

RF Exposure Report

Report No.: MFBCKS-WTW-P21030822A

FCC ID: UDX-60083011

Test Model: MR56-HW

Received Date: 2018/7/5

Test Date: 2018/10/18 ~ 2018/10/19; 2022/8/26

Issued Date: 2022/11/3

Applicant: Cisco Systems, Inc.

Address: 170 West Tasman Drive, San Jose, CA 95134 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwar

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration / Designation Number:

723255 / TW2022

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: MFBCKS-WTW-P21030822A Page No. 1 / 9
Reference No.: BCKS-WTW-P22080160

Table of Contents

Relea	se Control Record	. 3
1	Certificate of Conformity	. 4
2	RF Exposure	. 5
2.1	Limits for Maximum Permissible Exposure (MPE)	. 5
	MPE Calculation Formula	
	Classification	
	Antenna Gain	
2.1	Calculation Result of Maximum Conducted Power	. 8

Release Control Record

Issue No.	Description	Date Issued
MFBCKS-WTW-P21030822A	Original release.	2022/11/3

Report No.: MFBCKS-WTW-P21030822A Page No. 3 / 9 Report Format Version: 6.1.1 Reference No.: BCKS-WTW-P22080160

1 Certificate of Conformity

Product: 8x8 Wi-Fi 6 Access Point

Brand: Cisco

Test Model: MR56-HW

Sample Status: Engineering sample

Applicant: Cisco Systems, Inc.

Test Date: 2018/10/18 ~ 2018/10/19 ; 2022/8/26

FCC Rule Part: FCC Part 2 (Section 2.1091)

Standard: KDB 447498 D01 General RF Exposure Guidance v06

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	VITO	Lung	, Date:	2022/11/3	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	U			

Vito Lung / Specialist

May Chen / Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)				
	Limits For General Population / Uncontrolled Exposure							
0.3-1.34	614	1.63	(100)*	30				
1.34-30	824/f	2.19/f	(180/f ²)*	30				
30-300	27.5	0.073	0.2	30				
300-1500			f/1500	30				
1500-100,000			1.0	30				

f = Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 34cm away from the body of the user. So, this device is classified as **Mobile Device**.

Report No.: MFBCKS-WTW-P21030822A Reference No.: BCKS-WTW-P22080160

2.4 Antenna Gain

Antenna No.	Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Connecter Type
	5.44	2.4~2.4835		
Duel Ant 1	4.88	5.15~5.25		
Dual_Ant 1 — (Red) —	5.45	5.25~5.35	PIFA	i-pex
(rtca)	5.54	5.47~5.725		
	5.87	5.725~5.85		
	4.67	2.4~2.4835		
Dual Ant O	6.2	5.15~5.25		
Dual_Ant 2 — (Orange) —	6.44	5.25~5.35	PIFA	i-pex
(Orange)	5.69	5.47~5.725		
	6.39	5.725~5.85		
	4.9	2.4~2.4835		
	5.18	5.15~5.25		
Dual_Ant 3 (Yellow)	5.94	5.25~5.35	PIFA	i-pex
(Tellow)	5.34	5.47~5.725		
	5.58	5.725~5.85		
	5.54	2.4~2.4835		
	5.25	5.15~5.25		
Dual_Ant 4	5.5	5.25~5.35	PIFA	i-pex
(Green)	4.27	5.47~5.725		
	5.16	5.725~5.85		
	5.35	5.15~5.25		i-pex
5G_Ant 1	5.28	5.25~5.35	DIEA	
(Blue)	4.96	5.47~5.725	PIFA	
	5.66	5.725~5.85		
	5.95	5.15~5.25		
5G_Ant 2	5.81	5.25~5.35	DIEA	
(White)	5.29	5.47~5.725	PIFA	i-pex
	5.57	5.725~5.85		
	4.65	5.15~5.25		
5G_Ant 3	5.4	5.25~5.35	DIE A	
(Grey)	4.92	5.47~5.725	PIFA	i-pex
	4.27	5.725~5.85		
	5.67	5.15~5.25		
5G_Ant 4	5.19	5.25~5.35	DIE A	
(Black)	5.8	5.47~5.725	PIFA	i-pex
	5.7	5.725~5.85		
	3.69	2.4~2.4835		
	5.43	5.15~5.25		
Scanning Ant.	4.97	5.25~5.35	PIFA	i-pex
	4,71	5.47~5.725		·
	5.01	5.725~5.85		
Bluetooth Ant.	3.61	2.4~2.4835	PIFA	i-pex

			Directional (gain tabl	e – 81X				
Frequency range (GHz)		Directional Antenna Gain (dBi)		Antenna Type		Antenna Connector			
5.15 ~ 5.2	25	9.29	9						
5.25 ~ 5.3	35	9.34		PIFA		' (AALIE)			
5.47 ~ 5.7	'25	8.88					i-pex(MHF)		
5.725 ~ 5.	.85	9.2							
		WLAN	Directional (gain tabl	e – 4TX				
Frequency range (GHz)	Frequency range (GHz) Antenna Combine Type			_	ctional Gain (dBi)	Antenna Type		Antenna Connector	
2.4 ~ 2.4835	Dual_	Dual_1+Dual_2+Dual_3+Dual_4			6.57				
5.15 ~ 5.25				1	0.73				
5.25 ~ 5.35	Cinala 4	-Single_2+Single_3+Single_4		1	0.71 F		PIFA	i-pex(MHF)	
5.47 ~ 5.725	Single_1+			1	0.33				
5.725 ~ 5.85				1	0.68	38			
		WLAN	Directional	gain tabl	e – 2TX				
Frequency range (GHz)	ge Ant	enna Combine Type	Directional A Gain (d		Antenn	а Туре	Ante	enna Connector	
2.4 ~ 2.4835	Du	ıal_1+Dual_3	6.33	}					
5.15 ~ 5.25		8.47 8.92		•	PIFA				
5.25 ~ 5.35								i-pex(MHF)	
5.47 ~ 5.725		ual_2+Dual_3 8.16 8.59		1					
5.725 ~ 5.85									
Bluetooth antenna spec.									
Antenna Net (dBi)	t Gain	Frequenc (GH		Antenna Type		Э	Antenna Connecto		
3.61		2.4~2.4		PIFA			i-pex(MHF)		

^{*} Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2.5 Calculation Result of Maximum Conducted Power

All Max Power (expect Bluetooth) was refer to the original FCC ID: UDX-60083010

All Max Power	(expect Bluetoo	in) was refer to	tne original FCC	1D: 0DX-6008	3010	
Operation Mode	Evaluation Frequency (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
WLAN 2.4GHz (4TX)	2437	864.55	6.57	34	0.27016	1
WLAN 2.4GHz (2TX)	2437	456.82	6.33	34	0.13508	1
WLAN 2.4GHz (1TX)	2437	204.174	5.54	34	0.05033	1
WLAN U-NII-1 (8TX)	5180	432.724	9.29	34	0.25295	1
WLAN U-NII-1 (4TX)	5230	430.677	10.73	34	0.35074	1
WLAN U-NII-1 (2TX)	5200	376.099	8.47	34	0.18203	1
WLAN U-NII-1 (1TX)	5200	224.905	6.2	34	0.06454	1
WLAN U-NII-2A (8TX)	5290	112.582	9.34	34	0.06657	1
WLAN U-NII-2A (4TX)	5270	156.395	10.71	34	0.12678	1
WLAN U-NII-2A (2TX)	5270	224.418	8.92	34	0.12047	1
WLAN U-NII-2A (1TX)	5300	110.662	6.44	34	0.03356	1
WLAN U-NII-2C (8TX)	5550	127.845	8.88	34	0.06800	1
WLAN U-NII-2C (4TX)	5610	238.486	10.33	34	0.17713	1
WLAN U-NII-2C (2TX)	5670	227.318	8.16	34	0.10244	1
WLAN U-NII-2C (1TX)	5580	110.662	5.8	34	0.02896	1
WLAN U-NII-3 (8TX)	5825	412.219	9.2	34	0.23603	1
WLAN U-NII-3 (4TX)	5825	902.442	10.68	34	0.72653	1
WLAN U-NII-3 (2TX)	5745	440.884	8.59	34	0.21936	1
WLAN U-NII-3 (1TX)	5745	238.781	6.39	34	0.07159	1
BT-LE	2402	4.592	3.61	34	0.00071	1

Note:

1. The Max. Power = Max. tune up power including tolerance.

	VERITAS
Conclusion:	
The formula of calculated the MPE is:	
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1	
CPD = Calculation power density	
LPD = Limit of power density	
Z. Z. Zimik di power denoky	
$WLAN\ 2.4GHz\ +\ WLAN\ 5GHz\ +\ Bluetooth=0.27016\ /\ 1\ +\ 0.72653\ /\ 1\ +\ 0.00073\ /\ 1\ =\ 0.99742$ Therefore the maximum calculations of above situations are less than the "1" limit.	
END	