APPENDIX D: RELEVANT PAGES FROM DAE& DIPOLE VALIDATION KIT REPORT(S) Report No.: WT158003998 Page 1 of 51 03/0364/01 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SMQ (Auden) Certificate No: D835V2-4d141_Sep12 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d141 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 24, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Certificate No: D835V2-4d141_Sep12 | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | | L ₁ , " | Charle Data (in house) | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | Power sensor HP 8481A RF generator R&S SMT-06 | | | | Function Calibrated by: Israe El-Naouq Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 24, 2012 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Name Report No.: WT158003998 Page 2 of 51 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D835V2-4d141_Sep12 | Page 2 of 8 | |------------------------------------|-------------| Report No.: WT158003998 Page 3 of 51 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.34 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.35 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.53 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.12 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.2 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.44 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.46 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.60 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.25 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-4d141_Sep12 Page 3 of 8 ## **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.6 Ω - 2.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.7 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.1 Ω - 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 34.6 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.391 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 27, 2012 | #### **DASY5 Validation Report for Head TSL** Date: 24.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d141 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.9 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe:
ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.647 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.447 mW/g SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.71 W/kg 0 dB = 2.71 W/kg = 8.66 dB W/kg Certificate No: D835V2-4d141_Sep12 Page 5 of 8 Report No.: WT158003998 Page 6 of 51 # Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d141_Sep12 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 24.09.2012 Page 8 of 51 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d141 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.345 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.541 mW/g SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/gMaximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 9.10 dB W/kg Certificate No: D835V2-4d141_Sep12 # Impedance Measurement Plot for Body TSL Certificate No: D835V2-4d141_Sep12 Page 8 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S C Client SMQ (Auden) Certificate No: D1800V2-2d171_Oct12 | CALIBRATION | CEDTIEICATE | | |-------------|-------------|--| | CALIDRATION | CENTIFICATE | | Object D1800V2 - SN: 2d171 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 12, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Call Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|--------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205, Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Jeran Change | | Approved by: | Katja Pokovic | Technical Manager | Man Charace | | | | | Issued: October 15, 2012 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. High Port - Name and Report No.: WT158003998 # Calibration Laboratory of Schmid & Partner Engineering AG usstrasse 43, 8004 Zurich, Switzerla Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificat #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Report No.: WT158003998 Page 11 of 51 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 100 | | Frequency | 1800 MHz ± 1 MHz | | # Head TSL parameters The following parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 2000 | person . | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.0 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.8±6% | 1.53 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | - | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.57 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.1 W/kg ± 16.5 % (k=2)
| Report No.: WT158003998 Page 12 of 51 #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.7 Ω - 1.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 35.8 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.1 Ω - 2.2 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.7 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.211 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|---------------|--| | Manufactured on | July 04, 2008 | | Report No.: WT158003998 Page 13 of 51 # DASY5 Validation Report for Head TSL Date: 12.10.2012 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d171 Communication System: CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(5.07, 5.07, 5.07); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.591 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.44 W/kg; SAR(10 g) = 4.98 W/kg Maximum value of SAR (measured) = 11.6 W/kg 0 dB = 11.6 W/kg = 10.64 dBW/kg Report No.: WT158003998 Page 14 of 51 # Impedance Measurement Plot for Head TSL Report No.: WT158003998 Page 15 of 51 # DASY5 Validation Report for Body TSL Date: 12.10.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d171 Communication System: CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.591 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.57 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 12.0 W/kg 0 dB = 12.0 W/kg = 10.79 dBW/kg Report No.: WT158003998 Page 16 of 51 # Impedance Measurement Plot for Body TSL Report No.: WT158003998 Page 17 of 51 #### Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates SMQ (Auden) Accreditation No.: SCS 108 Certificate No: D1900V2-5d162_Sep12 #### Client CALIBRATION CERTIFICATE D1900V2 - SN: 5d162 Object Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz September 21, 2012 Calibration date: This calibration cortificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate: All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) Primary Standards ID # Oct-12 05-Oct-11 (No. 217-01451) Power meter EPM-442A GB37480704 Oct-12 US37292783 05-Oct-11 (No. 217-01451) Power sensor HP 8481A 27-Mar-12 (No. 217-01530) **Apr-13** Reference 20 dB Attenuator SN: 5058 (20k) Apr-13 27-Mar-12 (No. 217-01533) SN: 5047.2 / 06327 Type-N mismatch combination Dec-12 30-Dec-11 (No. ES3-3205_Dec11) SN: 3205 Reference Probe ES3DV3 27-Jun-12 (No. DAE4-601_Jun12) Jun-13 SN: 601 DAE4 Scheduled Check Check Date (in house) Secondary Standards ID# In house check: Oct-13 MY41092317 18-Oct-02 (in house check Oct-11) Power sensor HP 8481A In house check: Oct-13 04-Aug-99 (in house check Oct-11) RF generator R&S SMT-08 100005 In house check: Oct-12 18-Oct-01 (in house check Oct-11) US37390585 S4206 Network Analyzer HP 8753E Function Mame Laboratory Technician Israe El-Naouq Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: September 21, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d162_Sep12 Page 1 of 8 # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: tissue simulating liquid TSL sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ## Additional Documentation: d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d162_Sep12 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.2 | |------------------------------|------------------------
--| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | War and the same of o | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | ne following parameters and calculations were appr | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.6 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 222 | | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.69 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.4 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.13 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 mW /g ± 16.5 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied. | to following parameters and careatinous were appr | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.54 mha/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | heer | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.7 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.45 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d162_Sep12 Page 3 of 8 ## Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.2 Ω + 4.0 μΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.2 Ω + 5.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.9 dB | | ## General Antenna Parameters and Design | 6444-4000 | | |-----------|----------| | 1,197 ns | A | | | 1.197 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 20, 2011 | Certificate No: D1900V2-5d162_Sep12 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 21.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d162 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06,2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.423 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.236 mW/g SAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.13 mW/g Maximum value of SAR (measured) = 11.9 W/kg 0 dB = 11.9 W/kg = 21.51 dB W/kg Certificate No: D1900V2-5d162_Sep12 Page 5 of 8 # Impedance Measurement Plot for Head TSL Report No.: WT158003998 ## **DASY5 Validation Report for Body TSL** Date: 21.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d162 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) · Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 95.423 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.979 mW/g SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.45 mW/g Maximum value of SAR (measured) = 12.9 W/kg 0 dB = 12.9 W/kg = 22.21 dB W/kg # Impedance Measurement Plot for Body TSL Report No.: WT158003998 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SMQ (Auden) Certificate No: D2450V2-818_Oct12 Accreditation No.: SCS 108 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 818 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 18, 2012 This calibration certificate documents the traceability to national standards, which resilize the physical units of measurements (51). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 10 # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|---------------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 /
06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES30V3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601 Jun12) | Jun-13 | | Secondary Standards | 10# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 54206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | | | | | | The Address of the London | | Carte 1000 1000 | Calibrated by: Israe El-Neoug Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager issued October 18, 2012 This calibration certificate shall not be reproduced except in full without written approval of the lisboratory #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio avizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Report No.: WT158003998 Page 27 of 51 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** | Commission of the o | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 38.4 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | ente. | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.0 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.03 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | Report No.: WT158003998 Page 28 of 51 #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.0 Ω + 2.5 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.4 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.1 Ω + 4.4 JΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.1 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.165 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 11, 2008 | | Report No.: WT158003998 Page 29 of 51 # **DASY5 Validation Report for Head TSL** Date: 18.10.2012 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 818
Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.551 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg Maximum value of SAR (measured) = 17.0 W/kg 0 dB = 17.0 W/kg = 12.30 dBW/kg Report No.: WT158003998 Page 30 of 51 # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 18.10.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 818 Communication System: CW; Frequency: 2450 MHz. Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.079 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (measured) = 17.0 W/kg Report No.: WT158003998 Page 32 of 51 # Impedance Measurement Plot for Body TSL Report No.: WT158003998 Page 33 of 51 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | ORT-CERT (AUC) | | | o: D2600V2-1074_Jan14 | |------------------------------------|-----------------------------------|---|----------------------------| | ALIBITATION | | | | | Dbject | D2600V2 - SN: 1 | 074 (14) (14) (16) (17) | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | | | | | | Calibration date: | January 13, 2014 | Bankalah salaman paga 1991. | | | This calibration certificate docum | ents the traceability to nati | onal standards, which realize the physical ur | nits of measurements (SI). | | | | robability are given on the following pages ar | | | All calibrations have been conduc | eted in the closed laborator | ry facility: environment temperature (22 ± 3)° | C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | ower sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | ower sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | teference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | ype-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | teference Probe ES3DV3 | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | letwork Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Man Chrance | | Approved by: | Katja Pokovic | Technical Manager | fl lly- | | | | | Issued: January 13, 2014 | | | at he seemed used except in | full without written approval of the laboratory | | Certificate No: D2600V2-1074_Jan14 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1074_Jan14 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 2.00 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.4 ± 6 % | 2.18 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1074_Jan14 Page 3 of 8 ## **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.7 Ω - 6.0 jΩ | | | |
--------------------------------------|-----------------|--|--|--| | Return Loss | - 24.4 dB | | | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 5.0 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 24.2 dB | | | | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.149 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | | | | | |-----------------|---------------|--|--|--|--| | Manufactured on | July 17, 2013 | | | | | Certificate No: D2600V2-1074_Jan14 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 13.01.2014 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1074 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2$ S/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY52 Configuration:** • Probe: ES3DV3 - SN3205; ConvF(4.46, 4.46, 4.46); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.2 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.42 W/kg Maximum value of SAR (measured) = 18.6 W/kg 0 dB = 18.6 W/kg = 12.70 dBW/kg Certificate No: D2600V2-1074_Jan14 Page 5 of 8 # Impedance Measurement Plot for Head TSL Report No.: WT158003998 ## **DASY5 Validation Report for Body TSL** Date: 13.01.2014 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1074 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.18$ S/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## **DASY52** Configuration: - Probe: ES3DV3 SN3205; ConvF(4.24, 4.24, 4.24); Calibrated: 30.12.2013; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.091 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.3 W/kg = 12.62 dBW/kg Certificate No: D2600V2-1074_Jan14 # Impedance Measurement Plot for Body TSL 100001-1 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com Client: SMQ Certificate No: Z14-97008 ## CALIBRATION CERTIFICATE Object DAE4 - SN: 876 Calibration Procedure(s) TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: March 03, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID # | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | |---------------------------------------|---------|--|-----------------------|--|--| | Documenting
Process Calibrator 753 | 1971018 | 01-July-13 (TMC, No:JW13-049) | July-14 | | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer 太老儿 Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory leaved March 04 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratoty. Certificate No: Z14-97008 Page 1 of 3 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z14-97008 Page 2 of 3 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors X | | Y | Z | |-----------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.534 ± 0.15% (k=2) | 405.191 ± 0.15% (k=2) | 405.401 ± 0.15% (k=2) | | Low Range | 3.99093 ± 0.7% (k=2) | 3.97295 ± 0.7% (k=2) | 3.99865 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 181° ± 1 ° | |---|------------| | Connector Angle to be used in State Copyright | | Certificate No: Z14-97008 Page 3 of 3 ## Note: - 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix D. - a) There is no physical damage on the dipole; - b) System check with specific dipole is within 10% of calibrated value; - c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement. - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement. Report No.: WT158003998 Page 45 of 51 835MHz Dipole Head 835MHz Dipole Body # D835V2, serial No. 4d141 Extended Dipole Calibrations | r | 835 Head | | | | | | | |-------------|-------------|----------|----------------|-------|----------------|-------|--| | Date of | Return-Loss | Delta(%) | Real | Delta | Imaginary | Delta | | | Measurement | (dB) | | Impedance(ohm) | (ohm) | Impedance(ohm) | (ohm) | | | 2012-9-24 | -28.714 | | 52.572 | | -2.7344 | | | | 2014-9-24 | -29.594 | -2.97 | 53.084 | 0.51 | -5.285 | -2.55 | | | | 835 Body | 835 Body | | | | | | | | Return-Loss | Delta(%) | Real | Delta | Imaginary | Delta | | | | (dB) | | Impedance(ohm) | (ohm) | Impedance(ohm) | (ohm) | | | 2012-9-24 | -34.633 | | 50.082 | | -1.8672 | | | | 2014-9-24 | -35.594 | -2.70 | 50.305 | 0.22 | -5.778 | -3.91 | | Report No.: WT158003998 Page 47 of 51 1900MHz head D1900V2, serial No. 5d162 Extended Dipole Calibrations 1900MHz Body | r | 1900 Head | | | | | | |-------------|-------------|----------|----------------|-------|----------------|-------| | Date of | Return-Loss | Delta(%) | Real | Delta | Imaginary | Delta | | Measurement | (dB) | | Impedance(ohm) | (ohm) | Impedance(ohm) | (ohm) | | 2012-9-21 | -26.119 | | 53.156 | | 4.0098 | | | 2014-9-24 | -26.656 | -2.02 | 53.666 | 0.51 | 2.752 | -1.26 | | | 1900 Body | | | | | | | | Return-Loss | Delta(%) | Real | Delta | Imaginary | Delta | | | (dB) | | Impedance(ohm) | (ohm) | Impedance(ohm) | (ohm) | | 2012-9-21 | -28.393 | | 52.982 | | 2.543 | | | 2014-9-24 | -25.656 | 0.11 | 49.666 | -3.32 | 4.752 | 2.21 | Report No.: WT158003998 Page 49 of 51 Report No.: WT158003998 D2450V2, serial No. 818 Extended Dipole Calibrations 2450MHz Dipole Body | r | 2450 Head | | | | | | | |-------------|-------------|-----------|----------------|-------|----------------|-------|--| | Date of | Return-Loss | Delta(%) | Real | Delta | Imaginary | Delta | | | Measurement | (dB) | | Impedance(ohm) | (ohm) | Impedance(ohm) | (ohm) | | | 2012-10-18 | -28.393 | | 52.982 | | 2.543 | | | | 2014-10-18 | -28.088 | 1.09 | 52.354 | -0.63 | 2.530 | -0.01 | | | | 2450 Body | 2450 Body | | | | | | | | Return-Loss | Delta(%) | Real | Delta | Imaginary | Delta | | | | (dB) | | Impedance(ohm) | (ohm) | Impedance(ohm) | (ohm) | | | 2012-10-18 |
-27.110 | | 50.055 | | 4.4121 | | | | 2014-10-18 | -27.038 | 0.27 | 50.354 | 0.30 | 5.530 | 1.12 | | Report No.: WT158003998 Page 51 of 51