

Address: 3000 Danville Blvd., Suite F-387 Alamo, CA 94507-1572 Phone +1.925.462.9105 Fax +1.925.280.7751

EMC Test Report FCC & IC

Applicant: Datalogic SpA Address Via Candini, 2 40012 Lippo di Calderara di Reno Bologna - Italy Phone +39 051 3147011 Fax +39 051 3147170

This document may not be reproduced without written consent from HYPER Corporation. Extracts are never permitted. After written consent from HYPER Corporation, the document must be reproduced in its entirety.

Bluetooth is a Trademark owned by Bluetooth SIG, Inc. and licensed to HYPER Corp. HYPER Corp is a BLUETOOTH Qualification Test Facility (BQTF) and Member of the SIG

Certificate Number 1708-1 HYPER Corp is an Accredited Laboratory by The American Association For Laboratory Accreditation (A2LA) to ISO/IEC 17025-for the scope of BLUETOOTH Testing.

QCD0004 Rev 06

Signature Page

HYPER Corporation personnel listed take responsibility for the content of this test report.

Reviewed

/Signed/ Kevin Marquess 9/26/2005 Date

1. List of Revisions

Version	Date	Author(s)	Description
001	09/05/2005	Mimi Warfel	Initial Version
002	09/26/2005	Mimi Warfel	Editorial changes

TABLE OF CONTENTS

IADE		
1. List	of Revisions	2
2. Disc	laimer Notice	4
3. Rep	roduction Clause	4
4. Gen	eral Information	4
4.1 Id	entification of the EUT	4
4.2 A	ntenna Information	4
5. Test	Summary	5
5.1	Summary of Test Results	5
5.2	Test Specifications	5
5.3	Operation Mode	5
5.4	Documentation of test device	5
5.5	General and Special Conditions	5
5.6	Equipment and Cable Configurations	5
5./	Test Setup Block Diagram(s)	6
6. 10	est Results	6
0.1	AC-Line Conducted Emissions	6
6.1.1	Measurement Procedure	6 7
6.1.Z	Test Data:	/
0.2	Carnel Frequency Separation	9
0.2.1		9
0.Z.Z	Test date	9
6.2.3	Number of Hopping Frequencies	9
0.3	Operation Environment	11
632		11
6.4	Time of Occupancy (Dwell Time)	12
6/1	Operation Environment	12
642	Test Procedure	12
643	Test data	12
65	20 dB Bandwidth	14
651	Operation Environment	14
6.5.2	Test procedure	14
6.5.3	Test data	14
6.6	Peak Output Power	16
6.6.1	Operation Environment	16
6.6.2	Test procedure:	16
6.6.3	Test data	16
6.7	Band-Edge Compliance of RF Conducted Emissions	17
6.7.1	Operation Environment	17
6.7.2	Test procedure	17
6.7.3	Test data	17
6.8	Radiated Spurious Emission (15.205, 15.209, 15.247)	19
6.8.1	Measurement Procedure	19
6.8.2	Test data	20

2. Disclaimer Notice

This test report applies only to the EUT (Equipment Under Test) and the results of the specifications called out in this report. The test results contained herein relate only to the model(s) identified. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical characteristics. This Report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government.

3. Reproduction Clause

This document may not be reproduced without written consent from HYPER Corporation. Extracts are never permitted. After written consent from HYPER Corporation, the document must be reproduced in its entirety.

4. General Information

Project Number	155-0507002	
Manufacturer	Datalogic SpA	
EUT/Model Number	Gryphon	
Date(s) tested	August 23 – September 2, 2005	
Description of EUT	Wireless Barcode scanner and docking station	
Condition of EUT	Received new production units in good quality	
FCC IDs	OMJ0013 – Cradle	
	OMJ0014 – Gun	
Emissions Designator	842KF1D	
Frequency Range:	2402 MHz ~ 2480 MHz	
Number of Channels:	79	
Frequency of Each Channel	2402 + k (MHz), k=0~78	
Type of Modulation	GFSK	
Hardware Version	Rev B	
Firmware/Software Version	1.1.054.4	
Test Facilities	HYPER Corporation:	
	1735 North First Street, Suite 311	
	San Jose, Ca 95112-4511	
	BACL Corp.	
230 Commercial Ave.		
	Sunnyvale, CA	

4.1 Identification of the EUT

4.2 Antenna Information

Manufacturer.	Model Number	Freq. (MHz)	Peak Gain (dBi)	VSWR (max)	Z ₀
Centurion	CAF95901	2400-2500	>2.0 (0 avg)	2.0	50 Ω
Phycom	4311-111-00245	2400-2500	0-1.2	2.0	50 Ω

5. Test Summary

This test report is prepared for Datalogic SpA, Bluetooth Wireless Technology device(s).

5.1 Summary of Test Results

Test	FCC Ref	RSS-210 Ref	FCC
			Results
AC Line Conducted Emissions	15.207(a)	9.0	Compliant
Carrier Frequency Separation	15.247(a)(1)	6.2.2(o)(a1)	Compliant
Number of Hopping Frequencies	15.247(a)(1)(ii)	6.2.2(o)(a3)	Compliant
Time of Occupancy (Dwell Time)	15.247(a)(1)(ii)	6.2.2(o)(a3)	Compliant
20 dB Bandwidth	15.247(a)(1)(ii)	6.2.2(o)(a1)	Compliant
Peak Output Power	15.247(b)(1)	6.2.2(o)(a3)	Compliant
Band-edge Compliance of RF Conducted Emissions	15.247(c)	6.2.2(o)(d1)	Compliant
Spurious RF Conducted Emissions	15.247(c)	6.2.2(o)(e1)	Compliant
Spurious Emissions Radiated	15.209	6.2.2(o)(e1)	Compliant
RF Exposure	1.1307(b)(1) & 2.1091	(RSS-102)	Compliant ¹

Note:

(1) RF Exposure for IC is documented in a supplement to this report

5.2 Test Specifications

The EUT was tested according to the procedures in FCC Part 15 Subpart C section 15.247 and FCC Public Notice DA 00-705, and also to demonstrate compliance with Industry Canada RSS-210 6.2.2 (O).

5.3 Operation Mode

The EUT module was tested using the reference board as the support test host. The EUT was embedded in and received power and data I/O from the host. A PC connection allowed commands to the module to be issued to put the device into the correct test modes.

5.4 Documentation of test device

Documentation of the tested device has been reviewed by HYPER Corporation engineers and found to be in compliance with applicable test specifications. All documentation is kept in the Job Folder.

5.5 General and Special Conditions

The EUT received power from the test host, which was powered using an AC adaptor plugged into the ac mains. Testing was done in an indoor controlled environment with an average temperature of 23.3° C and relative humidity of 43%, unless specified otherwise.

5.6 Equipment and Cable Configurations

The EUT was tested using serial connector to enable test-modes. The primary cabling considerations were the cable used to connect the antenna port to the measuring equipment.

Manufacturer	Description	Model Number	Serial Number	CAL Date
Agilent Technology	Spectrum Analyzer	E4446A	US44300386	11/10/2004
Agilent Technology	Spectrum Analyzer	8965	3943A01781	10/04/2004
Dell	PC	Lattitude	N/A	N/A

5.7 Test Setup Block Diagram(s)

6. Test Results

6.1 AC-Line Conducted Emissions

The results below were provided via subcontract by BACL, as dictated by their laboratory quality system.

6.1.1 Measurement Procedure

<u>Measurement Uncertainty</u>: All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN. Based on NIS 81, the treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

<u>Test Setup</u>: The measurement was performed in shield room, using the same setup per ANSI C63.4-2003 measurement procedure. The specification used was FCC Class B limits. External I/O cables were draped along the edge of the test table and bundled when necessary. The host was connected with LISN-1.

<u>Spectrum Analyzer Setup</u>: The spectrum analyzer was set to investigate the spectrum from 150 kHz to 30 MHz.

Manufacturer	Description	Model	Serial Number	Cal. Date
R&S	Receiver, EMI Test	ESCS30	100176	9/15/2005
R&S	LISN, Artificial Mains	ESH2-Z5	871884/039	8/16/2005

Test Equipment List and Details

* Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

<u>Test Procedure:</u> During the conducted emissions test, the power cord of the host system was connected to the mains outlet of LISN-1. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the following modes: peak detection quasi-peak and average. Quasi-Peak readings are distinguished with a "QP". Average readings are distinguished with an "Ave".

6.1.2 Test Data:

6.2 Carrier Frequency Separation

6.2.1	Operation Environment	
	Temperature:	23.3°C
	Relative Humidity:	43%

6.2.2 Test procedure

The carrier frequency separation per FCC 15.247(a)(1) / IC RSS210 6.2.2(o)(a1) was measured using a spectrum analyzer with the resolution (or IF) bandwidth (RBW) \geq 1% of the span, the span should be wide enough to capture the peaks of two adjacent channels, and the video (or average) bandwidth (VBW) should be \geq RBW. Any transceiver characteristics are defined in the appropriate data-sheet/product note, included in the submission file. The carrier frequency separation result is described as below:

Center ace A 2.44 GHz Y1 Log 10.00 dB/div Span Ref -10.00 dBm 100.00 MHz Y2 RBW 1.0 MHz VBW 3.0 MHz Sweep Time 50.00 msec AT 10 dB Peak X1 X2 Source: Trace A Y1 -30.675105485 dBm X1 2.407097744 GHz Trace A Y2 -50.928270042 dBm X2 2.40800000 GHz Δ -20.253164557 dB Δ 902.255639098 kHz

6.2.3 Test data

Figure 6.2-1: Carrier Frequency Separation – Low

Figure 6.2-2: Carrier Frequency Separation – Mid

Summary of Carrier Frequency Separation Data

	Frequency (MHz)	Measurement Frequency Separation (kHz)	Limit (kHz) Min
Low	2402	902	25
Mid	2441	827	25
High	2480	827	25

6.3 Number of Hopping Frequencies

6.3.1 Operation Environment Temperature: 23.3°C Relative Humidity: 43%

6.3.2 Test procedure

The carrier frequency separation per FCC 15.247(a)(1)(ii)/ IC RSS210 6.2.2(o)(a3) was measured using a spectrum analyzer with RBW \geq 1% of the span. The VBW is \geq RBW and the span shall be equal to the frequency band of operation. The number of hopping frequencies measured data is shown below.

6.3.3 Test data

Figure 6.3-1 Channels in the Frequency range 2.400-2.441GHz

Figure 6.3-2 Channels in the Frequency range 2.440-2.4835GHz

Frequency Range (GHz)	Number of hopping frequencies	Total hopping channels
2.400 ~ 2.441	39.5	79
2.441 ~ 2.4835	39.5	

6.4 Time of Occupancy (Dwell Time)

6.4.1 Operation Environment Temperature: 23.3°C Relative Humidity: 43%

6.4.2 Test Procedure

The Time of Occupancy test case per FCC 15.247(a)(1)(ii)/ IC RSS210 6.2.2(o)(a3) was measured using a spectrum analyzer with RBW = 1 MHz. The VBW \geq RBW and the zero span function of spectrum analyzer were enabled.

6.4.3 Test data

The worst case time of occupancy (Dwell Time) is (DH5 packet) (4 X 2.933 ms) (dwell time in 1 sec) x 30 seconds= 351.96 ms = 0.35196 sec < 0.4s in 30 sec. – Compliant

Summary Table	

Frequency	Dwell Time (Sec)	Limit (Sec)
Low	165.41 usec	0.4
Mid	165.41 usec	0.4
High	165.38 usec	0.4
Packets in 30 seconds	245.54 msec	0.4

Figure 6.4-1: Dwell Time =165.41 usec

Figure 6.4-2: Dwell Time = 165.41usec

Data corrupted – noted 165.38 us on High CH Figure 6.4-3: Dwell Time

Figure 6.4-4: Plot showing numbers of pulses in 1 second in DH5 Mode 3 occurrences of DH5 packets in 1 second (6 in 2 seconds)

6.5 20 dB Bandwidth

6.5.1	Operation Environment	
	Temperature:	23.3°C
	Relative Humidity:	43%

6.5.2 Test procedure

The 20dB bandwidth per FCC 15.247(a)(1)(ii)/IC RSS210 6.2.2(o)(a1) was measured using spectrum analyzer with the resolution bandwidth > 1% of the 20 dB bandwidth. The VBW shall be \geq RBW, and the span shall equal to approximately 2 to 3 times the 20 dB bandwidth. This test was performed at 3 different channels (low, mid and high), and the maximum 20dB modulation bandwidth is listed below:

6.5.3 Test data

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit
Low	2402	842.10	(1000 kHz) 1 MHz
Middle	2441	766.92	1 MHz
High	2480	827.07	1 MHz

Figure 6.5-1: Bandwidth of the 2402 MHz channel

Figure 6.5-2: Bandwidth of the 2441 MHz channel

Figure 6.5-3: Bandwidth of the 2480 MHz channel

6.6 Peak Output Power

6.6.1 Operation Environment Temperature: 23.3°C Relative Humidity: 43%

6.6.2 Test procedure:

The Peak Output Power per FCC 15.247(b)(1)/ IC RSS210 6.2.2(o)(a3) was measured on the EUT using a 50-Ohm SMA cable connected to the spectrum analyzer.

6.6.3 Test data

Channel	Frequency (MHz)	Transmitter Peak Output Power (dBm)	Limit (dBm)
Low	2402	-4.7	20.97
Middle	2441	-7.93	20.97
High	2480	-11.73	20.97
			20.97dBm = 0.125 W

Antenna gain : = 1.2 dBi (worst case for eirp) = 1.318Peak Field strength = 91.7 dBuV/m = 0.03846 V/m

P = (F * D)^2 / (30 * ant gain) = (.03846 * 9)^2 / (30 * 1.318) =0.3367 mW = -4.7 dBm

$EIRP = -4.7 \, dBm$

Figure 6.6-1: Peak Output Power on 2402 MHz

Middle CH : 88.5 dBuV/m = 0.02661 V/m

power = 0.1612 mW = **-7.93dBm** Figure 6.6-2: Peak Output Power on 2441 MHz

High CH : 84.9 dBuV/m = 0.01758 V/m EIRP = 0.0672 mW = **-11.73 dBm** Figure 6.6-3: Peak Output Power on 2480 MHz

- 6.7 Band-Edge Compliance of RF Conducted Emissions
- 6.7.1 Operation Environment Temperature: 23.3°C Relative Humidity: 43%

6.7.2 Test procedure

The band-edge compliance of RF conducted emissions of the EUT was measured per FCC 15.247(c)/IC RSS210 6.2.2(o)(d1). The EUT was set to operate on the lowest operating frequency and the level at the lower band-edge was measured. The upper band-edge level was then measured with the EUT operating on the highest operating frequency.

6.7.3 Test data

Band-edge Frequency (MHz)	Attenuation (dB) Relative to Peak	Limit (dB) - Minimum
2400 (Hopping Off)	-35.44	-20
2400 (Hopping On)	-30.38	-20
2483.5 (Hopping Off)	-27.00	-20
2483.5 (Hopping On)	-26.16	-20

Figure 6.7-1: Band-Edge Compliance – Lower Band-Edge (2400MHz) – Hopping Off

Figure 6.7-2: Band-Edge Compliance – Lower Band-Edge (2400MHz) – Hopping On

Figure 6.7-3: Band-Edge Compliance – Upper Band-Edge (2483.5MHz) Hopping Off

Figure 6.7-4: Band-Edge Compliance – Upper Band-Edge (2483.5MHz) Hopping On

6.8 Radiated Spurious Emission (15.205, 15.209, 15.247)

The results below were provided via subcontract by BACL. The testing was performed as dictated by the laboratory's ISO/IEC 17025-quality system.

6.8.1 Measurement Procedure

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209 limits. The spacing between the peripherals was 10 centimeters. External I/O cables were draped along the edge of the test table and bundled when necessary. The EUT was connected to the power adapter, which was connected with 120 Vac/60Hz power source.

Corrected Amplitude & Margin Calculation

The corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor then subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl = Indicated Reading + Antenna Factor = Cable Factor – Amplifier Gain The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of –7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows: Margin = Corr. Ampl. – FCC 15.209 Limit.

2402 MHz 2442 MHz 2480 MHz

6.8.2 Test data

Bay Area Compliance Laboratory, Corp.

		 -	
Company Name : Data Logic		,	
EUT Description: BT Barcode Scann	er		
Date: 09/02/05			
Test Setup: EUT / Laptop			
Report # : R0508242			
File Name: 050209B1.DataLogic			

Run#1 Radiated Harmonic and Spur Emission

Run # 1- 1 :Primary scan 1GHz -25GHz , (Lowest channel. :

2402 MHz)

LC = MC = HC=

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	orrection Fact	15.247	15.247		Testing
MHz	dBuV/m	Degree	Meter	H/V	dB	dB	dB	dBuV/m	mit (dBuV/i	Margin	Comments	Condition
2402.0000	96.8	90	1.0	V	28.7	2.0	35.8	91.7				Bursting
2402.0000	93.3	0	1.2	h	28.7	2.0	35.8	88.1				Bursting
2402.0000	42.6	180	1.2	v	28.7	2.0	35.8	37.4				Bursting
2402.0000	41.4	0	1.2	h	28.7	2.0	35.8	36.2				Bursting
4804.0000	44.9	270	2.4	v	32.5	3.1	34.8	45.7	74	-28.3		Bursting
4804.0000	44.3	180	2.3	h	32.5	3.1	34.8	45.1	74	-28.9		Bursting
4804.0000	30.8	270	2.4	v	32.5	3.1	34.8	31.6	54	-22.5		Bursting
4804.0000	30.1	180	2.3	h	32.5	3.1	34.8	30.9	54	-23.1		Bursting
2276.0000	52.5	90	2.0	v	28.7	2.0	35.8	47.3	74	-26.7		Bursting
2276.0000	51.2	180	2.0	h	28.7	2.0	35.8	46.0	74	-28.0		Bursting
2276.0000	44.3	180	2.0	v	28.7	2.0	35.8	39.1	54	-14.9		Bursting
2276.0000	43.7	90	2.0	h	28.7	2.0	35.8	38.5	54	-15.5		Bursting

Run # 1- 1 :Primary scan 1GHz -25GHz , (Lowest channel. :							2442 MHz)					
Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	orrection Fact	15.247	15.247		Testing
MHz	dBuV/m	Degree	Meter	H/V	dB	dB	dB	dBuV/m	mit (dBuV/i	Margin	Comments	Condition
2442.0000	93.7			v	28.7	2.0	35.8	88.5				Bursting
2442.0000	90.3			h	28.7	2.0	35.8	85.1				Bursting
2442.0000	41.7			v	28.7	2.0	35.8	36.5				Bursting
2442.0000	40.1			h	28.7	2.0	35.8	34.9				Bursting
4884.0000	43.7	270	2.4	v	32.5	3.1	34.8	44.5	74	-29.5		Bursting
4884.0000	43.1	180	2.2	h	32.5	3.1	34.8	43.9	74	-30.1		Bursting
4884.0000	30.2	270	2.4	v	32.5	3.1	34.8	31.0	54	-23.0		Bursting
4884.0000	30.1	180	2.2	h	32.5	3.1	34.8	30.9	54	-23.1		Bursting
2276.0000	51.8	270	2.4	v	28.7	2.0	35.8	46.6	74	-27.4		Bursting
2276.0000	50.7	180	2.3	h	28.7	2.0	35.8	45.5	74	-28.5		Bursting
2276.0000	44.1	270	2.4	V	28.7	2.0	35.8	38.9	54	-15.1		Bursting
2276.0000	42.8	180	2.1	h	28.7	2.0	35.8	37.6	54	-16.4		Bursting

<u>Run # 1- 1 :Primary scan 1GHz -25GHz , (Lowest channel. :</u> 2480 MHz)												
Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	orrection Fact	15.247	15.247		Testing
MHZ	dBu∀/m	Degree	Meter	H/V	dB	dB	dB	dBu∨/m	mit (dBu∀/i	Margin	Comments	Condition
2480.0000	90.1			v	28.7	2.0	35.8	84.9				Bursting
2480.0000	87.8			h	28.7	2.0	35.8	82.6				Bursting
2480.0000	40.1			v	28.7	2.0	35.8	34.9				Bursting
2480.0000	38.6			h	28.7	2.0	35.8	33.4				Bursting
4960.0000	42.1	270	2.4	v	32.5	3.1	34.8	42.9	74	-31.1		Bursting
4960.0000	40.2	90	2.1	h	32.5	3.1	34.8	41.0	74	-33.0		Bursting
4960.0000	29.4	270	2.4	v	32.5	3.1	34.8	30.2	54	-23.8		Bursting
4960.0000	28.6	90	2.1	h	32.5	3.1	34.8	29.4	54	-24.6		Bursting
2276.0000	51.6	270	2.4	v	28.7	2.0	35.8	46.4	74	-27.6		Bursting
2276.0000	50.3	90	2.1	h	28.7	2.0	35.8	45.1	74	-28.9		Bursting
2276.0000	43.8	270	2.4	V	28.7	2.0	35.8	38.6	54	-15.4		Bursting
2276.0000	42.6	90	2.1	h	28.7	2.0	35.8	37.4	54	-16.6		Bursting

Run # 1- 4 :Primary scan	30MHz -1GHz .

Primary scan. 30 - 1	000MHz.										
Frequency	Reading	Direction	Height	Polar	ntenna Los	Cable loss	Amplifer	rrection Fa	15B	15B	Comments
MHz	dBuV	Degree	Meter	H/V	dB	dB	dB	dBuV	Limit	Margin	Peak
60.00	40.1	270	3.2	Н	7.4	1.7	28.5	20.7	40	-19.3	
60.00	41.2	75	1.8	V	7.4	1.7	28.5	21.8	40	-18.2	
924.00	30.1	270	2.1	Н	22.1	6.9	27.3	31.8	46	-14.2	
924.00	31.2	330	1.2	V	22.1	6.9	27.3	32.9	46	-13.1	
48.00	45.1	280	2.8	Н	10.6	1.5	28.6	28.6	40	-11.4	
48.00	44.2	250	1.0	V	10.6	1.5	28.6	27.7	40	-12.3	