

IrriGreen, Inc. Controller 3, Model 705101

Antenna Pattern Measurements

Report: IRRI0024.0 Rev. 0, Issue Date: August 5, 2024

Approved by:

Trevor Buls, Principal EMC Test Engineer Signed for and on behalf of Element

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

TABLE OF CONTENTS

Section

Page Number

Revision History	.3
Accreditations	.4
Facilities	.5
Product Description	.6
Configurations	.7
Modifications	.8
Passive 3D Antenna Pattern Measurements	.9
End of Report	.12

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE				
	For details on the S	copes of our Accredit	ations, please visit:	
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington

FACILITIES

	Location	Labs (1)	Address	A2LA (2)	ISED (3)	BSMI (4)	VCCI (5)	CAB (6)	FDA (7)
	California	OC01-17	41 Tesla Irvine, CA 92618 (949) 861-8918	3310.04	2834B	SL2-IN-E-1154R	A-0029	US0158	TL-55
⊠	Minnesota	MN01-11	9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	3310.05	2834E	SL2-IN-E-1152R	A-0109	US0175	TL-57
	Oregon	EV01-12	6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	3310.02	2834D	SL2-IN-E-1017	A-0108	US0017	TL-56
	Plano Texas	PT01-15	1701 E Plano Pkwy, Ste 150 Plano, TX 75074 (972) 509-2566	214.19	32637	SL2-IN-E-057R	N/A	US0054	N/A
	Texas	TX01-09	3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	3310.03	2834G	SL2-IN-E-1158R	N/A	US0191	TL-54
	Washington	NC01-05	19201 120th Ave NE Bothell, WA 98011 (425) 984-6600	3310.06	2834F	SL2-IN-E-1153R	A-0110	US0157	TL-67
	Offsite	N/A	See Product Description	N/A	N/A	N/A	N/A	N/A	N/A

Testing was performed at the following location(s)

See data sheets for specific labs

The lab designations denote individual rooms within each location. (OC01, OC02, OC03, etc.) A2LA Certificate No. ISED Company No. (1) (2) (3) (4) (5) (6) (7)

BSD Company No. BSMI No. VCCI Site Filing No. CAB Identifier. Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA FDA ASCA No.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	IrriGreen, Inc.
Address:	5250 West 73rd Street
City, State, Zip:	Edina, MN 55439
Test Requested By:	Gary Klinefelter
EUT:	Controller 3
First Date of Test:	July 16, 2024
Last Date of Test:	July 16, 2024
Receipt Date of Samples:	July 16, 2024
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The controller is labeled as a "Controller 3" with an Irrigreen sprinkler model 400104.

Testing Objective:

To obtain 3D antenna pattern measurements and calculated antenna performance values (gain, efficiency, TRP, etc)

Configuration IRRI0024-7

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Sprinkler Controller	Irrigreen Inc	Controller 3, Model 705101	900636 Rev A1 Unit B

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2024-07-16	Passive 3D Antenna Pattern Measurements	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

PASSIVE 3D ANTENNA PATTERN MEASUREMENTS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna - Dipole	ETS Lindgren	3126-2450	OTF2	4/18/2024	36 mo
Chamber - OTA	ETS Lindgren	AMS-8923-195	ΟΤΑ	5/15/2024	36 mo
Analyzer - Network Analyzer	Agilent	E5071C	NAM	11/19/2022	36 mo

TEST DESCRIPTION

Using the modes of operation and configurations noted within this report, a radiated pattern measurement test was performed. The frequency ranges investigated (scanned), are also noted in this report.

The EUT was placed on a low dielectric constant support structure (Phi Axis Positioner) in the 3D center of the measurement zone using a laser alignment system. The antenna port of the EUT is connected to an RF feed cable which is connected to a Vector Network Analyzer (VNA) at its opposite end.

The test begins with a measurement path configured (via ETS-Lindgren EMQuest Data Acquisition and Analysis Software) such that an electrical path is present from the Theta polarization element of the -165° detector antenna, to port 2 of the VNA. The VNA drives the EUT through the desired frequency range at the desired IFBW and an insertion loss measurement is obtained. The measurement path is then reconfigured (again via EMQuest) such that an electrical path is present from the Phi polarization element of the -165° detector antenna, to rough the desired IFBW and an insertical path is present from the Phi polarization element of the -165° detector antenna, to port 2 of the VNA. The VNA drives the EUT through the desired frequency range at the desired IFBW and an insertion loss measurement is obtained. This process is repeated at each of the 23 detector antennas in turn. This process is repeated for every rotation of the Phi Axis Positioner up to 180° - Phi Axis Resolution. When this process is complete, EMQuest applies factors from a Range Calibration and Normalization to produce a final data set with 1D/2D/3D patterns and tabular values such as antenna efficiency, Equivalent Isotropic Radiated Power (EIRP), Total Radiated Power (TRP), etc.

A measurement uncertainty estimation has been performed for this testing. When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution. The expanded measurement uncertainty, 95% confidence level (K=2), for Maximum Gain / Efficiency for 2400-2483.5 MHz on active measurements is +/-1.08 dB. The expanded measurement uncertainty, 95% confidence level (K=2), for Maximum Gain / Efficiency for 2400-2483.5 MHz on passive measurements is +/-1.29. The calculations for estimating measurement uncertainty are available upon request.

PASSIVE 3D ANTENNA PATTERN MEASUREMENTS

7/16/2024 22 °C 54.3% RH 1015 mbar MN10

EUT:	Controller 3
Serial Number:	900636 Rev A1 Unit B
Customer:	IrriGreen, Inc.
Attendees:	Seth Hammond
Customer Project:	None
Tested By:	Christopher Heintzelman
Test Run Description:	Passive_1

COMMENTS

The maximum gain found in this measurement is 5.92 dBi at 2440 MHz.

PASSIVE 3D ANTENNA PATTERN MEASUREMENTS

EUT:	Controller 3
Serial Number:	900636 Rev A1 Unit B
Customer:	IrriGreen, Inc.
Attendees:	Seth Hammond
Customer Project:	None
Tested By:	Christopher Heintzelman
Test Run Description:	Passive_2

	OTA 2018.01.
Work Order:	IRRI0024
Date:	7/16/2024
Temperature:	22 °C
Relative Humidity:	54.3% RH
Bar. Pressure:	1015 mbar
Job Site:	MN10

COMMENTS The EUT was rotated on its side to prove that previous emissions along the -Z axis were not related to the feed cable. The table height was not adjusted to account for the difference in height. Configuration 7

End of Test Report