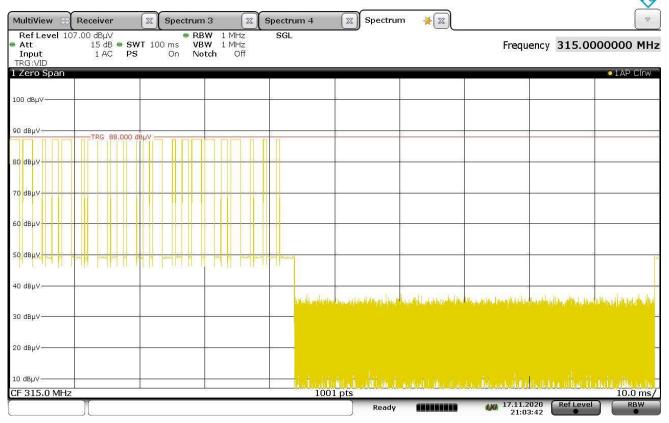


DATA PAGE				
MANUFACTURER	MANUFACTURER The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Тх			
FREQUENCY TESTED	390MHz (A Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Wide Pulse = 3.0ms			

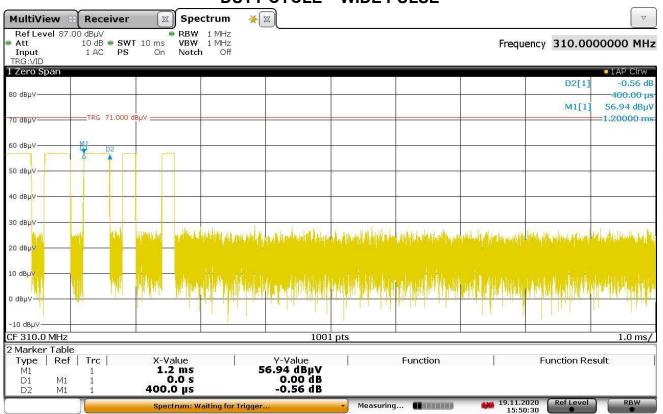
MultiView B	Receiver	Spectrum 3	Spectrum 4	Spectrun	n 🔆 🕅		V
Ref Level 117 Att Input TRG:VID	7.00 dBµV 15 dB = SW 1 AC PS					Frequenc	y 390.0000000 MHz
1 Zero Span							O1AP Clrw
							D2[1] 0.01 dB
110 dBµV							3.00000 ms
11		dBµV					M1[1]99.03 dBµV
100 dвµ∨			8				0.0000000 s
20 10 11							
90 dBµV	4		47				
80 dBµV							
00 0000							
70 dBµV	2		6				
io appi							
60 dвµV							
00 dbp /			and the second	and the second se		And the manufacture of the state of the stat	and the second
50 dBµV							
40 dBµV					2		
30 dBµV		r	N				
20 dBµV		-	8			-	
CF 390.0 MHz		I	100)1 pts		1	1.0 ms/
2 Marker Table				5		<i>2</i>	
Type Ref	Trc	X-Value	Y-Value		Function		Function Result
M1 D1 M1	1	0.0 s 0.0 s	99.03 dBµV 0.00 dB				
D2 M1	1	3.0 ms	0.01 dB				
	20		ng for Trigger	<u> </u>		17.11.2020	(Ref Level) (RBW

21:10:01 17.11.2020

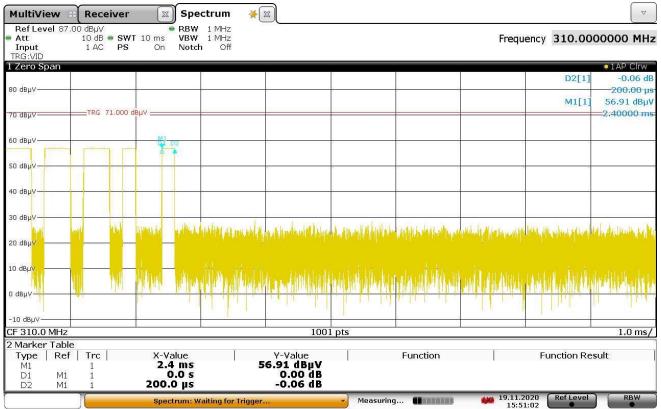

DATA PAGE				
MANUFACTURER	MANUFACTURER The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Тх			
FREQUENCY TESTED	390MHz (A Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Narrow Pulse = 1.0ms			

MultiView 88	Receiver	Spectrum 3	Spectrum 4	Spectrum	¥ 🖾		
Ref Level 11 Att Input TRG:VID	7.00 dBµV 15 dB ● SW 1 AC PS					Frequency	390.0000000 MHz
1 Zero Span							●1AP Clrw
110 dBµV							D2[1] 0.02 dB
100 dBµV	TRG 105.000	dвµV ————————————————————————————————————		<u> </u>	D2		—99,01_dВµV 6.00000 ms
90 dBµV				-			
80 dBµV							
70 dBµV				e			
60 dBµV			and a second second second second second second	Contraction and a state and a		New March Street Str	and a subscription of the second s
50 dBµV							
40 dBµV							
30 dBµV							
20 dBµV				12 22		5	
CF 390.0 MHz			100	1 pts			1.0 ms/
2 Marker Tabl Type Ref M1 D1 M1 D2 M1	F Trc 1 1	X-Value 6.0 ms 0.0 s 1.0 ms	Y-Value 99.01 dBµV 0.00 dB 0.02 dB		Function	[F	unction Result
		Spectrum: Waiti	ng for Trigger	Measuring		17.11.2020 21:10:43	Ref Level RBW

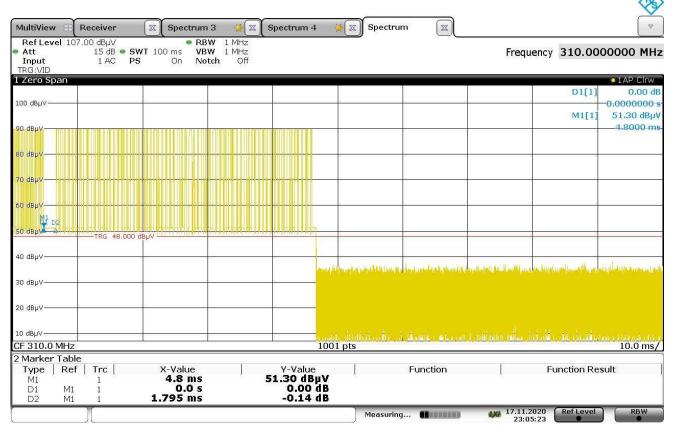
21:10:44 17.11.2020



DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Тх			
FREQUENCY TESTED	390MHz (A Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Duty Cycle Calculation: 14 × 3.0ms = 42.0ms 7 × 1.0ms = 7.0ms 42 + 7 = 49.0ms D.C = 20log(49/100) = -6.19dB			

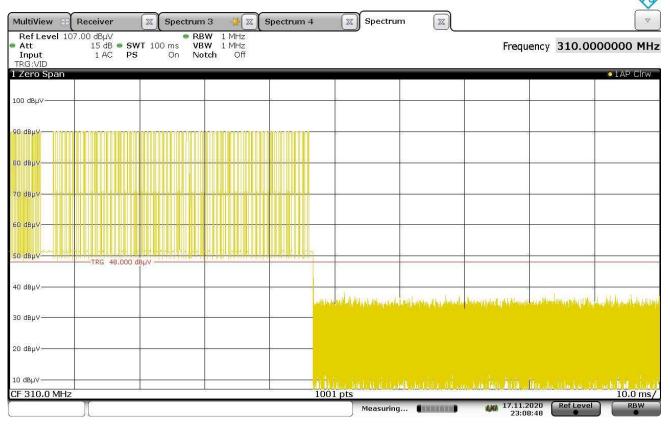

21:03:42 17.11.2020

DATA PAGE				
MANUFACTURER	MANUFACTURER The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Тх			
FREQUENCY TESTED	310MHz (Secure Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Wide Pulse = 400µs = 0.4ms			


15:50:30 19.11.2020

DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Tx			
FREQUENCY TESTED	310MHz (Secure Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Narrow Pulse = 200µs = 0.2ms			

15:51:03 19.11.2020


DATA PAGE				
MANUFACTURER	MANUFACTURER The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Tx			
FREQUENCY TESTED	310MHz (Secure Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Pause = 1.795ms			

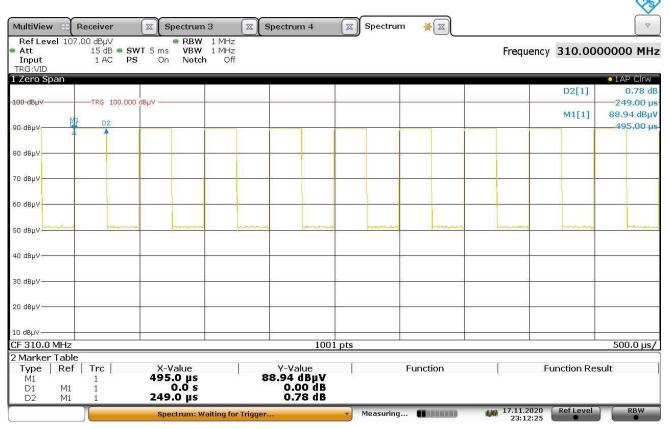
23:05:23 17.11.2020

DATA PAGE				
MANUFACTURER	The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Tx			
FREQUENCY TESTED	310MHz (Secure Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Duty Cycle Calculation: 34 × 0.4ms = 13.6ms 44 × 0.2ms = 8.8ms 13.6 + 8.8 +1.8 = 24.2ms D.C = 20log(24.2/100) = -12.32dB			

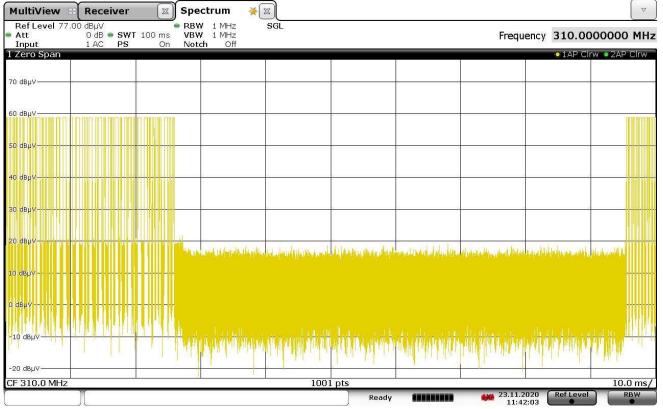
23:08:49 17.11.2020

DATA PAGE				
MANUFACTURER	MANUFACTURER The Chamberlain Group, Inc.			
EUT	Automotive Transceiver for Garage Door Control			
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)			
TEST	FCC §15.231, RSS-210 Duty Cycle			
MODE	Тх			
FREQUENCY TESTED	310MHz (E Code)			
DATE TESTED	November 17, 2020			
TEST PERFORMED BY	Tylar Jozefczyk			
NOTES	Wide Pulse = 499µs = 0.499ms			

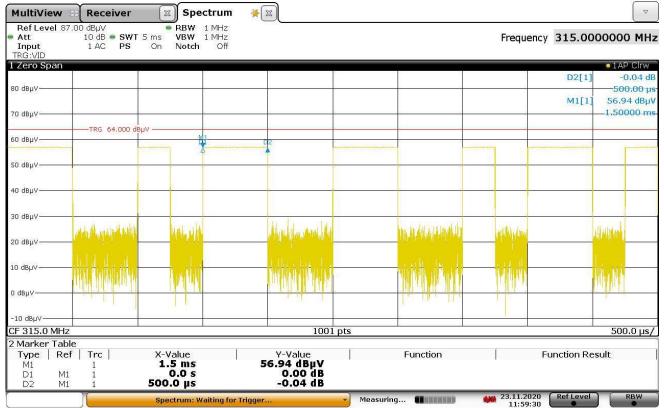
DUTY CYCLE – PULSE


MultiView 😁	Receiver	Spectrum 3	Spectrum 4	Spectru	m 🔆 🖾		▽
Ref Level 107 Att Input TRG:VID	7,00 dBµV 15 dB ● SV 1 AC PS					Frequency	310.0000000 MH
1 Zero Span							⊙1AP Clrw
100 dBµV							D2[1] 0.01 dB
100 авру 90 авµ∨		звµV ————————————————————————————————————		12			M1[1] 89.65 dBµV
80 dBµV							
оо авру- 70 dвµV							
60 dBµV							
50 dBµV				www.march.com.university.com.unit.com	and a support of the second states of the second states of the second states of the second states of the second	Anata and a state of the state	
40 dBµV							
30 dBµV	2						
20 dBµV	2						
10 dBµV							
CF 310.0 MHz			100	l pts	0		100.0 µs/
2 Marker Table	•		100	- p.0			10010 µ3/
Type Ref M1 D1 M1 D2 M1		X-Value 0.0 s 0.0 s 499.0 μs	Y-Value 89.65 dBµV 0.00 dB 0.01 dB		Function	F	unction Result

23:11:45 17.11.2020

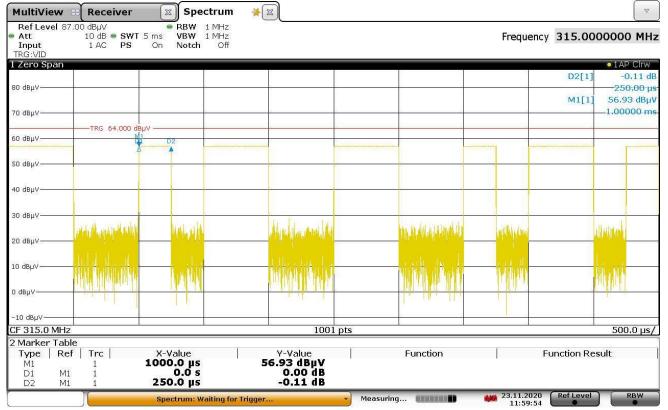

DATA PAGE			
MANUFACTURER	The Chamberlain Group, Inc.		
EUT	Automotive Transceiver for Garage Door Control		
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)		
TEST	FCC §15.231, RSS-210 Duty Cycle		
MODE	Tx		
FREQUENCY TESTED	310MHz (E Code)		
DATE TESTED	November 17, 2020		
TEST PERFORMED BY	Tylar Jozefczyk		
NOTES	Narrow Pulse = 249µs = 0.249ms		

DUTY CYCLE – PULSE

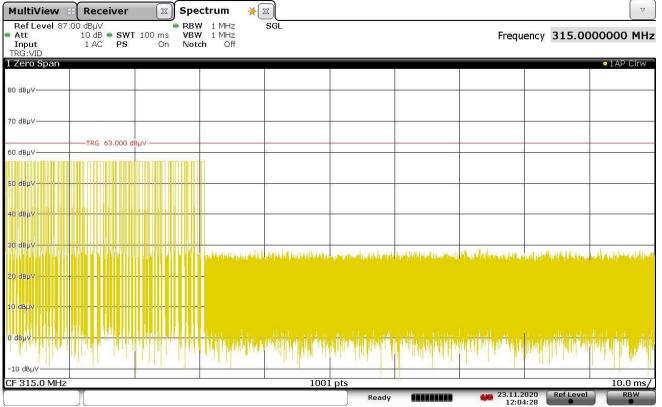

23:12:26 17.11.2020

DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Tx
FREQUENCY TESTED	310MHz (E Code)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Duty Cycle Calculation: 13 × 0.5ms = 6.5ms 34 × 0.25ms = 8.5ms 6.5 + 8.5 = 15.00ms D.C = 20log(15/100) = -16.48dB

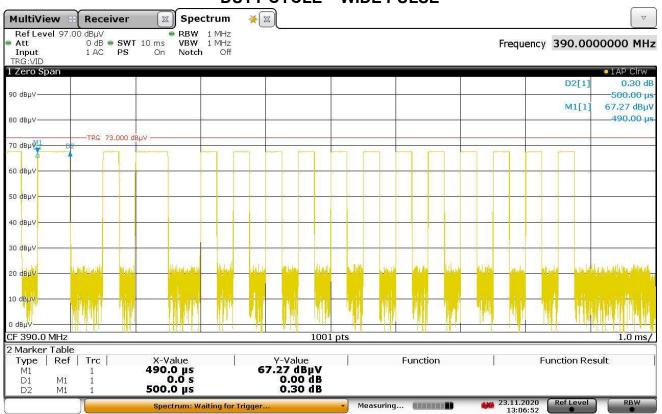
11:42:04 23.11.2020


DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Tx
FREQUENCY TESTED	315MHz (E Code)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Wide Pulse = 500µs = 0.5ms

11:59:31 23.11.2020

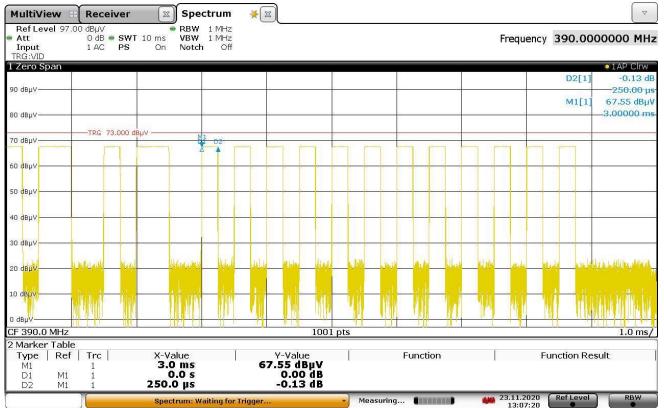


DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Tx
FREQUENCY TESTED	315MHz (E Code)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Narrow Pulse = 250µs = 0.25ms

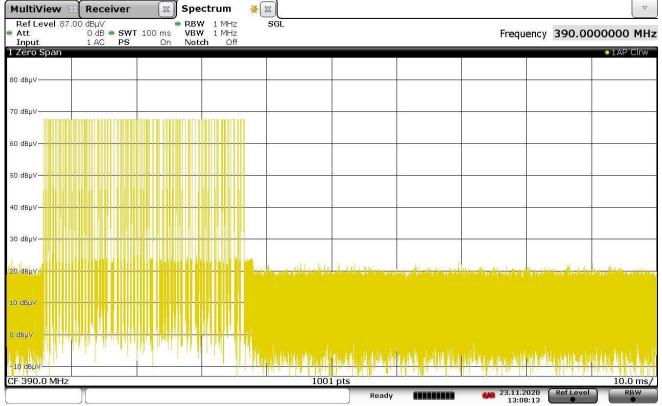

11:59:55 23.11.2020

DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Тх
FREQUENCY TESTED	315MHz (E Code)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Duty Cycle Calculation: 10 × 0.5ms = 5.0ms 40 × 0.25ms = 10.0ms 5.00 + 10.0 = 15.0ms D.C = 20log(15/100) = -16.48dB

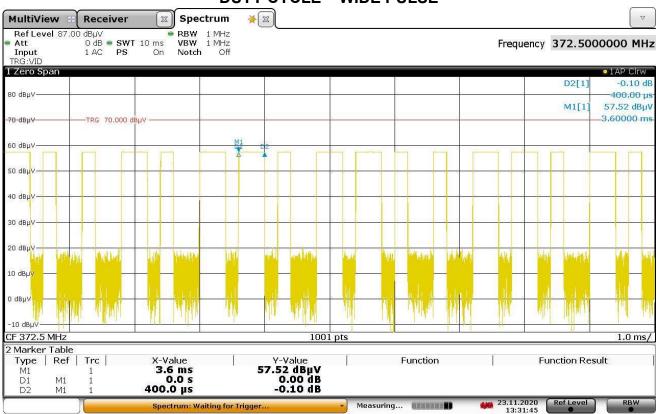
12:04:29 23.11.2020

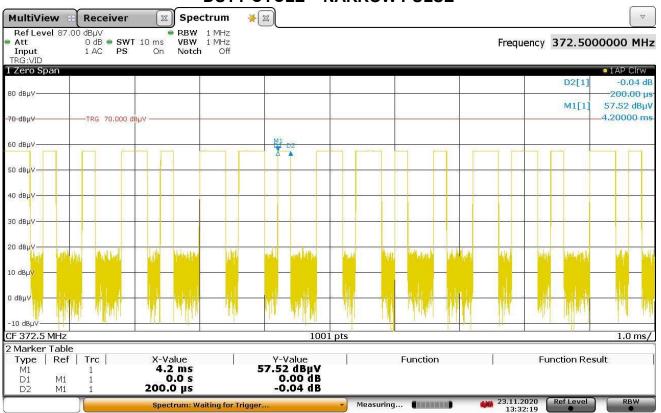

DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Тх
FREQUENCY TESTED	390MHz (E Code)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Wide Pulse = 500µs = 0.5ms

13:06:52 23.11.2020


DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Тх
FREQUENCY TESTED	390MHz (E Code)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Narrow Pulse = 250µs = 0.25ms

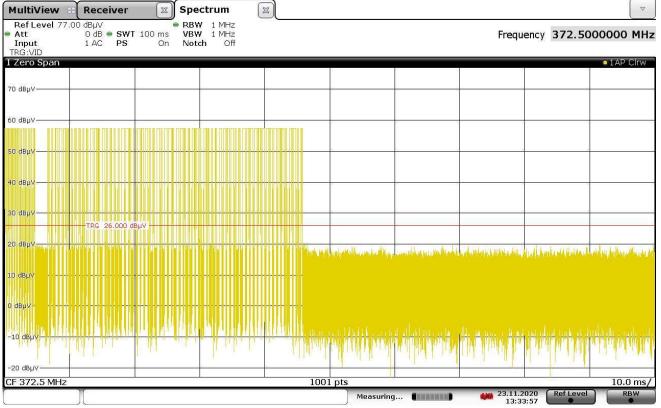
13:07:21 23.11.2020


DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Тх
FREQUENCY TESTED	390MHz (E Code)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Duty Cycle Calculation: 10 × 0.5ms = 5.0ms 43 × 0.25ms = 10.75ms 5.0 + 10.75 = 15.75ms D.C = 20log(15.75/100) = -16.06dB


13:08:14 23.11.2020

DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Тх
FREQUENCY TESTED	372.5MHz (Rolling Code – Keeloq Based)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Wide Pulse = 400µs = 0.4ms

13:31:46 23.11.2020


DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Тх
FREQUENCY TESTED	372.5MHz (Rolling Code – Keeloq Based)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Narrow Pulse = 200µs = 0.2ms

13:32:19 23.11.2020

DATA PAGE	
MANUFACTURER	The Chamberlain Group, Inc.
EUT	Automotive Transceiver for Garage Door Control
MODEL NO.	CDMRAA0101E3 (ARQ2-UGDO)
TEST	FCC §15.231, RSS-210 Duty Cycle
MODE	Tx
FREQUENCY TESTED	372.5MHz (Rolling Code – Keeloq Based)
DATE TESTED	November 17, 2020
TEST PERFORMED BY	Tylar Jozefczyk
NOTES	Duty Cycle Calculation: 37 × 0.4ms = 14.8ms 41 × 0.2ms = 8.2ms 14.8 + 8.2 = 23.0ms D.C = 20log(23/100) = -12.765dB

13:33:58 23.11.2020