022 | • | <u> </u> | • | 0000 | | | | | | Type 5 Rada | | _10 | | | | • | Type 6 Frequen | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 7 | | | List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5278 | 5428 | 5724 | 5529 | 5600 | | | | 5 | 5667 | 5621 | 5548 | 5514 | 5358 | + | | | 10 | 5462 | 5557 | 5684 | 5454 | 5446 | + | | | 15
20 | 5597
5484 | 5503
5689 | 5594
5496 | 5713
5702 | 5477
5465 | + | | | 25 | 5718 | 5283 | 5582 | 5451 | 5704 | + | | | 30 | 5322 | 5461 | 5711 | 5624 | 5606 | 1 | | | 35 | 5647 | 5669 | 5543 | 5583 | 5616 | | | | 40 | 5370 | 5668 | 5470 | 5391 | 5349 | | | | 45 | 5637 | 5683 | 5602 | 5723 | 5626 | | | | 50 | 5534 | 5354 | 5519 | 5561 | 5575 | | | | 55 | 5552 | 5482 | 5674 | 5588 | 5313 | | | | 60
65 | 5410
5555 | 5476
5662 | 5487
5297 | 5443
5334 | 5320
5307 | + | | | 70 | 5347 | 5638 | 5469 | 5452 | 5700 | + | | | 75 | 5553 | 5382 | 5468 | 5705 | 5453 | 1 | | | 80 | 5328 | 5499 | 5652 | 5607 | 5355 | | | | 85 | 5295 | 5419 | 5464 | 5311 | 5634 | | | | 90
95 | 5375
5631 | 5404
5664 | 5508
5475 | 5719
5639 | 5251
5666 | | | | | Type 5 Rada | r Waveform_ | _11 | | | |--------------------------|--------------|--------------|--------------|--------------|--------------|-----| | 10 Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 8 | | Frequen
List
(MHz) | o | 1 | 2 | 3 | 4 | | | 0 | 5436 | 5667 | 5660 | 5690 | 5345 | | | 5 | 5709 | 5546 | 5623 | 5677 | 5662 | | | 10 | 5393
5685 | 5346
5405 | 5250
5606 | 5552
5542 | 5467
5430 | | | 20 | 5485 | 5553 | 5630 | 5585 | 5675 | | | 25 | 5256 | 5486 | 5686 | 5271 | 5418 | | | 30 | 5354 | 5398 | 5329 | 5311 | 5285 | | | 35 | 5339 | 5261 | 5627 | 5684 | 5276 | | | 40 | 5631
5513 | 5566
5424 | 5663
5710 | 5720
5705 | 5301
5287 | | | 50 | 5422 | 5265 | 5389 | 5407 | 5284 | | | 55 | 5539 | 5641 | 5432 | 5275 | 5621 | | | 60 | 5501 | 5721 | 5370 | 5517 | 5628 | | | 65 | 5625 | 5526 | 5624 | 5569 | 5676 | | | 70 | 5512 | 5254 | 5588 | 5373 | 5434 | | | 75
80 | 5580
5292 | 5609
5614 | 5433
5367 | 5674
5597 | 5515
5567 | | | 85 | 5272 | 5559 | 5492 | 5449 | 5321 | | | 90 | 5670 | 5412 | 5582 | 5664 | 5656 | | | 95 | 5521 | 5335 | 5701 | 5331 | 5540 | | | | | Type 5 Rada | r Waveform_ | _12 | | | | 11 Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | . 6 | | Frequer | | | | 2 | 4 | | | List
(MHz) | 0 | 1 | 2 | 3 | 4 | | | 0 | 5691 | 5431
5568 | 5596 | 5279 | 5662 | | | 10 | 5373
5702 | 5707 | 5698
5291 | 5365
5272 | 5394
5488 | | | 15 | 5298 | 5532 | 5709 | 5587 | 5622 | | | 20 | 5493 | 5719 | 5571 | 5577 | 5648 | | | 25 | 5619 | 5519 | 5689 | 5315 | 5410 | | | 30 | 5672 | 5375 | 5569 | 5550 | 5624 | | | 35 | 5450 | 5473 | 5610 | 5414 | 5541 | | | 40 | 5620 | 5359 | 5724 | 5299 | 5343 | | | 45
50 | 5398
5303 | 5643
5300 | 5328
5411 | 5621
5456 | 5354
5319 | | | 55 | 5585 | 5366 | 5453 | 5293 | 5579 | | | 60 | 5604 | 5255 | 5668 | 5331 | 5377 | | | 65 | 5679 | 5544 | 5447 | 5686 | 5670 | | | 70 | 5406 | 5349 | 5520 | 5428 | 5695 | | | 75 | 5572 | 5528 | 5555 | 5471 | 5611 | | | 80 | 5419 | 5512 | 5357 | 5363 | 5578 | | | 85
90 | 5289
5712 | 5334
5513 | 5270
5265 | 5567
5647 | 5657
5486 | | | 95 | 5676 | 5446 | 5367 | 5295 | 5301 | | | 1 00 | 100.0 | | | | 10001 | | | | | Type 5 Rada | | | | | | Type 6 Frequen | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 10 | | List
(MHz) | o | 1 | 2 | 3 | 4 | | | 0 | 5471 | 5670 | 5532 | 5440 | 5407 | | | 5 | 5415 | 5493 | 5298 | 5528 | 5601 | | | 10 | 5633
5386 | 5496
5562 | 5332
5715 | 5467
5632 | 5509
5339 | | | 15
20 | 5404 | 5313 | 5609 | 5666 | 5621 | | | 25 | 5410 | 5371 | 5417 | 5419 | 5553 | | | 30 | 5452 | 5561 | 5309 | 5324 | 5347 | | | 35 | 5492 | 5564 | 5406 | 5664 | 5455 | | | 40 | 5459 | 5442 | 5662 | 5539 | 5340 | | | 45 | 5327 | 5623 | 5411 | 5679 | 5665 | | | 50 | 5651 | 5587 | 5507 | 5408 | 5688 | + | | 55
60 | 5641
5700 | 5722
5511 | 5294
5370 | 5423
5490 | 5604
5412 | + | | 65 | 5619 | 5345 | 5559 | 5315 | 5292 | + | | 70 | 5596 | 5672 | 5377 | 5531 | 5430 | + | | 75 | 5570 | 5256 | 5257 | 5470 | 5527 | | | 80 | 5286 | 5626 | 5270 | 5506 | 5620 | | | 85 | 5379 | 5580 | 5513 | 5682 | 5383 | | | | | | | | | | | 90 | 5724
5537 | 5312
5558 | 5356
5360 | 5586
5639 | 5703
5449 | | | | | | Type 5 Radar | Waveform_1 | 4 | | | |----|---------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--| | 13 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 8 | | | Frequen
List
(MHz) | o | 1 | 2 | 3 | 4
| | | - | 0 | 5251 | 5434 | 5468 | 5601 | 5724 | | | - | 5 | 5457 | 5515 | 5373 | 5691 | 5430 | | | | 10 | 5564 | 5285 | 5662 | 5530 | 5377 | | | | 15 | 5689 | 5343 | 5677 | 5628 | 5412 | | | | 20 | 5479 | 5550 | 5658 | 5594 | 5298 | | | | 25 | 5320 | 5523 | 5587 | 5494 | 5450 | | | | 30 | 5667 | 5524 | 5476 | 5642 | 5631 | | | | 35 | 5655 | 5299 | 5342 | 5466 | 5622 | | | | 40 | 5600 | 5304 | 5634 | 5506 | 5262 | | | | 45 | 5363 | 5455 | 5288 | 5558 | 5497 | | | | 50 | 5706 | 5632 | 5257 | 5676 | 5484 | | | | 55 | 5717 | 5575 | 5354 | 5661 | 5364 | | | | 60 | 5671 | 5436 | 5710 | 5568 | 5381 | | | | 65 | 5391 | 5585 | 5679 | 5675 | 5701 | | | | 70 | 5507 | 5389 | 5539 | 5376 | 5608 | | | | 75 | 5474 | 5386 | 5270 | 5326 | 5283 | | | | 80 | 5346 | 5648 | 5348 | 5680 | 5571 | | | | 85 | 5448 | 5518 | 5286 | 5665 | 5341 | | | | 90 | 5310 | 5417 | 5606 | 5419 | 5329 | | | | 95 | 5411 | 5570 | 5444 | 5640 | 5281 | <u> </u> | | | | | Type 5 Radar | Waveform_1 | 5 | | | | 14 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 9 | | | Frequent
List
(MHz) | o | 1 | 2 | 3 | 4 | | | | 0 | 5409 | 5673 | 5404 | 5287 | 5469 | | | | 5 | 5499 | 5440 | 5448 | 5282 | 5637 | | | | 10 | 5398 | 5549 | 5414 | 5382 | 5551 | | | | 15 | 5465 | 5341 | 5446 | 5625 | 5345 | | | | 20 | 5420 | 5548 | 5491 | 5272 | 5567 | | | | 25 | 5564 | 5647 | 5251 | 5724 | 5621 | + | | | 30 | 5633 | 5436 | 5624 | 5642 | 5250 | | | | 35 | 5365 | 5295 | 5271 | 5570 | 5495 | | | | 40 | 5380 | 5612 | 5705 | 5538 | 5447 | | | | 45 | 5431 | 5563 | 5486 | 5577 | 5698 | | | | 50 | 5416 | 5342 | 5306 | 5464 | 5609 | | | | 55 | 5586 | 5432 | 5479 | 5445 | 5630 | | | | 60 | 5674 | 5439 | 5546 | 5483 | 5351 | | | | 65 | 5309 | 5650 | 5594 | 5517 | 5320 | | | | 70 | 5601 | 5477 | 5690 | 5533 | 5665 | | | | 75 | 5300 | 5550 | 5348 | 5508 | 5496 | | | | 80 | 5276 | 5455 | 5638 | 5507 | 5283 | | | | 85 | 5389 | 5280 | 5541 | 5643 | 5666 | | | | 90 | 5413 | 5472 | 5534 | 5485 | 5506 | | | | 95 | 5316 | 5354 | 5391 | 5528 | 5346 | | | | , | • | • | Waveform_1 | • | | | | 15 | Type 6 | 1. 0 | 333. 3 | 9 | 0. 3333 | 300 | 6 | | | Frequen
List | О | 1 | 2 | 3 | 4 | | | | (MHz) | 5664 | 5427 | 5340 | 5448 | 5211 | ++ | | | 5 | 5664
5638 | 5437
5462 | 5523 | 5448
5445 | 5311
5369 | + | | | | 5329 | 5338 | 5552 | 5480 | 5572 | + | | - | 10
15 | 5553 | 5468 | 5549 | 5670 | 5537 | \vdash | | - | 20 | 5331 | 5714 | 5432 | 5264 | 5540 | \vdash | | | 25 | 5452 | 5596 | 5454 | 5353 | 5655 | | | | 30 | 5675 | 5325 | 5581 | 5382 | 5402 | | | | 35 | 5660 | 5337 | 5362 | 5366 | 5648 | | | | 40 | 5294 | 5451 | 5313 | 5476 | 5687 | | | | 45 | 5428 | 5492 | 5466 | 5281 | 5469 | | | | 50 | 5607 | 5657 | 5640 | 5297 | 5255 | | | - | 55 | 5423 | 5633 | 5584 | 5292 | 5258 | | | - | 60 | 5517 | 5612 | 5516 | 5254 | 5482 | | | · | 65 | 5420 | 5425 | 5259 | 5356 | 5433 | | | | 70 | 5272 | 5493 | 5605 | 5651 | 5303 | | | | 75 | 5399 | 5459 | 5307 | 5380 | 5616 | | | | 80 | 5322 | 5436 | 5318 | 5490 | 5288 | 85
90
95 | 5447
5383
5637 | 5261
5683
5460 | 5551
5671
5521 | 5604
5388
5635 | 5703
5273
5397 | |