

TEST REPORT

Applicant:	Augury systems Ltd.					
Address of Applicant:	Haazmaut 39, Haifa 3303320, Israel					
Manufacturer 1:	R.H. Electronics Ltd.					
Address of Manufacturer 1: Manufacturer 2:	5 Hatzoref St. Har-Yona Industrial Area, Nof Hagalil, Nazeret Illit P.O 1700, Israel Ionics EMS Inc.					
Address of Manufacturer 2: Equipment Under Test (I	Ionics-EMS PlantSEPZ, 5/6 Circuit St.,LISP,Cabuyao 4025, Philippines EUT)					
Product Name:	Halo Node v2.0					
Model No.:	Halo Node v2.0					
Trade Mark:	AC00013					
FCC ID:	2A3XG-AC00013					
Applicable standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407					
Date of sample receipt:	July 24, 2023					
Date of Test:	July 25, 2023-September 20, 2023					
Date of report issue:	September 20, 2023					
Test Result :	PASS *					

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 29

2 Version

Version No.	Date	Description
00	September 20, 2023	Original

Prepared By:

south U

Date:

September 20, 2023

Project Engineer

Check By:

Apinson (un) Date: Reviewer

September 20, 2023

3 Contents

		Pa	ge
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	. 3
4	TES	T SUMMARY	. 4
	4.1	MEASUREMENT UNCERTAINTY	. 4
5	GEN	IERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	DEVIATION FROM STANDARDS	
	5.7	ADDITIONAL INSTRUCTIONS	
6	TES	T INSTRUMENTS LIST	. 7
7	TES	T RESULTS AND MEASUREMENT DATA	. 9
	7.1	ANTENNA REQUIREMENT:	. 9
	7.2	CONDUCTED EMISSIONS	10
	7.3	EMISSION BANDWIDTH	-
	7.4	MAXIMUM CONDUCTED OUTPUT POWER	
	7.5	Power Spectral Density	
	7.6	BAND EDGE	
	7.7 7.8	RADIATED EMISSION	
•			
8	IES		29
9	EUT	CONSTRUCTIONAL DETAILS	29

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Emission Bandwidth	FCC part 15.407	PASS
Maximum Conducted Output Power	FCC part 15.407(a)(1)(2)	PASS
Power Spectral Density	FCC part 15.407(a)(1)(2)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)(2)(3)	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.

5 General Information

5.1 General Description of EUT

					1000	
Product Name:	Halo Node v2.	0				
Model No.:	Halo Node v2.	0				
Test sample(s) ID:	GTS20230703	316-1				
Sample(s) Status:	Engineer sam	ole				
S/N:	100-113-171					
Hardware Version:	AC00013 Nod	e Type 2 Rev. C				
Software Version:	1					
Operation Frequency:	Band Mode Frequency Num Range(MHz) char					
	U-NII Band	IEEE 802.11a	5180-5240	4		
		IEEE 802.11n 20MHz	5180-5240	4		
	U-NII Band	IEEE 802.11a	5260-5320	4		
	II-2A	IEEE 802.11n 20MHz	5260-5320	4	1225	
	U-NII Band	IEEE 802.11a	5500-5700	11	1.20	
	II-2C	IEEE 802.11n 20MHz	5500-5700	11		
Modulation technology:	OFDM					
Antenna Type:	External Omni	Antenna				
Antenna gain:	5dBi(declare b	y applicant)				
Power supply:	Input: AC 100-	240V, 50/60Hz, 0.75-0.5A				
	Output: DC 12	V, 2.5A			2.3	
	Or				22.24	
	Power by POE					

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Channel list	Channel list for 802.11a/n(HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz		
52	5260MHz	56	5280MHz	60	5300MHz	64	5320MHz		
100	5500MHz	104	5520MHz	108	5540MHz	112	5560MHz		
116	5580MHz	120	5600MHz	124	5620MHz	128	5640MHz		
132	5660MHz	136	5680MHz	140	5700MHz				

5.2 Test mode

Transmitting mode	Transmitting mode Keep the EUT in transmitting with modulation						
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:							
Pre-scan all kind o	of data rate in lowest channe	el, and found the follow	w list which it was worst case.				
	Mode Data rate						
802.11a/n (HT20) 6/6.5 Mbps							

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing .

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480

Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number/FCC ID
GTS	POE Injector	PSE801G	N/A

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radia	ted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024
11	Horn Antenna (18- 26.5GHz)	/	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023
13	FSV·Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024
14	Amplifier	1	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024
15	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023
16	Wideband Amplifier	/	WDA-01004000-15P35	GTS602	April 14, 2023	April 13, 2024
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024
18	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024
19	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024
20	RE cable 3	GTS	N/A	GTS677	July 31. 2023	July 30. 2024
21	RE cable 4	GTS	N/A	GTS678	July 31. 2023	July 30. 2024
22	RE cable 5	GTS	N/A	GTS679	July 31. 2023	July 30. 2024
23	RE cable 6	GTS	N/A	GTS680	July 31. 2023	July 30. 2024
24	RE cable 7	GTS	N/A	GTS681	July 31. 2023	July 30. 2024
25	RE cable 8	GTS	N/A	GTS682	July 31. 2023	July 30. 2024

Cond	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024			
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024			
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024			
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024			
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024			
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024			
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024			

RF Co	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024			
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024			
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024			
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 04, 2022	Nov. 03, 2023			

Gen	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024			

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203								
15.203 requirement:								
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an								
antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.								
E.U.T Antenna:								
The antenna is external omni a	ntenna, reference to the appendix II for details							

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Receiver setup:	RBW=9KHz, VBW=30KHz							
Limit:	Frequency range (MHz)	Limit (dB	uV)					
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 60 50							
	* Decreases with the logarithm of the frequency.							
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.							
Test setup:	Reference Plane	ļ.						
	40cm 40cm LISN 40cm AUX 80cm Equipment E.U.T Filter AC power Test table/Insulation plane EMI Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test environment:	Temp.: 25 °C Hur	nid.: 52% Pre	ess.: 1012mbar					
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							

7.2 Conducted Emissions

Measurement data:

0.63

2.29

2.29

3.55

3.55

19.22

19.22

-0.41

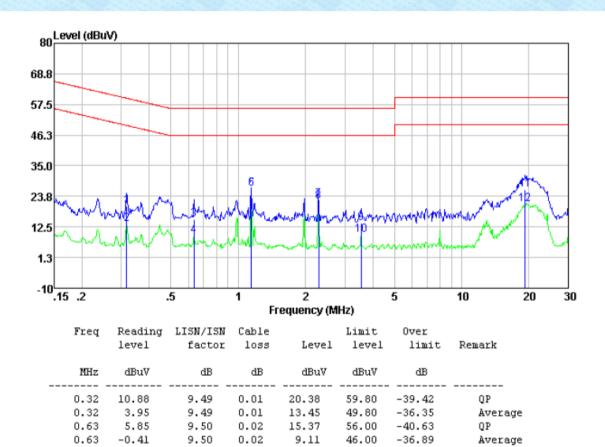
12.92

12.33

4.41

0.10

16.12


10.68

1.14 17.14

1.14 17.06

Pre-scan all test modes, found worst case at 802.11n(VHT20) 5180MHz with AC power supply and so only show the test result of it

Line:

9.11

26.68

26.60

22.55

21.96

9.68

26.24

20.80

13.99

46.00

56.00

46.00

56.00

46.00

56.00

46.00

60.00

50.00

-36.89

-29.32

-19.40

-33.45

-24.04

-42.01

-36.32

-33.76

-29.20

Average

Average

Average

Average

Average

QP

QP

QP

QP

0.02

0.03

0.03

0.05

0.06

0.06

0.18

0.18

9.58 0.05

9.51

9.51

9.58

9.52

9.52


9.94

9.94

Neutral:

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Emission Bandwidth

Test Requirement :	FCC Part15 E Section 15.407
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test procedure:	According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data: The detailed test data see Appendix.

7.4 Maximum Conducted Output Power

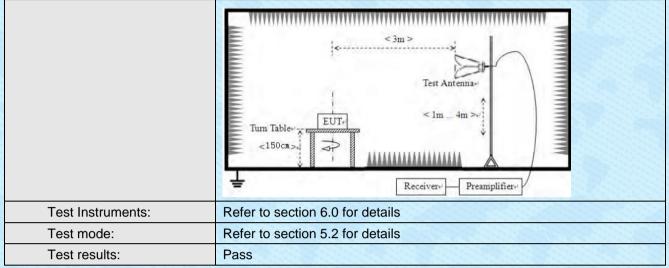
Test Requirement	FCC Part15 E Section 15.407
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01
Limit:	Frequency band (MHz) Limit
	5150-5250 ≤1W(30dBm) for master device
	≤250Mw(23.98dBm) for client device ≤250Mw(23.98dBm) for client device or
	5250-5350 11dBm+10logB*
	5470-5725 ≤250Mw(23.98dBm) for client device or 11dBm+10logB*
	Remark: *Where B is the 26Db emission bandwidth in MHz.
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in
	terms of an rms-equivalent voltage.
Test setup:	Power Meter E.U.T Non-Conducted Table
	Ground Reference Plane
Duty Cycle set up:	RBW=VBW=8MHz
Test procedure:	Measurement using an RF average power meter
	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
	a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
	b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
	c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).
Test Instruments:	Refer to section 6.0 for details
rest instruments.	
Test mode:	Refer to section 5.2 for details

Measurement Data: The detailed test data see Appendix.

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01
Limit:	Frequency band (MHz) Limit
	5150-5250 ≤17dBm in 1MHz for master device
	≤11dBm in 1MHz for client device
	5250-5350 ≤11dBm in 1MHz for client device
	5470-5725 ≤11dBm in 1MHz for client device
	Remark: The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.
Test setup:	Spectrum Analyzer E-U.T Non-Conducted Table
	Ground Reference Plane
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power".
	2) Use the peak search function on the instrument to find the peak of the spectrum.
	3) Make the following adjustments to the peak value of the spectrum, if applicable:
	a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
	b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
	4) The result is the PSD.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data: The detailed test data see Appendix.



7.6 Band Edge

Test Deguinement									
Test Requirement:	FCC Part15 E Section 15.407 and 5.205								
Test Method:	ANSI C63.10:201								
Test site:	Measurement Dis	stance: 3m (S	emi-Anecho	ic Chamber	r)				
Receiver setup:		Detector	DDW		Durad				
	Frequency 30MHz-1GHz	Detector	RBW	VBW	Remark				
	30IMHZ-TGHZ	Quasi-peak Peak	120KHz 1MHz	300KHz 3MHz	Quasi-peak Value Peak Value				
	Above 1GHz	AV	1MHz	3MHz	Average Value				
Limit:		AV		JIVII 12	Average value				
Linnt.	Frequen	CV	Limit (dBuV/	/m @3m)	Remark				
	30MHz-88		40.0		Quasi-peak Value				
	88MHz-216MHz 43.5 Quasi-peak Value								
	216MHz-96	0MHz	46.0		Quasi-peak Value				
	960MHz-1	GHz	54.0		Quasi-peak Value				
	Above 10	Hz							
		5112	68.2	2	Peak Value				
Test Procedure:	Above 1GHz 54.0 Average Value Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band must meet al applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz. a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the								
	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data								
Test setup:	sheet. For radiated em	hissions abov	/e 1GHz						
	i ol laulateu ell	13310113 000							

Remarks:

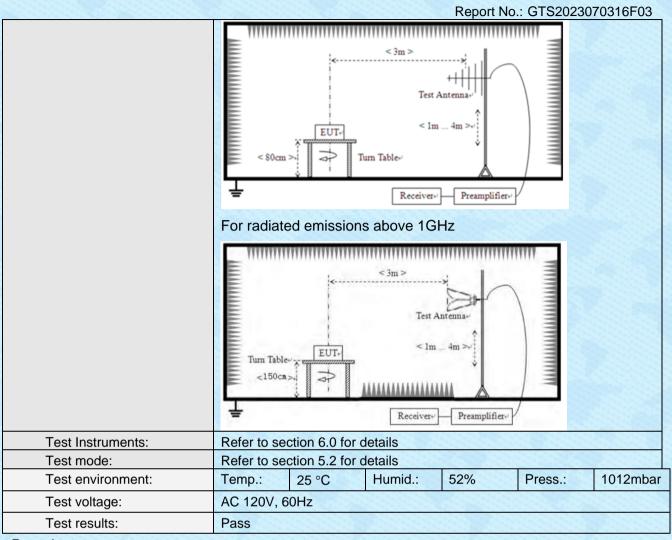
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2; For example, if EIRP = -27dBm E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

measuremen								
Worse case n	node:	802.11a		Test Freque	ncy:	5180MHz		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5150	50.05	-3.63	45.56	68.20	-22.64	peak	Н	
5150	45.88	-3.63	41.71	54.00	-12.29	AVG	Н	
5150	51.89	-3.63	47.87	68.20	-20.33	peak	V	
5150	45.14	-3.63	40.79	54.00	-13.21	AVG	V	
Worse cas	se mode:	802	.11a	Test Fre	equency:	5240	MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5350	48.76	-3.59	45.17	68.20	-23.03	peak	Н	
5350	45.33	-3.59	41.74	54.00	-12.26	AVG	Н	
5350	50.23	-3.59	46.64	68.20	-21.56	peak	V	
5350	43.93	-3.59	40.34	54.00	-13.66	AVG	V	
Worse case n	node:	802.11n(HT20)		Test Frequency:		5180MHz		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5150	49.76	-3.63	46.13	68.20	-22.07	peak	Н	
5150	45.78	-3.63	42.15	54.00	-11.85	AVG	Н	
5150	52.47	-3.63	48.84	68.20	-19.36	peak	V	
5150	45.07	-3.63	41.44	54.00	-12.56	AVG	V	
Worse case n	node:	802.11n(HT2	20)	Test Frequency:		5240MHz		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5350	48.39	-3.59	44.80	68.20	-23.40	peak	н	
5350	45.78	-3.59	42.19	54.00	-11.81	AVG	Η	
5350	50.02	-3.59	46.43	68.20	-21.77	peak	V	
5350 50.02		-3.59	40.25	54.00	-13.75	AVG	V	

7.7 Radiated Emission

Test Requirement :	FCC Part15 C Section 15.209 and 15.205								
Test Method :	ANSI C63.10: 201		10 15.205						
	9kHz to 40GHz	10							
Test Frequency Range: Test site:	Measurement Dis	tanco: 3m (So	mi_Anocho	ic Chambo	-1				
	Frequency	Detector	RBW	VBW) Value				
Receiver setup:	9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak				
					Value				
	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
		Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	Average Value							
	Note: For Duty cycle ≥ 98%, average detector set as above For cycle < 98%, average detector set as below: VBW ≥ 1 / T								
Limit:	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)								
		00/F(kHz)	onts/meter)	weasurenie	300				
		000/F(kHz)			30 30				
	1.705-30.0 30 30-88 100**								
		0**			3				
	216-960 20		3						
	Above 960 500								
Test Procedure:	the frequency bandle MHz. Radiated e measurements e	employing a C ands 9-90 kH emission limit employing an	CISPR qua z, 110-490 s in these average o	asi-peak d) kHz and three ban detector.	etector except for above 1000 ds are based on				
Test Procedure:	Substitution metho emission levels of The following test 1>.Below 1GHz te	the EUT. procedure as		ermine the a	actual ERP				
	1GHz and 1.8 meter cambe position of the 2. The EUT wa	5 meters for ab r. The table wa e highest radia s set 3 meters ich was mount	ove 1GHz) as rotated 3 tion. away from	above the above the abovet	s to determine the rence-receiving				
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower thar the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that 								
		10dB margin y peak or average			e by one using d and then reported				



	in a data sheet. 2>.Above 1GHz test procedure:
	 On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
	2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring
	 receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test externe shall be reized and laward from 4m to 4m until a
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	 Repeat step 4 for test frequency with the test antenna polarized horizontally.
	 Remove the transmitter and replace it with a substitution antenna Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test frequency. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative
	to an ideal half-wave dipole antenna by the following formula:
	EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) where:
Tost sotup:	Pg is the generator output power into the substitution antenna.
Test setup:	For radiated emissions from 9kHz to 30MHz
	Ear radiated amissions from 20MHz to1CHz
	For radiated emissions from 30MHz to1GHz

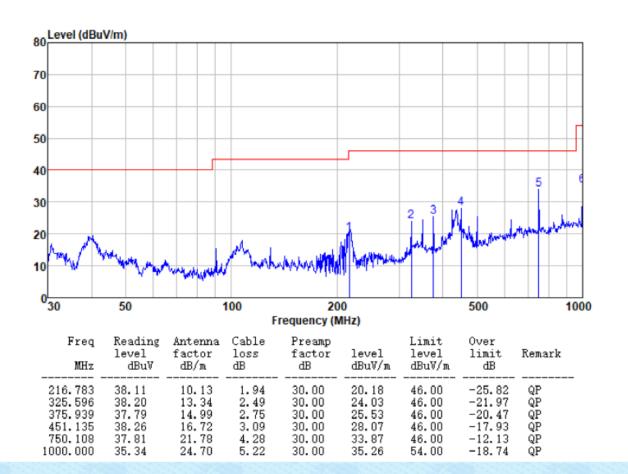
Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

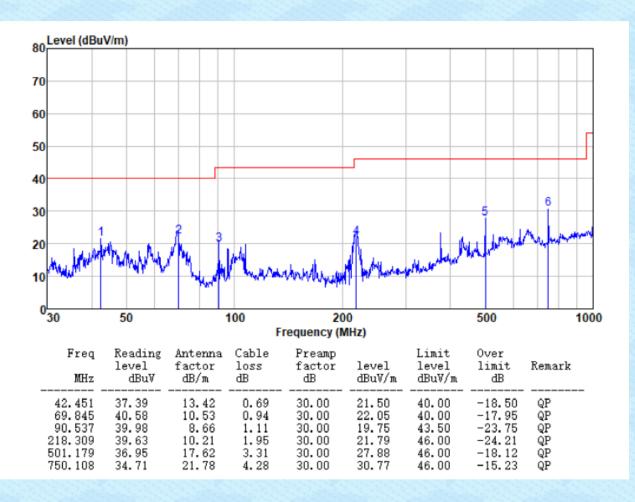
9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



30MHz~ 1GHz

Pre-scan all test modes, found worst case at 802.11n(VHT20) 5180MHz with AC power supply, and so only show the test result of it


Horizontal:

Vertical:

Above 1GHz:

	802	2.11a(HT20))			Test F	requency: 5	5180MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Fa (dB)	actor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	28.03	38.96	8.27	35.64		39.62	68.20	-28.58	Vertical
15540	29.15	38.40	10.57	35.35	;	42.77	68.20	-25.43	Vertical
10360	29.07	38.96	8.27	35.64		40.66	68.20	-27.54	Horizontal
15540	27.68	38.40	10.57	35.35		41.30	68.20	-26.90	Horizontal
10360	18.84	38.96	8.27	35.64		30.43	54.00	-23.57	Vertical
15540	17.60	38.40	10.57	35.35	;	31.22	54.00	-22.78	Vertical
10360	19.47	38.96	8.27	35.64		31.06	54.00	-22.94	Horizontal
15540	22.52	38.40	10.57	35.35		36.14	54.00	-17.86	Horizontal
	802	2.11a(HT20))			Test F	requency: 5	5200MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Fa (dB)	actor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	29.23	39.01	8.29	35.67		40.86	68.20	-27.34	Vertical
15600	29.13	38.30	10.62	35.36		42.69	68.20	-25.51	Vertical
10400	25.11	39.01	8.29	35.67		36.74	68.20	-31.46	Horizontal
15600	26.15	38.30	10.62	35.36	;	39.71	68.20	-28.49	Horizontal
10400	20.85	39.01	8.29	35.67		32.48	54.00	-21.52	Vertical
15600	19.01	38.30	10.62	35.36	5	32.57	54.00	-21.43	Vertical
10400	19.35	39.01	8.29	35.67		30.98	54.00	-23.02	Horizontal
15600	20.63	38.30	10.62	35.36		34.19	54.00	-19.81	Horizontal

802.11a(HT20)					Test Frequency: 5240MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480	30.21	39.15	8.32	35.78	41.90	68.20	-26.30	Vertical	
15720	27.65	38.00	10.72	35.37	41.00	68.20	-27.20	Vertical	
10480	29.94	39.15	8.32	35.78	41.63	68.20	-26.57	Horizontal	
15720	29.35	38.00	10.72	35.37	42.70	68.20	-25.50	Horizontal	
10480	20.05	39.15	8.32	35.78	31.74	54.00	-22.26	Vertical	
15720	22.12	38.00	10.72	35.37	35.47	54.00	-18.53	Vertical	
10480	17.36	39.15	8.32	35.78	29.05	54.00	-24.95	Horizontal	
15720	19.39	38.00	10.72	35.37	32.74	54.00	-21.26	Horizontal	
	802.	11n(HT20))		Test Frequency: 5180MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360	27.54	38.96	8.27	35.64	39.13	68.20	-29.07	Vertical	
15540	29.35	38.40	10.57	35.35	42.97	68.20	-25.23	Vertical	
10360	29.16	38.96	8.27	35.64	40.75	68.20	-27.45	Horizontal	
15540	27.31	38.40	10.57	35.35	40.93	68.20	-27.27	Horizontal	
10360	19.10	38.96	8.27	35.64	30.69	54.00	-23.31	Vertical	
15540	17.71	38.40	10.57	35.35	31.33	54.00	-22.67	Vertical	
10360	19.08	38.96	8.27	35.64	30.67	54.00	-23.33	Horizontal	
15540	22.69	38.40	10.57	35.35	36.31	54.00	-17.69	Horizontal	

802.11n(HT20)					Test Frequency: 5200MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	29.66	39.01	8.29	35.67		41.29	68.20	-26.91	Vertical
15600	29.01	38.30	10.62	35.3	36	42.57	68.20	-25.63	Vertical
10400	25.04	39.01	8.29	35.	67	36.67	68.20	-31.53	Horizontal
15600	26.48	38.30	10.62	35.3	36	40.04	68.20	-28.16	Horizontal
10400	20.59	39.01	8.29	35.	67	32.22	54.00	-21.78	Vertical
15600	18.90	38.30	10.62	35.36		32.46	54.00	-21.54	Vertical
10400	19.74	39.01	8.29	35.	67	31.37	54.00	-22.63	Horizontal
15600	20.53	38.30	10.62	35.	36	34.09	54.00	-19.91	Horizontal
	802.	11n(HT20))		Test Frequency: 5240MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	30.16	39.15	8.32	35.78		41.85	68.20	-26.35	Vertical
15720	27.97	38.00	10.72	35.37		41.32	68.20	-26.88	Vertical
10480	29.72	39.15	8.32	35.78		41.41	68.20	-26.79	Horizontal
15720	29.25	38.00	10.72	35.37		42.60	68.20	-25.60	Horizontal
10480	20.39	39.15	8.32	35.78		32.08	54.00	-21.92	Vertical
15720	21.98	38.00	10.72	35.37		35.33	54.00	-18.67	Vertical
10480	17.28	39.15	8.32	35.78		28.97	54.00	-25.03	Horizontal
15720	19.65	38.00	10.72	35.37		33.00	54.00	-21.00	Horizontal

Notes:

1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.

2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
· · · · · · · · · · · · · · · · · · ·						
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:						
		Temperature Chamber				
		FIT				
	Spectrum analyzer	EUT				
	Att.					
		Variable Power Supply				
	Note : Measurement setup for testing on Antenna connector					
-						
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data:

Test Condition	Test Mode	Test Frequency [MHz]	Ant	Result [ppm]	Limit [ppm]	Verdict
	Carrier	5180	1	0	<=20	PASS
		5190	1	1	<=20	PASS
		5200	1	0	<=20	PASS
		5230	1	3	<=20	PASS
		5240	1	0	<=20	PASS
		5260	1	1	<=20	PASS
		5270	1	0	<=20	PASS
NTNV		5280	1	1	<=20	PASS
		5310	1	1	<=20	PASS
		5320	1	0	<=20	PASS
		5500	1	1	<=20	PASS
		5510	1	0	<=20	PASS
		5550	1	1	<=20	PASS
		5580	1	0	<=20	PASS
		5670	1	0	<=20	PASS

8 Test Setup Photo

Reference to the appendix I for details.

Reference to the **appendix II** for details.

----END----