

Report No.: FR151220-03AE

RADIO TEST REPORT

FCC ID

: QXO-AP4000

Equipment

: Access Point

Brand Name

: Extreme Networks

Model Name : AP4000

Applicant

: Extreme Networks, Inc.

6480 Via Del Oro, San Jose, CA 95119

Manufacturer

: Extreme Networks, Inc.

6480 Via Del Oro, San Jose, CA 95119

Standard

: 47 CFR FCC Part 15,247

The product was received on May 13, 2021, and testing was started from May 21, 2021 and completed on Oct. 25, 2021. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number

: 1 of 33

Issued Date

: Oct. 27, 2021

Report Version : 02

Table of Contents

Report No. : FR151220-03AE

Histo	ory of this test report	3
Sumi	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	10
1.3	Testing Location Information	10
1.4	Measurement Uncertainty	10
2	Test Configuration of EUT	11
2.1	Test Channel Mode	11
2.2	The Worst Case Measurement Configuration	12
2.3	EUT Operation during Test	14
2.4	Accessories	14
2.5	Support Equipment	15
2.6	Test Setup Diagram	16
3	Transmitter Test Result	19
3.1	AC Power-line Conducted Emissions	19
3.2	DTS Bandwidth	21
3.3	Maximum Conducted Output Power	22
3.4	Power Spectral Density	25
3.5	Emissions in Non-restricted Frequency Bands	27
3.6	Emissions in Restricted Frequency Bands	28
4	Test Equipment and Calibration Data	32
Appe	endix A. Test Results of AC Power-line Conducted Emissions	
Арре	endix B. Test Results of DTS Bandwidth	
Appe	endix C. Test Results of Maximum Conducted Output Power	
Appe	endix D. Test Results of Power Spectral Density	
Appe	endix E. Test Results of Emissions in Non-restricted Frequency Bands	
Арре	endix F. Test Results of Emissions in Restricted Frequency Bands	

Photographs of EUT v01

Appendix G. Test Photos

TEL: 886-3-656-9065 Page Number : 2 of 33 FAX: 886-3-656-9085 : Oct. 27, 2021 Issued Date

History of this test report

Report No. : FR151220-03AE

Report No.	Version	Description	Issued Date
FR151220-03AE	01	Initial issue of report	Sep. 09, 2021
FR151220-03AE	02	Add the information of verifying the worst mode.	Oct. 27, 2021

TEL: 886-3-656-9065 Page Number : 3 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

Summary of Test Result

Report No.: FR151220-03AE

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark			
1.1.2	15.203	Antenna Requirement	PASS	-			
3.1	15.207	AC Power-line Conducted Emissions	PASS	-			
3.2	15.247(a)	DTS Bandwidth	PASS	-			
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-			
3.4	15.247(e)	Power Spectral Density	PASS	-			
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-			
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-			
Reference to Sporton Project No.: FR151220AE							

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

- 1. The test configuration, test mode and test software were written in this test report are declared by the manufacturer.
- 2. The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen Report Producer: Viola Huang

TEL: 886-3-656-9065 Page Number : 4 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std.	Ch. Frequency (MHz)	Channel Number
2400-2483.5	802.15.4	2405-2480	11-26 [26]

Report No. : FR151220-03AE

For Radio 4

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.15.4	3	1

Note:

- 802.15.4 uses a O-QPSK (250kbps) modulation.
- BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 5 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

1.1.2 Antenna Information

Ant.	Radio	Model Name	Antenna Type	Connector	Gain (dBi)
1	1, 2	N/A	PIFA	I-PEX	
2	1, 2	N/A	PIFA	I-PEX	
3	3	N/A	PIFA	I-PEX	
4	3	N/A	PIFA	I-PEX	Note 1
5	3	N/A	PIFA	I-PEX	
6	3	N/A	PIFA	I-PEX	
7	4	N/A	PIFA	I-PEX	

Ant.	WLAN 2.4GHz Port	WLAN 5GHz UNII 1~3 Port	Scaning radio (WLAN 2.4GHz) Port	Scaning radio (5GHz UNII 1~3) Port	Scaning radio (6E UNII 5~8) Port	Bluetooth / IEEE802.15.4 Port
1	2	2	-	-	-	-
2	1	1	=	-	=	-
3	-	-	2	2	=	-
4	-	-	1	1	-	-
5	-	-	=	-	1	-
6	-	-	-	-	2	-
7	-	-	=	=	-	1

Note 1:

	Gain (dBi)								
Ant.	WLAN 2.4GHz	Scaning radio (WLAN 2.4GHz)	Bluetooth	IEEE802.15.4					
1	4	-	-	-					
2	3.61	-	-	-					
3	-	5.20	-	-					
4	-	5.32	-	-					
5	-	-	-	-					
6	-	-	-	-					
7	-	-	5.26	5.26					

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number : 6 of 33
Issued Date : Oct. 27, 2021

Report No. : FR151220-03AE

Report Version : 02

A m4	WLAN 5GHz UNII 1~3				Scaning radio (5GHz UNII 1~3)			Scaning radio (6E UNII 5~8)				
Ant.	Band 1	Band 2	Band 3	Band 4	Band 1	Band 2	Band 3	Band 4	Band 5	Band 6	Band 7	Band 8
1	5.14	5.14	4.23	4.43	-	-	-	-	-	-	-	-
2	4.53	4.53	3.49	3.08	-	-	-	-	-	-	-	-
3	-	-	-	-	5.91	5.91	5.39	5.80	-	-	-	-
4	-	-	-	-	5.11	5.11	5.11	5.62	-	-	-	-
5	-	-	-	-	-	-	-	-	4.34	4.56	4.56	4.50
6	-	-	-	-	-	-	-	-	4.88	5.25	5.25	5.05

Report No. : FR151220-03AE

		Directional Gain (dBi)										
Ant. Radio		WLAN 2.4GHz		5GHz Band 1		5GHz Band 2		5GHz Band 3		5GHz Band 4		
		2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	
1	1 2	4.7	1.87	3.77	1.20	3.36	1.37	3.85	1.42	2.96	1.05	
2	1, 2	4.7	1.07	3.77	1.20	3.30	1.37	3.65	1.42	2.96	1.05	

Note 2: The EUT has seven antennas.

Note 3: The above information was declared by manufacturer.

Note 4: Radio 1, 2: Maximum Directional Gain following KDB662911 D03.

Note 5: Radio 3: Maximum Directional Gain following KDB662911 D01.

For Radio 1

For 2.4GHz:

For IEEE 802.11b/g/n/VHT/ax mode (1TX, 2TX/2RX):

For 1TX

The EUT supports the antenna with TX diversity functions.

Both Port 1 and Port 2 support transmit and receive functions, but only one of them will be used at one time.

The Port 1 generated the worst case, so it was selected to test and record in the report.

For 2TX/2RX

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

TEL: 886-3-656-9065 Page Number : 7 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

For Radio 2

For 5GHz UNII 1~3:

For IEEE 802.11a/n/ac/ax mode (1TX, 2TX/2RX):

For 1TX

The EUT supports the antenna with TX diversity functions.

Both Port 1 and Port 2 support transmit and receive functions, but only one of them will be used at one time.

Report No.: FR151220-03AE

The Port 1 generated the worst case, so it was selected to test and record in the report.

For 2TX/2RX

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For Scaning radio 3

For 2.4GHz:

For IEEE 802.11b/g/n/VHT/ax mode (2TX/2RX):

For 5GHz UNII 1~3:

For IEEE 802.11a/n/ac/ax mode (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 6E UNII 5~8 (1TX, 2TX/2RX):

For 1TX

The EUT supports the antenna with TX diversity functions.

Both Port 1 and Port 2 support transmit and receive functions, but only one of them will be used at one time.

The Port 2 generated the worst case, so it was selected to test and record in the report.

For 2TX/2RX

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For Radio 4

Bluetooth / IEEE802.15.4 (1TX/1RX):

Only Port 1 can be used as transmitting/receiving antenna.

TEL: 886-3-656-9065 Page Number: 8 of 33
FAX: 886-3-656-9085 Issued Date: Oct. 27, 2021

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
802.15.4	1	0	n/a (DC>=0.98)	n/a (DC>=0.98)

Report No. : FR151220-03AE

NI	a	0	
ıν	U	c	

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	From PoE			
Beamforming Function	\boxtimes	With beamforming		Without beamforming
	The product has beamforming function for n/VHT/ax in 2.4GHz of radio 1, n/ac/ax in 5GHz UNII 1~UNII 3 of radio 2, and ax in 6GHz UNII 5~UNII 8 of radio 3.			
Function	\boxtimes	Point-to-multipoint	Point-to-point	
Test Software Version	accessMtool [version 3.2.1.0]			

Note: The above information was declared by manufacturer.

1.1.5 Table for Radio function

Radio	WLAN 2.4GHz	5GHz UNII 1, 3	Scaning radio (WLAN 2.4GHz / 5GHz UNII 1, 3 / 6E (UNII 5~8)	Bluetooth / IEEE802.15.4
1	V (AP, Bridge, Mesh)	-	-	-
2	-	V AP for UNII 1, 3 Bridge, Mesh for UNII 1, 3	-	-
3	-	-	V (AP)	-
4	-	-	-	V

Note: The above information was declared by manufacturer.

1.1.6 Table for EUT support function

Function
AP
Bridge
Mesh

Note: For above table list, only AP mode was tested and recorded in this test.

Note: The above information was declared by manufacturer.

TEL: 886-3-656-9065 Page Number : 9 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR151220-03AE

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab.: Sporton International Inc. Hsinchu Laboratory

Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

(TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test site Designation No. TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH02-CB	Paul Chen	23.4~24 / 55~60	May 22, 2021~Jun. 29, 2021
Radiated below 1GHz	03CH01-CB	Eddie Weng	25.4~27.1 / 60~65	Jun. 17, 2021, Oct. 25, 2021
Radiated above 1GHz	03CH01-CB	Kevin Huang	25.2~27.7 / 65~69	May 21, 2021~Jul. 14, 2021
AC Conduction	CO02-CB	Peter Wu	22~23 / 59~60	Jun. 22, 2021

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.5 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.2 dB	Confidence levels of 95%
Conducted Emission	2.5 dB	Confidence levels of 95%
Output Power Measurement	1.3 dB	Confidence levels of 95%
Power Density Measurement	2.5 dB	Confidence levels of 95%
Bandwidth Measurement	0.9%	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number: 10 of 33
FAX: 886-3-656-9085 Issued Date: Oct. 27, 2021

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
802.15.4	-
2405MHz	5
2440MHz	5
2475MHz	5
2480MHz	-1

Report No. : FR151220-03AE

TEL: 886-3-656-9065 Page Number : 11 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests				
Tests Item AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode	Normal Link			
1 Normal Link (Radio 1 + Radio 2 + Radio 3 (2.4GHz)) + CTX (Radio 4 (Bluetoot				
2	Normal Link (Radio 1 + Radio 2 + Radio 3 (2.4GHz)) + CTX Radio (IEEE802.15.4)			
	Mode 1 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3~4 will follow this same test mode.			
Normal Link (Radio 1 + Radio 2 + Radio 3 (5GHz UNII)) + CTX Radio (Bluetooth)				
4	4 Normal Link (Radio 1 + Radio 2 + Radio 3 (6E)) + CTX Radio 4 (Bluetooth)			
For operating mode 4 is the worst case and it was record in this test report.				

Report No. : FR151220-03AE

Т	The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands		
Test Condition Conducted measurement at transmit chains			

TEL: 886-3-656-9065 Page Number : 12 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

1

The Worst Case Mode for Following Conformance Tests **Tests Item** Emissions in Restricted Frequency Bands **Test Condition** Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type. Normal Link for Radio 1 + Radio 2 + Radio 3 Operating Mode < 1GHz CTX for Radio 4 EUT in Z axis-Normal Link (Radio 1 + Radio 2 + Radio 3 (2.4GHz)) + CTX (Radio 1 4 (Bluetooth)) EUT in Z axis-Normal Link (Radio 1 + Radio 2 + Radio 3 (2.4GHz)) + CTX Radio 2 4 (IEEE802.15.4) Mode 2 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3~4 will follow this same test mode. EUT in Z axis-Normal Link (Radio 1 + Radio 2 + Radio 3 (5GHz UNII)) + CTX 3 Radio 4 (IEEE802.15.4) EUT in Z axis-Normal Link (Radio 1 + Radio 2 + Radio 3 (6E)) + CTX Radio 4 (IEEE802.15.4) Mode 2 has been evaluated to be the worst case among Mode 1~4, thus measurement for Mode 5 and Mode 6 will follow this same test mode. EUT in Y axis-Normal Link (Radio 1 + Radio 2 + Radio 3 (2.4GHz)) + CTX Radio 5 4 (IEEE802.15.4) EUT in X axis-Normal Link (Radio 1 + Radio 2 + Radio 3 (2.4GHz)) + CTX Radio 6 4 (IEEE802.15.4) For operating mode 2 is the worst case and it was record in this test report. CTX 1. The EUT was performed at X axis, Y axis and Z axis and the worst case was Operating Mode > 1GHz found at Y axis. So the measurement will follow this same test configuration. 2. Refer to note 1 for detail operating mode

Report No.: FR151220-03AE

TEL: 886-3-656-9065 Page Number: 13 of 33
FAX: 886-3-656-9085 Issued Date: 0ct. 27, 2021

Report Template No.: CB-A10_9 Ver1.3 Report Version : 02

Radio 4_EUT in Y axis

The Worst Case Mode for Following Conformance Tests **Tests Item** Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation **Operating Mode** 1 Radio 1_2.4GHz + Radio 2_5GHz + Scaning radio 3_2.4GHz + Radio 4_Bluetooth Radio 1_2.4GHz + Radio 2_5GHz + Scaning radio 3_2.4GHz + Radio 4_802.15.4 2 3 Radio 1_2.4GHz + Radio 2_5GHz + Scaning radio 3_5GHz + Radio 4_Bluetooth Radio 1_2.4GHz + Radio 2_5GHz + Scaning radio 3_5GHz + Radio 4_802.15.4 4 5 Radio 1_2.4GHz + Radio 2_5GHz + Scaning radio 3_6E + Radio 4_Bluetooth 6 Radio 1_2.4GHz + Radio 2_5GHz + Scaning radio 3_6E + Radio 4_802.15.4 Refer to Sporton Test Report No.: FA151220-03 for Co-location RF Exposure Evaluation.

Report No.: FR151220-03AE

Note 1: The PoE is for measurement only, would not be marketed.

PoE information as below:

Power	Brand	Model
PoE	Microsemi	PD-9001-10GC/AC

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link:

During the test, the EUT operation to normal function.

2.4 Accessories

Accessories	
Cradle*1	

TEL: 886-3-656-9065 Page Number : 14 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

2.5 Support Equipment

For AC Conduction:

	Support Equipment					
No.	Equipment	FCC ID				
Α	ETH0/POE+NB	DELL	E6430	N/A		
В	ETH1 NB	DELL	E6430	N/A		
С	2.4G NB	DELL	E6430	N/A		
D	5G NB	DELL	E6430	N/A		
Е	6E clinet	Extreme Networks	AP4000U	N/A		
F	PoE	Microsemi	PD-9001-10GC/AC	N/A		
G	Flash disk3.0	Transcend	JetFlash-700	N/A		

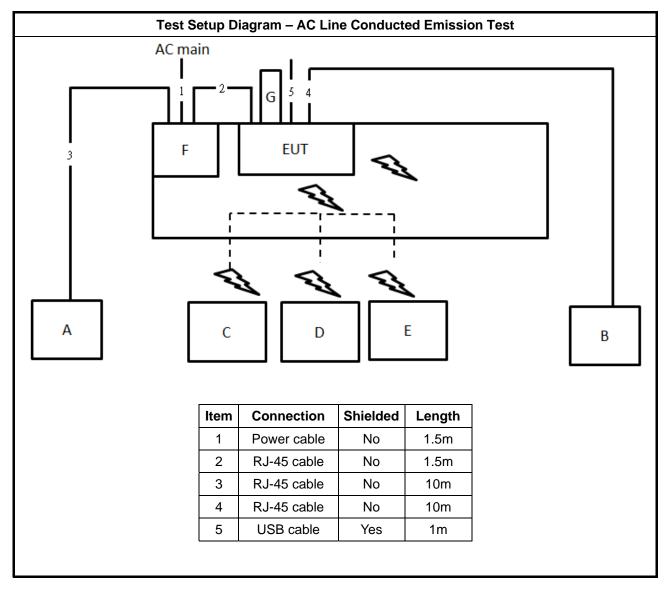
Report No. : FR151220-03AE

For Radiated (below 1GHz):

	Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID		
Α	PoE	Microsemi	PD-9001-10GC/AC	N/A		
В	PC	DELL	OPTIPLEX 3010	N/A		
С	Notebook	Apple	Mac Book	N/A		
D	Notebook	Apple	Mac Book	N/A		
Е	Notebook	Apple	Mac Book	N/A		
F	Flash disk3.0	Silicon Power	B06	N/A		
G	Notebook	DELL	E4300	N/A		

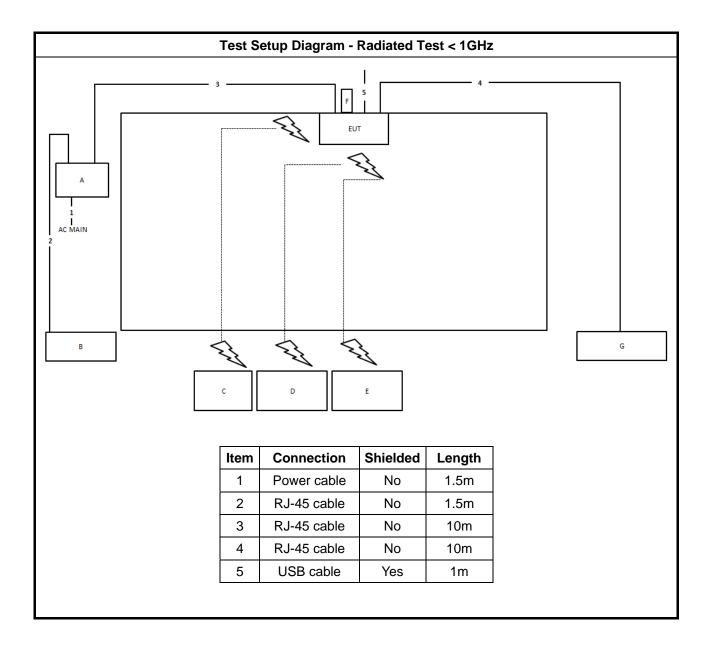
For Radiated (above 1GHz):

	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	
Α	Notebook	DELL	E4300	N/A	
В	PoE	Microsemi	PD-9001-10GC/AC	N/A	

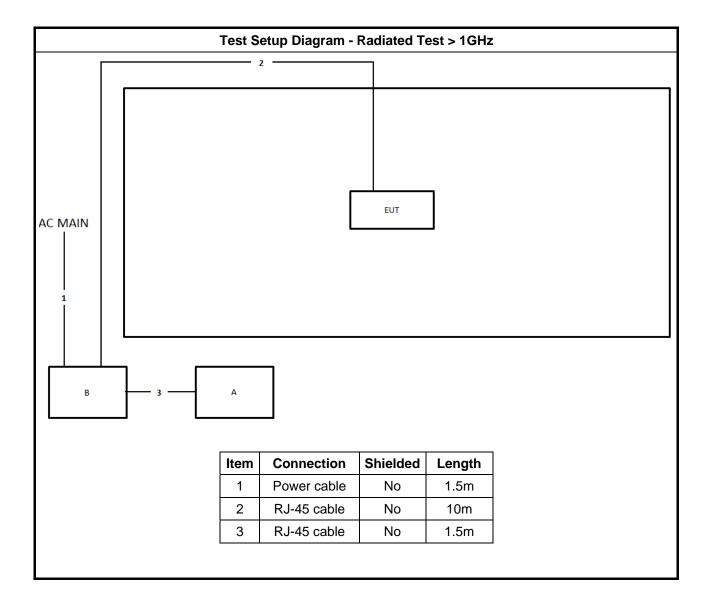

For RF Conducted:

	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	
Α	Notebook	DELL	E4300	N/A	
В	PoE	Microsemi	PD-9001-10GC/AC	N/A	

TEL: 886-3-656-9065 Page Number : 15 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021



2.6 Test Setup Diagram



 TEL: 886-3-656-9065
 Page Number : 16 of 33

 FAX: 886-3-656-9085
 Issued Date : Oct. 27, 2021

TEL: 886-3-656-9065 Page Number : 17 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

TEL: 886-3-656-9065 Page Number : 18 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3 Transmitter Test Result

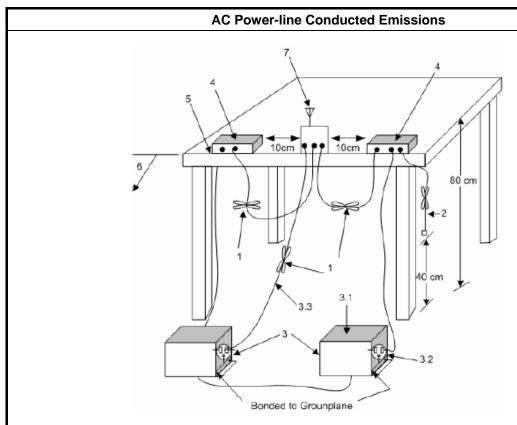
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit		
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm of the frequency.		

Report No. : FR151220-03AE

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

TEL: 886-3-656-9065 Page Number : 19 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3.1.4 **Test Setup**

-Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

Report No.: FR151220-03AE

- The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.
- 3.1—All other equipment powered from additional LISN(s).
- 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment. 3.3—LISN at least 80 cm from nearest part of EUT chassis.
- 4—Non-EUT components of EUT system being tested.
- -Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.
 -Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground
- 7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

Measurement Results Calculation

The measured Level is calculated using:

- Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- Margin = -Limit + Level

Test Result of AC Power-line Conducted Emissions 3.1.6

Refer as Appendix A

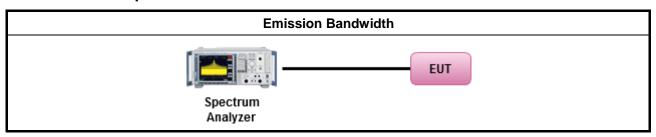
TEL: 886-3-656-9065 Page Number : 20 of 33 FAX: 886-3-656-9085 : Oct. 27, 2021 Issued Date

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit		
Systems using digital modulation techniques:		
■ 6 dB bandwidth ≥ 500 kHz.		

Report No. : FR151220-03AE


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method			
•	For	the emission bandwidth shall be measured using one of the options below:		
	\boxtimes	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.		
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.		
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.		

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 21 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

- If G_{TX} ≤ 6 dBi, then P_{Out} ≤ 30 dBm (1 W)
- Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)$ dBm
- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

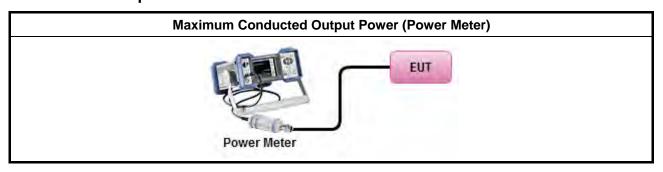
Report No.: FR151220-03AE

 \mathbf{P}_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, \mathbf{G}_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 22 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021


3.3.3 Test Procedures

		Test Method
•	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).
•	Max	imum Conducted Output Power
	[duty	/ cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)
	Mea	surement using a power meter (PM)
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).
•	For	conducted measurement.
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = $P_{total} + DG$

Report No. : FR151220-03AE

TEL: 886-3-656-9065 Page Number : 23 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3.3.4 Test Setup

Report No. : FR151220-03AE

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

 TEL: 886-3-656-9065
 Page Number
 : 24 of 33

 FAX: 886-3-656-9085
 Issued Date
 : Oct. 27, 2021

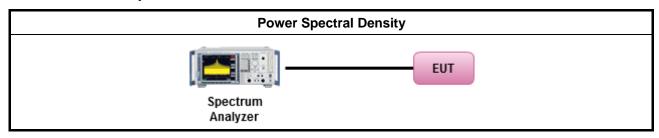
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit ■ Power Spectral Density (PSD) ≤ 8 dBm/3kHz

Report No. : FR151220-03AE

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method		
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).			
	⊠ R	efer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.		
•	For co	nducted measurement.		
	• If	The EUT supports multiple transmit chains using options given below:		
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.		
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,		
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.		

TEL: 886-3-656-9065 Page Number : 25 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3.4.4 Test Setup

Report No. : FR151220-03AE

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

TEL: 886-3-656-9065 Page Number : 26 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

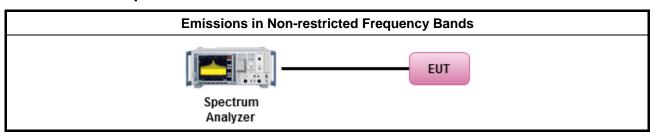
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit		
RF output power procedure	Limit (dBc)	
Peak output power procedure	20	
Average output power procedure	30	

Report No.: FR151220-03AE

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method	
 Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands. 	

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-656-9065 Page Number : 27 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit				
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)	
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300	
0.490~1.705	24000/F(kHz)	33.8 - 23	30	
1.705~30.0	30	29	30	
30~88	100	40	3	
88~216	150	43.5	3	
216~960	200	46	3	
Above 960	500	54	3	

Report No.: FR151220-03AE

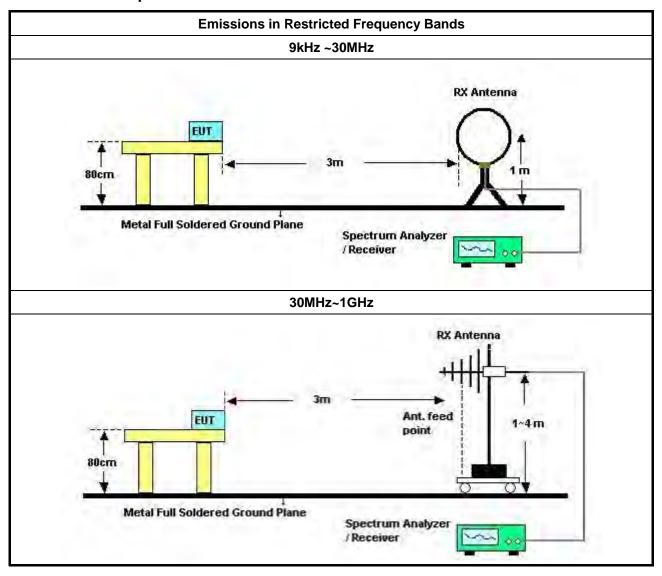
- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the ELIT
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

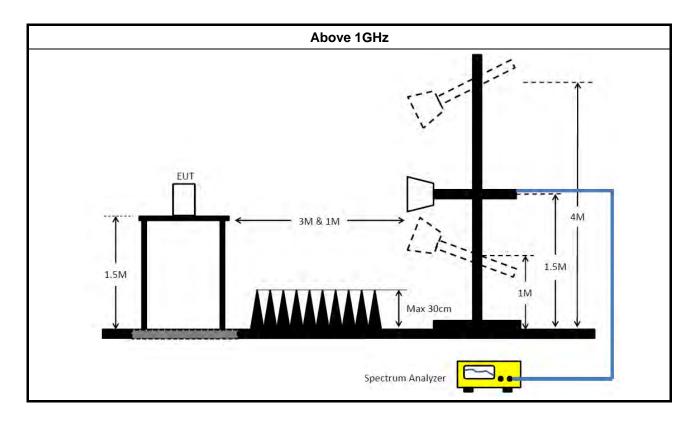
TEL: 886-3-656-9065 Page Number : 28 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3.6.3 Test Procedures


		Test Method	
•	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].	
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.		
•	For	the transmitter unwanted emissions shall be measured using following options below:	
	•	Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands.	
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).	
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).	
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).	
		Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.	
		Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.	
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.	
•	For	the transmitter band-edge emissions shall be measured using following options below:	
	•	Refer as FCC KDB 558074 clause 8.7 & c63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.	
	•	Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.	
	•	Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).	
	•	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB	
	•	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.	

Report No. : FR151220-03AE

TEL: 886-3-656-9065 Page Number : 29 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021



3.6.4 Test Setup

TEL: 886-3-656-9065 Page Number : 30 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-656-9065 Page Number: 31 of 33
FAX: 886-3-656-9085 Issued Date: Oct. 27, 2021

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Characteristics Calibration Date		Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	kHz ~ 30MHz Dec. 04, 2020		Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 20, 2020	Nov. 19, 2021	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	May 05, 2021	May 04, 2022	Conduction (CO02-CB)
COND Cable	Woken	Cable	2	0.15MHz ~ 30MHz	Oct. 20, 2020	Oct. 19, 2021	Conduction (CO02-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO02-CB)
Pulse Limiter	Schwarzbeck	VTSD 9561F-N	00378	9kHz ~ 30MHz	Mar. 18, 2021	Mar. 17, 2022	Conduction (CO02-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH01-CB	30 MHz ~ 1 GHz	Jan. 26, 2021	Jan. 25, 2022	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Apr. 14, 2021	Apr. 13, 2022	Radiation (03CH01-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH01-CB	1GHz ~18GHz 3m	May 07, 2021	May 06, 2022	Radiation (03CH01-CB)
BILOG ANTENNA with 6dB Attenuator	TESEQ & EMCI	CBL6112D N-6-06	37880 & AT-N0609	20MHz ~ 2GHz	Feb. 22, 2021	Feb. 21, 2022	Radiation (03CH01-CB)
Horn Antenna	ETS-LINDGR EN	3115	00075790	750MHz ~ 18GHz	Nov. 06, 2020	Nov. 05, 2021	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2020	Jul. 20, 2021	Radiation (03CH01-CB)
Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	Jul. 03, 2020	Jul. 02, 2021	Radiation (03CH01-CB)
Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	Jul. 02, 2021	Jul. 01, 2022	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02121	1GHz ~ 26.5GHz	May 20, 2021	May 19, 2022	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 08, 2020	Jul. 07, 2021	Radiation (03CH01-CB)
Amplifier	-	-	TF-130N-R1	18GHz ~ 40GHz	18GHz ~ 40GHz Jun.15, 2021		Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz		May 02, 2022	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESR7	102171	9kHz ~ 7GHz Jul. 01, 2020		Jun. 30, 2021	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz Jun. 21, 2021		Jun. 20, 2022	Radiation (03CH01-CB)
RF Cable-low	Woken	RG402	Low Cable-16+17	30 MHz ~ 1 GHz	30 MHz ~ 1 GHz Oct. 05, 2020 O		Radiation (03CH01-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number : 32 of 33 Issued Date : Oct. 27, 2021

Report Version : 02

Report No. : FR151220-03AE

Instrument	Brand	Model No.	Serial No.	Characteristics Calibration Date		Calibration Due Date	Remark
RF Cable-low	Woken	RG402	Low Cable-16+17	30 MHz ~ 1 GHz	Oct. 04, 2021	Oct. 03, 2022	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16	1 GHz ~ 18 GHz	1 GHz ~ 18 GHz Oct. 05, 2020		Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16+17	1 GHz ~ 18 GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	Jul. 16, 2020	Jul. 15, 2021	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz	Jul. 16, 2020	Jul. 15, 2021	Radiation (03CH01-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	101027	9kHz~40GHz	Jul. 27, 2020	Jul. 26, 2021	Conduction (TH02-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Sep. 17, 2020	Sep. 16, 2021	Conduction (TH02-CB)
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Sep. 17, 2020	Sep. 16, 2021	Conduction (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-01	1 GHz – 18 GHz	Oct. 05, 2020	Oct. 04, 2021	Conduction (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-02	1 GHz – 18 GHz	Oct. 05, 2020	Oct. 04, 2021	Conduction (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-03	1 GHz – 18 GHz	GHz – 18 GHz Oct. 05, 2020		Conduction (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-04	1 GHz – 18 GHz	Oct. 05, 2020	Oct. 04, 2021	Conduction (TH02-CB)
RF Cable-high	Woken	RG402	High Cable-05	1 GHz – 18 GHz Oct. 05, 2020		Oct. 04, 2021	Conduction (TH02-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (TH02-CB)

Note: Calibration Interval of instruments listed above is one year.

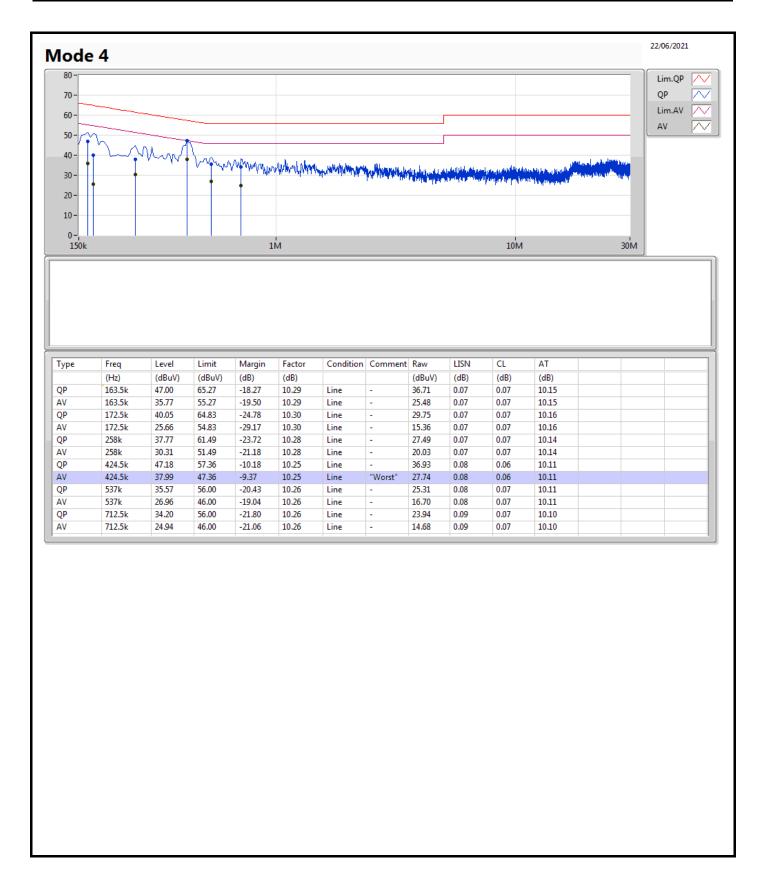
N.C.R. means Non-Calibration required.

TEL: 886-3-656-9065 Page Number : 33 of 33 FAX: 886-3-656-9085 Issued Date : Oct. 27, 2021

Conducted Emissions at Powerline

Appendix A

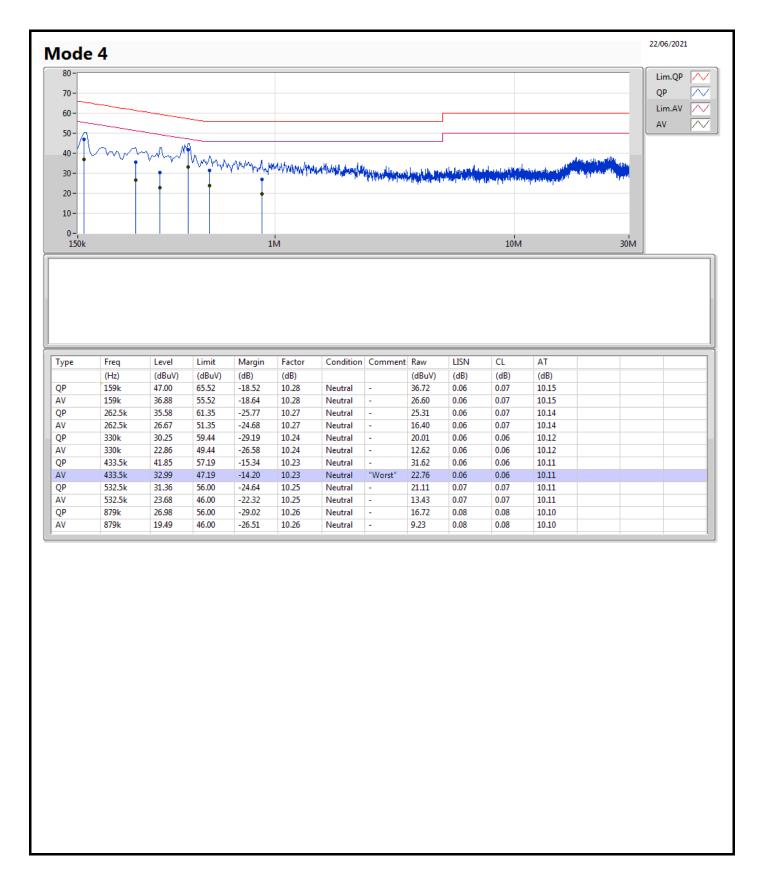
Summary


Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition
Mode 4	Pass	AV	424.5k	37.99	47.36	-9.37	Line

Sporton International Inc. Hsinchu Laboratory

Page No. : 1 of 3

Report No. : FR151220-03AE



Page No. : 2 of 3

Report No. : FR151220-03AE

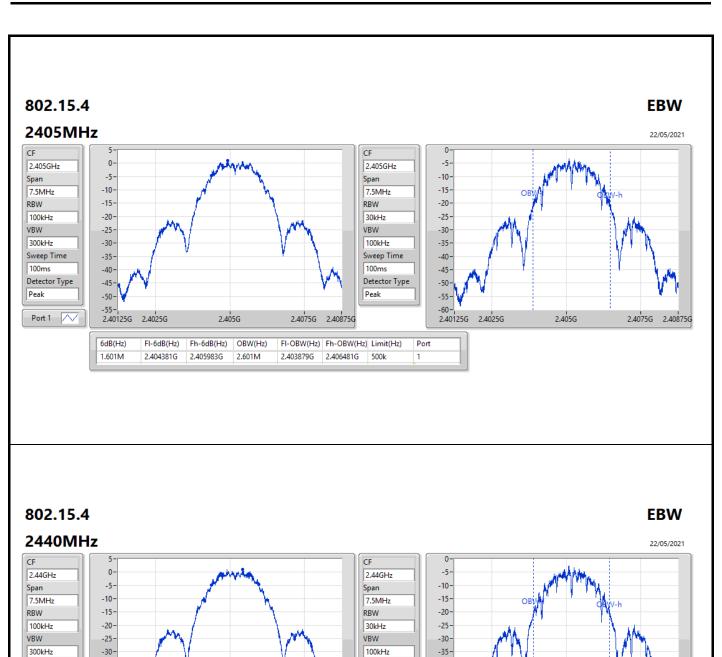
Page No. : 3 of 3

Report No. : FR151220-03AE

For Radio 4 Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
802.15.4	1.605M	2.601M	2M60D1D	1.586M	2.556M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;


Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 4

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
802.15.4	-	-	-	-
2405MHz	Pass	500k	1.601M	2.601M
2440MHz	Pass	500k	1.586M	2.556M
2475MHz	Pass	500k	1.605M	2.564M
2480MHz	Pass	500k	1.59M	2.582M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Sweep Time

Detector Type

100ms

Peak

-40-

-45-

-50

2.43625G	2.4375G	2.44	IG	2.4425G	2.44375G			2.43625G	2.
6dB(Hz)	FI-6dB(Hz)	Fh-6dB(Hz)	OBW(Hz)	FI-OBW(Hz)	Fh-OBW(Hz)	Limit(Hz)	Port		
1.586M	2.439389G	2.440975G	2.556M	2.438902G	2.441458G	500k	1		

Sweep Time

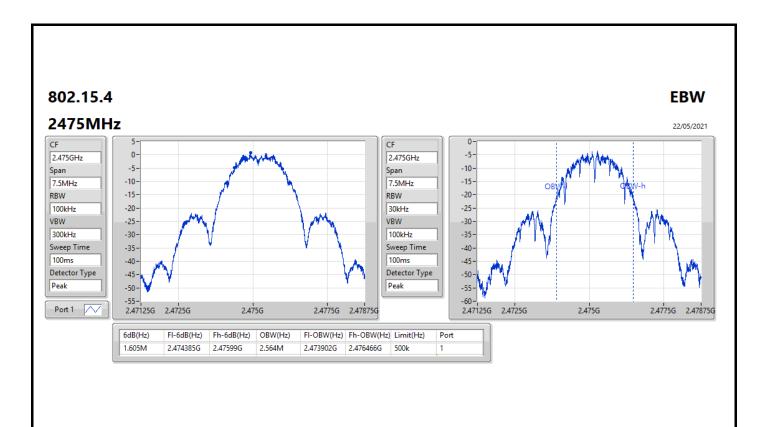
Detector Type

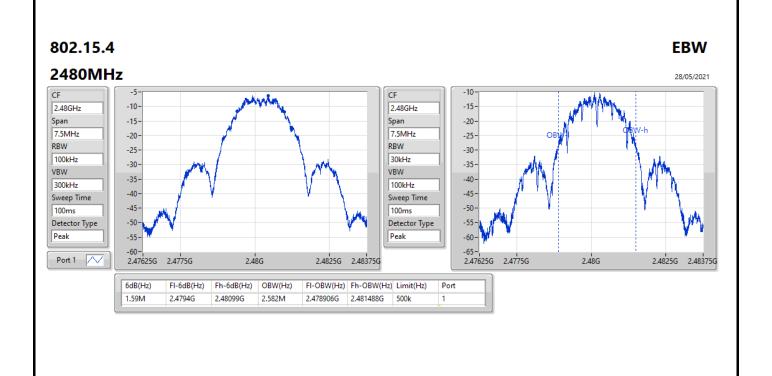
Port 1 /

100ms

Peak

-35-


-40


-45

Page No. : 3 of 4
Report No. : FR151220-03AE

2.44G

2.4425G 2.44375G

Page No. : 4 of 4

Average Power-DTS

Appendix C

For Radio 4 Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
802.15.4	4.47	0.00280

Sporton International Inc. Hsinchu Laboratory

Page No. : 1 of 2

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
802.15.4	-	-	-	-
2405MHz	Pass	5.26	4.47	30.00
2440MHz	Pass	5.26	4.10	30.00
2475MHz	Pass	5.26	3.89	30.00
2480MHz	Pass	5.26	-3.18	30.00

DG = Directional Gain; **Port X** = Port X output power

PSD-DTS Appendix D

For Radio 4 Summary

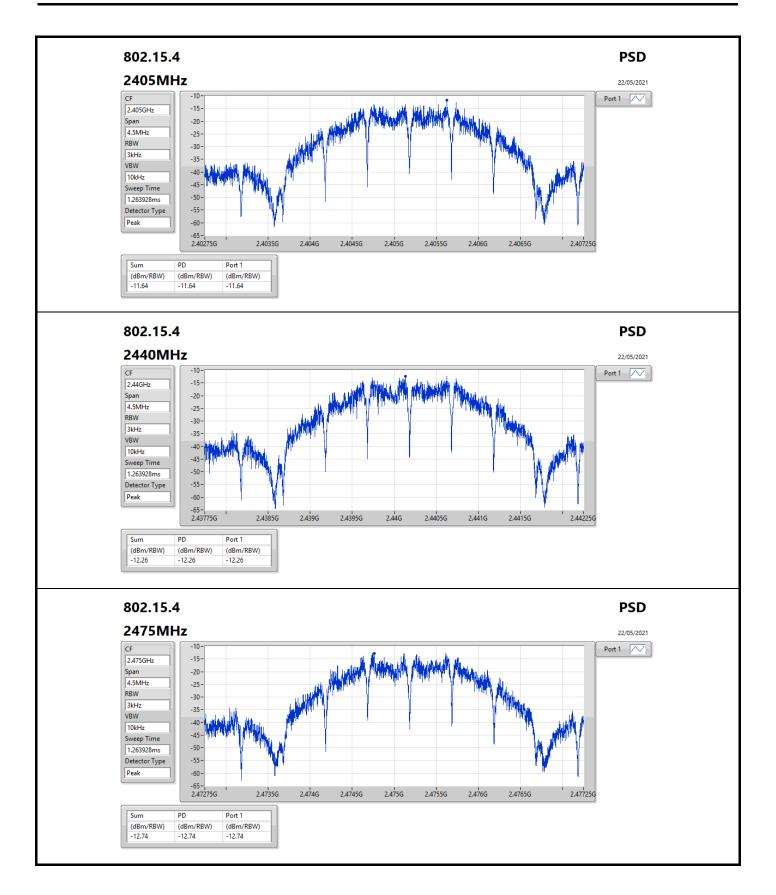
Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
802.15.4	-11.64

RBW=3 kHz.

Sporton International Inc. Hsinchu Laboratory

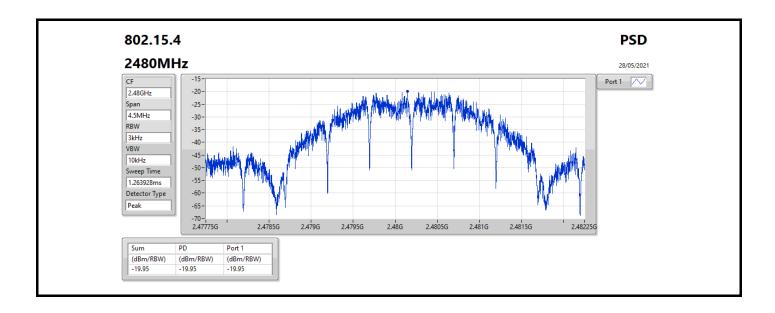
Page No. : 1 of 4

Appendix D **PSD-DTS**


Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
802.15.4	-	-	-	-
2405MHz	Pass	5.26	-11.64	8.00
2440MHz	Pass	5.26	-12.26	8.00
2475MHz	Pass	5.26	-12.74	8.00
2480MHz	Pass	5.26	-19.95	8.00

Sporton International Inc. Hsinchu Laboratory Page No. : 2 of 4


DG = Directional Gain; RBW=3 kHz;
PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X power density;

PSD-DTS Appendix D

Page No. : 3 of 4

PSD-DTS Appendix D

Page No. : 4 of 4

CSE-DTS(Non-restricted Band)

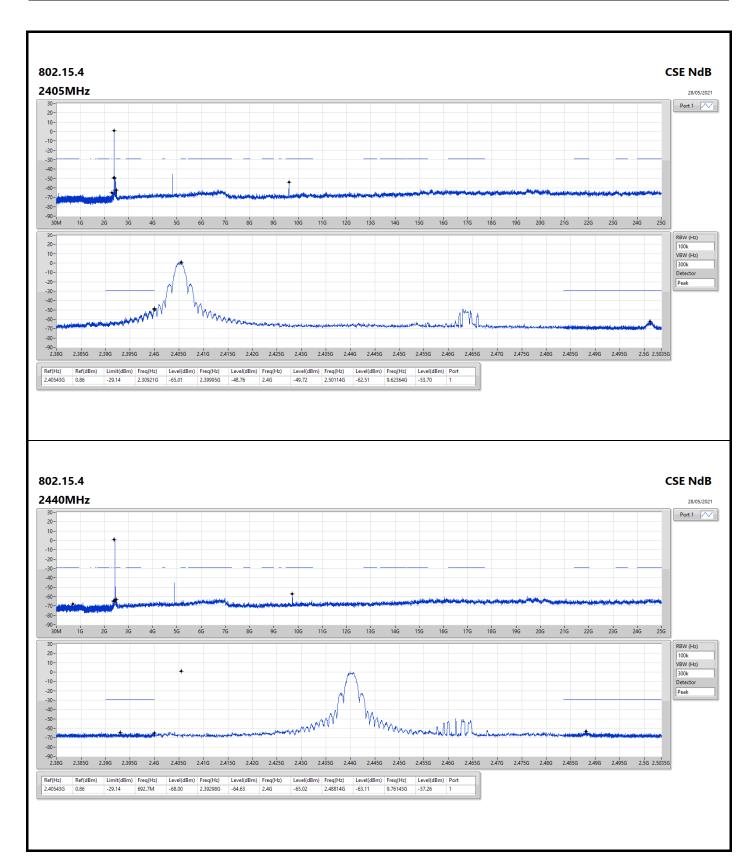
Appendix E

For Radio 4 Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz		-							-	•	-			•	-
802.15.4	Pass	2.40543G	0.86	-29.14	58.79M	-66.67	2.3926G	-66.90	2.4835G	-48.81	2.48351G	-48.64	5.17496G	-46.31	1

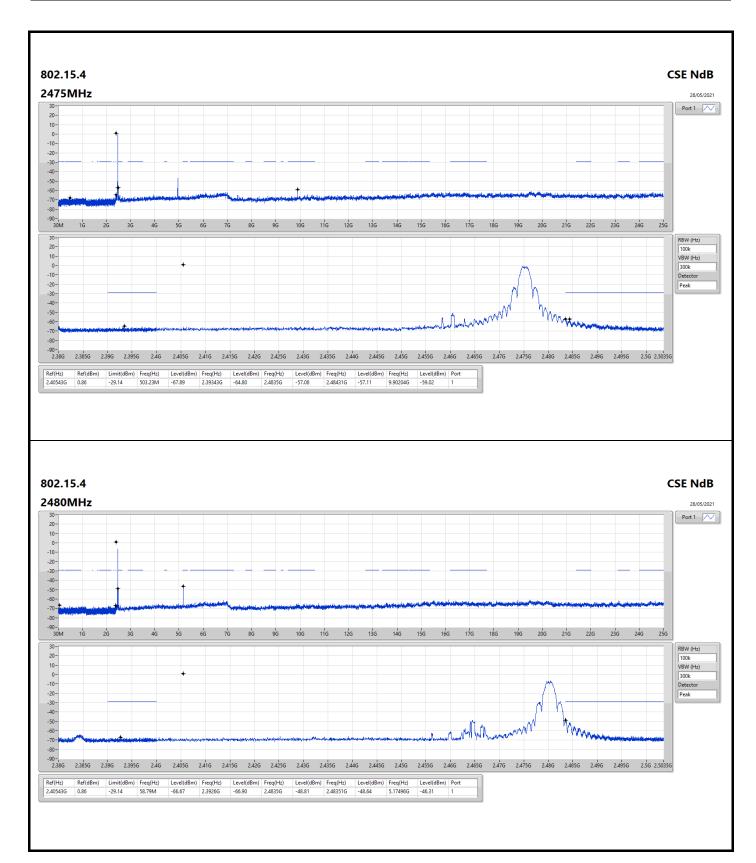
Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 4

CSE-DTS(Non-restricted Band)


Appendix E

Result

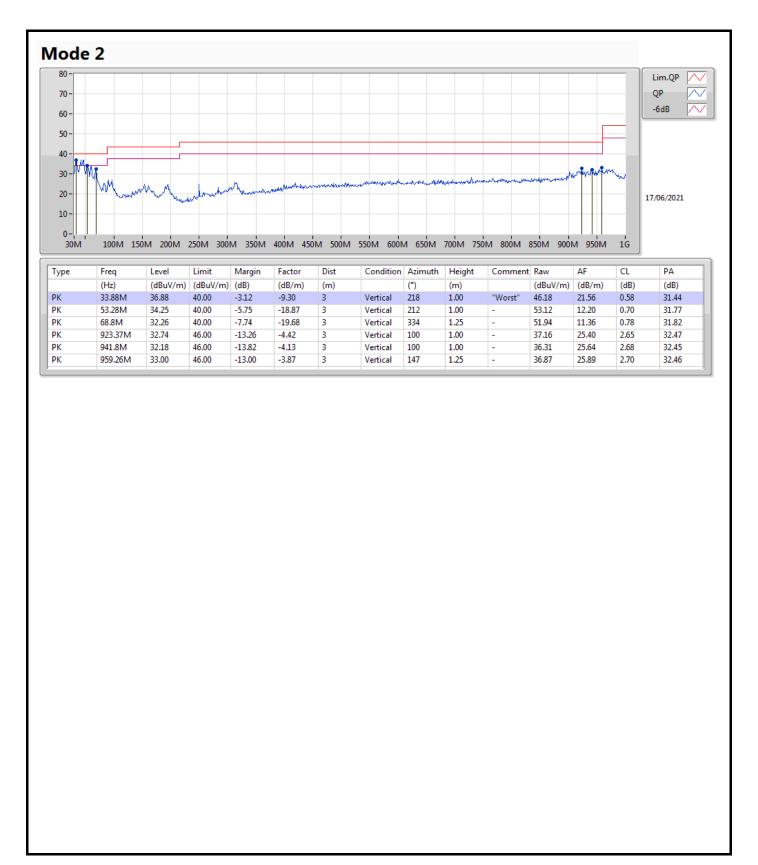
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
802.15.4	-	-		-	-		-	-	-	-	-	-	-		-
2405MHz	Pass	2.40543G	0.86	-29.14	2.30921G	-65.01	2.39995G	-48.76	2.4G	-49.72	2.50114G	-62.51	9.62364G	-53.70	1
2440MHz	Pass	2.40543G	0.86	-29.14	692.7M	-68.00	2.39298G	-64.63	2.4G	-65.02	2.48814G	-63.11	9.76143G	-57.26	1
2475MHz	Pass	2.40543G	0.86	-29.14	503.23M	-67.89	2.39343G	-64.80	2.4835G	-57.08	2.48431G	-57.11	9.90204G	-59.02	1
2480MHz	Pass	2.40543G	0.86	-29.14	58.79M	-66.67	2.3926G	-66.90	2.4835G	-48.81	2.48351G	-48.64	5.17496G	-46.31	1


Sporton International Inc. Hsinchu Laboratory Page No. : 2 of 4

Page No. : 3 of 4

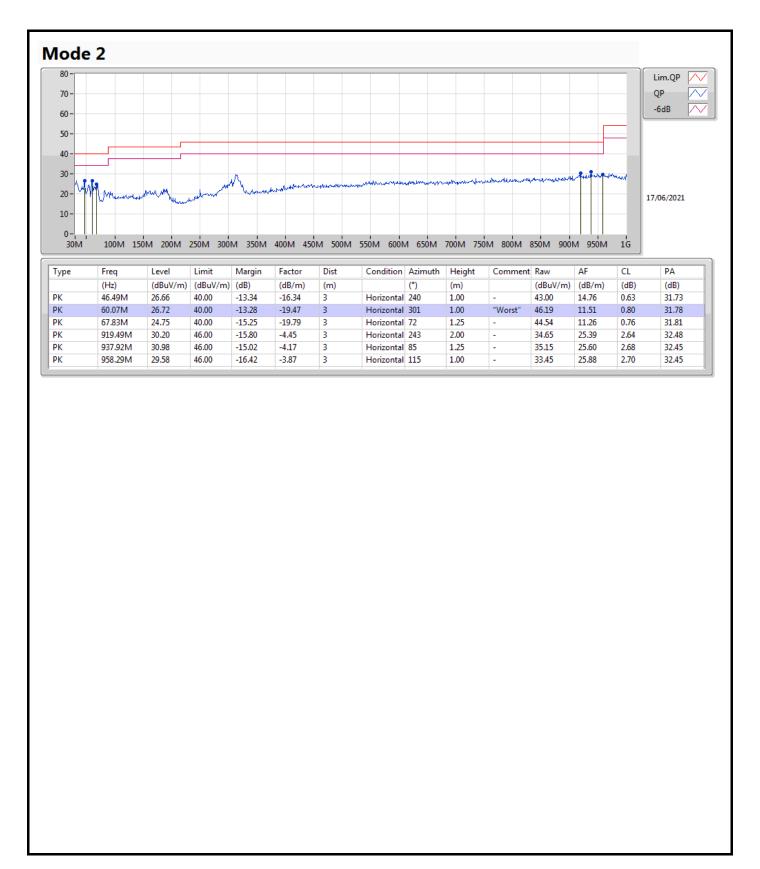
Page No. : 4 of 4

Radiated Emissions below 1GHz


Appendix F.1

Summary

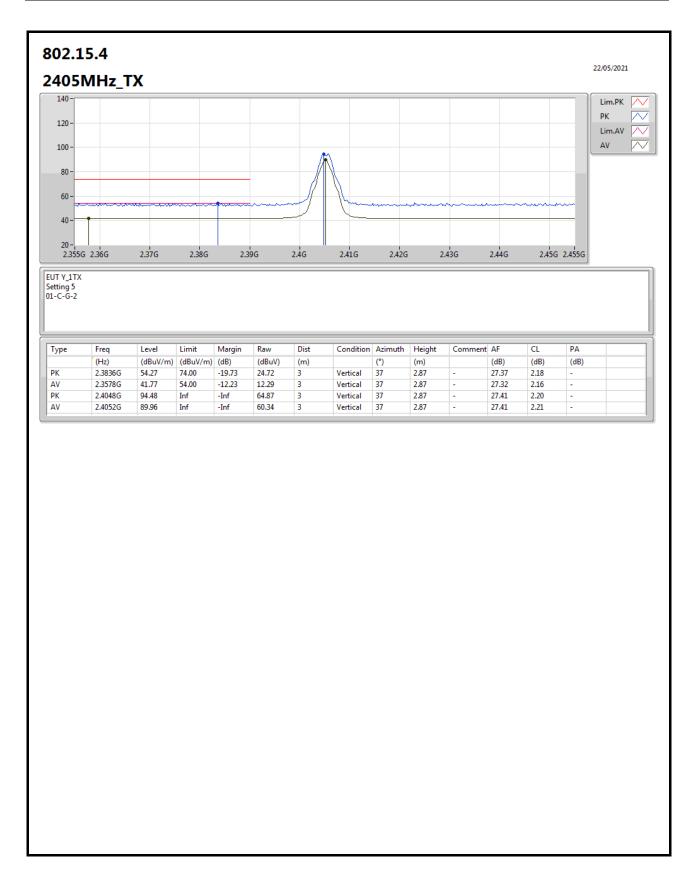
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 2	Pass	PK	33.88M	36.88	40.00	-3.12	Vertical


Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3

Page No. : 2 of 3

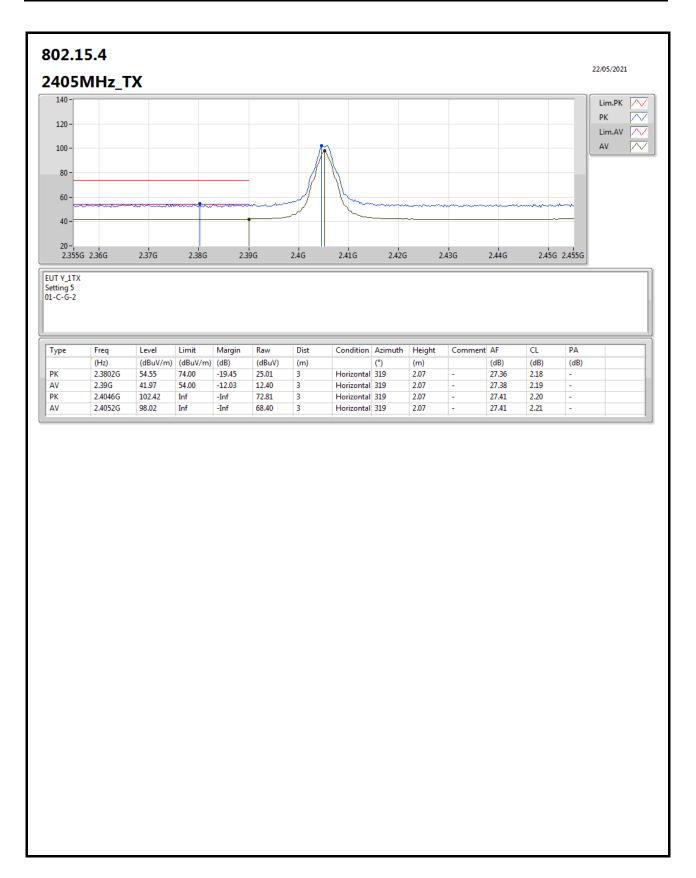
Page No. : 3 of 3

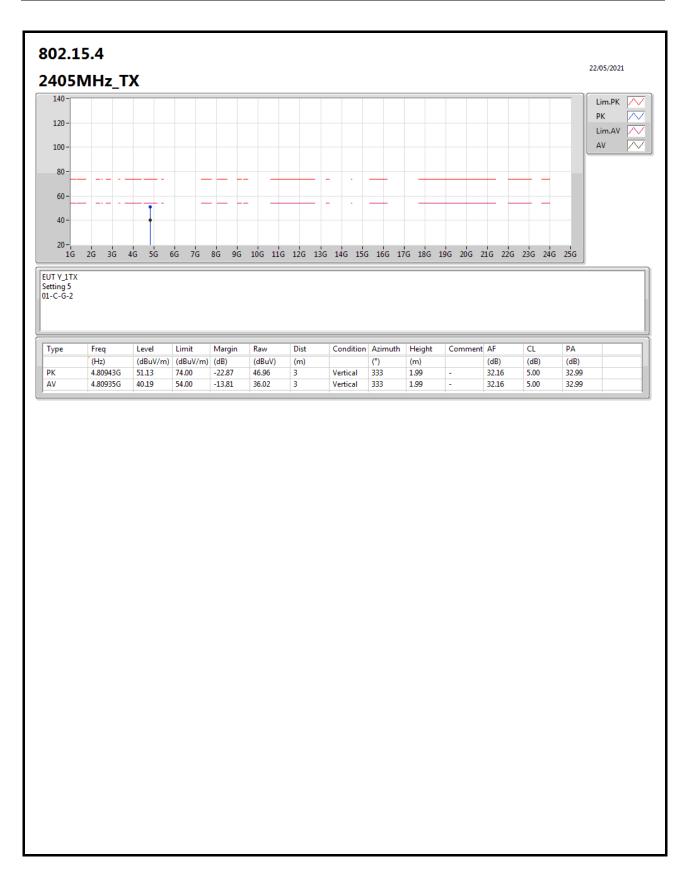
RSE TX above 1GHz

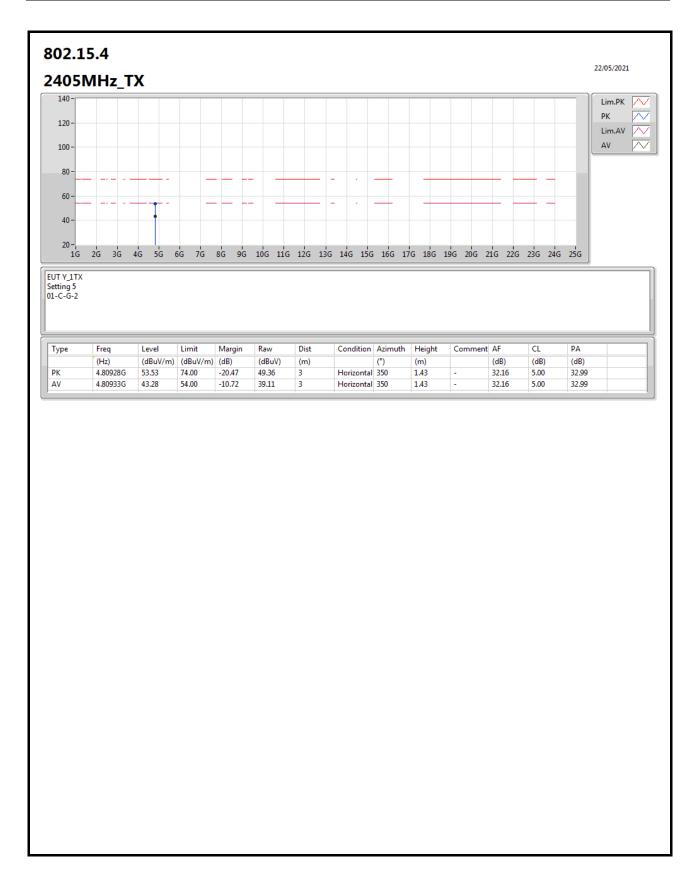

Appendix F.2

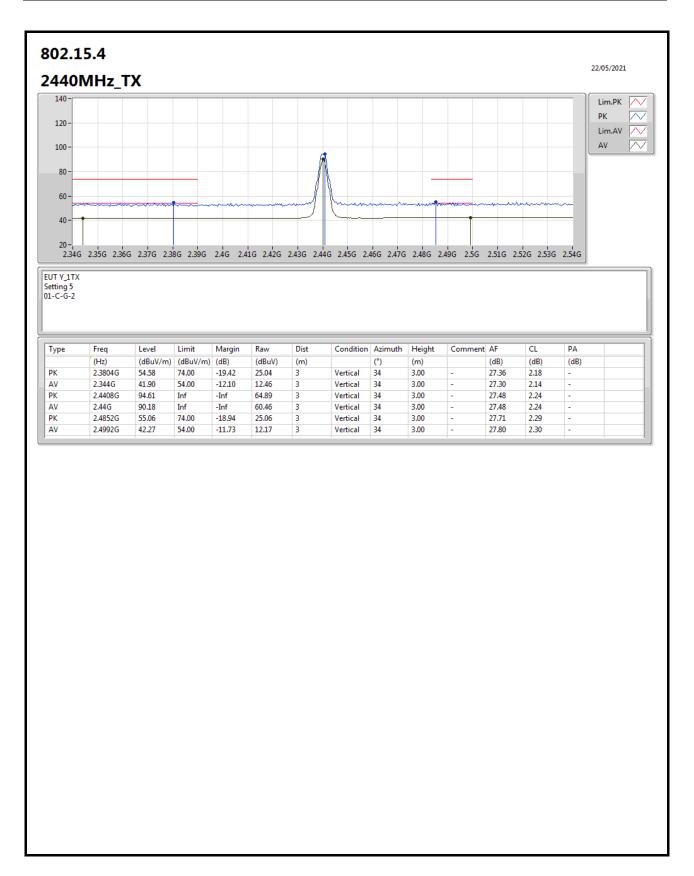
For Radio 4 Summary

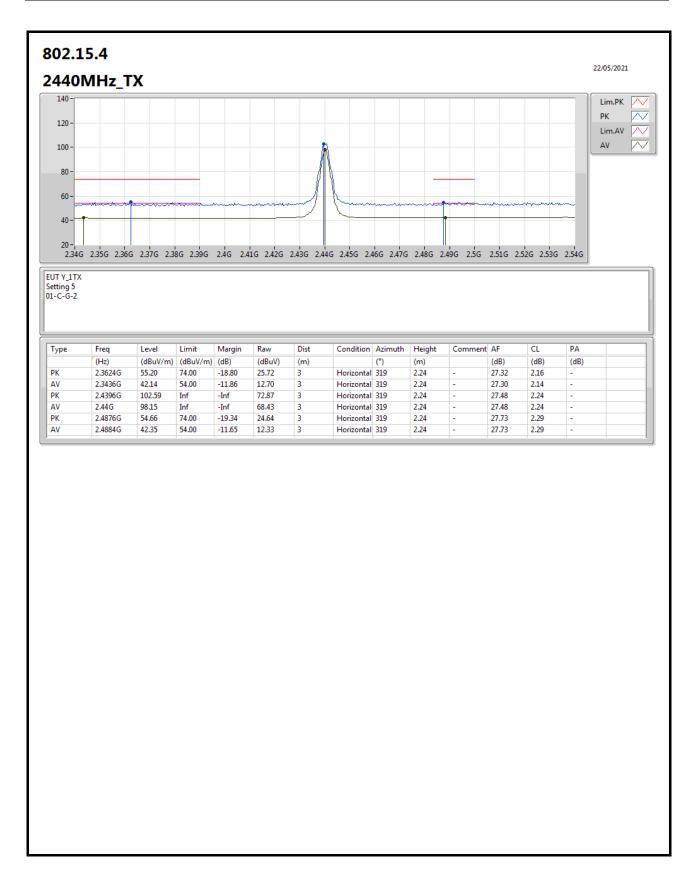
Mode	Result	Туре	Freq	Level	Limit	Margin	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-		-	-	-	-	-	-	-	-	-
802.15.4	Pass	AV	2.4835G	52.45	54.00	-1.55	3	Horizontal	312	1.69	-

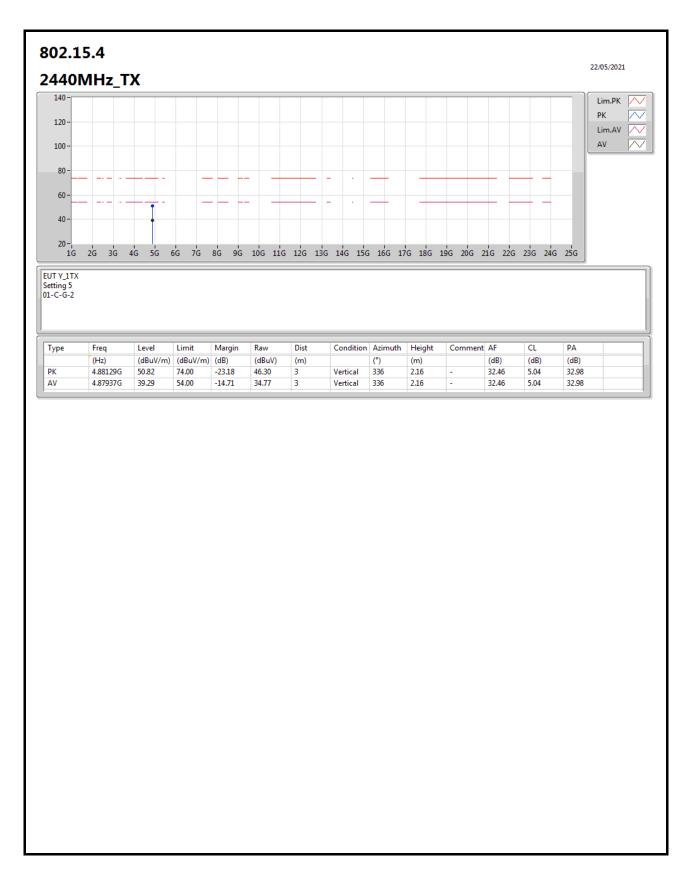

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 17

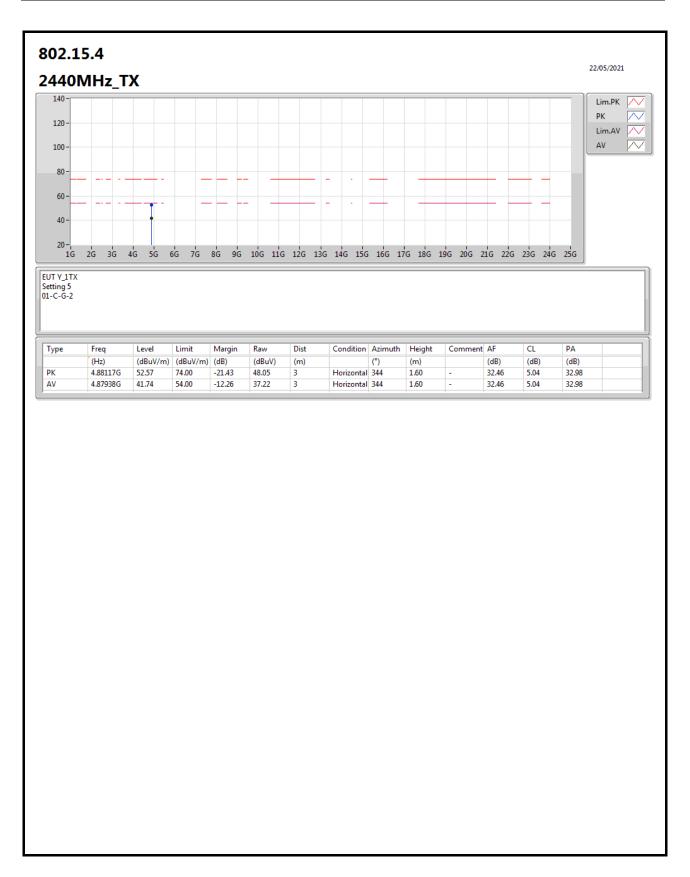

Page No. : 2 of 17

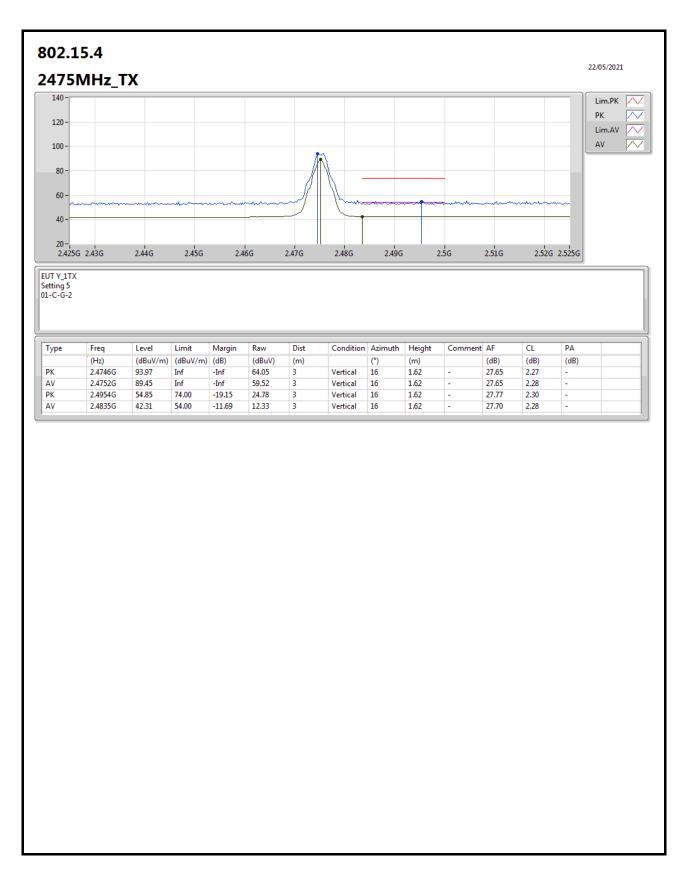

Page No. : 3 of 17

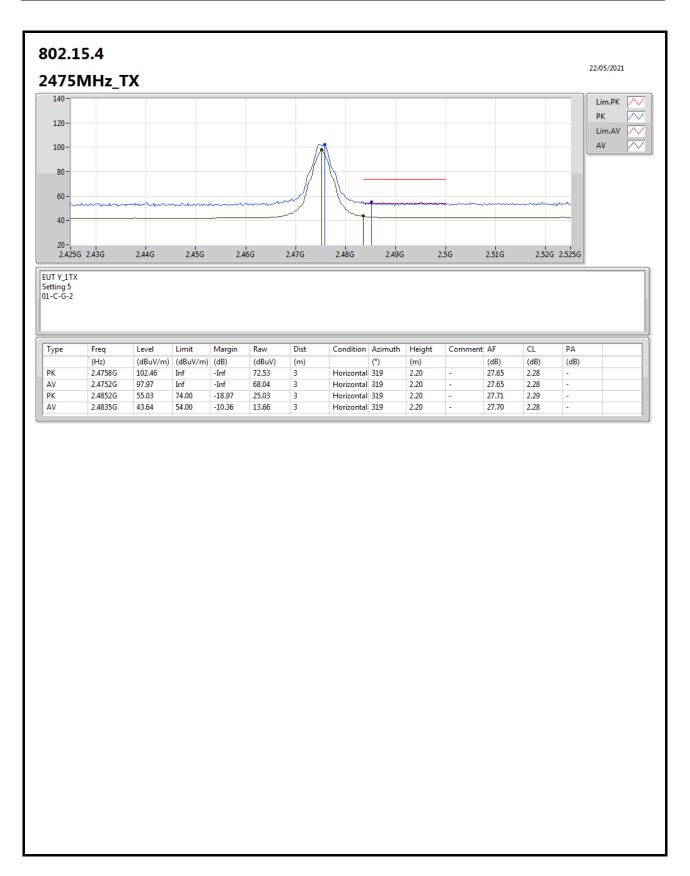

Page No. : 4 of 17

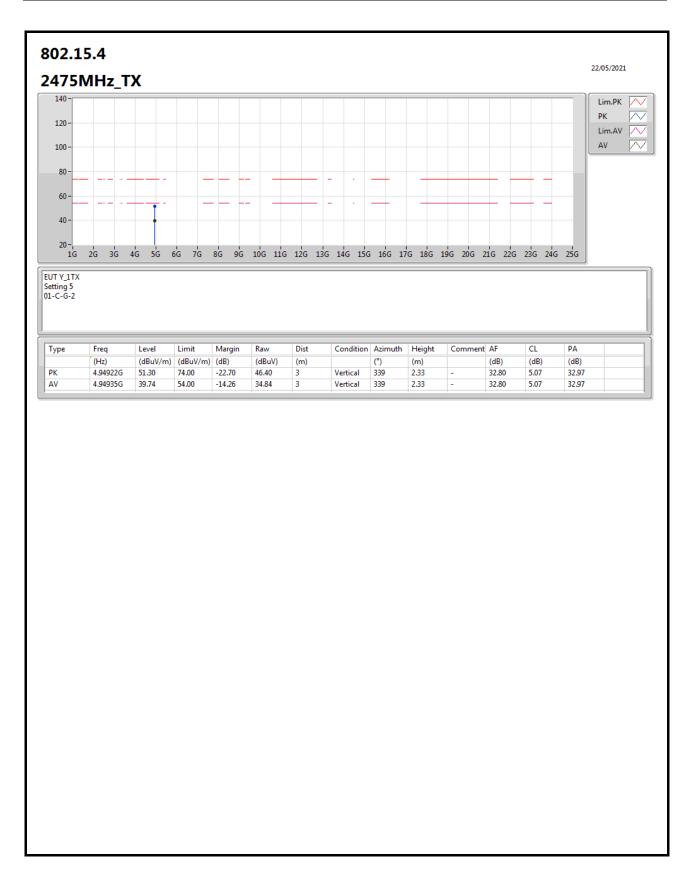

Page No. : 5 of 17

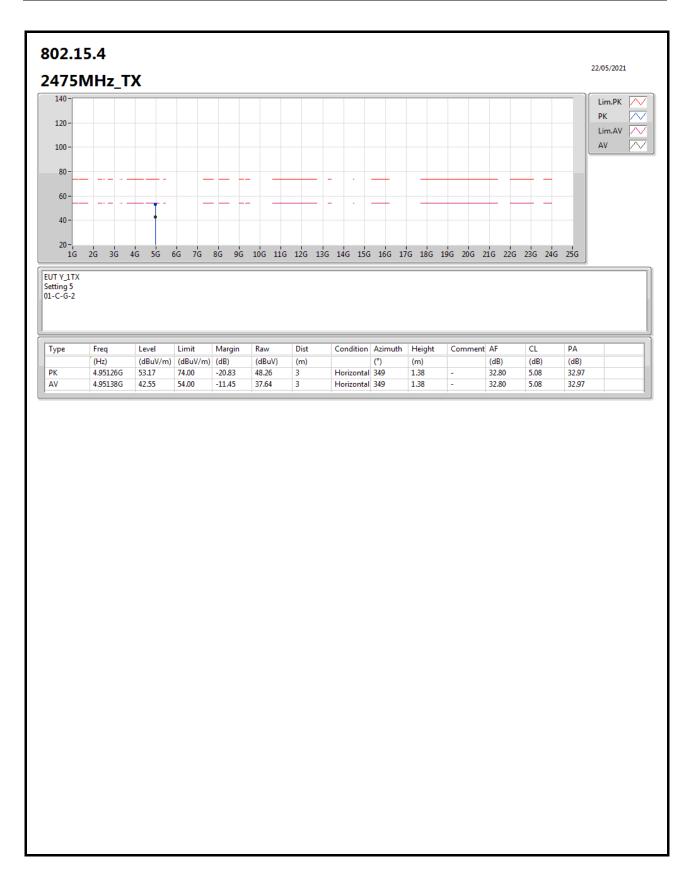

Page No. : 6 of 17

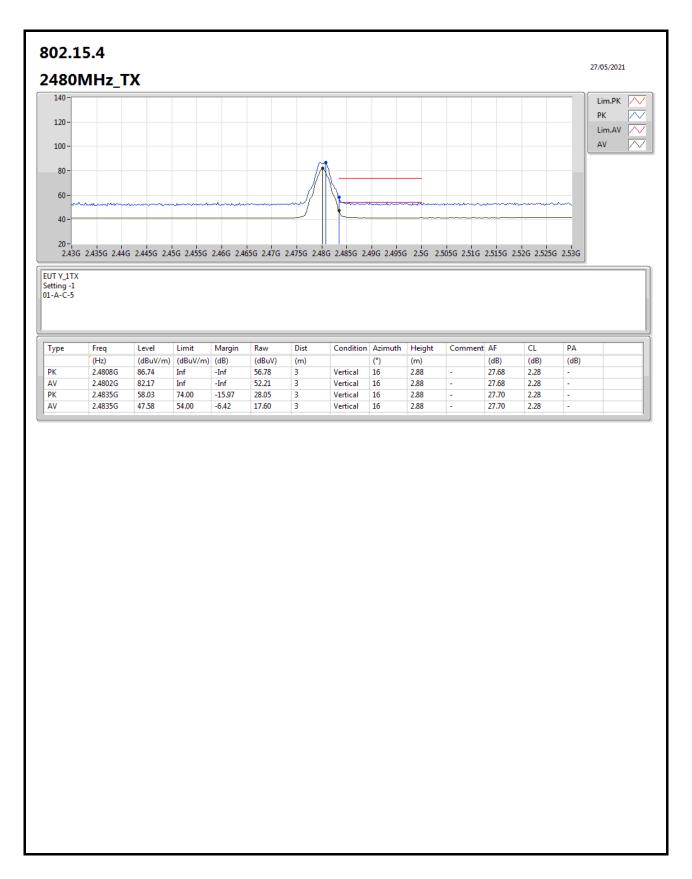

Page No. : 7 of 17

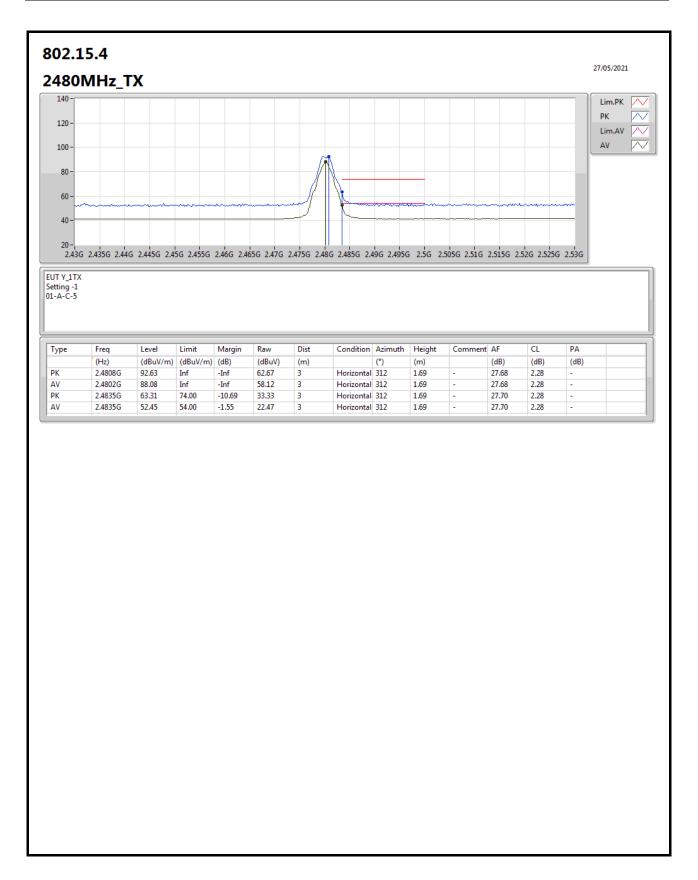

Page No. : 8 of 17

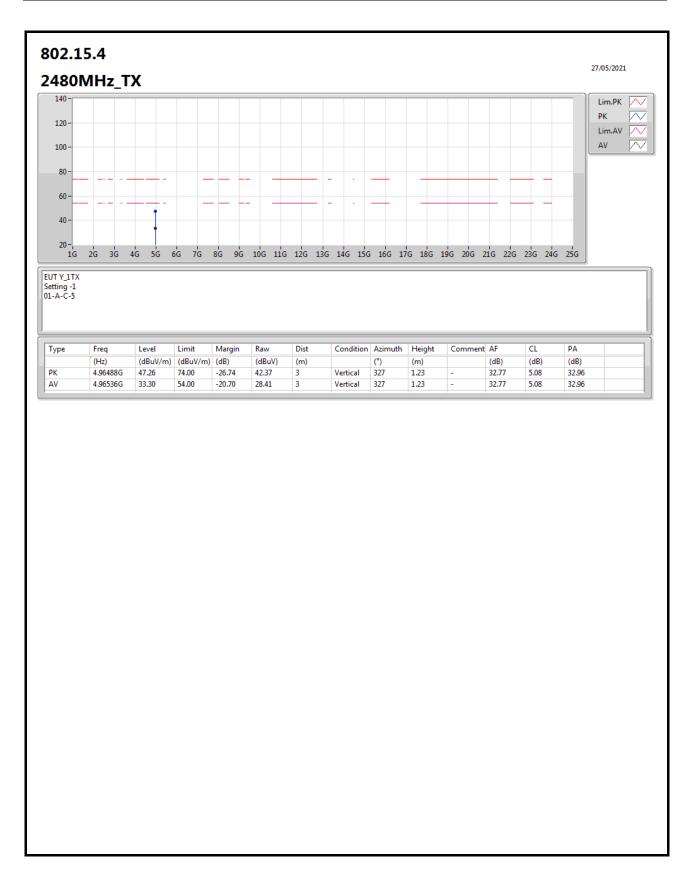

Page No. : 9 of 17

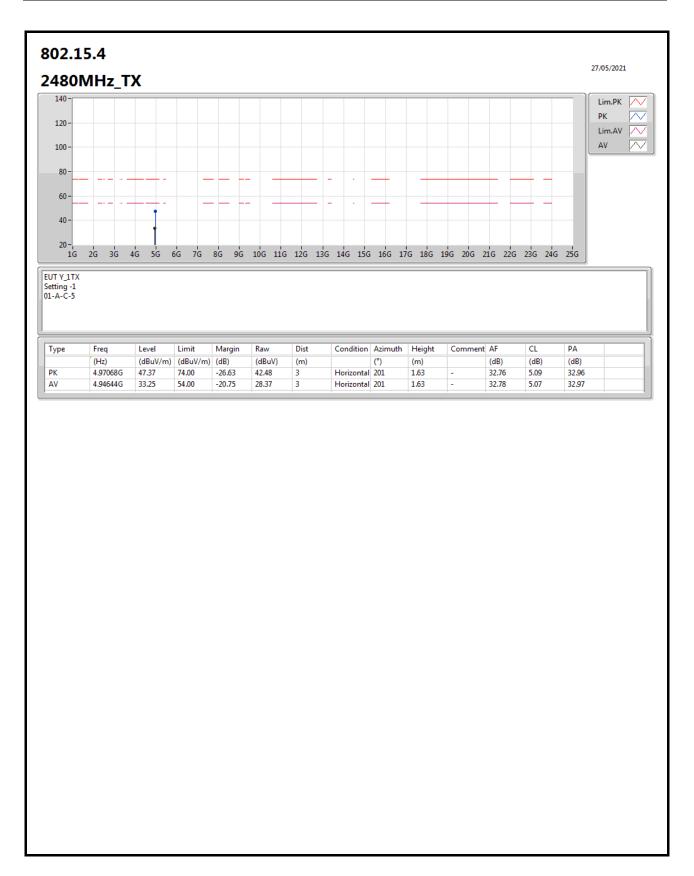

Page No. : 10 of 17 Report No. : FR151220-03AE


Page No. : 11 of 17


Page No. : 12 of 17


Page No. : 13 of 17


Page No. : 14 of 17


Page No. : 15 of 17 Report No. : FR151220-03AE

Page No. : 16 of 17

Page No. : 17 of 17 Report No. : FR151220-03AE