

TEST REPORT

Report No.	CISRR24080100502
Project No.	CISR240801005
FCC ID	2AIT9-PG-500
Applicant	SZ PGST Co., Ltd
Address	No.9 Building, Huafu Industrial Park, Huachang Road, Longhua District, Shenzhen, Guangdong, China
Manufacturer	SZ PGST Co., Ltd
Address	No.9 Building, Huafu Industrial Park, Huachang Road, Longhua District, Shenzhen, Guangdong, China
Product Name	Alarm Host
Trade Mark	-
Model/Type reference	PG-500
Listed Model(s)	-
Standard	Part 15 Subpart C Section 15.231
Test date	August 2, 2024 ~ August 8, 2024
Issue date	August 9, 2024
Test result	Complied

Kory Auging

Prepared by: Rory Huang

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
2. SUMMARY OF TEST RESULT	4
3. SUMMARY	5
3.1. Product Description 3.2. Radio Specification Description 3.3. Modification of EUT	5
3.4. Testing Site	
3.5. Field Strength Calculation	6
3.6. DISTURBANCE Calculation	
4. TEST CONFIGURATION	7
4.1. Test frequency list	
4.2. Test mode	
4.3. Support unit used in test configuration and system	
4.4. Test sample information	
4.5. Testing environmental condition	
4.6. Statement of the measurement uncertainty	
4.7. Equipment Used during the Test	9
5. TEST CONDITIONS AND RESULTS	. 1 0
5.1. Antenna Requirement	
5.2. AC Conducted Emission	11
5.3. 20 dB Bandwidth	
5.4. Radiated Spurious Emission	
5.5. Transmitter Deactivation Time	
5.6. Duty cycle Factor	23
6. TEST SETUP PHOTOS	. 2 4
7. EXTERNAL AND INTERNAL PHOTOS	.24
7.1. External Photos	24
7.2. Internal photos	
•	

1. <u>REPORT VERSION</u>

Version No.	Issue date	Description
00	August 9, 2024 Original	

2. SUMMARY OF TEST RESULT

Report clause	Test Item	Standard Requirement	Result
5.1	Antenna Requirement	15.203	PASS
5.2	AC Conducted Emission	15.207	PASS
5.3	20 dB Bandwidth	15.231(c)	PASS
5.4	Radiated Spurious Emission	15.231 (e)/15.205/15.209	PASS
5.5	Transmitter Deactivation Time	15.231	PASS
5.6	Duty cycle Factor	15.231	PASS

Note:

- The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Product Description

Main unit information:		
Product Name:	Alarm Host	
Trade Mark:		
Model No.:	PG-500	
Listed Model(s):		
Power supply:	y: DC 3.7V from Battery	
Hardware version: V2.8		
Software version:	V1.2	

3.2. Radio Specification Description

Technology:	SRD			
Modulation:	ASK			
Operation frequency:	433.92MHz			
Channel Number:	1			
Antenna type:	pe: Spring Antenna			
Antenna gain:	-2.9dBi			

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.	
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen, Guangdong, China	
FCC registration number	736346	

3.5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		

3.6. DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

4. TEST CONFIGURATION

4.1. Test frequency list

Channel	Frequency (MHz)
CH1	433.92

4.2. Test mode

For RF test items:					
The engineering prototype is provided with key switching channel to realize EUT continuous transmissionPower setting Default.					
Test Item Test Mode Modulation					
Conducted test item TX mode ASK					
Radiated test item TX mode ASK					
 Remark: The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report. 					

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Ite	m	Equipment name	Trade Name	Model No.
1		Adapter	Huawei	HW-05002000C

4.4. Test sample information

Туре	sample no.
Engineer sample	CISR240801005-S01
Normal sample	CISR240801005-S02

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	1.63dB
2	Power Spectral Density	1.34dB
3	20dB Bandwidth	0.002%
4	Duty cycle	-
5	Conducted Band Edge and Spurious Emission	1.93dB
6	Radiated Band Edge Emission	3.76dB for 30MHz-1GHz
0	Radiated Band Edge Emission	3.80dB for above 1GHz
7	Radiated Spurious Emission	3.76dB for 30MHz-1GHz
		3.80dB for above 1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.7. Equipment Used during the Test

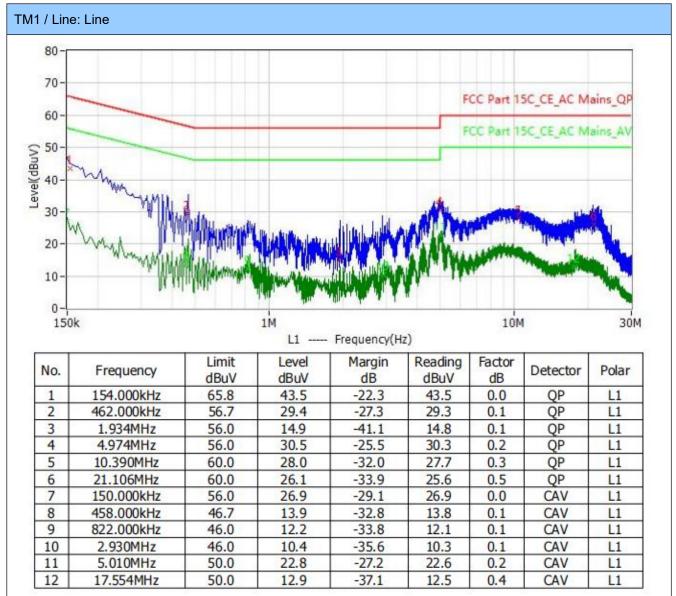
Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2021.10.15	3Year
Spectrum analyzer	Agilent	N9020A	MY50530263	2024.01.08	1Year
Receiver	ROHDE&SCHWARZ	ESCI	100853	2024.01.08	1Year
Spectrum analyzer	R&S	FSV-40N	/	2024.01.08	1Year
Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023.01.09	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023.01.09	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	2023.01.09	2Year
RF Cable	Tonscend	Cable 1	/	2024.01.08	1Year
RF Cable	Tonscend	Cable 2	/	2024.01.08	1Year
RF Cable	SKET	Cable 3	/	2024.01.08	1Year
Pre-amplifier	Tonscend	TAP9K3G32	AP21G806153	2024.01.08	1Year
Pre-amplifier	Tonscend	TAP01018050	AP22E806229	2024.01.08	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8127	/	2024.01.08	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	1	2024.01.08	1Year
Horn Antenna	SCHWARZBECK	BBHA9170	1130	2023.01.09	2 Year
Preamplifier	Tonscend	TAP18040048	AP21C806126	2024.01.08	1Year
variable-frequency power source	Pinhong	PH1110	/	2024.01.08	1Year
6dB Attenuator	SKET	DC-6G	/	N/A	N/A
Artificial power network	Schwarzbeck	NSLK8127	8127-01096	2024.01.08	1Year
EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024.01.08	1Year
8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2024.01.08	1Year
Artificial power network	Schwarzbeck	ENV216	/	2024.01.08	1Year
Antenna tower	SKET	Bk-4AT-BS	AT2021040101- V1	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Standard Applicable	FCC CFR Title 47 Part 15 Subpart C Section 15.203:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the response-ble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
Description	The antenna type is a PCB antenna, Refer to the below antenna photo.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen Bangce Testing Technology Co., Ltd. does not assume any responsibility.



5.2. AC Conducted Emission

Limit:	FCC CFR Title 47 Part 15 Subpart C Section 15.207		
		Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarith	m of the frequency.	
<u>Test configuration:</u>	Shielding Room Vertical Reference Ground Plane		eiver
		Ground Reference Plane 🔶	
Test procedure:	 The EUT was setup according to ANSI C63.10 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. 		
	3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.		
	4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs)		
	 Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. 		
	 The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. 		
	 Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. 		
			ere maximized by cable
<u>Test mode:</u>	Refer to the clause 4.3		
Result:	Passed		

Test Data

5.3. 20 dB Bandwidth

<u>Limit:</u>	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.
Test configuration:	Spectrum Analyzer EUT Non-Conducted Table
<u>Test procedure:</u>	 Ground Reference Plane ← 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously 3. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a Test channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold 4. Measure and record the results in the test report.
<u>Test mode:</u>	Refer to the clause 4.3
Result:	Passed

Center Frequency of operation(MHz)	Maximum allowed bandwidth(kHz)	Measured 20dB Bandwidth(kHz)	Result
433.9164	1084.8	263.8	PASS

Agilent Spectrum Analyzer - Occupie μα RF 50 Ω Ai x dB -20.00 dB	Cente	SENSE:INT r Freq: 433.920000 MHz ree Run Avg Hold : 10 dB	⚠ ALIGN OFF 03:14:48 PM Aug Radio Std: Non I:>10/10 Radio Device: I	e Peak Search
10 dB/div Ref 10.00 d Log	Bm		Mkr1 433.9164 2.3189	
-80.0 Center 433.9 MHz #Res BW 30 kHz		VBW 100 kHz	Span 30 Sweep	0 kHz 1 ms
Occupied Bandwi Transmit Freq Error x dB Bandwidth	253.39 kHz	Total Power OBW Power x dB	3.79 dBm 99.00 % -20.00 dB	
🛃 start 🛛 📭 🖉 🖉 🔍	I Agilent Spectrum Ana			2 🗘 🗞 🕫 🙀 😰 🔒 💷 3:14 PM

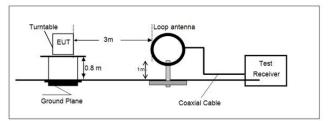
5.4. Radiated Spurious Emission

Limit:

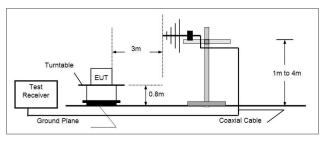
FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3


Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)

Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak


Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

Test configuration:

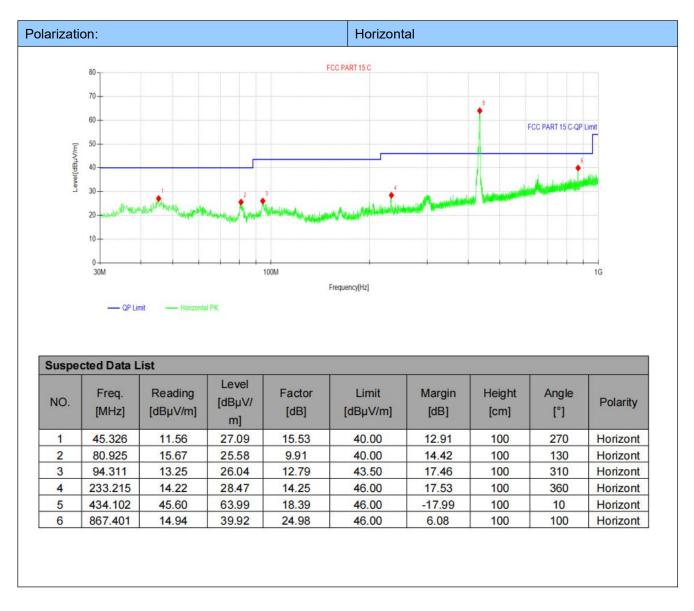
9kHz~30MHz

30 MHz \sim 1 GHz

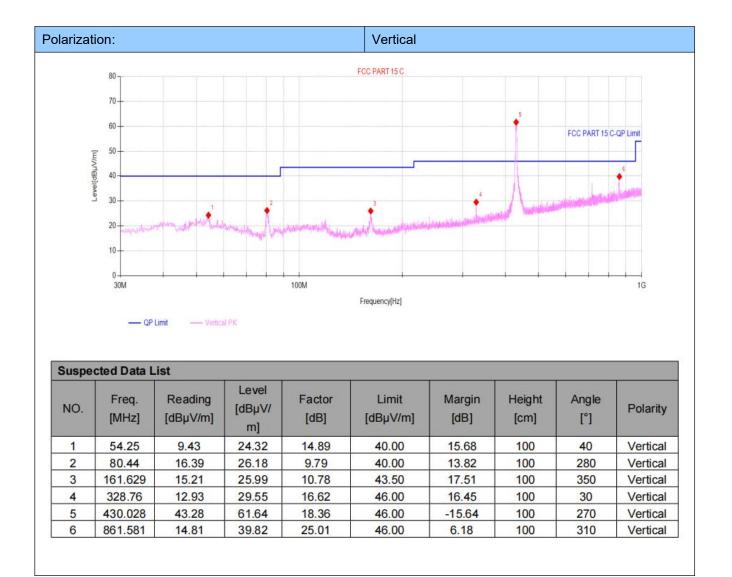
	Above 1 GHz
	Antenna (Boresight) tower Horn antenna UT 1 ~ 4m Spectrum analyzer 1.5m 30cm Pre-amp
Test procedure:	1. The EUT was setup and tested according to ANSI C63.10.
	2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
	 The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
	4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
	 Set to the maximum power setting and enable the EUT transmit continuously.
	6. Use the following spectrum analyzer settings
	 a) Span shall wide enough to fully capture the emission being measured;
	b) Below 1 GHz:
	RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;
	If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	 c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
	 d) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=Average, Trace=RMS for Average measurement
<u>Test mode:</u>	Refer to the clause 4.3
Result:	Passed

Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.


<u>For 9 kHz ~ 30 MHz</u>

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.


For 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH1 which it was worst case, so only show the worst case's data on this report.

	Fundamental and Harmonics Result						
Frequency	Peak Level	Peak Level AV Factor(dBμV/m) Average Level Limit(dBμV/m) Limit(dBμV/m)					
(MHz)	(dBµV/m)	(see Section 5.4)	(dBµV/m)	(average)	(Peak)	Conclusion	
434.102	63.99	-10.12	53.87	60.81	80.81	PASS	
867.410	39.92	-10.12	29.87	40.81	60.81	PASS	

Fundamental and Harmonics Result						
Frequency	Peak Level	AV Factor(dBµV/m)	Average Level	Limit(dBµV/m)	Limit(dBµV/m)	Conclusion
(MHz)	(dBµV/m)	(see Section 5.4)	(dBµV/m)	(average)	(Peak)	Conclusion
430.02	61.64	-10.12	51.52	60.70	80.70	PASS
861.58	39.82	-10.12	29.70	40.70	60.70	PASS

For 1 GHz ~ 5 GHz

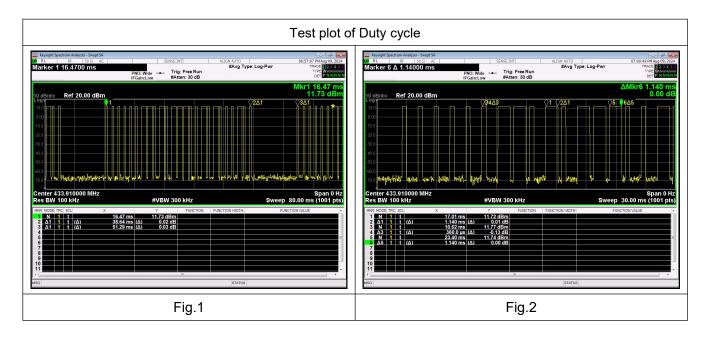
Test channel:433.92MHz									
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Remark	Polarity
1204.00	68.58	30.26	4.09	38.29	-3.94	74	9.36	Peak	Horizontal
1204.00	49.20	30.26	4.09	38.29	-3.94	54	8.74	Average	Horizontal
1204.00	65.97	30.26	4.09	38.29	-3.94	74	11.97	Peak	Vertical
1204.00	51.23	30.26	4.09	38.29	-3.94	54	6.71	Average	Vertical

5.5. Transmitter Deactivation Time

<u>Limit:</u>	Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.
<u>Test configuration:</u>	Spectrum Analyzer EUT Non-Conducted Table Ground Reference Plane
Test procedure:	Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.
Test mode:	Refer to the clause 4.3
Result:	Passed

Test Results					
Frequency (MHz)	Activation Time(s)	Limit: not more than 5 seconds of being released (s)	Conclusion		
433.96	0.17	5	PASS		

Keysight Spectrum Analyzer - Swept SA					
RL RF 50 Ω AC	SENSE:I	NT	ALIGN AUTO Avg Type	l og Dwr	12:27:43 PM Aug 10 TRACE 1 2
arker 2 Δ 170.000 ms		g: Free Run ten: 30 dB	Avg Hold:		
dB/div Ref 20.00 dBm					ΔMkr2 170.0 0.209
00	∆ ¹ 2∆1				
.0					
0					
.0					
.0					
0 Mundaymen mary more margine and a second s	an phil and and an	-o-broker souther out	and some ground and the growth		~ ⁵ *๛๛๛ _{๚๚} ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
.0					<u>2</u>
enter 433.960000 MHz es BW 100 kHz	#VBW 30	0 kHz		Swe	Span ep 10.00 s (1001
N MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FL	INCTION VALUE
	0 s2.975 dBm ms (Δ) 0.209 dB				
					1



5.6. Duty cycle Factor

<u>Limit:</u>	No dedicated limit specified in the Rules.
<u>Test configuration:</u>	Spectrum Analyzer EUT Non-Conducted Table
	Ground Reference Plane
<u>Test procedure:</u>	 Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Set centre frequency of spectrum analyzer=operating frequency. Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=Auto. Repeat above procedures until all frequency measured was complete.
Test mode:	Refer to the clause 4.3
Result:	Passed

Test Data

Ton = 1.14*9+0.36*16=16.02(ms) Tp = 51.29(ms) The duty cycle=16.02/51.29=0.312 Average Correction Factory = 20log (Ton/Tp) =20log (0.312) = -10.12dB

6. <u>TEST SETUP PHOTOS</u>

Please refer to separated files for Test Setup Photos of the EUT.

7. EXTERNAL AND INTERNAL PHOTOS

7.1. External Photos

Please refer to separated files for External Photos of the EUT.

7.2. Internal photos

Please refer to separated files for Internal Photos of the EUT.

-----End of the report-----