

RF Test Report

For

Applicant Name: INTRO UNION ELECTRONICS CO., LTD

Address: Building C, Lilan Industry Park, Huanguan Middle Road, Longhua

District, Shenzhen, China

EUT Name: CAR FM TRANSMITTE

Brand Name: N/A Model Number: T37 Series Model Number: N/A

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF240815R00102

Test Standards: 47 CFR Part 15 Subpart C Section 15.239

FCC ID: 2A578-T37

Test Conclusion: Pass

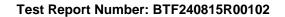
Sample receipt date: 2024-08-15

Test Date: 2024-08-16 to 2024-08-30

Date of Issue: 2024-08-30

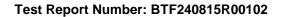
Test By: SSXX.9W

Prepared By:


Ssxx.guo/Tester

Chris Liu / Project Enginee

Approved By:


Ryan.CJ / EMC Manager

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

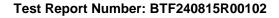

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2024-08-30	Original	
Note:	Once the revision has	Once the revision has been made, then previous versions reports are invalid.	

Table of Contents

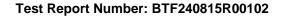
1.	Introduction		4
	1.1	Identification of Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	
	1.3	Laboratory Condition	
	1.4	Announcement	
2.	Product Infor	mation	5
	2.1	Application Information	
	2.2	Manufacturer Information	
	2.3	Factory Information	
	2.4	General Description of Equipment under Test (EUT)	5
	2.5	Technical Information	
3.	Summary of	Test Results	
	3.1	Test Standards	
	3.2	Summary of Test Result	7
	3.3	Uncertainty of Test	
4.	Test Configui	ation	
	4.1	Environment Condition	
	4.2	Test Equipment List	8
	4.3	Test Auxiliary Equipment	9
	4.4	Test Setup	10
5.	Test Items	•	12
	5.1	Antenna Requirements	12
	5.2	20dB bandwidth & 99% bandwidth	13
	5.3	Conducted Emission @ AC power line	14
	5.4	Field Strength of the Fundamental and Band Edge	
	5.5	Radiated Spurious Emission	
INA	NEX A Test Re	esults	19
	A.1 20dB bar	ndwidth & 99% bandwidth	19
	A.2 Conduct	ed Emission @ AC power line	22
	A.3 Field Str	ength of the Fundamental and Band Edge	23
		Spurious Emission	
INA		SETUP PHOTOS	
INA	NEX C EUT C	onstructional Details (EUT Photos)	29

1. Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location


Test Location:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Description:	All measurement facilities used to collect the measurement data are located at F101,201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Laboratory Condition

Ambient Temperature:	20℃ to 25℃
Ambient Relative Humidity:	45% to 55%
Ambient Pressure:	100 kPa to 102 kPa

1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2. Product Information

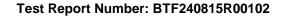
2.1 Application Information

Company Name:	INTRO UNION ELECTRONICS CO., LTD
Address:	Building C, Lilan Industry Park, Huanguan Middle Road, Longhua District, Shenzhen, China

2.2 Manufacturer Information

Company Name:	INTRO UNION ELECTRONICS CO., LTD
Address:	Building C, Lilan Industry Park, Huanguan Middle Road, Longhua District, Shenzhen, China

2.3 Factory Information

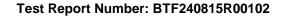

Company Name:	INTRO UNION ELECTRONICS CO., LTD
Address:	Building C, Lilan Industry Park, Huanguan Middle Road, Longhua District, Shenzhen, China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	CAR FM TRANSMITTE
Test Model Number:	T37
Series Model Number:	N/A
Description of Model name differentiation:	N/A
Hardware version	T35-AC6926-V1.1
Software version	N/A
Power Supply:	DC 12-24V
Nominal parameter	Input :DC 12-24V USB-C1: 5V/3A, 9V/3A,12V/3.0A, 36W USB-C2:5V/3A, 9V/3A, 12V/3.0A,36W USB-C1+USB-C2: 5V/3A USB-A1:5V/3A, 9V/2A, 12V/1.5A,18W USB-A2: 5V/2.4A Total: Max 66W

2.5 Technical Information

Modulation Type	FM
Product Type	Low Power Communication Device Transmitter
Frequency Range	The frequency range used is 88.1 MHz – 107.9 MHz;


The frequency block is 88 MHz to 108 MHz.	
Number of Channel	199 (at intervals of 100 KHz)
Tested Channel	01 (88.1 MHz), 101 (98.1 MHz), 199 (107.9 MHz)
Antenna Type	Internal Antenna
Antenna Gain#	0 dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

All channel was listed on the following table:

Channel	Frequency (MHz)
01	88.1
02	88.2
: ·	
100	98.0
101	98.1
102	98.2
198	107.8
199	107.9

3. Summary of Test Results

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15 Subpart C Section 15.239	Intentional Radiators
2	ANSI C63.10-2020	American National Standard for Testing Unlicensed Wireless Devices

3.2 Summary of Test Result

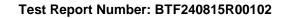
No.	Description	IC Part No.	Test Result	Test By	Verdict
1	Antenna Requirement	Part 15.203	Section 5.1		Pass
2	20dB bandwidth & 99% bandwidth	Part 15.239(a)	ANNEX A.1	Ssxx.guo	Pass
3	Conducted Emission @ AC power line	Part 15.207	ANNEX A.2	Ssxx.guo	Pass
4	Field Strength of the Fundamental and Band Edge	Part 15.239(b)	ANNEX A.3	Ssxx.guo	Pass
5	Radiated Spurious Emission	Part 15.209 Part 15.239(c)	ANNEX A.4	Ssxx.guo	Pass

3.3 Uncertainty of Test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2 and TR100 028-1/-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Occupied Channel Bandwidth	69 KHz
All emissions, radiated(<1GHz)	4.12 dB
All emissions, radiated(>1GHz)	4.16 dB
Temperature	0.82 °C
Humidity	4.1 %

4. Test Configuration

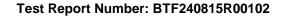

4.1 Environment Condition

Environment	Selected Values During Tests					
Parameter	Temperature	Voltage	Relative Humidity	Ambient Pressure		
Normal Temperature, Normal Voltage (NTNV)	20°C to 25°C	DC 12V from	30% to 60%	100 kPa to 102 kPa		

4.2 Test Equipment List

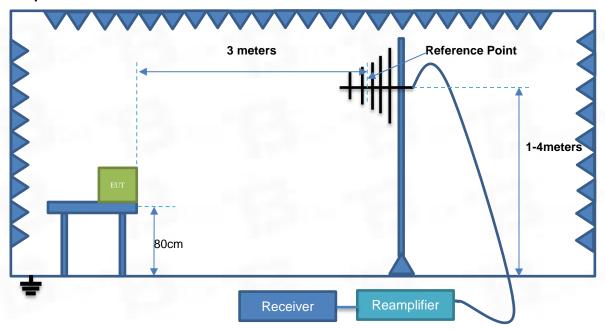
	=					
Radiated Emission Test						
Test Equipment	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
EMI Receiver	Rohde & Schwarz	ESCI7	101032	2023/11/16	2024/11/15	\boxtimes
Signal Analyzer	Rohde & Schwarz	FSQ40	100010	2023/11/16	2024/11/15	\boxtimes
Log periodic antenna	Schwarzbeck	VULB 9168	01328	2023/11/13	2024/11/12	\boxtimes
Preamplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9744	00246	2023/11/13	2024/11/12	\boxtimes
Horn Antenna	Schwarzbeck	BBHA9120D	2597	2023/11/13	2024/11/12	\boxtimes
Preamplifier (1GHz ~ 18GHz)	Schwarzbeck	BBV9718D	00008	2023/11/13	2024/11/12	\boxtimes
Test Software	Frad	EZ_EMC	Version: FA-03A2 RE+			\boxtimes

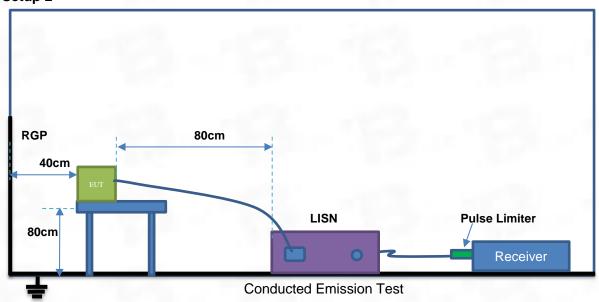
	Conducted Emission Test						
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use	
EMI Receiver	Rohde & Schwarz	ESCI3	101422	2023/11/15	2024/11/14	\boxtimes	
V-LISN	Schwarzbeck	NSLK 8127	01073	2023/11/16	2024/11/15	\boxtimes	
Coaxial Switcher	Schwarzbeck	CX210	CX210	/	/	\boxtimes	
Pulse Limiter	Schwarzbeck	VTSD 9561-F	00953	/	/	\boxtimes	
Test Software Frad EZ_EMC Version: EMC-CON 3A1.1+				1.1+	\boxtimes		



Conducted test method						
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
Spectrum Analyzer	Keysight	N9020A	MY50410020	2023/11/16	2024/11/15	\boxtimes
ESG Vector Signal Generator	Agilent	E4438C	MY45094854	2023/11/16	2024/11/15	\boxtimes
MXG Vector Signal Generator	Agilent	N5182A	MY46240163	2023/11/16	2024/11/15	\boxtimes
Wideband Radio Communication Tester	Rohde&Schwarz	CMW500	161997	2023/11/16	2024/11/15	\boxtimes
Temperature Humidity Chamber	ZZCKONG	ZZ-K02A	20210928007	2023/11/16	2024/11/15	\boxtimes
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15	
RF Control Unit	Techy	TR1029-1	/	2023/11/11	2024/11/12	\boxtimes
RF Sensor Unit	Techy	TR1029-2	/	2023/11/11	2024/11/12	\boxtimes
Test Software	TST Pass	/		Version: 2.0		\boxtimes

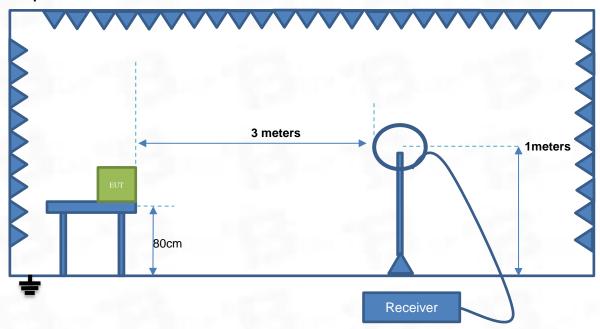
4.3 Test Auxiliary Equipment

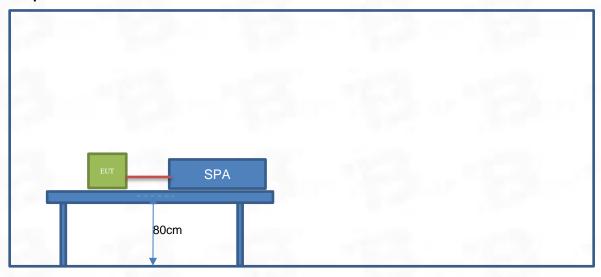

Description	Manufacturer	Model	Serial No.	Length	Description
MAINTENANCE FREE ACCUMULATOR	JuJiang	12-400	/	/	/


4.4 Test Setup

Test Setup 1

Radiation Test (30MHz - 1GHz)


Test Setup 2



Test Setup 3

Radiation Test (9k - 30MHz)

Test Setup 4

5. Test Items

5.1 Antenna Requirements

5.1.1 Relevant Standards

Part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of 15.211, 15.213, 15.217, 15.219, 15.221, or 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.1.2 Antenna Anti-Replacement Construction

Protected Method	Description
The antenna is embedded in the product.	An embedded in antenna design is used.

Reference Documents	Item
Photo	Please refer to the EUT Photo documents.

5.2 20dB bandwidth & 99% bandwidth

5.2.1 Limit

Part 15.239(a)

Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz.

5.2.2 Test Setup

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the EUT bandwidth.

Set the RBW = $1\%\sim5\%$ OBW. Set VBW ≥ 3 x RBW.

Set span $\geq 3 \times RBW$, Sweep time = auto couple. Detector = peak.

Trace mode = max hold.

Allow trace to fully stabilize, view the transmitter waveform on the spectrum analyzer.

5.2.3 Test Result

Please refer to ANNEX A.1

5.3 Conducted Emission @ AC power line

5.3.1 Limit

Part 15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
0.50 - 30	60	50	

5.3.2 Test Setup

See section 4.4 for test setup description for setup 2. The photo of test setup please refer to ANNEX B

5.3.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

5.3.4 Test Result

Not Applicable

Note: The EUT is powered by car's power.

Field Strength of the Fundamental and Band Edge

5.4.1 Limit

Part 15.239(b)

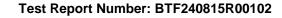
The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in § 15.35 for limiting peak emissions apply.

The field strength of emissions from the intentional radiators operated under these frequency bands shall not

exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (dBuV/m@3m			
00 to 100	Peak	Average		
88 to 108	67.96	47.96		

Field strength of outside of the frequency bands limit show in below table.


Outside Frequency Band Edge	Distance Meters(dBuV/m@3m)				
Below 88 MHz	40.0 (QP)				
Above 108 MHz	43.5 (QP)				

5.4.2 Test Setup

See section 4.4 for test setup description for setup 1. The photo of test setup please refer to ANNEX B

5.4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode remeasured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use RBW=100 kHz, VBW=300 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Average Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4.4 Test Result

Please refer to ANNEX A.3

5.5 Radiated Spurious Emission

5.5.1 Limit

Part 15.209

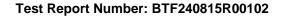
Frequency	Limit (dBuV/m)	Value		
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak		
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak		
1.705 MHz ~30 MHz	30 @30m	Quasi-peak		

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.

Frequency	Limit (dBuV/m @3m)	Value	
30MHz~88MHz	40.00	Quasi-peak	
88MHz~216MHz	43.50	Quasi-peak	
216MHz~960MHz	46.00	Quasi-peak	
960MHz~1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
Above 10112	74.00	Peak	

Part 15.239(c)

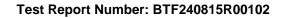

The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in § 15.209.

5.5.2 Test Setup

See section 4 for test setup description for setup 1. The photo of test setup please refer to ANNEX B

5.5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning

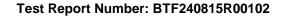


the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode remeasured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use RBW=100 kHz, VBW=300 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Average Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.5.4 Test Result

Please refer to ANNEX A.4

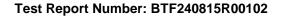


ANNEX A Test Results

A.1 20dB bandwidth & 99% bandwidth

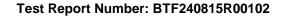
Test Channel	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Conclusion	
Lowest	183.871	200	PASS	
Middle	189.349	200	PASS	
Highest	166.693	200	PASS	

Test Channel	99% Occupy Bandwidth (kHz)	Limit (kHz)	Conclusion		
Lowest	169.64	200	PASS		
Middle	174.28	200	PASS		
Highest	138.07	200	PASS		

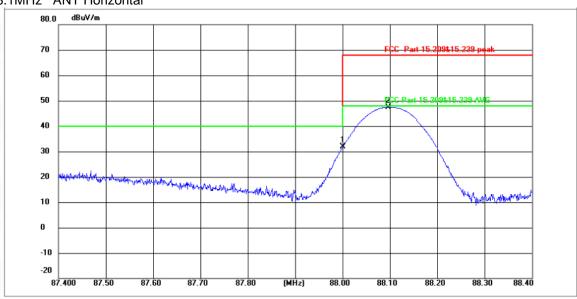

Test plots as follows:

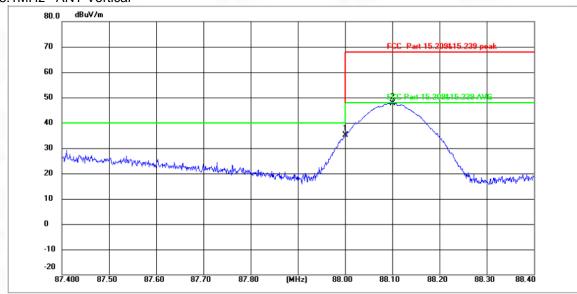
Lowest channel

Middle channel

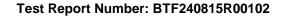


A.2 Conducted Emission @ AC power line


The EUT is powered by car's power.

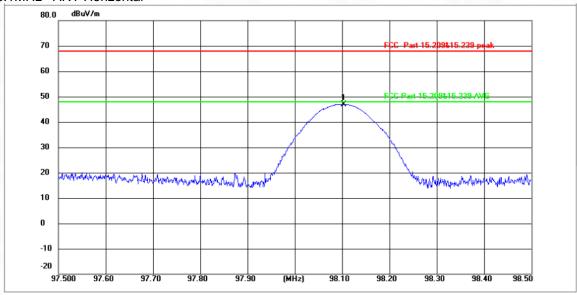

A.3 Field Strength of the Fundamental and Band Edge Field Strength of Fundamental

Test Mode 88.1MHz ANT Horizontal

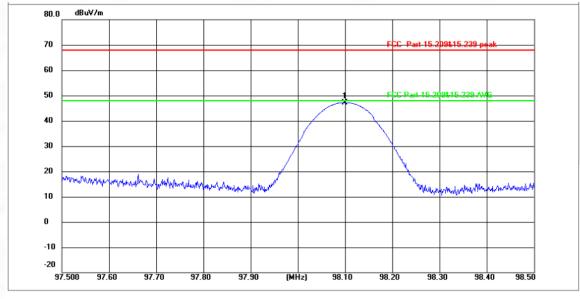


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	88.0000	74.60	-42.84	31.76	40.00	-8.24	peak	Р
2	88.0970	90.34	-42.84	47.50	67.96	-20.46	peak	Р

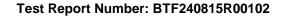
Test Mode 88.1MHz ANT Vertical



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	88.0000	63.04	-27.84	35.20	40.00	-4.80	peak	Р
2	88.1010	75.41	-27.84	47.57	67.96	-20.39	peak	Р

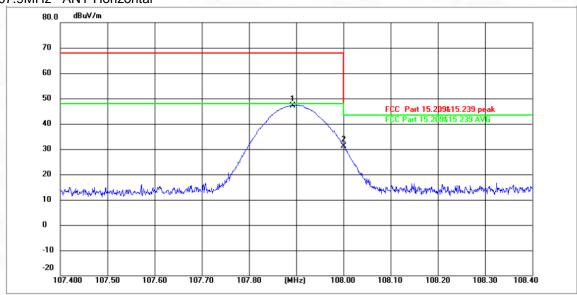


Test Mode 98.1MHz ANT Horizontal

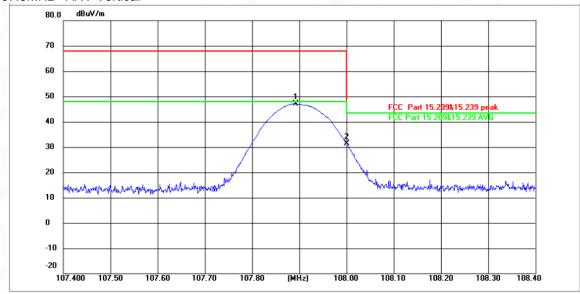


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	98.1030	74.75	-27.76	46.99	67.96	-20.97	peak	Р

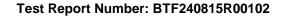
Test Mode 98.1MHz ANT Vertical



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	98.0990	74.99	-27.76	47.23	67.96	-20.73	peak	Р



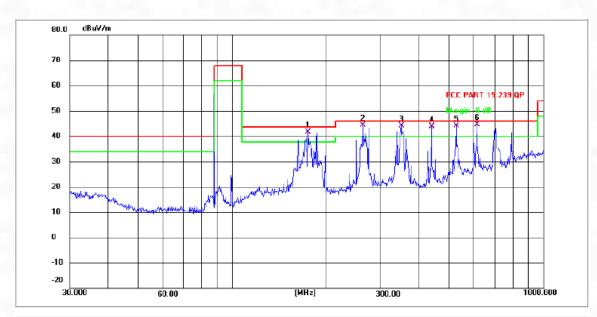
Test Mode 107.9MHz ANT Horizontal

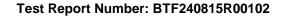


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	107.8930	69.53	-22.28	47.25	67.96	-20.71	peak	Р
2 *	108.0000	53.51	-22.26	31.25	43.50	-12.25	peak	Р

Test Mode 107.9MHz ANT Vertical

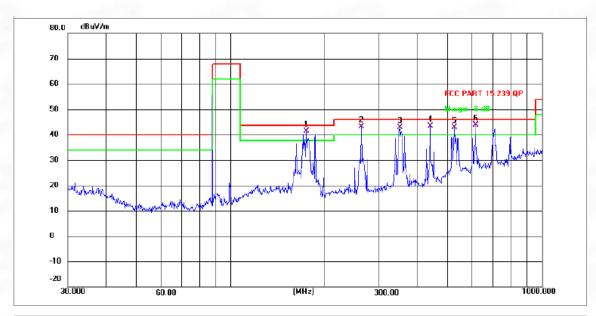
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	107.8920	69.51	-22.28	47.23	67.96	-20.73	peak	Р
2 *	108.0000	53.69	-22.26	31.43	43.50	-12.07	peak	Р




A.4 Radiated Spurious Emission

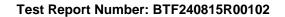
Horizontal:

88.1 MHz


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1!	175.0367	63.37	-21.77	41.60	43.60	-2.00	QP	Р
2!	262.8955	65.20	-20.94	44.26	46.00	-1.74	QP	Р
3!	350.4767	64.45	-20.23	44.22	46.00	-1.78	QP	Р
4!	437.8870	63.28	-19.51	43.77	46.00	-2.23	QP	Р
5!	526.3967	62.86	-18.82	44.04	46.00	-1.96	QP	Р
6 *	614.2142	62.98	-18.24	44.74	46.00	-1.26	QP	Р

Vertical:

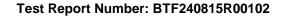
88.1 MHz


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 !	175.0367	63.08	-21.77	41.31	43.60	-2.29	QP	Р
2!	262.8955	64.05	-20.94	43.11	46.00	-2.89	QP	Р
3!	350.4767	63.22	-20.23	42.99	46.00	-3.01	QP	Р
4!	437.8870	62.79	-19.51	43.28	46.00	-2.72	QP	Р
5!	523.6352	61.61	-18.83	42.78	46.00	-3.22	QP	Р
6 *	614.2142	62.03	-18.24	43.79	46.00	-2.21	QP	Р

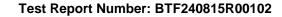
Note: 1) QP= Quasi-peak

2) Emission Level = Reading Level + Antenna Factor + Cable Loss.


3) Measurements were conducted in all three channels (high, middle, low) and


the worst case Mode (low channel) was submitted only.

ANNEX B TEST SETUP PHOTOS



ANNEX C EUT Constructional Details (EUT Photos)

Please refer to the test report No. BTF240815R00101

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT--