

Product:Trade mark:Model/Type reference:Serial Number:Report Number:FCC ID:Date of Issue:Test Standards:

Test result

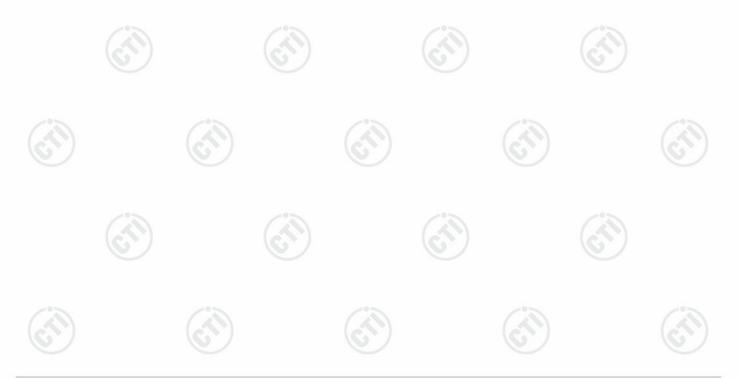
- Harry Potter Wireless Headset
- : MINISO

: P12

- : N/A
- EED32Q80805701
- : 2A2H6-P12
- : Jul. 08, 2024
- : 47 CFR Part 15 Subpart C
- : PASS

Prepared for: Shenzhen Bao Tianhua Technology Co., Ltd 301, Building Plant No.5 Anliang Road, Xi kengCommunity, Longgang District, Shenzhen, Guangdong China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385



1 Contents

Page

1 CONTENTS		2
2 VERSION		
3 TEST SUMMARY		
3 1EST SUMMARY		4
4 GENERAL INFORMATION		5
4.1 CLIENT INFORMATION		5
4.2 GENERAL DESCRIPTION OF EUT		
4.3 TEST CONFIGURATION		
4.4 Test Environment		
4.5 DESCRIPTION OF SUPPORT UNITS		
5 TEST RESULTS AND MEASUREMENT DATA		
5.1 ANTENNA REQUIREMENT		
5.2 AC Power Line Conducted Emissions		
5.3 MAXIMUM CONDUCTED OUTPUT POWER		
5.4 20dB Emission Bandwidth		
5.5 CARRIER FREQUENCY SEPARATION	<u> </u>	
5.6 NUMBER OF HOPPING CHANNEL		
5.7 TIME OF OCCUPANCY		
5.8 Band edge Measurements		
5.9 CONDUCTED SPURIOUS EMISSIONS		24
5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE		
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS		
6 APPENDIX BLUETOOTH CLASSIC		49
7 PHOTOGRAPHS OF TEST SETUP	<u> </u>	
8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAIL		57

2 Version

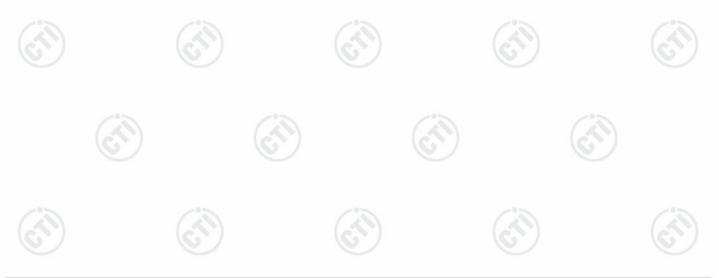
13	Version No.	D	ate	Des	cription	12
(cr)	00	Jul. 0	8, 2024	C	Driginal	6
ļ	(A)	((A)	(A)	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

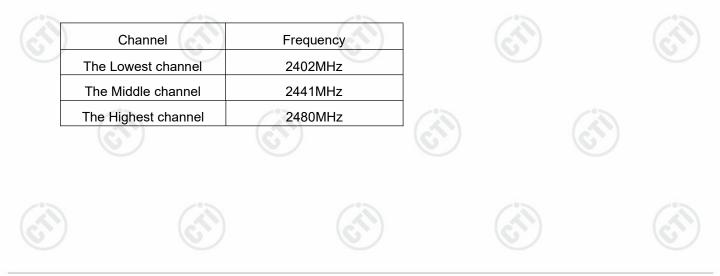

4 General Information

4.1 Client Information

	Applicant:	Shenzhen Bao Tianhua Technology Co., Ltd
	Address of Applicant:	301, Building Plant No.5 Anliang Road, Xi kengCommunity, Longgang District, Shenzhen, Guangdong China
3	Manufacturer:	Shenzhen Bao Tianhua Technology Co., Ltd
	Address of Manufacturer:	301, Building Plant No.5 Anliang Road, Xi kengCommunity, Longgang District, Shenzhen, Guangdong China
	Factory:	Shenzhen Bao Tianhua Technology Co., Ltd
	Address of Factory:	301, Building Plant No.5 Anliang Road, Xi kengCommunity, Longgang District, Shenzhen, Guangdong China

4.2 General Description of EUT

13	Product Name:	Harry Potter Wireless Headset	
G	Model No.:	P12	(\mathcal{O})
9	Trade Mark:	MINISO	\sim
Ī	Product Type:	☐ Mobile	
Ī	Operation Frequency:	2402MHz~2480MHz	
	Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
	Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
	Number of Channel:	79	
10	Hopping Channel Type:	Adaptive Frequency Hopping systems	~
	Antenna Type:	PCB Antenna	
2	Antenna Gain:	-0.59dBi	
	Power Supply:	Battery: DC 3.7V	
	Test Voltage:	DC 3.7V	
	Sample Received Date:	Jun. 13, 2024	
	Sample tested Date:	Jun. 18, 2024 to Jun. 28, 2024	

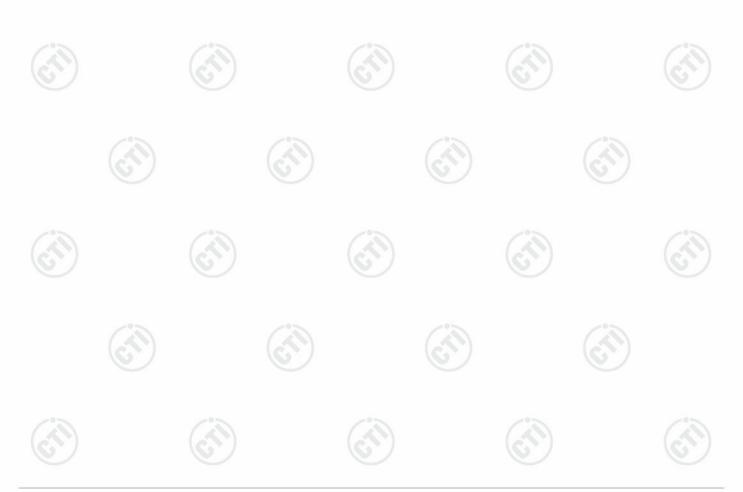


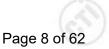
Page 6 of 62

Operation F	Frequency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:




4.3 Test Configuration

EUT Test Software Settings	:		
Software:	BT_Tool.exe		
EUT Power Grade:	Class2 (Power level selected)	is built-in set paramete	ers and cannot be changed and
Use test software to set the lo transmitting of the EUT.	owest frequency, the mic	Idle frequency and the	highest frequency keep
Mode	Chan	nel	Frequency(MHz)
	СН	0	2402
DH1/DH3/DH5	СНЗ	39	2441
	CH7	78	2480
	СН	0	2402
2DH1/2DH3/2DH5	CH	39	2441
	СН7	78	2480
	СН	0	2402
3DH1/3DH3/3DH5	CH	39	2441
(3)	CH7	78	2480

4.4 Test Environment

		(1)		(~)	
Operating Environmen	t:				
Radiated Spurious Em	issions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		(in)		6
Atmospheric Pressure:	1010mbar		(\mathcal{O})		6
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	195		2°2	
Atmospheric Pressure:	1010mbar	(\mathcal{A})			
RF Conducted:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
	(67)		(67)		6

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Asus	FL8700JP1065-	FCC&CE	СТІ
	~~>	0D8GXYQ2X10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
	PE newer conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
	(SS) (SS)	3.3dB (9kHz-30MHz)	
3	Padiated Spurious omission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
2		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

4.8 Equipment List

	RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024		
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023	12-10-2024		
DC Power	Keysight	E3642A	MY56376072	12-11-2023	12-10-2024		
Communication test set	R&S	CMW500	169004	03-08-2024	03-07-2025		
RF control unit(power unit)	JS Tonscend	JS0806-2		(A)	6		
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2		_			
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20				
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025		

			Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024
Barometer	changchun	DYM3	1188	CA	/
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	$(\underline{\circ})$	(

Report No. : EED32Q80805701

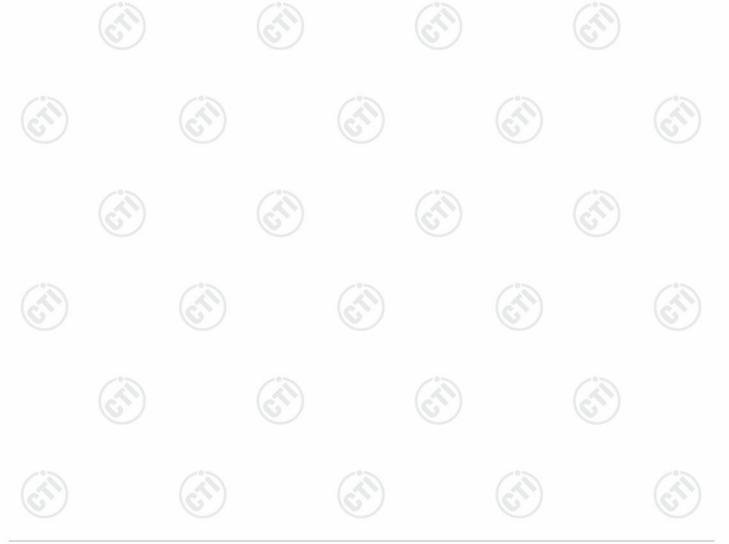
Page 11 of 62

Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024

Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber	C		e la	(e)	
& Accessory	TDK	SAC-3		05/22/2022	05/21/2025
Equipment		~~~	100		100
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023	07/24/2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024
Horn Antenna	A.H.SYSTEM S	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	07/03/2023 06/19/2024	07/02/2024 06/18/2025
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	-	
Cable line	Fulai(7M)	SF106	5219/6A	<u> </u>	
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	9 _	$(\underline{\mathbf{c}})$
Cable line	Fulai(3M)	SF106	5217/6A		

		3M full-anechoi	c Chamber		I
Equipment Manufacturer Model No. S		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(A)	- 6
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021 07-03-2024	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		9
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		()
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	<u>v</u>	
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	()	(S
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		e
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		- 0
/				6	6

CTI 华测 检测 Report No. : EED32Q80805701



5 Test results and Measurement Data

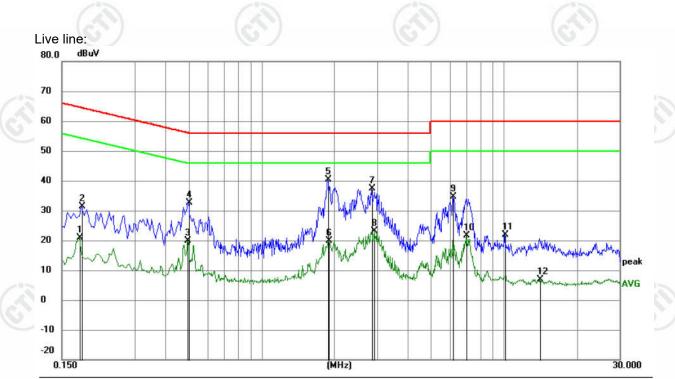
5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be u antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or ibited.
antennas with directional ga section, if transmitting anter power from the intentional r	er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nnas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ction, as appropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is -0.59dBi.

5.2 AC Power Line Conducted Emissions

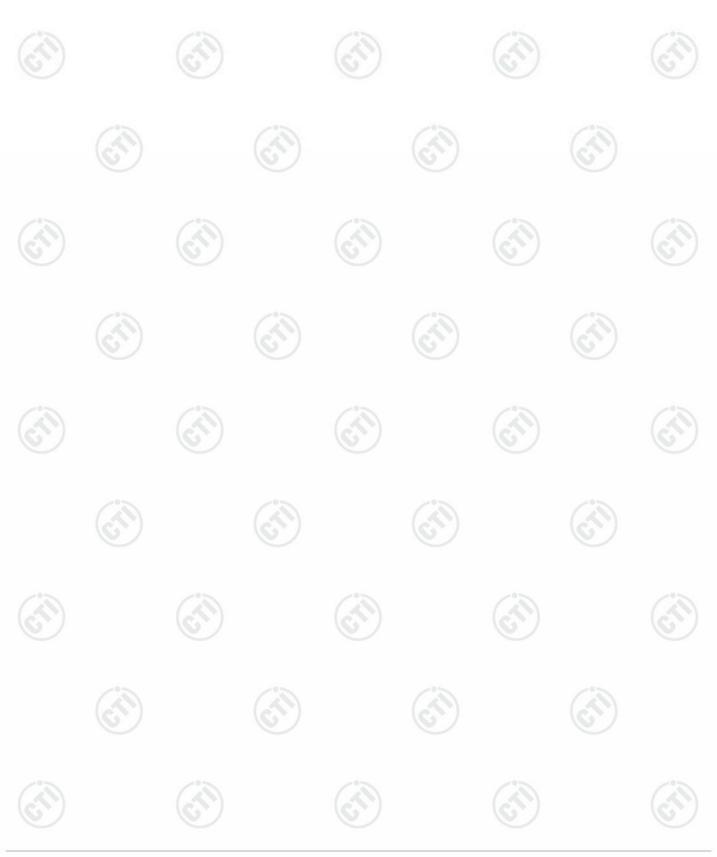
5.2	AC Power Line Cor		207	
	Test Requirement:	47 CFR Part 15C Section 15.	207	<u> </u>
	Test Method:	ANSI C63.10: 2013		
	Test Frequency Range:	150kHz to 30MHz		
-	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S		(1)
3	Limit:	Frequency range (MHz)	Limit (c	
			Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarithr	m of the frequency.	
		AC Mains	AE B C Ground Reference Plane	Mains
	Test Procedure:	 The mains terminal distur room. The EUT was connected t Impedance Stabilization N impedance. The power ca 	o AC power source thro letwork) which provides bles of all other units o	ough a LISN 1 (Line s a 50Ω/50μH + 5Ω linea f the EUT were
		 connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single L exceeded. 3) The tabletop EUT was pla ground reference plane. A placed on the horizontal g 4) The test was performed w of the EUT shall be 0.4 m vertical ground reference plane. The LISN unit under test and bonded mounted on top of the gro 	he way as the LISN 1 for the way as the LISN 1 for the outlet strip was used ISN provided the rating ced upon a non-metalling and for floor-standing an round reference plane, ith a vertical ground ref from the vertical ground plane was bonded to the 1 was placed 0.8 m fr d to a ground reference	or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT wa erence plane. The rear d reference plane. The he horizontal ground om the boundary of the e plane for LISNs
		between the closest points the EUT and associated e 5) In order to find the maximu	s of the LISN 1 and the quipment was at least	EUT. All other units of 0.8 m from the LISN 2.



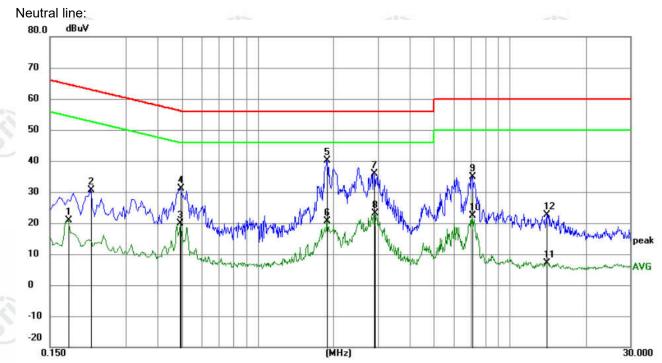
		equipment and all of the interface cables must be changed ANSI C63.10: 2013 on conducted measurement.	according to
	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and data type at the lowest, middle, high channel.	all kind of
13	Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK mo lowest channel is the worst case. Only the worst case is recorded in the report.	odulation at the
6	Test Results:	Pass	(\mathcal{C})

Measurement Data

N	o. <mark>Mk</mark> .	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
-	1	0.1770	10.96	9.90	20.86	54.63	-33.77	AVG		
	2	0.1815	21.45	9.90	31.35	64.42	-33.07	QP		
	3	0.4965	10.02	9.78	19.80	46.06	-26.26	AVG		3
	4	0.5010	22.86	9.78	32.64	56.00	-23.36	QP		
	5 *	1.8870	30.70	9.75	40.45	56.00	-15.55	QP		_
	6	1.8960	10.21	9.75	19.96	46.00	-26.04	AVG		
-	7	2.8410	27.72	9.78	37.50	56.00	-18.50	QP		
	8	2.9219	13.44	9.78	23.22	46.00	-22.78	AVG		2 ⁰ 5
	9	6.1620	24.87	9.85	34.72	60.00	-25.28	QP		
1	0	7.0080	11.69	9.85	21.54	50.00	-28.46	AVG		-
1	1	10.0815	12.17	9.83	22.00	60.00	-38.00	QP		
1	2	14.1225	-3.05	9.85	6.80	50.00	-43.20	AVG		
Ren	nark:		(~)			6)		(S)	(c ¹


1. The following Quasi-Peak and Average measurements were performed on the EUT:

- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

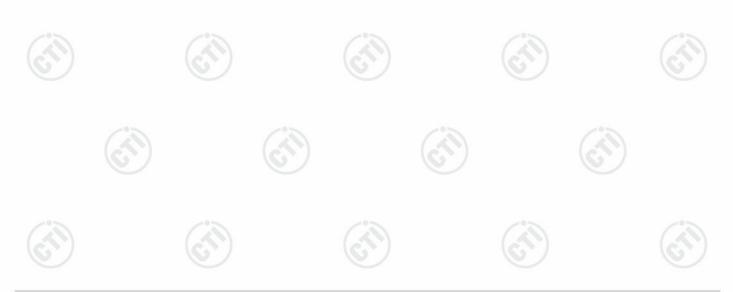


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1770	11.08	9.90	20.98	54.63	-33.65	AVG	
2	0.2175	20.72	9.85	30.57	62.91	-32.34	QP	
3	0.4920	10.02	9.78	19.80	46.13	-26.33	AVG	
4	0.4965	21.36	9.78	31.14	56.06	-24.92	QP	
5 *	1.8870	30.30	9.75	40.05	56.00	-15.95	QP	
6	1.8870	10.98	9.75	20.73	46.00	-25.27	AVG	
7	2.8995	26.03	9.78	35.81	56.00	-20.19	QP	
8	2.9040	13.26	9.78	23.04	46.00	-22.96	AVG	
9	7.0980	25.09	9.85	34.94	60.00	-25.06	QP	
10	7.1250	12.45	9.85	22.30	50.00	-27.70	AVG	
11	13.9740	-2.64	9.85	7.21	50.00	-42.79	AVG	
12	14.0010	12.73	9.85	22.58	60.00	-37.42	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



5.3 Maximum Conducted Output Power

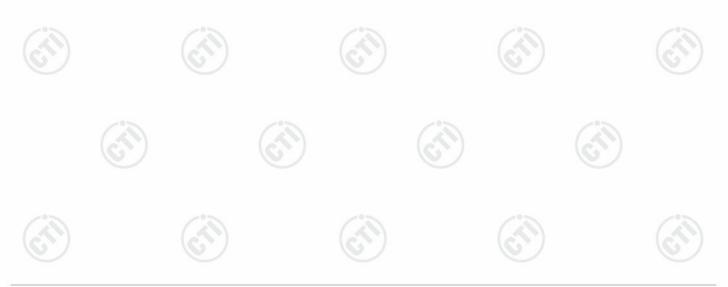
	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Computer Supply Former TemPERaTURE CABNET Table
_	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings:
		Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix Bluetooth Classic
	S)	

5.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
ŝ	Test Setup:	Control Control Control Portey Portey Portey Action Table RF test System Instrument					
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold.					
	Limit:	4. Measure and record the results in the test report.					
13	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
<u>ि</u>	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
	Test Results:	Refer to Appendix Bluetooth Classic					
	G						

5.5 Carrier Frequency Separation

•.•	camerrequency	oopulation
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	RF test Congular Computer Computer Computer Power Suppr Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
ć	Test Results:	Refer to Appendix Bluetooth Classic

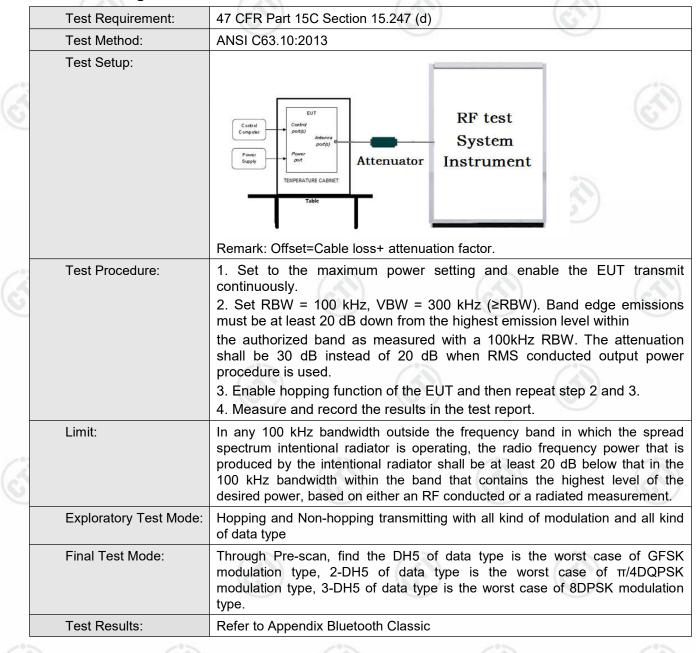


5.6 Number of Hopping Channel

(25)						
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Control Control Control Control Control Control Power Power Power For Table RF test System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmi continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of 					
<u>୍</u>	total channel. 6. Record the measurement data in report.					
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.					
Test Mode:	Hopping transmitting with all kind of modulation					
Test Results:	Refer to Appendix Bluetooth Classic					

5.7 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Congruent Congruen
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
2	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix Bluetooth Classic
	G	



5.8 Band edge Measurements

5.9 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
(K)	Test Setup:	Control Computer Computer Supply Four Tele Febrer Table
		Remark: Offset=Cable loss+ attenuation factor.
Ĩ	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Š	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
105		

Page 25 of 62

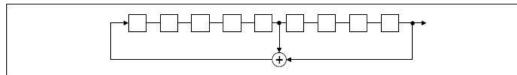
5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement:

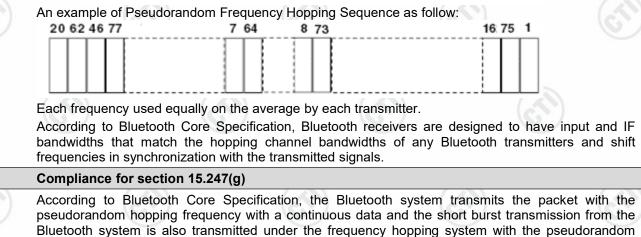
47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

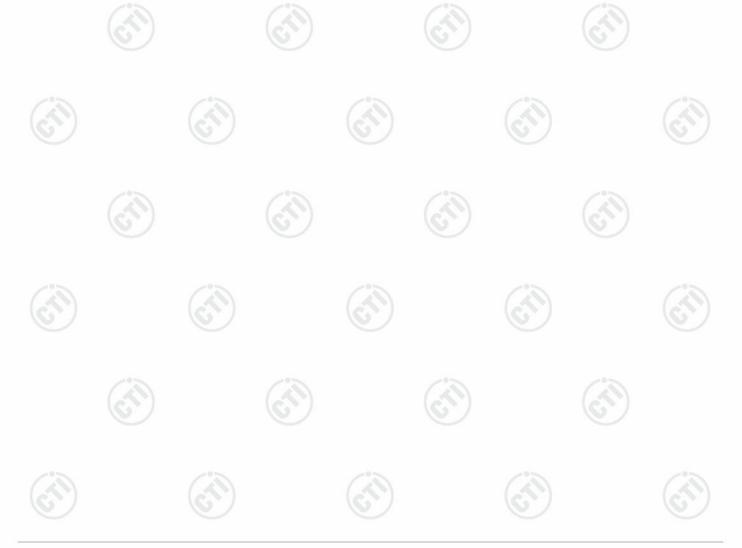

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

Report No. : EED32Q80805701


Page 26 of 62

hopping frequency system.

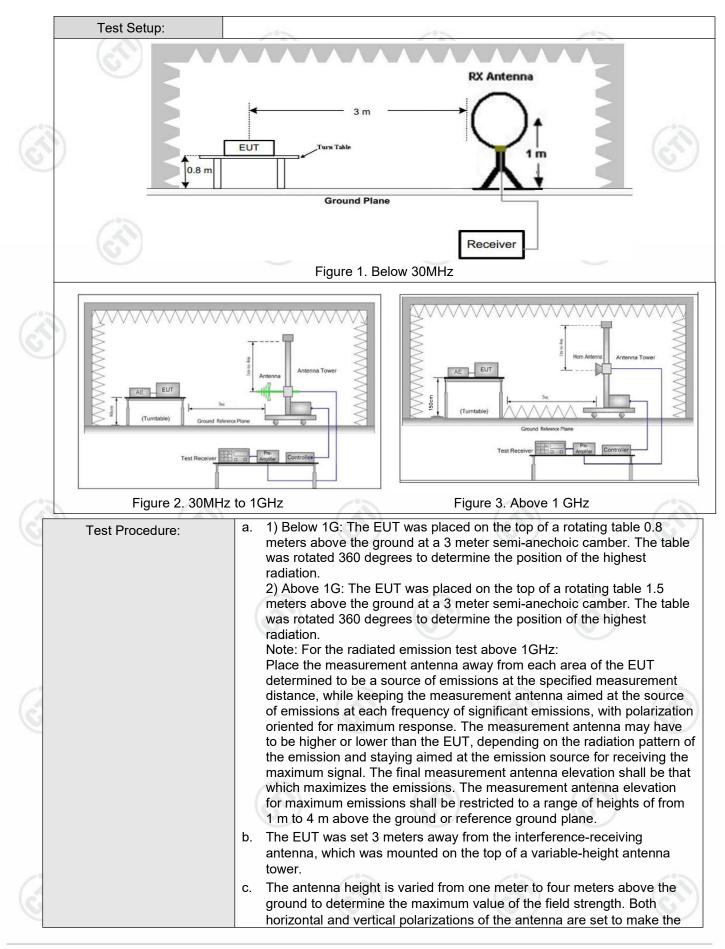
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

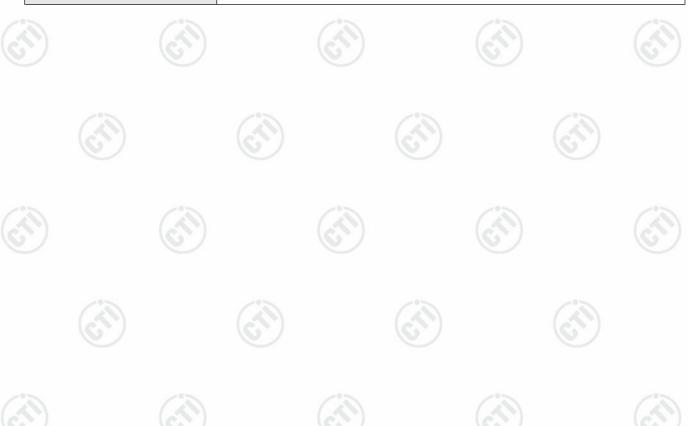
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.11 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	.205		
	Test Method:	ANSI C63.10: 2013		\sim			
	Test Site:	Measurement Distance	: 3n	n (Semi-Anech	ioic Cham	ber)	
	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark
		0.009MHz-0.090MH	z	Peak	10kHz	2 30kHz	Peak
		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	2 30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak
		Above 1GHz		Peak	1MHz	3MHz	Peak
		Above IGHZ	Peak	1MHz	10kHz	Average	
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m
		0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24	1000/F(kHz)	-	- (3	30
		1.705MHz-30MHz		30	-	0	30
		30MHz-88MHz		100	40.0	Quasi-peak	3
		88MHz-216MHz		150	43.5	Quasi-peak	3
		216MHz-960MHz	2	200	46.0	Quasi-peak	3
8		960MHz-1GHz	P)	500	54.0	Quasi-peak	3
		Above 1GHz	/	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 ab equi	ove the maxin pment under t	num permi est. This p	tted average	emission limit



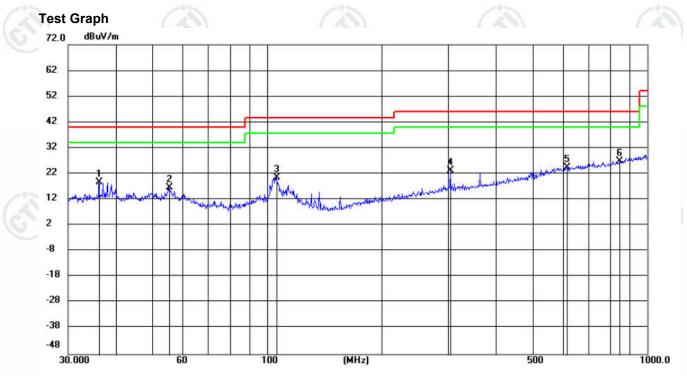
Page 28 of 62



Report No. : EED32Q80805701



	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

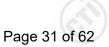


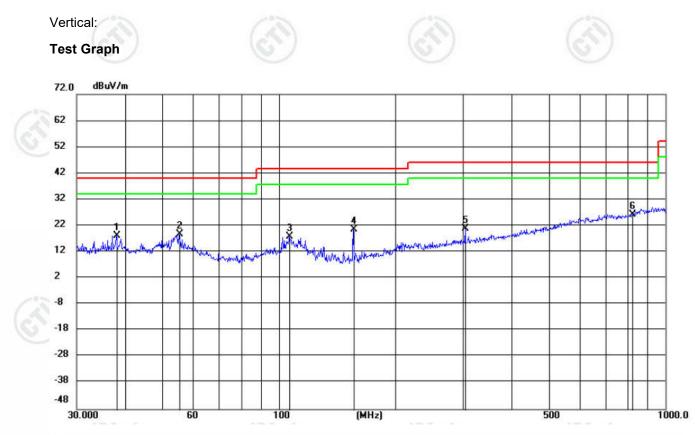
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		36.1842	5.27	13.48	18.75	40.00	-21.25	QP	199	153	
2		55.3855	2.94	13.68	16.62	40.00	-23.38	QP	100	301	
3	3	105.9754	7.36	13.26	20.62	43.50	-22.88	QP	199	184	
4		304.1830	6.55	16.75	23.30	46.00	-22.70	QP	100	332	
5		616.3716	0.92	23.63	24.55	46.00	-21.45	QP	199	267	
6	*	847.1646	0.40	26.57	26.97	46.00	-19.03	QP	199	359	





No. N	٨k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.0649	4.44	13.74	18.18	40.00	-21.82	QP	200	311	
2		55.2498	4.96	13.69	18.65	40.00	-21.35	QP	200	291	
3		106.6652	4.70	13.23	17.93	43.50	-25.57	QP	100	320	
4		155.9921	10.58	10.05	20.63	43.50	-22.87	QP	100	143	
5		304.1830	4.07	16.75	20.82	46.00	-25.18	QP	100	7	
6 *	R I	823.4411	0.04	26.19	26.23	46.00	-19.77	QP	100	205	

Radiated Spurious Emission above 1GHz:

I										
	Mode	:	G	FSK Transmit	tting		Channel:		2402 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
- 02	1	1232.0232	7.91	37.92	45.83	74.00	28.17	Pass	н	PK
4	2	1580.8581	7.97	37.32	45.29	74.00	28.71	Pass	Н	PK
2	3	4804.1203	-13.44	61.50	48.06	74.00	25.94	Pass	Н	PK
	4	6442.2295	-9.90	47.53	37.63	74.00	36.37	Pass	Н	PK
	5	9608.4406	-1.89	52.32	50.43	74.00	23.57	Pass	Н	PK
	6	13692.7128	5.16	42.61	47.77	74.00	26.23	Pass	Н	PK
	7	1145.2145	7.41	38.03	45.44	74.00	28.56	Pass	V	PK
	8	1769.4769	8.47	37.83	46.30	74.00	27.70	Pass	V	PK
	9	3250.0167	-18.27	53.76	35.49	74.00	38.51	Pass	V	PK
	10	4804.1203	-13.44	61.02	47.58	74.00	26.42	Pass	V	PK
2	11	7527.3018	-6.19	46.08	39.89	74.00	34.11	Pass	V	PK
3	12	9608.4406	-1.89	50.28	48.39	74.00	25.61	Pass	V	PK
	1							/		

	Mode	:	GI	SK Transmit	ting		Channel:		2441 MHz	<u> </u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1201.2201	7.99	38.19	46.18	74.00	27.82	Pass	Н	PK
	2	1668.4668	8.35	37.56	45.91	74.00	28.09	Pass	Н	PK
	3	4804.1203	-13.44	63.07	49.63	74.00	24.37	Pass	Н	PK
2	4	9608.4406	-1.89	52.81	50.92	74.00	23.08	Pass	Н	PK
	5	13750.7167	4.59	43.29	47.88	74.00	26.12	Pass	Н	PK
-	6	4805.1203	-13.44	58.88	45.44	54.00	8.56	Pass	Н	AV
	7	9609.4406	-1.90	48.49	46.59	54.00	7.41	Pass	Н	AV
	8	1219.2219	7.95	37.98	45.93	74.00	28.07	Pass	V	PK
	9	1699.87	8.52	37.67	46.19	74.00	27.81	Pass	V	PK
	10	4804.1203	-13.44	61.85	48.41	74.00	25.59	Pass	V	PK
	11	7722.3148	-4.71	45.54	40.83	74.00	33.17	Pass	V	PK
	12	9608.4406	-1.89	53.33	51.44	74.00	22.56	Pass	V	PK
•	13	13696.7131	5.11	42.44	47.55	74.00	26.45	Pass	V	PK
	14	4805.1203	-13.44	57.81	44.37	54.00	9.63	Pass	V	AV
2	15	9609.4406	-1.90	48.90	47.00	54.00	7.00	Pass	V	AV

CTI 华测检测 Report No. : EED32Q80805701

Page 33 of 62

Mode	e:	GI	SK Transmit	ting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1069.4069	7.17	38.53	45.70	74.00	28.30	Pass	Н	PK
2	1650.6651	8.27	36.98	45.25	74.00	28.75	Pass	Н	PK
3	3188.0125	-18.55	57.44	38.89	74.00	35.11	Pass	Н	PK
4	4960.1307	-13.35	67.75	54.40	74.00	19.60	Pass	Н	PK
5	9920.4614	-1.45	51.39	49.94	74.00	24.06	Pass	Н	PK
6	13696.7131	5.11	43.56	48.67	74.00	25.33	Pass	Н	PK
7	4961.1307	-13.35	62.30	48.95	54.00	5.05	Pass	Н	AV
8	9921.4614	-1.43	46.59	45.16	54.00	8.84	Pass	Н	AV
9	1154.6155	7.51	38.51	46.02	74.00	27.98	Pass	V	PK
10	1574.8575	7.97	37.41	45.38	74.00	28.62	Pass	V	PK
11	3721.0481	-17.53	52.91	35.38	74.00	38.62	Pass	V	PK
12	4960.1307	-13.35	69.01	55.66	74.00	18.34	Pass	V	PK
13	9920.4614	-1.45	52.07	50.62	74.00	23.38	Pass	V	PK
14	4961.1307	-13.35	64.33	50.98	54.00	3.02	Pass	V	AV
15	9921.4614	-1.43	47.05	45.62	54.00	8.38	Pass	V	AV

	Mode	:	π/	4DQPSK Tra	nsmitting		Channel:		2402 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1189.0189	7.88	38.01	45.89	74.00	28.11	Pass	Н	PK
Ż	2	1687.0687	8.45	37.69	46.14	74.00	27.86	Pass	Н	PK
5	3	4804.1203	-13.44	64.92	51.48	74.00	22.52	Pass	Н	PK
-	4	7767.3178	-4.26	46.89	42.63	74.00	31.37	Pass	Н	PK
	5	9608.4406	-1.89	52.03	50.14	74.00	23.86	Pass	Н	PK
	6	14779.7853	8.49	39.30	47.79	74.00	26.21	Pass	Н	PK
	7	4805.1203	-13.44	59.14	45.70	54.00	8.30	Pass	н	AV
	8	9609.4406	-1.90	47.44	45.54	54.00	8.46	Pass	Н	AV
	9	1174.2174	7.72	38.22	45.94	74.00	28.06	Pass	V	PK
	10	1840.484	8.66	37.90	46.56	74.00	27.44	Pass	V	PK
0	11	3275.0183	-18.16	54.27	36.11	74.00	37.89	Pass	V	PK
5	12	4804.1203	-13.44	63.66	50.22	74.00	23.78	Pass	V	PK
2	13	9608.4406	-1.89	53.71	51.82	74.00	22.18	Pass	V	PK
	14	13682.7122	5.29	42.80	48.09	74.00	25.91	Pass	V	PK
Ī	15	4805.1203	-13.44	58.28	44.84	54.00	9.16	Pass	V	AV
	16	9609.4406	-1.90	49.10	47.20	54.00	6.80	Pass	V	AV
				6					<u></u>	

CTI 华**测** 检测 Report No. : EED32Q80805701

Page 34 of 62

	Mode	:	π/	4DQPSK Tra	nsmitting		Channel:		2441 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ſ	1	1173.8174	7.72	38.77	46.49	74.00	27.51	Pass	Н	PK
	2	1852.0852	8.72	37.24	45.96	74.00	28.04	Pass	Н	PK
5	3	3139.0093	-18.77	57.16	38.39	74.00	35.61	Pass	Н	PK
2	4	4960.1307	-13.35	69.38	56.03	74.00	17.97	Pass	Н	PK
	5	7862.3242	-3.99	47.42	43.43	74.00	30.57	Pass	Н	PK
	6	9920.4614	-1.45	52.11	50.66	74.00	23.34	Pass	Н	PK
	7	4961.1307	-13.35	63.62	50.27	54.00	3.73	Pass	Н	AV
	8	9921.4614	-1.43	46.79	45.36	54.00	8.64	Pass	Н	AV
ſ	9	1212.2212	7.96	37.70	45.66	74.00	28.34	Pass	V	PK
	10	1839.0839	8.66	37.28	45.94	74.00	28.06	Pass	V	PK
	11	3454.0303	-18.12	53.17	35.05	74.00	38.95	Pass	V	PK
à	12	4960.1307	-13.35	70.65	57.30	74.00	16.70	Pass	V	PK
5	13	9920.4614	-1.45	51.69	50.24	74.00	23.76	Pass	V	PK
	14	13757.7172	4.52	42.92	47.44	74.00	26.56	Pass	V	PK
ſ	15	4961.1307	-13.35	63.77	50.42	54.00	3.58	Pass	V	AV
	16	9921.4614	-1.43	46.30	44.87	54.00	9.13	Pass	V	AV
-	ł					(4		(

Mode	:	π/	4DQPSK Tra	nsmitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1067.6068	7.19	39.84	47.03	74.00	26.97	Pass	н	PK
2	1925.4925	8.96	37.55	46.51	74.00	27.49	Pass	Н	PK
3	3186.0124	-18.56	55.03	36.47	74.00	37.53	Pass	н	PK
4	4959.1306	-13.35	69.99	56.64	74.00	17.36	Pass	Н	PK
5	9920.4614	-1.45	48.00	46.55	74.00	27.45	Pass	Н	PK
6	13693.7129	5.15	42.70	47.85	74.00	26.15	Pass	Н	PK
7	4961.1307	-13.35	63.87	50.52	54.00	3.48	Pass	Н	AV
8	1268.2268	7.81	37.83	45.64	74.00	28.36	Pass	V	PK
9	1837.2837	8.65	37.21	45.86	74.00	28.14	Pass	V	PK
10	3465.031	-18.10	54.74	36.64	74.00	37.36	Pass	V	PK
11	4960.1307	-13.35	70.25	56.90	74.00	17.10	Pass	V	PK
12	9920.4614	-1.45	52.37	50.92	74.00	23.08	Pass	V	PK
13	14198.7466	7.14	40.80	47.94	74.00	26.06	Pass	V	PK
14	4961.1307	-13.35	64.01	50.66	54.00	3.34	Pass	V	AV
15	9921.4614	-1.43	47.52	46.09	54.00	7.91	Pass	V	AV
L			1					<u></u>	

CTI华测检测 Report No. : EED32Q80805701

Page 35 of 62

Mc	ode:	8	DPSK Transm	nitting		Channel:		2402 MHz	
N	D Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1238.0238	7.89	38.34	46.23	74.00	27.77	Pass	Н	PK
2	1914.8915	8.97	36.36	45.33	74.00	28.67	Pass	Н	PK
3	3455.0303	-18.12	54.53	36.41	74.00	37.59	Pass	Н	PK
4	4804.1203	-13.44	65.47	52.03	74.00	21.97	Pass	Н	PK
5	9608.4406	-1.89	52.76	50.87	74.00	23.13	Pass	Н	PK
6	13680.712	5.31	42.46	47.77	74.00	26.23	Pass	Н	PK
7	4805.1203	-13.44	59.00	45.56	54.00	8.44	Pass	Н	AV
8	1247.6248	7.87	37.96	45.83	74.00	28.17	Pass	V	PK
9	1671.6672	8.38	37.47	45.85	74.00	28.15	Pass	V	PK
10	3409.0273	-18.22	53.54	35.32	74.00	38.68	Pass	V	PK
1'	4804.1203	-13.44	64.40	50.96	74.00	23.04	Pass	V	PK
12	2 9608.4406	-1.89	52.82	50.93	74.00	23.07	Pass	V	PK
13	3 13675.7117	5.38	42.35	47.73	74.00	26.27	Pass	V	PK
14	4805.1203	-13.44	57.29	43.85	54.00	10.15	Pass	V	AV
15	5 9609.4406	-1.90	47.94	46.04	54.00	7.96	Pass	V	AV

Mode	:	80	PSK Transm	itting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1204.2204	7.98	38.01	45.99	74.00	28.01	Pass	н	PK
2	1709.0709	8.51	37.15	45.66	74.00	28.34	Pass	н	PK
3	3247.0165	-18.29	56.09	37.80	74.00	36.20	Pass	Н	PK
4	4882.1255	-13.47	66.12	52.65	74.00	21.35	Pass	Н	PK
5	9764.451	-3.42	52.06	48.64	74.00	25.36	Pass	Н	PK
6	13678.7119	5.33	42.68	48.01	74.00	25.99	Pass	н	PK
7	4883.1255	-13.46	58.78	45.32	54.00	8.68	Pass	Н	AV
8	1176.6177	7.75	37.83	45.58	74.00	28.42	Pass	V	PK
9	1657.4657	8.30	37.32	45.62	74.00	28.38	Pass	V	PK
10	4882.1255	-13.47	67.63	54.16	74.00	19.84	Pass	V	PK
11	7736.3158	-4.57	47.07	42.50	74.00	31.50	Pass	V	PK
12	9764.451	-3.42	52.58	49.16	74.00	24.84	Pass	V	PK
13	14238.7492	6.84	41.07	47.91	74.00	26.09	Pass	V	PK
14	4883.1255	-13.46	60.57	47.11	54.00	6.89	Pass	V	AV

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

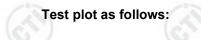
CTI 华测检测 Report No.: EED32Q80805701

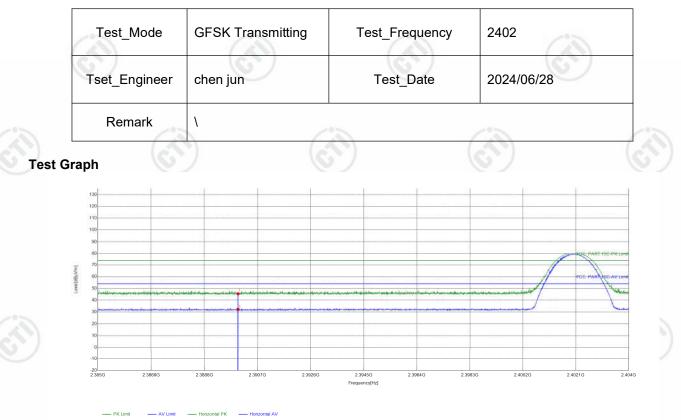
	Mode	:		8DPSK Transmitting			Channel:		2480 MHz	
	NO	Freq. [MHz]	Facto [dB]	Deeding	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	1428.8429	8.12	2 38.10	46.22	74.00	27.78	Pass	Н	PK
10	2	1904.2904	8.96	36.71	45.67	74.00	28.33	Pass	Н	PK
	3	3587.0391	-17.7	'1 57.38	39.67	74.00	34.33	Pass	Н	PK
Ľ	4	4960.1307	-13.3	69.38	56.03	74.00	17.97	Pass	Н	PK
	5	9920.4614	-1.45	5 48.07	46.62	74.00	27.38	Pass	Н	PK
	6	13690.7127	5.19	9 42.77	47.96	74.00	26.04	Pass	Н	PK
	7	4961.1307	-13.3	63.66	50.31	54.00	3.69	Pass	Н	AV
	8	1284.2284	7.76	38.09	45.85	74.00	28.15	Pass	V	PK
	9	1887.4887	8.89	36.99	45.88	74.00	28.12	Pass	V	PK
	10	3699.0466	-17.5	52.70	35.11	74.00	38.89	Pass	V	PK
	11	4959.1306	-13.3	5 70.69	57.34	74.00	16.66	Pass	V	PK
1	12	9920.4614	-1.4	5 51.40	49.95	74.00	24.05	Pass	V	PK
5	13	13726.7151	4.82	2 43.11	47.93	74.00	26.07	Pass	V	PK
	14	4961.1307	-13.3	63.49	50.14	54.00	3.86	Pass	V	AV

Remark:

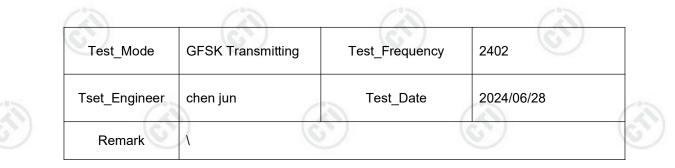
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

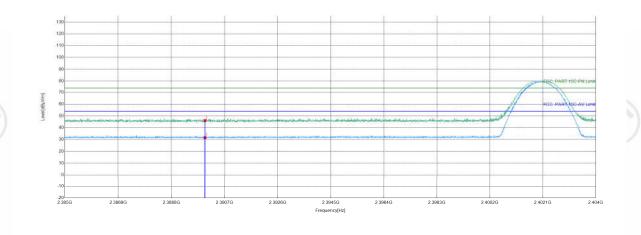
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

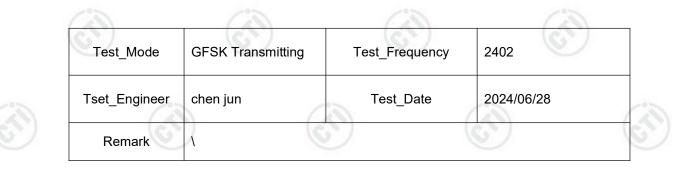

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

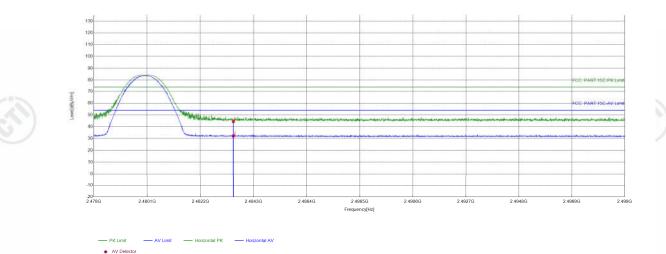


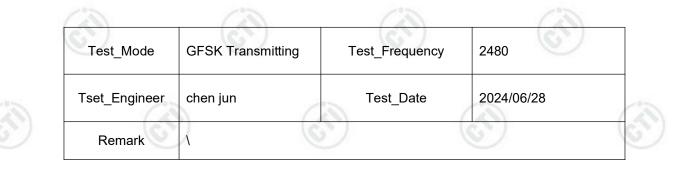
*	PK Detector	•	AV Detector		

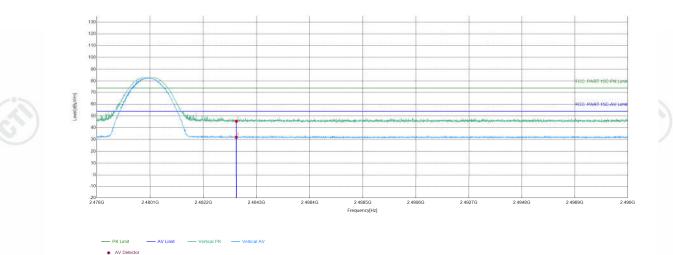

	Suspecte	d List								
\mathcal{C}	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
G	1	2390	9.96	35.61	45.57	74.00	28.43	PASS	Horizontal	PK
~	2	2390	9.96	22.28	32.24	54.00	21.76	PASS	Horizontal	AV



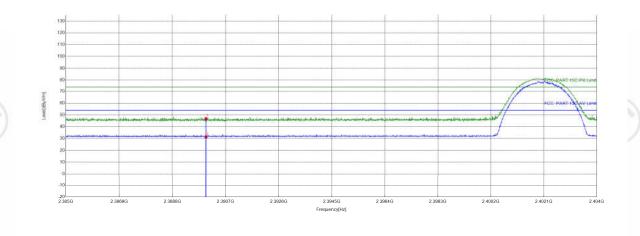



MHz]		[dBµV]	[dBµV/m]	[dBµV/m]	Margin [dB]	Result	Polarity	Remark
2390	9.96	36.12	46.08	74.00	27.92	PASS	Vertical	PK
2390	9.96	21.66	31.62	54.00	22.38	PASS	Vertical	AV


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	34.03	44.41	74.00	29.59	PASS	Horizontal	PK
2	2483.5	10.38	21.81	32.19	54.00	21.81	PASS	Horizontal	AV



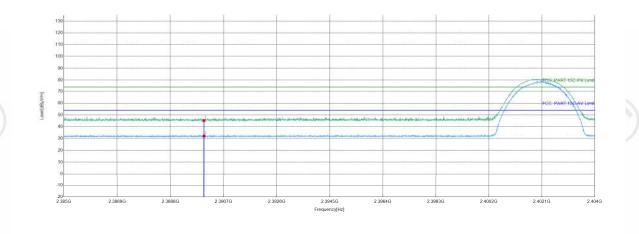
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	35.18	45.56	74.00	28.44	PASS	Vertical	PK
2	2483.5	10.38	21.55	31.93	54.00	22.07	PASS	Vertical	AV



Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2402	
Tset_Engineer	chen jun	Test_Date	2024/06/28	
Remark			S	S)

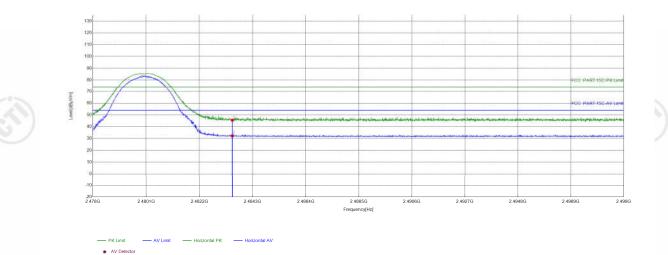
- PK Limit - AV Limit ntal PK _ - Horizor tal AV AV Detector * PK Detector

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	36.96	46.92	74.00	27.08	PASS	Horizontal	PK
2	2390	9.96	21.39	31.35	54.00	22.65	PASS	Horizontal	AV
2	2390	9.90	21.39	31.35	54.00	22.00	PASS	HOHZOHIAI	A



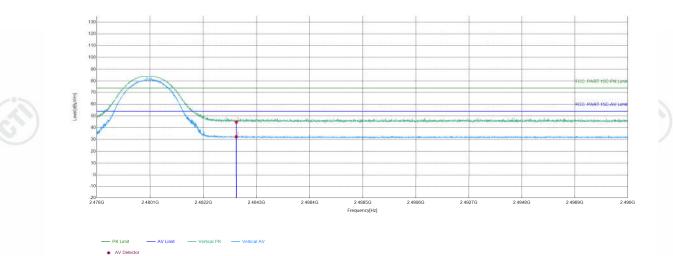
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2402	
Tset_Engineer	chen jun	Test_Date	2024/06/28	
Remark			S	\odot

PK Limit — AV Limit — Vertical PK — Vertical A PK Detector AV Detector

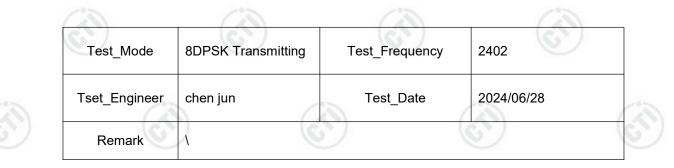

0	Suspecte NO	d List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.32	45.28	74.00	28.72	PASS	Vertical	PK
	2	2390	9.96	22.15	32.11	54.00	21.89	PASS	Vertical	AV
	(c	<u>()</u>		(\mathcal{A})		(S))		(\mathcal{A})	

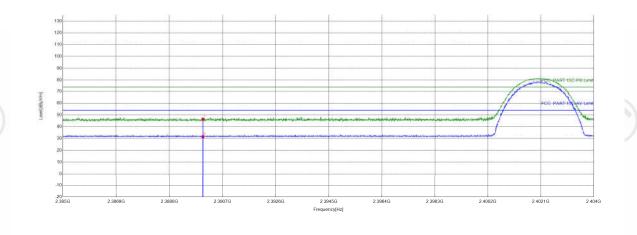
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480	
Tset_Engineer	chen jun	Test_Date	2024/06/28	(3)
Remark	1			\odot

1 248	3.5 10.38	35.23	45.61	74.00	28.39	PASS	Horizontal	PK
2 248	3.5 10.38	21.92	32.30	54.00	21.70	PASS	Horizontal	AV



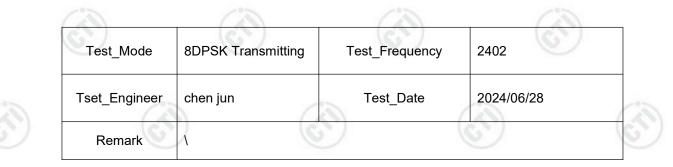
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480	
Tset_Engineer	chen jun	Test_Date	2024/06/28	(3)
Remark			S	S)

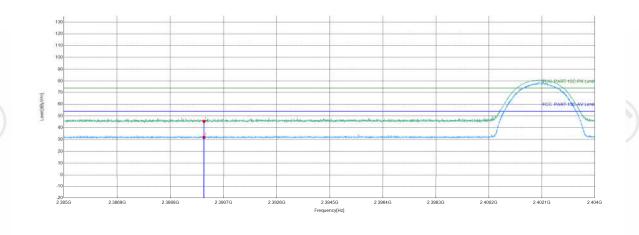

(0)	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	34.39	44.77	74.00	29.23	PASS	Vertical	PK
	2	2483.5	10.38	22.00	32.38	54.00	21.62	PASS	Vertical	AV
I	(c	<u>(</u>)		(\sim)		(2))		(\sim)	I

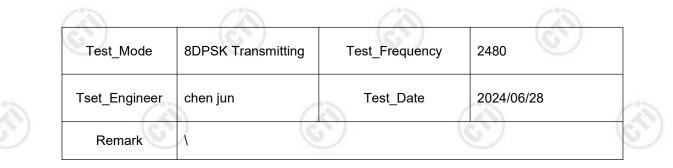


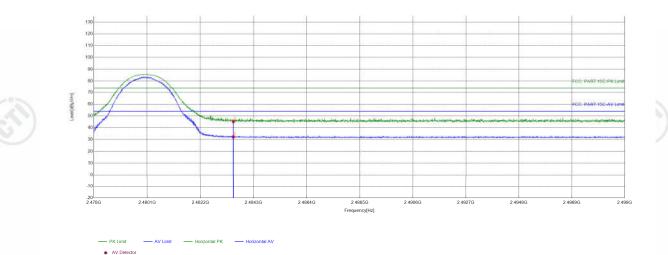
PK Limit — AV Limit — Horizontal PK — Horizontal A PK Detector AV Detector

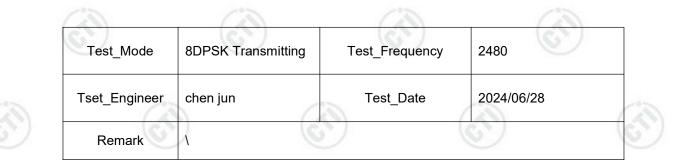
Suspecte NO	d List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	36.56	46.52	74.00	27.48	PASS	Horizontal	PK
2	2390	9.96	21.56	31.52	54.00	22.48	PASS	Horizontal	AV
(c	<u>()</u>		(\sim)		25))		(\sim)	

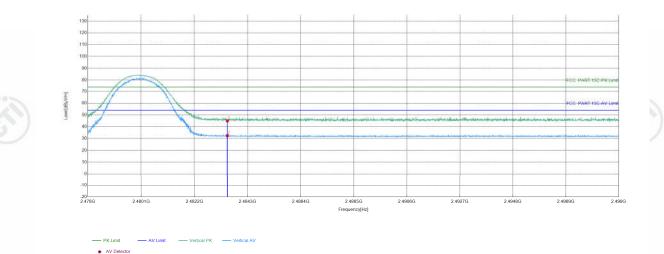





CS)	Suspecte	d List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.55	45.51	74.00	28.49	PASS	Vertical	PK
	2	2390	9.96	21.93	31.89	54.00	22.11	PASS	Vertical	AV
	(c	<u>()</u>		(\sim)		12))		(\sim)	




NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	34.86	45.24	74.00	28.76	PASS	Horizontal	PK
2	2483.5	10.38	21.94	32.32	54.00	21.68	PASS	Horizontal	AV
(2403.5	10.30	21.94	52.52	04.00	21.00	FA00	TIONZONIA	A



Suspected List

	Cacpette	~ =								
5	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	34.62	45.00	74.00	29.00	PASS	Vertical	PK
	2	2483.5	10.38	22.09	32.47	54.00	21.53	PASS	Vertical	AV
							7			

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Page 49 of 62

6 Appendix Bluetooth Classic

Refer to Appendix: Bluetooth Classic of EED32Q80805701

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com