TEST REPORT **APPLICANT** : Reliance Communications LLC PRODUCT NAME : Orbic Speed **MODEL NAME** : RC400L **BRAND NAME** : Orbic **FCC ID** : 2ABGH-RC400L STANDARD(S) : FCC 47CFR Part 2(2.1093) RECEIPT DATE : 2020-04-17 **TEST DATE** : 2020-04-22 to 2020-05-01 **ISSUE DATE** : 2020-05-06 Edited by: Liang Yumei Approved by: - Peng Huarui (Supervisor) NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website. Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn # **DIRECTORY** | 1. SAR Results Summary | |--| | 2. Technical Information | | 2.1. Applicant and Manufacturer Information | | 2.2. Equipment Under Test (EUT) Description | | 2.3. Environment of Test Site/Conditions | | 3. Specific Absorption Rate (SAR) ···································· | | 3.1. Introduction | | 3.2. SAR Definition | | 4. RF Exposure Limits | | 5. Applied Reference Documents 1 | | 6. SAR Measurement System······ 1 | | 6.1. E-Field Probe | | 6.2. Data Acquisition Electronics (DAE) | | 6.3. Robot | | 6.4. Measurement Server 1 | | 6.5. Light Beam Unit | | 6.6. Phantom | | 6.7. Device Holder 1 | | 6.8. Data Storage and Evaluation 1 | | 6.9. Test Equipment List | | 7. Tissue Simulating Liquids······· 2 | | 8. SAR System Verification2 | | 8.1. Purpose of System Performance check2 | | 8.2. System Setup 2 | | 8.3. Validation Results 26 | |--| | 9. EUT Testing Position27 | | 9.1. Body-worn Configurations27 | | 9.2. Hotspot Mode Exposure Position Conditions 27 | | 10. Measurement Procedures 28 | | 10.1. Spatial Peak SAR Evaluation 29 | | 10.2. Power Reference Measurement | | 10.3. Area Scan Procedures 30 | | 10.4. Zoom Scan Procedures 30 | | 10.5. SAR Averaged Methods 30 | | 10.6. Power Drift Monitoring 31 | | 11. SAR Test Procedure 32 | | 11.1. General scan Requirements 32 | | 11.2. Test procedure 33 | | 11.3. Description of interpolation/extrapolation scheme 33 | | 11.4. Wireless Router 34 | | 12. SAR Test Configuration 35 | | 13. Conducted RF Output Power 44 | | 14. EUT Antenna Location ······ 63 | | 15. Block diagram of the tests to be performed 64 | | 15.1. Body 64 | | 16. Test Results List 65 | | 16.1. Test Guidance ······ 65 | | 16.2. Body SAR Data 67 | | 16.3. Repeated SAR Measurement 72 | | 17. Simultaneous Transmission Evaluation | | 18. Uncertainty Assessment | | Annex A General Information······ 82 | Annex B Test Setup Photos Annex C Plots of System Performance Check Annex D Plots of Maximum SAR Test Results Annex E DASY Calibration Certificate | Changed History | | | | |-----------------|------------|-------------------|--| | Version | Date | Reason for Change | | | 1.0 | 2020-05-06 | Original | | | | | | | # 1. SAR Results Summary The maximum results of Specific Absorption Rate (SAR) found during test as bellows: <Highest Reported standalone SAR Summary> | Frequency
Band | | Highest SAR Summary | |-------------------|---------------|---------------------| | | | Body (Gap 10mm) | | | | 1g SAR (W/kg) | | MCDMA | WCDMA Band II | 0.511 | | WCDMA | WCDMA Band V | 0.616 | | LTE | LTE Band 2 | 0.863 | | | LTE Band 4 | 0.759 | | | LTE Band 5 | 0.774 | | | LTE Band 13 | 0.577 | | | LTE Band 66 | 0.641 | | WLAN | 2.4GHz WLAN | 0.195 | | | 5GHz WLAN | 0.796 | | Max Scaled SAR _{1g} (W/Kg): | Body: | 0.863 W/kg | Limit(W/kg): 1.6 W/kg | |--------------------------------------|-------|------------|-----------------------| |--------------------------------------|-------|------------|-----------------------| | Highest Simultaneous Transmission SAR _{1g} | 1.536 W/kg | Limit(W/kg): 1.6 W/kg | |---|------------|---------------------------| | (W/Kg): | 1.550 W/kg | Littiit(vv/kg). 1.0 vv/kg | ### Note: 1. This device is in compliance with Specific Absorption Rate (SAR) for general population/ uncontrolled exposure limits (1.6W/kg as averaged over any 1 gram of tissue; specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and FCC KDB publications. # 2. Technical Information Note: Provide by applicant. ## 2.1. Applicant and Manufacturer Information | Applicant: | Reliance Communications LLC | |-----------------------|--| | Applicant Address | 91 Colin Drive, Unit 1, HOLBROOK, New York 11741, United | | Applicant Address: | States | | Manufacturer: | Unimaxcomm | | Manufacturer Address. | Room 602, Floor 6th, Building B, Software Park T3,Hi-Tech Park | | Manufacturer Address: | South, Nanshan District, Shenzhen, P.R. China | ## 2.2. Equipment Under Test (EUT) Description | EUT Name: | Orbic Speed | | | | |------------------------|--|--|--|--| | Hardware Version: | V1.1 | | | | | Software Version: | ORB400L_V1.0.1_BVZ | | | | | Frequency Bands: | WCDMA Band II: 1850 MHz ~ 1910 MHz | | | | | | WCDMA Band V: 824 MHz ~ 849 MHz | | | | | | LTE Band 2: 1850 MHz ~ 1910 MHz | | | | | | LTE Band 4: 1710 MHz ~ 1755 MHz | | | | | | LTE Band 5: 824 MHz ~ 849 MHz | | | | | | LTE Band 13: 777 MHz ~ 787 MHz | | | | | | LTE Band 66: 1710 MHz ~ 1780 MHz | | | | | | WLAN 2.4GHz: 2412 MHz ~ 2472 MHz | | | | | | WLAN 5.2GHz: 5180 MHz ~ 5240 MHz | | | | | | WLAN 5.8GHz: 5745 MHz ~ 5825 MHz | | | | | Modulation Mode: | WCDMA: QPSK/16QAM | | | | | | LTE: QPSK/16QAM | | | | | | 802.11b: DSSS | | | | | | 802.11g/n-HT20/HT40/ac-VHT20/ac-VHT40/ac-VHT80: OFDM | | | | | Hotspot Mode: | WWAN/2.4GHz WLAN/5GHz WLAN | | | | | Antonno Timo | WWAN: Fixed Internal | | | | | Antenna Type: | WLAN: PIFA Antenna | | | | | SIM Cards Description: | Only support single SIM card | | | | | . | in time and | | | | **Note:** For a more detailed description, please refer to specification or user manual supplied by the applicant and/or manufacturer. ### 2.3. Environment of Test Site/Conditions | Normal Temperature (NT): | 20 25 °C | |--------------------------|--------------| | Relative Humidity: | 30 75 % | | Air Pressure: | 980 1020 hPa | | | WCDMA Band II/V; | | | |-----------------|---|--|--| | Test frequency: | FDD-LTE Band 2/4/5/13/66; | | | | | WLAN 2.4GHz; | | | | | WLAN 5GHz; | | | | Operation mode: | Call established | | | | | WCDMA Band II/V (All Up Bits) | | | | Power Level: | FDD-LTE Band 2/4/5/13/66 (Maximum output power) | | | | | WLAN 2.4GHz (Power setting=14) | | | | | WLAN 5GHz (Power setting=14) | | | During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the Factory. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB. # 3. Specific Absorption Rate (SAR) ### 3.1. Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled. ### 3.2. SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by, $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rmselectrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. # 4. RF Exposure Limits ### Limits for General Population/Uncontrolled Exposure (W/kg) | Type Exposure | Uncontrolled Environment Limit | |--|--------------------------------| | Spatial Peak SAR (1g cube tissue for head and trunk) | 1.60W/kg | | Spatial Peak SAR (10g cube tissue for limbs) | 4.00W/kg | | Spatial Peak SAR (1g cube tissue for whole body) | 0.08W/kg | #### Note: - 1. This limit is according to ANSI/IEEE C95.1-1992, Annex II (Basic Restrictions) - 2. Occupational/Uncontrolled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation) # **5. Applied Reference Documents** Leading
reference documents for testing: | No. | Identity | Document Title | Method
determination
/Remark | |-----|----------------------------|--|------------------------------------| | 1 | FCC 47CFR
Part2(2.1093) | Radio Frequency Radiation Exposure Evaluation: Portable Devices | No deviation | | 2 | KDB 447498 D01v06 | General RF Exposure Guidance | No deviation | | 3 | KDB 248227 D01v02r02 | SAR Measurement Procedures for 802.11 Transmitters | No deviation | | 4 | KDB 865664 D01v01r04 | SAR Measurement 100 MHz to 6 GHz | No deviation | | 5 | KDB 865664 D02v01r02 | RF Exposure Reporting | No deviation | | 6 | KDB 941225 D01v03r01 | 3G SAR MEAUREMENT PROCEDURES | No deviation | | 7 | KDB 941225 D05v02r05 | SAR Evaluation Consideration for LTE Devices | No deviation | | 8 | KDB 941225 D06v02r01 | SAR Evaluation Procedures For Portable Devices With Wireless Router Capabilities | No deviation | Http://www.morlab.cn # 6. SAR Measurement System Fig 6.1 SPEAG DASY System Configurations The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: A standard high precision 6-axis robot with controller, a teach pendant and software A data acquisition electronic (DAE) attached to the robot arm extension A dosimetric probe equipped with an optical surface detector system The electro-optical converter (ECO) performs the conversion between optical and electrical signals A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. A probe alignment unit which improves the accuracy of the probe positioning A computer operating Windows XP DASY software Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. The SAM twin phantom A device holder Tissue simulating liquid Dipole for evaluating the proper functioning of the system Some of the components are described in details in the following sub-sections. ### 6.1. E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. # E-Field Probe Specification <ES3DV3 Probe> | Construction | Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Frequency | 10 MHz to 3 GHz; Linearity: ± 0.2 dB | | Directivity | ± 0.2 dB in HSL (rotation around probe axis) | | | ± 0.4 dB in HSL (rotation normal to probe axis) | | Dynamic Range | 5 μW/g to 100 mW/g; Linearity: ± 0.2 dB | | Dimensions | Overall length: 330 mm (Tip: 16 mm) | | | Tip diameter: 6.8 mm (Body: 12 mm) | | | Distance from probe tip to dipole centers: 2.7 | | | mm | ### <EX3DV4 Probe> | Construction | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |------------------|---| | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | | Directivity | \pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis) | | Dynamic
Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, #### **E-Field Probe Calibration** Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to Annex C of this report. ## 6.2. Data Acquisition Electronics (DAE) The data acquisition electronics(DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast16 bit AD-converter and a command decoder and control logic unit. AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical reducedlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 6.4 Photo of DAE ### 6.3. Robot The SPEAG DASY system uses the high precision robots (DASY4: RX90BL; DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: High precision (repeatability ±0.035 mm) High reliability (industrial design) Jerk-free straight movements Low ELF interference (the closed metallic construction shields against motor control fields) Fig 6.5 Photo of DASY5 ### 6.4. Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chip disk (DASY4: 32 MB; DASY5: 128 MB), RAM (DASY4: 64 MB, DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. Fig 6.6 Photo of Server for DASY5 ## 6.5. Light Beam Unit The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. Fig. 6.7 Photo of Light Beam ### 6.6. Phantom ### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%)
Center ear point: 6 ± 0.2 mm | and I a | |-------------------|--|------------------------------| | Filling Volume | Approx. 25 liters | 1 | | Dimensions | Length: 1000 mm; Width: 500 mm;
Height: adjustable feet | | | Measurement Areas | Left Hand, Right Hand, Flat
Phantom | Fig 6.8 Photo of SAM Phantom | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. ### 6.7. Device Holder ### <Device Holder for SAM Twin Phantom> The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. Fig 6.9 Device Holder Tel: 86-755-36698555 Http://www.morlab.cn ### <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Fig 6.10 Laptop Extension Kit ## 6.8. Data Storage and Evaluation ### **Data Storage** The DASY software stores the assessed data from the data acquisition electronics as raw
data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. ### **Data Evaluation** The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software. | Probe parameters: | Sensitivity | Norm _i , a_{i0} , a_{i1} , a_{i2} | |-------------------|---------------------------------|--| |-------------------|---------------------------------|--| - Conversion factor ConvF_i - Diode compression point dcpi **Device parameters:** - Frequency f - Crest factor cf **Media parameters:** - Conductivity σ - Density ρ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \times \frac{cf}{dcp_i}$$ With Vi = compensated signal of channel i, (i = x, y, z) Ui = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcpi = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: $$\text{E-field Probes:} E_i = \sqrt{\frac{V_i}{\text{Norm}_i \times \text{ConvF}}}$$ H-field Probes:H $$_{i}=\sqrt{V_{i}}\times\frac{a_{i0}+a_{i1}+a_{i2}f^{2}}{f}$$ With V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ii} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \times \frac{\sigma}{\rho \times 1000}$$ with SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. ## 6.9. Test Equipment List | | | | Serial | Calibration | | | |---------------|-------------------------------|---------------|------------|-------------|------------|--| | Manufacturer | Name of Equipment | Type/Model | Number | Last Cal. | Due Date | | | SPEAG | 750MHz System Validation Kit | D750V3 | 1173 | 2018.06.21 | 2021.06.20 | | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d227 | 2018.06.22 | 2021.06.21 | | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1160 | 2018.06.25 | 2021.06.24 | | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d221 | 2018.06.22 | 2021.06.21 | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 805 | 2018.10.26 | 2021.10.25 | | | SPEAG | 5000MHz System Validation Kit | D5GHzV2 | 1176 | 2018.11.06 | 2021.11.05 | | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3154 | 2019.07.16 | 2020.07.15 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3823 | 2020.01.03 | 2021.01.02 | | | SPEAG | Data Acquisition Electronics | DAE4 | 871 | 2019.06.27 | 2020.06.26 | | | SPEAG | Dielectric Assessment KIT | DAK-3.5 | 1279 | 2019.11.03 | 2020.11.02 | | | SPEAG | SAM Twin Phantom 1 | QD 000 P40 CB | TP-1471 | NCR | NCR | | | SPEAG | SAM Twin Phantom 2 | QD 000 P40 CB | TP-1464 | NCR | NCR | | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | | R&S | Network Emulator | CMW500 | 124534 | 2020.04.01 | 2021.03.31 | | | Agilent | Network Analyzer | E5071B | MY42404762 | 2020.04.01 | 2021.03.31 | | | mini-circuits | Amplifier | ZHL-42W+ | 608501717 | NCR | NCR | | | mini-circuits | Amplifier | ZVE-8G+ | 754401735 | NCR | NCR | | | Agilent | Signal Generator | N5182B | MY53050509 | 2020.04.01 | 2021.03.31 | | | Agilent | Power Senor | N8482A | MY41090849 | 2019.10.28 | 2020.10.27 | | | Agilent | Power Meter | E4416A | MY45102093 | 2019.10.28 | 2020.10.27 | | | Anritsu | Power Sensor | MA2411B | N/A | 2019.10.28 | 2020.10.27 | | | Anritsu | Power Meter | NRVD | 101066 | 2019.10.28 | 2020.10.27 | | | Agilent | Dual Directional Coupler | 778D | 50422 | NA | NA | | | MCL | Attenuation1 | 351-218-010 | N/A | NA | NA | | | THERMOMETER | Thermo meter | DC-803 | N/A | 2019.11.22 | 2020.11.21 | | | N/A | Tissue Simulating Liquids | 700-6000MHz | N/A | 24 | 1H | | ### Note: - The calibration certificate of DASY can be referred to Annex E of this report. - The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check. - 3. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated Tel: 86-755-36698555 Http://www.morlab.cn in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Speag. - 4. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it - 5. Attenuator insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check. - 6. N.C.R means No Calibration Requirement. Tel: 86-755-36698555 Http://www.morlab.cn # 7. Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing, the liquid height from the ear reference point(ERP)of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm, which is shown in Fig. 7.2. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table. Fig 7.1 Photo of Liquid Height for Head SAR Fig 7.2 Photo of Liquid Height for Body SAR The following table gives the recipes for tissue simulating liquids | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol (%) | DGBE
(%) | Conductivity (σ) | Permittivity (εr) | |--------------------|--------------|--------------|------------------|-------------|---------------|-------------|------------------|-------------------| | | | | | Head | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | Body | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | |--------------------|---------------| | Water | 64~78% | | Mineral oil | 11~18% | | Emulsifiers | 9~15% | | Additives and Salt | 2~3% | Note: Please refer to the validation results for dielectric parameters of each frequency band. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer. **Table 1: Dielectric Performance of Tissue Simulating Liquid** | u.b.o b.o | able 1: Dielectric Performance of Tissue Simulating Liquid | | | | | | | | | |--------------------
--|---------------------|-------------------|--------------------------|-------------------------|------------|------------|--|--| | Frequency
(MHz) | Tissue
Type | Liquid Temp.
(℃) | Conductivity (σ) | Conductivity Target (σ) | Delta (σ)
(%) | Limit (%) | Date | | | | 750 | HSL | 22.5 | 0.929 | 0.89 | 4.38 | ±5 | 2020.04.30 | | | | 835 | HSL | 22.1 | 0.904 | 0.90 | 0.44 | ±5 | 2020.05.01 | | | | 1750 | HSL | 22.3 | 1.416 | 1.37 | 3.36 | ±5 | 2020.04.30 | | | | 1900 | HSL | 22.2 | 1.345 | 1.40 | -3.93 | ±5 | 2020.04.29 | | | | 2450 | HSL | 22.1 | 1.870 | 1.80 | 3.89 | ±5 | 2020.04.22 | | | | 5250 | HSL | 22.4 | 4.532 | 4.71 | -3.78 | ±5 | 2020.04.23 | | | | 5750 | HSL | 22.4 | 5.030 | 5.22 | -3.64 | ±5 | 2020.04.23 | | | | | | | | | | | | | | | Frequency | Tissue | Liquid Temp. | Permittivity | Permittivity | Delta (ε _r) | Limit (0/) | Dete | | | | (MHz) | Туре | (℃) | (ε _r) | Target (ε _r) | (%) | Limit (%) | Date | | | | 750 | HSL | 22.5 | 42.139 | 41.90 | 0.57 | ±5 | 2020.04.30 | | | | 835 | HSL | 22.1 | 41.134 | 41.50 | -0.88 | ±5 | 2020.05.01 | | | | 1750 | HSL | 22.3 | 39.417 | 40.10 | -1.70 | ±5 | 2020.04.30 | | | | 1900 | HSL | 22.2 | 41.326 | 40.00 | 3.32 | ±5 | 2020.04.29 | | | | | 1101 | | | 20.00 | 2.01 | ±5 | 2020.04.22 | | | | 2450 | HSL | 22.1 | 38.061 | 39.20 | -2.91 | ±3 | 2020.04.22 | | | | 2450
5250 | HSL | 22.1 | 38.061
34.968 | 35.95 | -2.91 | ±5 | 2020.04.22 | | | | | | | | | | | | | | ### Note: According to the TCB Workshop in April 2019, FCC permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests # 8. SAR System Verification Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. ## 8.1. Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. ## 8.2. System Setup The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected. In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below. Fig 8.1 Photo of Dipole Setup Fig 8.2 System Setup for System Evaluation ### 8.3. Validation Results After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. ### <Validation Setup> | Dipole
S/N | Probe
S/N | DAE
S/N | |-------------------|--------------|------------| | D750V3-1173 | 3154 | 871 | | D835V2-4d227 | 3823 | 871 | | D1750V2-1160 | 3823 | 871 | | D1900V2_5d221 | 3823 | 871 | | D2450V2-805 | 3823 | 871 | | D5GHzV2-1176-5250 | 3823 | 871 | | D5GHzV2-1176-5750 | 3823 | 871 | ### <Validation Results> | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |------------|--------------------|----------------|------------------------|------------------------------|------------------------------|--------------------------------|------------------| | 2020.04.30 | 750 | HSL | 250 | 2.07 | 8.26 | 8.28 | 0.24 | | 2020.05.01 | 835 | HSL | 250 | 2.40 | 9.34 | 9.6 | 2.78 | | 2020.04.30 | 1750 | HSL | 250 | 9.61 | 37.10 | 38.44 | 3.61 | | 2020.04.29 | 1900 | HSL | 250 | 9.77 | 39.50 | 39.08 | -1.06 | | 2020.04.22 | 2450 | HSL | 250 | 13.60 | 52.00 | 54.4 | 4.62 | | 2020.04.23 | 5250 | HSL | 100 | 8.08 | 78.90 | 80.8 | 2.41 | | 2020.04.23 | 5750 | HSL | 100 | 7.90 | 80.00 | 79 | -1.25 | | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Measured
10g SAR
(W/kg) | Targeted
10g SAR
(W/kg) | Normalized
10g SAR
(W/kg) | Deviation
(%) | |------------|--------------------|----------------|------------------------|-------------------------------|-------------------------------|---------------------------------|------------------| | 2020.04.30 | 750 | HSL | 250 | 1.39 | 5.45 | 5.56 | 2.02 | | 2020.05.01 | 835 | HSL | 250 | 1.53 | 6.07 | 6.12 | 0.82 | | 2020.04.30 | 1750 | HSL | 250 | 5.06 | 20.00 | 20.24 | 1.20 | | 2020.04.29 | 1900 | HSL | 250 | 5.14 | 20.60 | 20.56 | -0.19 | | 2020.04.22 | 2450 | HSL | 250 | 6.15 | 24.10 | 24.6 | 2.07 | | 2020.04.23 | 5250 | HSL | 100 | 2.19 | 22.50 | 21.9 | -2.67 | | 2020.04.23 | 5750 | HSL | 100 | 2.24 | 22.60 | 22.4 | -0.88 | Note: System checks the specific test data please see Annex C # 9. EUT Testing Position This EUT was tested in six different positions. They are right cheek/right tilted/left cheek/left tilted for head, Front/Back of the EUT with phantom 10 mm gap, as illustrated below, please refer to Annex B for the test setup photos. ## 9.1. Body-worn Configurations The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues. Fig 9.5 Illustration for Body Worn Position ## 9.2. Hotspot Mode Exposure Position Conditions For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface). Fig 9.6 Illustration for Hotspot Position ## 10. Measurement Procedures The measurement procedures are as follows: ### <Conducted power measurement> - (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power ### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel - (b) Place the EUT in the positions as Annex D demonstrates. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f)Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ## 10.1. Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area sc Ant. The entire evaluation of the spatial
peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f)Calculation of the averaged SAR within masses of 1g and 10g ### 10.2. Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ### 10.3. Area Scan Procedures Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments. When an Area Scan has measured all reachable points, it computes the field maxima founding the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). ### 10.4. Zoom Scan Procedures Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10 g cube 21,5mm. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis. ## 10.5. SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Sheppard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. ## 10.6. Power Drift Monitoring All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. ## 11. SAR Test Procedure ## 11.1. General scan Requirements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. | | | | ≤3 GHz | > 3 GHz | |---|---------------------------|---|---|--| | Maximum distance from closest measurement point
(geometric center of probe sensors) to phantom surface | | | 5 mm ± 1 mm | ½·δ·ln(2) mm ± 0.5 mm | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | | | 30° ± 1° | 20°±1° | | | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution: $\Delta x_{Area},\Delta y_{Area}$ | | | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom} | | | ≤ 2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm* | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | graded to phantom surface | | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid | Δz _{Loom} (n>1):
between subsequent
points | $\leq 1.5 \cdot \Delta z_{Zoom}(n\text{-}1) \ mm$ | | | Minimum zoom
scan volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. 11.2. Test procedure The Following steps are used for each test position - 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface. - 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. ## 11.3. Description of interpolation/extrapolation scheme The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom. An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step. The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array. REPORT No.: SZ20040157S01 ### 11.4. Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated
for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. Tel: 86-755-36698555 Http://www.morlab.cn # 12. SAR Test Configuration #### <WCDMA Mode> Summary of UMTS conducted power measurement: - The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode. - 2. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 3. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. - 4. For HSPA+ devices supporting 16 QAM in the uplink, power measurements procedure is according to the configurations in Table C.11.1.4 of 3GPP TS 34.121-1. - 5. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA / HSPA+ is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA / HSPA+ to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSPA+, and according to the following RF output power, the output power results of the secondary modes (HSDPA / HSUPA / DC-HSDPA / HSPA+) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSPA+ - 6. A fixed level power reduction is applied for WCDMA Band II when handset open Hotspot mode, the power reduction triggered. ### HSDPA Setup Configuration: | Sub-test | βε | β_d | β _d
(SF) | β_c/β_d | $\beta_{hs}{}^{(l)}$ | CM (dB) ⁽²⁾ | | | |----------|----------------------|----------------------|------------------------|----------------------|----------------------|------------------------|--|--| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | | | | 2 | 12/15 ⁽³⁾ | 15/15 ⁽³⁾ | 64 | 12/15 ⁽³⁾ | 24/15 | 1.0 | | | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | | | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | | | Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$ Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15. #### HSUPA Setup Configuration: | Sub-
test | βε | β_d | β _d
(SF) | β_c/β_d | ${\beta_{hs}}^{(1)}$ | β_{ec} | β_{ed} | β _{ed}
(SF) | β _{ed}
(codes) | CM ⁽²⁾
(dB) | MPR
(dB) | AG ⁽⁴⁾
Index | E-
TFCI | |--------------|----------------------|----------------------|------------------------|----------------------|----------------------|--------------|---|-------------------------|----------------------------|---------------------------|-------------|----------------------------|------------| | 1 | 11/15 ⁽³⁾ | 15/15 ⁽³⁾ | 64 | 11/15 ⁽³⁾ | 22/15 | 209/225 | 1039/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β_{ed1} : 47/15 β_{ed2} : 47/15 | | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15 ⁽⁴⁾ | 15/15 ⁽⁴⁾ | 64 | 15/15 ⁽⁴⁾ | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{COI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$. Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$. Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: βed cannot be set directly; it is set by Absolute Grant Value. ### HSPA+ 3GPP release 7 (uplink category 7) 16QAM, Setup Configuration: ### Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM | Sub-
test | β _c
(Note3) | βď | β _{HS}
(Note1) | βec | β _{ed}
(2xSF2)
(Note 4) | β _{ed}
(2xSF4)
(Note 4) | CM
(dB)
(Note 2) | MPR
(dB)
(Note 2) | AG
Index
(Note 4) | E-TFCI
(Note 5) | E-TFCI
(boost) | |--------------|---------------------------|----|----------------------------|-------|--|--|------------------------|-------------------------|-------------------------|--------------------|-------------------| | 1 | 1 | 0 | 30/15 | 30/15 | β _{ed} 1: 30/15
β _{ed} 2: 30/15 | β _{ed} 3; 24/15
β _{ed} 4; 24/15 | 3.5 | 2.5 | 14 | 105 | 105 | Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β _{bs} = 30/15 * β _c. Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0). Note 3: DPDCH is not configured, therefore the β_e is set to 1 and β_d = 0 by default. Note 4: Bed can not be set directly; it is set by Absolute Grant Value. Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH configurations DPDCH is not allocated. The UE is signaled to use the extrapolation algorithm. #### DC-HSDPA Setup Configuration: The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108 v9.5.0. A summary of these settings are illustrated below: Reduced link Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5. Table E.5.0: Levels for HSDPA connection setup | Parameter During Connection setup | Unit | Value | |-----------------------------------|------|-------| | P-CPICH_Ec/lor | dB | -10 | | P-CCPCH and SCH_Ec/lor | dB | -12 | | PICH _Ec/lor | dB | -15 | | HS-PDSCH | dB | off | | HS-SCCH_1 | dB | off | | DPCH_Ec/lor | dB | -5 | | OCNS_Ec/lor | dB | -3.1 | Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13 The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, Annex C for FDD and 3GPP TS 34.122. Table C.8.1.12: Fixed Reference Channel H-Set 12 | | Parameter | Unit | Value | | | | |--|--|--------------|-------|--|--|--| | Nominal | Avg. Inf. Bit Rate | kbps | 60 | | | | | Inter-TTI | Distance | TTI's | 1 | | | | | Number | of HARQ Processes | Proces | 6 | | | | | | A 6 10010092001 1009930-20100 | ses | 0 | | | | | Informat | ion Bit Payload ($N_{\scriptscriptstyle INF}$) | Bits | 120 | | | | | Number | Number Code Blocks Blocks | | | | | | | Binary C | hannel Bits Per TTI | Bits | 960 | | | | | Total Av | ailable SML's in UE | SML's | 19200 | | | | | Number | of SML's per HARQ Proc. | SML's | 3200 | | | | | Coding F | | | 0.15 | | | | | Number | of Physical Channel Codes | Codes | 1 | | | | | Modulati | on | | QPSK | | | | | Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table. | | | | | | | | Note 2: | Maximum number of transmissi
retransmission is not allowed.
constellation version 0 shall be | The redundar | | | | | ccc Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK) #### **LTE Target MPR level** The device implements maximum power reduction per 3GPP 36.101 requirements where the MPR target is as below table. The MPR settings are implemented configured into firmware and cannot be disabled by the end user or LTE carrier network. | Channel bandwidth / Transmission bandwidth configuration [RB] | | | | | | | | 3GPP | |---|-----|------------|-----|------|------|------|--------|---------------| | Modulation | 1.4 | 3.0 | 5 | 10 | 15 | 20 | Target | MPR | | | MHz | MHz | MHz | MHz | MHz | MHz | (dB) | (dB) | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | >18 | 1 | ≤ 1 | | 16 QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | 1 | ≤ 1 | | 64 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | 2 | <u>< 2</u> | **Note:** The measurement result showed some difference from the target MPR level, due to expected 0.5dBmeasurement tolerance ### **LTE Bands** | | Channel bandwidth / Transmission bandwidth
configuration [RB] | | | | | | | | | |-----------|---|-----|-----|-----|-----|-----|--|--|--| | LTE Bands | 1.4 | 3.0 | 5 | 10 | 15 | 20 | | | | | | MHz | MHz | MHz | MHz | MHz | MHz | | | | | 2 | V | V | V | V | V | V | | | | | 4 | ٧ | V | V | V | ٧ | V | | | | | 5 | V | V | V | V | N/A | N/A | | | | | 13 | N/A | N/A | V | V | N/A | N/A | | | | | 66 | V | V | V | V | N/A | N/A | | | | #### Note: 1. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration Tel: 86-755-36698555 is not required. - Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 3. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 4. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - Per KDB 941225 D05v02r05, 16QAM/64QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB941225 D05v02r05, 16QAM/64QAM SAR testing is not required. - 6. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ Db higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported band width is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 7. For LTE B4 / B5 the maximum bandwidth does not support three non-overlapping channels, per KDB941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. - 8. According to 2017 TCB workshop, for 64 QAM and 16 QAM should be verified by checking the signal constellation with a call box to avoid incorrect maximum power levels due to MPR and other requirements associated with signal modulation, and the following figure is taken from the "Fundamental Measurement >> Modulation Analysis >> constellation" mode of the device connect to the CMW500 base station, therefore, the device 64QAM and 16QAMsignal modulation are correct. Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design: only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards: b) A-MPR (additional MPR) must be disabled. - 9. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix. - 10. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel \$\discrete{s}:0.8 W/kg or 2.0 W/kg, for 1 -g or 10-g respectively, when the transmission band is ≤ 100 MHz≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 11. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 12. Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is 1.2 W/kg, SAR testing with a headset connected to the handset is not required. #### <WLAN 2.4GHz> - 1. SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: - 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. - 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. - 3. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is \leq 0.8 W/kg or all test positions are measured. - 4. Justification for test configurations for WLAN per KDB Publication 248227 D02DR02-41929 for 2.4 GHz WI-FI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSSSAR. - A fixed level power reduction is applied for WiFi when handset operates "held to the body" condition or "held to the ear" condition, the power reduction triggered by audio receiver detection and call establish status. - 6. Per KDB 248227 D01v02r02, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements.SAR is not required for the following 2.4 GHz OFDM conditions: - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. #### <WLAN 5GHz> #### A)U-NII-1 and U-NII-2A Bands For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following: - 1) When the same maximum output power is specified for both bands, begin SAR measurement in U- NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR. - 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR. - 3)The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion. #### B)U-NII-2C and U-NII-3 Bands The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR
measurements. when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 – 5.65 GHz must be included to apply the SAR test reduction and measurement procedures. When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements. ### C)OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially. - 1)The largest channel bandwidth configuration is selected among the multiple configurations with thesame specified maximum output power. - 2)If multiple configurations have the same specified maximum output power and largest channelbandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected. - 3)If multiple configurations have the same specified maximum output power, largest channel bandwidthand lowest order modulation, the lowest data rate configuration among these configurations is selected. - 4)When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection. - 1)The channel closest to mid-band frequency is selected for SAR measurement. - 2)For channels with equal separation from mid-band frequency; for example, high and low channels ortwo mid-band channels, the higher frequency (number) channel is selected for SAR measurement. #### D)SAR Test Requirements for OFDM configurations When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the sametransmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction Vapplies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 bandare supported, the highest maximum output power transmission mode configuration and maximumoutput power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying theinitial test configuration and subsequent test configuration procedures, the 802.11 transmissionconfiguration with the highest specified maximum output power and the channel within a testconfiguration with the highest measured maximum output power should be clearly distinguished toapply the procedures. Tel: 86-755-36698555 Http://www.morlab.cn # 13. Conducted RF Output Power ## WCDMA Conducted Power | | Band | ١٨/ | | | | |-------------|-------------------------|--------|-------------------|--------|---------| | 7 | X Channel | 9262 | CDMA Band
9400 | 9538 | Tune-up | | I | | | | 9536 | Limit | | F | Rx Channel | 9662 | 9800 | 9938 | (dBm) | | Fre | quency (MHz) | 1852.4 | 1880 | 1907.6 | (dDIII) | | 3GPP Rel 99 | RMC 12.2Kbps | 21.62 | 21.64 | 21.52 | 22.50 | | 3GPP Rel 5 | HSDPA Subtest-1 | 20.27 | 20.09 | 20.21 | 21.00 | | 3GPP Rel 5 | HSDPA Subtest-2 | 20.26 | 20.07 | 20.20 | 21.00 | | 3GPP Rel 5 | HSDPA Subtest-3 | 20.23 | 20.05 | 20.19 | 20.50 | | 3GPP Rel 5 | HSDPA Subtest-4 | 20.19 | 20.01 | 20.15 | 20.50 | | 3GPP Rel 6 | HSUPA Subtest-1 | 20.32 | 20.12 | 20.33 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-2 | 20.30 | 20.09 | 20.28 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-3 | 20.28 | 20.07 | 20.26 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-4 | 20.27 | 20.06 | 20.23 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-5 | 20.23 | 20.03 | 20.20 | 21.00 | | 3GPP Rel 7 | HSPA+ (16QAM) Subtest-1 | 20.24 | 20.05 | 20.23 | 21.00 | | 3GPP Rel 8 | DC-HSPA | 20.20 | 20.00 | 20.19 | 21.00 | | | Band | WC | V | T | | |-------------|-------------------------|-------|-------|-------|------------------| | Т | X Channel | 4132 | 4183 | 4233 | Tune-up
Limit | | F | Rx Channel | 4357 | 4408 | 4458 | | | Free | 826.4 | 836.6 | 846.6 | (dBm) | | | 3GPP Rel 99 | RMC 12.2Kbps | 21.69 | 21.78 | 21.73 | 22.50 | | 3GPP Rel 5 | HSDPA Subtest-1 | 20.45 | 20.54 | 20.41 | 21.00 | | 3GPP Rel 5 | HSDPA Subtest-2 | 20.43 | 20.51 | 20.40 | 21.00 | | 3GPP Rel 5 | HSDPA Subtest-3 | 20.42 | 20.50 | 20.37 | 20.50 | | 3GPP Rel 5 | HSDPA Subtest-4 | 20.40 | 20.48 | 20.35 | 20.50 | | 3GPP Rel 6 | HSUPA Subtest-1 | 20.50 | 20.60 | 20.51 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-2 | 20.48 | 20.57 | 20.49 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-3 | 20.47 | 20.55 | 20.44 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-4 | 20.44 | 20.52 | 20.41 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-5 | 20.40 | 20.49 | 20.37 | 21.00 | | 3GPP Rel 7 | HSPA+ (16QAM) Subtest-1 | 20.41 | 20.50 | 20.41 | 21.00 | | 3GPP Rel 8 | DC-HSPA | 20.38 | 20.45 | 20.39 | 21.00 | ## > LTE Conducted Power ## <LTE Band 2> | Band 2> | | | | | | | | |---------|------------|---------|--------|---------|---------|---------|----------------| | BW | Modulation | DD C: | RB | Low | Middle | High | т | | [MHz] | Modulation | RB Size | Offset | Channel | Channel | Channel | Tune-up | | | Chan | nel | | 18700 | 18900 | 19100 | limit | | | Frequenc | y (MHz) | | 1860 | 1880 | 1900 | (dBm) | | 20 | QPSK | 1 | 0 | 23.32 | 23.33 | 23.27 | | | 20 | QPSK | 1 | 49 | 23.22 | 23.14 | 23.18 | 23.50 | | 20 | QPSK | 1 | 99 | 22.91 | 23.24 | 23.06 | | | 20 | QPSK | 50 | 0 | 22.35 | 22.37 | 22.19 | | | 20 | QPSK | 50 | 24 | 22.32 | 22.24 | 22.32 | 22.50 | | 20 | QPSK | 50 | 50 | 22.31 | 22.29 | 22.28 | 22.50 | | 20 | QPSK | 100 | 0 | 22.41 | 22.26 | 22.27 | | | 20 | 16QAM | 1 | 0 | 22.11 | 22.37 | 22.18 | | | 20 | 16QAM | 1 | 49 | 22.17 | 22.05 | 22.06 | 22.50 | | 20 | 16QAM | 1 | 99 | 22.09 | 22.07 | 22.06 | | | 20 | 16QAM | 50 | 0 | 21.33 | 21.16 | 21.28 | 22.00 | | 20 | 16QAM | 50 | 24 | 21.29 | 21.22 | 21.31 | | | 20 | 16QAM | 50 | 50 | 21.37 | 21.24 | 21.21 | | | 20 | 16QAM | 100 | 0 | 21.28 | 21.22 | 21.31 | | | | Chan | nel | | 18675 | 18900 | 19125 | Tune-up | | | Frequenc | y (MHz) | | 1857.5 | 1880 | 1902.5 | limit
(dBm) | | 15 | QPSK | 1 | 0 | 23.05 | 22.89 | 23.06 | | | 15 | QPSK | 1 | 37 | 23.26 | 23.26 | 23.03 | 23.50 | | 15 | QPSK | 1 | 74 | 23.14 | 23.16 | 23.17 | | | 15 | QPSK | 36 | 0 | 22.45 | 22.24 | 22.31 | | | 15 | QPSK | 36 | 20 | 22.24 | 22.22 | 22.32 | 22.50 | | 15 | QPSK | 36 | 39 | 22.17 | 22.29 | 22.32 | 22.50 | | 15 | QPSK | 75 | 0 | 22.29 | 22.27 | 22.35 | | | 15 | 16QAM | 1 | 0 | 22.32 | 22.25 | 22.11 | | | 15 | 16QAM | 1 | 37 | 22.12 | 22.17 | 22.15 | 22.50 | | 15 | 16QAM | 1 | 74 | 22.22 | 22.32 | 22.02 | | | 15 | 16QAM | 36 | 0 | 21.23 | 21.17 | 21.24 | | | 15 | 16QAM | 36 | 20 | 21.34 | 21.18 | 21.24 | 22.00 | | 15 | 16QAM | 36 | 39 | 21.21 | 21.23 | 21.27 | 22.00 | | 15 | 16QAM | 75 | 0 | 21.28 | 21.31 | 21.38 | | | | Chan | nel | | 18650 | 18900 | 19150 | Tune-up | Tel: 86-755-36698555 Http://www.morlab.cn | | | | | <u> </u> | | 1 | | |----|-----------------|---------|---------|----------|-------|--|----------------| | | Frequency | y (MHz) | | 1855 | 1880 | 1905 | limit
(dBm) | | 10 | QPSK | 1 | 0 | 23.15 | 23.09 | 23.11 | | | 10 | QPSK | 1 | 25 | 23.16 | 23.11 | 23.27 | 23.50 | | 10 | QPSK | 1 | 49 | 23.02 | 23.04 | 23.09 | | | 10 | QPSK | 25 | 0 | 22.12 | 22.09 | 22.16 | | | 10 | QPSK | 25 | 12 | 22.23 | 22.12 | 22.14 | 22.50 | | 10 | QPSK | 25 | 25 | 22.06 | 22.14 | 22.16 | 22.50 | | 10 | QPSK | 50 | 0 | 22.05 | 22.02 | 22.13 | | | 10 | 16QAM | 1 | 0 | 22.07 | 22.12 | 22.09 | | | 10 | 16QAM | 1 | 25 | 22.09 | 22.17 | 22.14 | 22.50 | | 10 | 16QAM | 1 | 49 | 22.18 | 22.22 | 22.03 | | | 10 | 16QAM | 25 | 0 | 21.16 | 21.17 | 21.19 | | | 10 | 16QAM | 25 | 12 | 21.26 | 21.11 | 21.13 | 22.00 | | 10 | 16QAM | 25 | 25 | 21.19 | 21.36 | 21.21 | 22.00 | | 10 | 16QAM | 50 | 0 | 21.14
 21.26 | 21.29 | | | · | Chan | nel | | 18625 | 18900 | 19175 | Tune-up | | | Frequency | y (MHz) | | 1852.5 | 1880 | 1907.5 | limit
(dBm) | | 5 | QPSK | 1 | 0 | 23.04 | 23.06 | 23.09 | | | 5 | QPSK | 1 | 12 | 23.08 | 23.04 | 23.11 | 23.50 | | 5 | QPSK | 1 | 24 | 23.14 | 22.96 | 23.03 | | | 5 | QPSK | 12 | 0 | 22.22 | 22.05 | 22.31 | | | 5 | QPSK | 12 | 7 | 22.19 | 22.11 | 22.13 | 00.50 | | 5 | QPSK | 12 | 13 | 22.13 | 22.11 | 22.08 | 22.50 | | 5 | QPSK | 25 | 0 | 22.21 | 22.18 | 22.11 | | | 5 | 16QAM | 1 | 0 | 22.17 | 22.27 | 22.13 | | | 5 | 16QAM | 1 | 12 | 22.25 | 22.13 | 22.18 | 22.50 | | 5 | 16QAM | 1 | 24 | 22.36 | 22.14 | 22.15 | | | 5 | 16QAM | 12 | 0 | 21.22 | 21.12 | 21.03 | | | 5 | 16QAM | 12 | 7 | 21.25 | 21.19 | 21.31 | 00.00 | | 5 | 16QAM | 12 | 13 | 21.26 | 21.26 | 21.18 | 22.00 | | 5 | 16QAM | 25 | 0 | 21.22 | 21.18 | 21.36 | 1 | | | Chan | nel | | 18615 | 18900 | 19185 | Tune-up | | | Frequency (MHz) | | | | 1880 | 1908.5 | limit
(dBm) | | 3 | QPSK | 1 | 0 | 23.03 | 23 | 22.98 | 23.50 | | | | | | | | | - ノくりロ | | 3 | QPSK | 1 | 14 | 23.02 | 22.92 | 22.59 | | |-----|-----------------|-----|----|-------|-------|--------|----------------| | 3 | QPSK | 8 | 0 | 22.19 | 22.17 | 22.02 | | | 3 | QPSK | 8 | 4 | 22.01 | 22.13 | 22.03 | 22.50 | | 3 | QPSK | 8 | 7 | 22.05 | 22.16 | 22.01 | 22.50 | | 3 | QPSK | 15 | 0 | 22.05 | 22.17 | 22.13 | | | 3 | 16QAM | 1 | 0 | 22.15 | 22.18 | 22.16 | | | 3 | 16QAM | 1 | 8 | 22.16 | 22.18 | 22.19 | 22.50 | | 3 | 16QAM | 1 | 14 | 22.13 | 22.01 | 22.04 | 1 | | 3 | 16QAM | 8 | 0 | 21.12 | 21.16 | 21.18 | | | 3 | 16QAM | 8 | 4 | 21.11 | 21.26 | 21.16 | 22.00 | | 3 | 16QAM | 8 | 7 | 21.06 | 21.11 | 21.18 | | | 3 | 16QAM | 15 | 0 | 21.02 | 21.18 | 21.28 | | | | Chan | nel | | 18607 | 18900 | 19193 | Tune-up | | | Frequency (MHz) | | | | 1880 | 1909.3 | limit
(dBm) | | 1.4 | QPSK | 1 | 0 | 23.05 | 23.04 | 23.02 | | | 1.4 | QPSK | 1 | 3 | 23.14 | 23.01 | 23.04 | | | 1.4 | QPSK | 1 | 5 | 23.14 | 23.12 | 23.01 | 22.50 | | 1.4 | QPSK | 3 | 0 | 23.15 | 23.14 | 23.09 | 23.50 | | 1.4 | QPSK | 3 | 1 | 23.14 | 23.15 | 23.15 | | | 1.4 | QPSK | 3 | 3 | 23.09 | 23.16 | 23.12 | | | 1.4 | QPSK | 6 | 0 | 22.16 | 22.16 | 22.19 | 22.50 | | 1.4 | 16QAM | 1 | 0 | 22.16 | 22.16 | 22.19 | | | 1.4 | 16QAM | 1 | 3 | 22.18 | 22.02 | 22.16 | | | 1.4 | 16QAM | 1 | 5 | 22.15 | 22.08 | 22.09 | 22.50 | | 1.4 | 16QAM | 3 | 0 | 22.07 | 22.04 | 22.11 | 22.50 | | 1.4 | 16QAM | 3 | 1 | 22.02 | 22.06 | 22.12 | | | 1.4 | 16QAM | 3 | 3 | 22.22 | 22.26 | 22.15 | | | 1.4 | 16QAM | 6 | 0 | 21.22 | 21.17 | 21.19 | 22.00 | | | • | | | | | • | | ## <LTE Band 4> | : Band 4> | | | | | | | | |-----------|------------|---------|--------|---------|---------|---------|----------------| | BW | Madulatian | DD 0: | RB | Low | Middle | High | T | | [MHz] | Modulation | RB Size | Offset | Channel | Channel | Channel | Tune-up | | | Chan | nel | | 20050 | 20175 | 20300 | limit | | | Frequency | y (MHz) | | 1720 | 1732.5 | 1745 | (dBm) | | 20 | QPSK | 1 | 0 | 21.39 | 21.51 | 21.44 | | | 20 | QPSK | 1 | 49 | 21.08 | 21.31 | 21.36 | 22.50 | | 20 | QPSK | 1 | 99 | 21.13 | 21.21 | 21.50 | | | 20 | QPSK | 50 | 0 | 20.22 | 20.38 | 20.33 | | | 20 | QPSK | 50 | 24 | 20.21 | 20.13 | 20.30 | 21.50 | | 20 | QPSK | 50 | 50 | 20.14 | 20.23 | 20.33 | 21.50 | | 20 | QPSK | 100 | 0 | 20.13 | 20.24 | 20.48 | | | 20 | 16QAM | 1 | 0 | 20.23 | 20.29 | 20.54 | | | 20 | 16QAM | 1 | 49 | 20.34 | 20.24 | 20.18 | 21.50 | | 20 | 16QAM | 1 | 99 | 20.33 | 20.28 | 20.52 | - | | 20 | 16QAM | 50 | 0 | 19.29 | 19.34 | 19.38 | | | 20 | 16QAM | 50 | 24 | 19.15 | 19.46 | 19.50 | 20.50 | | 20 | 16QAM | 50 | 50 | 19.26 | 19.38 | 19.46 | | | 20 | 16QAM | 100 | 0 | 19.06 | 19.32 | 19.55 | | | | Chan | nel | | 20025 | 20175 | 20325 | Tune-up | | | Frequency | y (MHz) | | 1717.5 | 1732.5 | 1747.5 | limit
(dBm) | | 15 | QPSK | 1 | 0 | 21.23 | 21.20 | 21.42 | | | 15 | QPSK | 1 | 37 | 21.28 | 21.19 | 21.11 | 22.50 | | 15 | QPSK | 1 | 74 | 21.34 | 21.32 | 21.39 | | | 15 | QPSK | 36 | 0 | 20.25 | 20.05 | 20.54 | | | 15 | QPSK | 36 | 20 | 20.05 | 20.08 | 20.46 | 04.50 | | 15 | QPSK | 36 | 39 | 20.08 | 20.29 | 20.48 | 21.50 | | 15 | QPSK | 75 | 0 | 20.19 | 20.30 | 20.56 | | | 15 | 16QAM | 1 | 0 | 20.33 | 20.28 | 20.26 | | | 15 | 16QAM | 1 | 37 | 20.34 | 20.24 | 20.48 | 21.50 | | 15 | 16QAM | 1 | 74 | 20.23 | 20.30 | 20.25 | | | 15 | 16QAM | 36 | 0 | 19.25 | 19.06 | 19.36 | | | 15 | 16QAM | 36 | 20 | 19.02 | 19.02 | 19.39 | 20.50 | | 15 | 16QAM | 36 | 39 | 18.90 | 19.40 | 19.39 | 20.50 | | 15 | 16QAM | 75 | 0 | 18.99 | 19.26 | 19.38 | | | | Chan | nel | | 20000 | 20175 | 20350 | Tune-up | | | Frequenc | y (MHz) | | 1715 | 1732.5 | 1750 | limit | | | | | | 1 | | 1 | ı | |----|-----------|---------|----|--------|--------|--------|----------------| | | | | I | | | | (dBm) | | 10 | QPSK | 1 | 0 | 21.21 | 21.22 | 21.20 | | | 10 | QPSK | 1 | 25 | 21.34 | 21.44 | 21.23 | 22.50 | | 10 | QPSK | 1 | 49 | 21.18 | 21.30 | 21.39 | | | 10 | QPSK | 25 | 0 | 20.18 | 20.18 | 20.55 | | | 10 | QPSK | 25 | 12 | 20.38 | 20.33 | 20.48 | 21.50 | | 10 | QPSK | 25 | 25 | 20.32 | 20.32 | 20.50 | 21.50 | | 10 | QPSK | 50 | 0 | 20.22 | 20.22 | 20.45 | | | 10 | 16QAM | 1 | 0 | 20.28 | 20.16 | 20.55 | | | 10 | 16QAM | 1 | 25 | 20.29 | 20.25 | 20.56 | 21.50 | | 10 | 16QAM | 1 | 49 | 20.32 | 20.22 | 20.18 | | | 10 | 16QAM | 25 | 0 | 19.24 | 19.33 | 19.55 | | | 10 | 16QAM | 25 | 12 | 19.10 | 19.42 | 19.39 | 20.50 | | 10 | 16QAM | 25 | 25 | 19.26 | 19.32 | 19.45 | 20.50 | | 10 | 16QAM | 50 | 0 | 19.33 | 19.16 | 19.42 | | | | Chan | nel | | 19975 | 20175 | 20375 | Tune-up | | | Frequency | y (MHz) | | 1712.5 | 1732.5 | 1752.5 | limit
(dBm) | | 5 | QPSK | 1 | 0 | 21.29 | 21.44 | 21.19 | 22.50 | | 5 | QPSK | 1 | 12 | 21.28 | 21.21 | 21.19 | | | 5 | QPSK | 1 | 24 | 21.26 | 21.28 | 21.43 | | | 5 | QPSK | 12 | 0 | 20.25 | 20.20 | 20.53 | | | 5 | QPSK | 12 | 7 | 20.38 | 20.24 | 20.48 | | | 5 | QPSK | 12 | 13 | 20.31 | 20.31 | 20.45 | 21.50 | | 5 | QPSK | 25 | 0 | 20.39 | 20.21 | 20.40 | | | 5 | 16QAM | 1 | 0 | 20.23 | 20.23 | 20.39 | | | 5 | 16QAM | 1 | 12 | 20.44 | 20.34 | 20.28 | 21.50 | | 5 | 16QAM | 1 | 24 | 20.32 | 20.24 | 20.30 | | | 5 | 16QAM | 12 | 0 | 19.24 | 19.43 | 19.49 | | | 5 | 16QAM | 12 | 7 | 19.30 | 19.22 | 19.38 | 00.50 | | 5 | 16QAM | 12 | 13 | 19.29 | 19.32 | 19.43 | 20.50 | | 5 | 16QAM | 25 | 0 | 19.22 | 19.23 | 19.48 | | | | Chan | nel | | 19965 | 20175 | 20385 | Tune-up | | | Frequency | y (MHz) | | 1711.5 | 1732.5 | 1753.5 | limit
(dBm) | | 3 | QPSK | 1 | 0 | 21.24 | 21.30 | 21.14 | | | 3 | QPSK | 1 | 8 | 21.36 | 21.23 | 21.21 | 22.50 | | 3 | QPSK | 1 | 14 | 21.33 | 21.30 | 21.09 | | | 3 | QPSK | 8 | 0 | 20.32 | 20.41 | 20.60 | | |-----|-----------------|-----|----|-------|--------|--------|----------------| | 3 | QPSK | 8 | 4 | 20.39 | 20.23 | 20.52 | 21.50 | | 3 | QPSK | 8 | 7 | 20.41 | 20.26 | 20.55 | 21.50 | | 3 | QPSK | 15 | 0 | 20.04 | 20.24 | 20.49 | | | 3 | 16QAM | 1 | 0 | 20.24 | 20.28 | 20.34 | | | 3 | 16QAM | 1 | 8 | 20.25 | 20.36 | 20.32 | 21.50 | | 3 | 16QAM | 1 | 14 | 20.29 | 20.25 | 20.23 | | | 3 | 16QAM | 8 | 0 | 19.21 | 19.24 | 19.34 | | | 3 | 16QAM | 8 | 4 | 19.21 | 19.22 | 19.33 | 20.50 | | 3 | 16QAM | 8 | 7 | 19.40 | 19.25 | 19.30 | 20.50 | | 3 | 16QAM | 15 | 0 | 19.32 | 19.16 | 19.44 | 1 | | | Chan | nel | | 19957 | 20175 | 20393 | Tune-up | | | Frequency (MHz) | | | | 1732.5 | 1754.3 | limit
(dBm) | | 1.4 | QPSK | 1 | 0 | 21.26 | 21.28 | 21.23 | | | 1.4 | QPSK | 1 | 3 | 21.30 | 21.31 | 21.19 | | | 1.4 | QPSK | 1 | 5 | 21.25 | 21.15 | 21.22 | 22.50 | | 1.4 | QPSK | 3 | 0 | 21.28 | 21.18 | 21.13 | 22.50 | | 1.4 | QPSK | 3 | 1 | 21.25 | 21.18 | 21.22 | | | 1.4 | QPSK | 3 | 3 | 21.24 | 21.31 | 21.19 | | | 1.4 | QPSK | 6 | 0 | 20.19 | 20.18 | 20.53 | 21.50 | | 1.4 | 16QAM | 1 | 0 | 20.28 | 20.23 | 20.21 | | | 1.4 | 16QAM | 1 | 3 | 20.36 | 20.25 | 20.24 | | | 1.4 | 16QAM | 1 | 5 | 20.21 | 20.22 | 20.36 | 21 50 | | 1.4 | 16QAM | 3 | 0 | 20.20 | 20.23 | 20.51 | 21.50 | | 1.4 | 16QAM | 3 | 1 | 20.25 | 20.32 | 20.29 | | | 1.4 | 16QAM | 3 | 3 | 20.36 | 20.39 | 20.36 | | | 1.4 | 16QAM | 6 | 0 | 19.26 | 19.25 | 19.35 | 20.50 | # <LTE Band 5> | Band 5> | | | | | | | | |---------|------------|---------|--------|---------|---------|---------|----------------| | BW | Modulation | RB Size | RB | Low | Middle | High | T | | [MHz] | Modulation | KD SIZE | Offset | Channel | Channel | Channel | Tune-up | | | Chan | nel | | 20450 | 20525 | 20600 | limit
(dBm) | | | Frequenc | y (MHz) | | 829 | 836.5 | 844 | (ubiii) | | 10 | QPSK | 1 | 0 | 21.36 | 21.50 | 21.43 | | | 10 | QPSK | 1 | 25 | 21.11 | 21.45 | 21.38 | 22.50 | | 10 | QPSK | 1 | 49 | 21.28 | 21.18 | 21.00 | | | 10 | QPSK | 25 | 0 | 20.10 | 20.44 | 20.25 | | | 10 | QPSK | 25 | 12 | 20.34 | 20.40 | 20.40 | 24.50 | | 10 | QPSK | 25 | 25 | 20.23 | 20.33 | 20.32 | 21.50 | | 10 | QPSK | 50 | 0 | 20.21 | 20.21 | 20.36 | | | 10 | 16QAM | 1 | 0 | 19.75 | 20.19 | 20.10 | | | 10 | 16QAM | 1 | 25 | 19.92 | 19.98 | 20.01 | 21.50 | | 10 | 16QAM | 1 | 49 | 19.96 | 19.91 | 20.18 | | | 10 | 16QAM | 25 | 0 | 19.35 | 19.02 | 19.33 | | | 10 | 16QAM | 25 | 12 | 19.33 | 19.30 | 19.48 | 20.50 | | 10 | 16QAM | 25 | 25 | 19.45 | 19.21 | 19.30 | 20.50 | | 10 | 16QAM | 50 | 0 | 19.19 | 19.55 | 19.38 | | | | Chan | nel | | 20425 | 20525 | 20625 | Tune-up | | | Frequenc | y (MHz) | | 826.5 | 836.5 | 846.5 | limit
(dBm) | | 5 | QPSK | 1 | 0 | 21.18 | 21.38 | 21.18 | | | 5 | QPSK | 1 | 12 | 21.09 | 21.42 | 21.45 | 22.50 | | 5 | QPSK | 1 | 24 | 21.28 | 21.09 | 21.05 | | | 5 | QPSK | 12 | 0 | 20.10 | 20.16 | 20.31 | | | 5 | QPSK | 12 | 7 | 20.10 | 20.31 | 20.26 | 24.50 | | 5 | QPSK | 12 | 13 | 20.23 | 20.36 | 20.35 | 21.50 | | 5 | QPSK | 25 | 0 | 20.25 | 20.25 | 20.41 | | | 5 | 16QAM | 1 | 0 | 20.23 | 20.24 | 20.25 | | | 5 | 16QAM | 1 | 12 | 19.94 | 20.01 | 20.10 | 21.50 | | 5 | 16QAM | 1 | 24 | 20.03 | 20.41 | 20.21 | | | 5 | 16QAM | 12 | 0 | 19.12 | 19.16 | 19.20 | | | 5 | 16QAM | 12 | 7 | 19.45 | 19.23 |
19.33 | 20.50 | | 5 | 16QAM | 12 | 13 | 19.22 | 19.19 | 19.21 | 20.50 | | 5 | 16QAM | 25 | 0 | 19.24 | 19.54 | 19.42 | | | | Chan | nel | | 20415 | 20525 | 20635 | Tune-up | | | Frequenc | y (MHz) | | 825.5 | 836.5 | 847.5 | limit | | | | | | | | | | | 3 | | | | | | | | (15.) | |---|-----|----------|---------|----|-------|-------|-------|---------| | 3 QPSK 1 8 21.09 21.41 21.41 22.50 3 QPSK 1 14 20.93 21.23 21.11 22.50 3 QPSK 8 0 20.28 20.18 20.30 20.39 3 QPSK 8 4 20.22 20.44 20.28 3 QPSK 8 7 20.18 20.30 20.39 3 QPSK 15 0 20.10 20.25 20.28 3 16QAM 1 0 20.09 20.29 20.06 3 16QAM 1 8 20.30 20.23 20.21 21.50 3 16QAM 1 14 20.35 20.23 20.06 20.21 3 16QAM 8 0 19.13 19.10 19.23 31.60 3 16QAM 8 7 19.32 19.24 19.38 31.02 3 <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>(dBm)</td></t<> | | 1 | | | | | | (dBm) | | 3 QPSK 1 14 20.93 21.23 21.11 3 QPSK 8 0 20.28 20.18 20.30 3 QPSK 8 4 20.22 20.44 20.28 3 QPSK 8 7 20.18 20.30 20.39 3 QPSK 15 0 20.10 20.25 20.28 3 16QAM 1 0 20.09 20.29 20.06 3 16QAM 1 8 20.30 20.23 20.21 3 16QAM 1 14 20.35 20.23 20.06 3 16QAM 8 0 19.13 19.10 19.23 3 16QAM 8 4 19.21 19.30 19.22 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 5 | | | | _ | | | | | | 3 QPSK 8 4 20.28 20.48 20.30 3 QPSK 8 4 20.22 20.44 20.28 3 QPSK 8 7 20.18 20.30 20.39 3 QPSK 15 0 20.10 20.25 20.28 3 16QAM 1 0 20.09 20.29 20.06 3 16QAM 1 14 20.35 20.23 20.06 3 16QAM 8 0 19.13 19.10 19.23 3 16QAM 8 4 19.21 19.30 19.22 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 1 20.29 20.28 20.21 | 3 | QPSK | 1 | 8 | 21.09 | 21.41 | 21.41 | 22.50 | | 3 | 3 | QPSK | 1 | 14 | 20.93 | 21.23 | 21.11 | | | 3 | 3 | QPSK | 8 | 0 | 20.28 | 20.18 | 20.30 | | | 3 QPSK 8 7 20.18 20.30 20.39 3 QPSK 15 0 20.10 20.25 20.28 3 16QAM 1 0 20.09 20.29 20.06 3 16QAM 1 8 20.30 20.23 20.21 21.50 3 16QAM 1 14 20.35 20.23 20.06 20.06 3 16QAM 8 0 19.13 19.10 19.23 19.23 3 16QAM 8 4 19.21 19.30 19.22 20.50 3 16QAM 8 7 19.32 19.24 19.38 3 19.22 19.38 19.08 19.24 19.38 19.08 19.08 19.24 19.38 19.08 19.08 19.24 19.38 19.08 19.08 19.08 19.08 19.08 19.08 19.08 19.08 19.08 19.08 19.08 19.08 19.08 | 3 | QPSK | 8 | 4 | 20.22 | 20.44 | 20.28 | 21.50 | | 3 16QAM 1 0 20.09 20.29 20.06 3 16QAM 1 8 20.30 20.23 20.21 21.50 3 16QAM 1 14 20.35 20.23 20.06 3 3 16QAM 8 0 19.13 19.10 19.23 3 3 16QAM 8 4 19.21 19.30 19.22 3 19.24 19.38 19.08 20.50 3 16QAM 8 7 19.32 19.24 19.38 19.08 20.50 3 16QAM 15 0 19.14 19.38 19.08 10.00 20.50 20.643 Tune-up 10.00 20.255 20643 Tune-up 10.00 20.21 21.20 21.19 21.20 21.19 21.22 21.30 21.12 21.22 21.30 21.12 21.22 21.30 21.12 21.24 21.19 21.22 21.4 21.19 < | 3 | QPSK | 8 | 7 | 20.18 | 20.30 | 20.39 | 21.50 | | 3 16QAM 1 8 20.30 20.23 20.06 3 16QAM 1 14 20.35 20.23 20.06 3 16QAM 8 0 19.13 19.10 19.23 3 16QAM 8 4 19.21 19.30 19.22 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 </td <td>3</td> <td>QPSK</td> <td>15</td> <td>0</td> <td>20.10</td> <td>20.25</td> <td>20.28</td> <td></td> | 3 | QPSK | 15 | 0 | 20.10 | 20.25 | 20.28 | | | 3 16QAM 1 14 20.35 20.23 20.06 3 16QAM 8 0 19.13 19.10 19.23 3 16QAM 8 4 19.21 19.30 19.22 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 3 21.29 21.19 21.22 1.4< | 3 | 16QAM | 1 | 0 | 20.09 | 20.29 | 20.06 | | | 3 16QAM 8 0 19.13 19.10 19.23 3 16QAM 8 4 19.21 19.30 19.22 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 3 3 21.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 <td>3</td> <td>16QAM</td> <td>1</td> <td>8</td> <td>20.30</td> <td>20.23</td> <td>20.21</td> <td>21.50</td> | 3 | 16QAM | 1 | 8 | 20.30 | 20.23 | 20.21 | 21.50 | | 3 16QAM 8 4 19.21 19.30 19.22 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 | 3 | 16QAM | 1 | 14 | 20.35 | 20.23 | 20.06 | | | 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 0 20.23 | 3 | 16QAM | 8 | 0 | 19.13 | 19.10 | 19.23 | | | 3 16QAM 8 7 19.32 19.24 19.38 3 16QAM 15 0 19.14 19.38 19.08 Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 3 20.29 20.01 | 3 | 16QAM | 8 | 4 | 19.21 | 19.30 | 19.22 | 00.50 | | Channel 20407 20525 20643 Tune-up limit (dBm) Frequency (MHz) 824.7 836.5 848.3 Tune-up limit (dBm) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 | 3 | 16QAM | 8 | 7 | 19.32 | 19.24 | 19.38 | 20.50 | | Frequency (MHz) 824.7 836.5 848.3 limit (dBm) | 3 | 16QAM | 15 | 0 | 19.14 | 19.38 | 19.08 | | | Frequency (MHz) 1.4 QPSK 1 0 21.31 21.20 21.19 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | | Chan | nel | | 20407 | 20525 | 20643 | Tune-up | | 1.4 QPSK 1 3 21.15 21.43 21.25 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 2 2 2 </td <td></td> <td>Frequenc</td> <td>y (MHz)</td> <td></td> <td>824.7</td> <td>836.5</td> <td>848.3</td> <td></td> | | Frequenc | y (MHz) | | 824.7 | 836.5 | 848.3 | | | 1.4 QPSK 1 5 21.22 21.30 21.12 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | QPSK | 1 | 0 | 21.31 | 21.20 | 21.19 | | | 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | QPSK | 1 | 3 |
21.15 | 21.43 | 21.25 | | | 1.4 QPSK 3 0 21.21 21.24 21.19 1.4 QPSK 3 1 21.18 21.28 21.28 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | QPSK | 1 | 5 | 21.22 | 21.30 | 21.12 | 00.50 | | 1.4 QPSK 3 3 21.29 21.19 21.22 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | QPSK | 3 | 0 | 21.21 | 21.24 | 21.19 | 22.50 | | 1.4 QPSK 6 0 20.29 20.30 20.19 21.50 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | QPSK | 3 | 1 | 21.18 | 21.28 | 21.28 | | | 1.4 16QAM 1 0 20.21 19.90 20.16 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | QPSK | 3 | 3 | 21.29 | 21.19 | 21.22 | | | 1.4 16QAM 1 3 20.29 20.01 20.38 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | QPSK | 6 | 0 | 20.29 | 20.30 | 20.19 | 21.50 | | 1.4 16QAM 1 5 20.23 19.94 20.23 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | 16QAM | 1 | 0 | 20.21 | 19.90 | 20.16 | | | 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | 16QAM | 1 | 3 | 20.29 | 20.01 | 20.38 | 1 | | 1.4 16QAM 3 0 20.23 20.24 20.31 1.4 16QAM 3 1 20.29 20.28 20.21 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | 16QAM | 1 | 5 | 20.23 | 19.94 | 20.23 | 04.50 | | 1.4 16QAM 3 3 20.24 20.29 20.22 | 1.4 | 16QAM | 3 | 0 | 20.23 | 20.24 | 20.31 | 21.50 | | | 1.4 | 16QAM | 3 | 1 | 20.29 | 20.28 | 20.21 | 1 | | 1.4 16QAM 6 0 19.34 19.31 19.48 20.50 | 1.4 | 16QAM | 3 | 3 | 20.24 | 20.29 | 20.22 | 1 | | | 1.4 | 16QAM | 6 | 0 | 19.34 | 19.31 | 19.48 | 20.50 | ## <LTE Band 13> | Band 13> | | | | | | | | |----------|---------------|---------|--------|---------|---------|---------|----------| | BW | Modulation | DD C: | RB | Low | Middle | High | T | | [MHz] | Modulation | RB Size | Offset | Channel | Channel | Channel | Tune-up | | | Chan | nel | | | 23230 | | limit | | | Frequenc | y (MHz) | | | 782 | | (dBm) | | 10 | QPSK | 1 | 0 | | 21.60 | | | | 10 | QPSK | 1 | 25 | | 21.46 | | 22.50 | | 10 | QPSK | 1 | 49 | | 21.33 | | | | 10 | QPSK | 25 | 0 | | 20.52 | | | | 10 | QPSK | 25 | 12 | | 20.47 | | 24.50 | | 10 | QPSK | 25 | 25 | | 20.30 | | 21.50 | | 10 | QPSK | 50 | 0 | | 20.57 | | | | 10 | 16QAM | 1 | 0 | | 20.36 | | | | 10 | 16QAM | 1 | 25 | | 20.35 | | 21.50 | | 10 | 16QAM | 1 | 49 | | 20.37 | | | | 10 | 16QAM | 25 | 0 | | 19.61 | | | | 10 | 16QAM | 25 | 12 | 19.61 | | | 20.50 | | 10 | 16QAM | 25 | 25 | 19.62 | | | | | 10 | 16QAM | 50 | 0 | 19.55 | | | | | | Chan | nel | | 23205 | 23230 | 23255 | Tune-up | | | Frequency | y (MHz) | | 779.5 | 782 | 784.5 | limit | | | ODCK | 1 | 0 | 24.60 | 24.4.4 | 24.27 | (dBm) | | 5 | QPSK | 1 | 0 | 21.60 | 21.14 | 21.37 | 22.50 | | 5 | QPSK | 1 | 12 | 21.36 | 21.14 | 21.48 | 22.50 | | 5 | QPSK | 1 | 24 | 21.34 | 21.64 | 21.35 | | | 5 | QPSK | 12 | 0 | 20.52 | 20.44 | 20.57 | | | 5 | QPSK
QPSK | 12 | 7 | 20.48 | 20.62 | 20.65 | 21.50 | | 5 | | 12 | 13 | 20.61 | 20.57 | 20.47 | | | 5 | QPSK
16OAM | 25 | 0 | 20.36 | 20.55 | 20.53 | | | 5 | 16QAM | 1 | 0 | 20.30 | 20.51 | 20.62 | 24.50 | | 5 | 16QAM | 1 | 12 | 20.41 | 20.32 | 20.58 | 21.50 | | 5 | 16QAM | 1 | 24 | 20.36 | 20.38 | 20.42 | | | 5 | 16QAM | 12 | 0 | 19.52 | 19.46 | 19.43 | | | 5 | 16QAM | 12 | 7 | 19.52 | 19.63 | 19.37 | 20.50 | | 5 | 16QAM | 12 | 13 | 19.68 | 19.58 | 19.48 | | | 5 | 16QAM | 25 | 0 | 19.44 | 19.45 | 19.65 | | #### <LTE Band 66> | Band 66> | | | | | | | | | |--------------------|---------------|---------|--------|---------|---------|---------|----------------|--| | BW | Modulation | RB Size | RB | Low | Middle | High | Tuna un | | | [MHz] | IVIOQUIALIOIT | KD SIZE | Offset | Channel | Channel | Channel | Tune-up | | | | Chan | nel | | 132072 | 132322 | 132572 | limit | | | | Frequenc | y (MHz) | | 1720 | 1745 | 1770 | (dBm) | | | 20 | QPSK | 1 | 0 | 21.45 | 21.50 | 21.44 | | | | 20 | QPSK | 1 | 49 | 21.39 | 21.34 | 21.39 | 22.50 | | | 20 | QPSK | 1 | 99 | 21.23 | 21.23 | 21.42 | | | | 20 | QPSK | 50 | 0 | 20.47 | 20.71 | 20.47 | | | | 20 | QPSK | 50 | 24 | 20.49 | 20.50 | 20.57 | 04.50 | | | 20 | QPSK | 50 | 50 | 20.60 | 20.50 | 20.64 | 21.50 | | | 20 | QPSK | 100 | 0 | 20.52 | 20.45 | 20.42 | | | | 20 | 16QAM | 1 | 0 | 20.40 | 20.52 | 20.50 | | | | 20 | 16QAM | 1 | 49 | 20.53 | 20.41 | 20.52 | 21.50 | | | 20 | 16QAM | 1 | 99 | 20.33 | 20.45 | 20.69 | | | | 20 | 16QAM | 50 | 0 | 19.43 | 19.65 | 19.50 | | | | 20 | 16QAM | 50 | 24 | 19.44 | 19.50 | 19.43 | 00.50 | | | 20 | 16QAM | 50 | 50 | 19.50 | 19.42 | 19.50 | 20.50 | | | 20 | 16QAM | 100 | 0 | 19.54 | 19.44 | 19.42 | | | | | Chan | nel | | 132047 | 132322 | 132597 | Tune-up | | | | Frequenc | y (MHz) | | 1717.5 | 1745 | 1772.5 | limit
(dBm) | | | 15 | QPSK | 1 | 0 | 21.23 | 21.39 | 21.43 | | | | 15 | QPSK | 1 | 37 | 21.33 | 21.34 | 21.33 | 22.50 | | | 15 | QPSK | 1 | 74 | 21.39 | 21.32 | 21.25 | | | | 15 | QPSK | 36 | 0 | 20.64 | 20.61 | 20.56 | | | | 15 | QPSK | 36 | 20 | 20.50 | 20.50 | 20.50 | 04.50 | | | 15 | QPSK | 36 | 39 | 20.49 | 20.42 | 20.56 | 21.50 | | | 15 | QPSK | 75 | 0 | 20.62 | 20.62 | 20.69 | | | | 15 | 16QAM | 1 | 0 | 20.46 | 20.41 | 20.50 | | | | 15 | 16QAM | 1 | 37 | 20.51 | 20.50 | 20.42 | 21.50 | | | 15 | 16QAM | 1 | 74 | 20.17 | 20.44 | 20.41 | | | | 15 | 16QAM | 36 | 0 | 19.44 | 19.53 | 19.62 | | | | 15 | 16QAM | 36 | 20 | 19.65 | 19.50 | 19.50 | 20.50 | | | 15 | 16QAM | 36 | 39 | 19.54 | 19.47 | 19.65 | 20.50 | | | 15 | 16QAM | 75 | 0 | 19.62 | 19.46 | 19.50 | | | | | Channel | | | | 132322 | 132622 | Tune-up | | | | Frequenc | y (MHz) | | 1715 | 1745 | 1775 | limit | | | | | | | | | | (dBm) | |-----------------|----------|---------|----|--------|--------|--------|----------------| | 10 | QPSK | 1 | 0 | 21.43 | 21.32 | 21.20 | (55111) | | 10 | QPSK | 1 | 25 | 21.49 | 21.22 | 21.17 | 22.50 | | 10 | QPSK | 1 | 49 | 21.40 | 21.20 | 21.32 | | | 10 | QPSK | 25 | 0 | 20.61 | 20.47 | 20.63 | | | 10 | QPSK | 25 | 12 | 20.60 | 20.46 | 20.59 | | | 10 | QPSK | 25 | 25 | 20.54 | 20.49 | 20.66 | 21.50 | | 10 | QPSK | 50 | 0 | 20.57 | 20.50 | 20.62 | | | 10 | 16QAM | 1 | 0 | 20.43 | 20.41 | 20.42 | | | 10 | 16QAM | 1 | 25 | 20.45 | 20.41 | 20.50 | 21.50 | | 10 | 16QAM | 1 | 49 | 20.43 | 20.60 | 20.65 | | | 10 | 16QAM | 25 | 0 | 19.60 | 19.49 | 19.60 | | | 10 | 16QAM | 25 | 12 | 19.50 | 19.42 | 19.60 | | | 10 | 16QAM | 25 | 25 | 19.45 | 19.54 | 19.46 | 20.50 | | 10 | 16QAM | 50 | 0 | 19.53 | 19.50 | 19.76 | | | | Channel | | | | 132322 | 132647 | Tune-up | | | Frequenc | y (MHz) | | 1712.5 | 1745 | 1777.5 | limit
(dBm) | | 5 | QPSK | 1 | 0 | 21.23 | 21.41 | 21.22 | , , | | 5 | QPSK | 1 | 12 | 21.32 | 21.39 | 21.17 | 22.50 | | 5 | QPSK | 1 | 24 | 21.14 | 21.32 | 21.22 | | | 5 | QPSK | 12 | 0 | 20.47 | 20.59 | 20.62 | | | 5 | QPSK | 12 | 7 | 20.50 | 20.63 | 20.50 | 04.50 | | 5 | QPSK | 12 | 13 | 20.55 | 20.56 | 20.60 | 21.50 | | 5 | QPSK | 25 | 0 | 20.72 | 20.46 | 20.46 | | | 5 | 16QAM | 1 | 0 | 20.47 | 20.55 | 20.41 | | | 5 | 16QAM | 1 | 12 | 20.50 | 20.44 | 20.50 | 21.50 | | 5 | 16QAM | 1 | 24 | 20.43 | 20.50 | 20.42 | | | 5 | 16QAM | 12 | 0 | 19.63 | 19.60 | 19.62 | | | 5 | 16QAM | 12 | 7 | 19.69 | 19.46 | 19.44 | 20.50 | | 5 | 16QAM | 12 | 13 | 19.46 | 19.50 | 19.41 | 20.50 | | 5 | 16QAM | 25 | 0 | 19.50 | 19.50 | 19.39 | | | Channel | | | | 131987 | 132322 | 132657 | Tune-up | | Frequency (MHz) | | | | 1711.5 | 1745 | 1778.5 | limit
(dBm) | | 3 | QPSK | 1 | 0 | 21.21 | 21.10 | 21.13 | | | 3 | QPSK | 1 | 8 | 21.00 | 21.22 | 21.22 | 22.50 | | 3 | QPSK | 1 | 14 | 21.02 | 21.23 | 21.20 | | | QPSK | 8 | 0 | 20.47 | 20.63 | 20.44 | | |-----------------|--|--|---
--|---|---| | QPSK | 8 | 4 | 20.57 | 20.53 | 20.51 | 21.50 | | QPSK | 8 | 7 | 20.45 | 20.57 | 20.42 | 21.50 | | QPSK | 15 | 0 | 20.50 | 20.69 | 20.50 | | | 16QAM | 1 | 0 | 20.45 | 20.42 | 20.51 | | | 16QAM | 1 | 8 | 20.50 | 20.50 | 20.49 | 21.50 | | 16QAM | 1 | 14 | 20.46 | 20.44 | 20.42 | | | 16QAM | 8 | 0 | 19.63 | 19.54 | 19.46 | | | 16QAM | 8 | 4 | 19.50 | 19.65 | 19.50 | 20.50 | | 16QAM | 8 | 7 | 19.42 | 19.50 | 19.43 | 20.50 | | 16QAM | 15 | 0 | 19.50 | 19.44 | 19.41 | | | Chan | nel | | 131979 | 132322 | 132665 | Tune-up | | Fraguency (MHz) | | | 1710.7 | 1745 | 1770.2 | limit | | Frequenc | y (IVIIIZ) | | 1710.7 | 1745 | 1779.3 | (dBm) | | QPSK | 1 | 0 | 21.14 | 21.32 | 21.22 | | | QPSK | 1 | 3 | 21.00 | 21.17 | 21.00 | | | QPSK | 1 | 5 | 21.11 | 21.32 | 21.10 | 22.50 | | QPSK | 3 | 0 | 20.89 | 20.99 | 21.03 | 22.50 | | QPSK | 3 | 1 | 21.19 | 21.12 | 20.97 | | | QPSK | 3 | 3 | 21.11 | 21.06 | 21.11 | | | QPSK | 6 | 0 | 20.53 | 20.67 | 20.53 | 21.50 | | 16QAM | 1 | 0 | 20.60 | 20.50 | 20.42 | | | 16QAM | 1 | 3 | 20.42 | 20.50 | 20.49 | | | 16QAM | 1 | 5 | 20.63 | 20.36 | 20.53 | 24.50 | | 16QAM | 3 | 0 | 20.50 | 20.50 | 20.49 | 21.50 | | 16QAM | 3 | 1 | 20.49 | 20.44 | 20.39 | | | 16QAM | 3 | 3 | 20.70 | 20.42 | 20.52 | | | 16QAM | 6 | 0 | 19.44 | 19.53 | 19.50 | 20.50 | | | QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM Chan Frequence QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK | QPSK 8 QPSK 15 16QAM 1 16QAM 1 16QAM 1 16QAM 8 16QAM 8 16QAM 8 16QAM 15 Channel Frequency (MHz) QPSK 1 QPSK 1 QPSK 3 QPSK 3 QPSK 3 QPSK 3 QPSK 3 QPSK 3 QPSK 6 16QAM 1 16QAM 1 16QAM 3 16QAM 3 16QAM 3 16QAM 3 16QAM 3 | QPSK 8 4 QPSK 15 0 16QAM 1 0 16QAM 1 8 16QAM 1 14 16QAM 8 0 16QAM 8 4 16QAM 8 7 16QAM 15 0 Channel Frequency (MHz) QPSK 1 0 QPSK 1 3 QPSK 3 0 QPSK 3 1 QPSK 3 1 QPSK 3 3 QPSK 3 3 QPSK 3 3 QPSK 6 0 16QAM 1 0 16QAM 1 5 16QAM 3 0 16QAM 3 1 | QPSK 8 4 20.57 QPSK 8 7 20.45 QPSK 15 0 20.50 16QAM 1 0 20.45 16QAM 1 8 20.50 16QAM 1 14 20.46 16QAM 8 0 19.63 16QAM 8 4 19.50 16QAM 8 7 19.42 16QAM 15 0 19.50 Channel 131979 Frequency (MHz) 1710.7 QPSK 1 0 21.14 QPSK 1 3 21.00 QPSK 1 3 21.00 QPSK 3 0 20.89 QPSK 3 1 21.19 QPSK 3 1 21.11 QPSK 3 2 20.53 16QAM 1 3 20.42 16QAM <td>QPSK 8 4 20.57 20.53 QPSK 8 7 20.45 20.57 QPSK 15 0 20.50 20.69 16QAM 1 0 20.45 20.42 16QAM 1 14 20.46 20.44 16QAM 8 0 19.63 19.54 16QAM 8 4 19.50 19.65 16QAM 8 7 19.42 19.50 16QAM 15 0 19.50 19.44 Channel 131979 132322 Frequency (MHz) 1710.7 1745 QPSK 1 0 21.14 21.32 QPSK 1 3 21.00 21.17 QPSK 1 3 21.00 21.17 QPSK 3 0 20.89 20.99 QPSK 3 0 20.89 20.99 QPSK 3 3 21.11</td> <td>QPSK 8 4 20.57 20.53 20.51 QPSK 8 7 20.45 20.57 20.42 QPSK 15 0 20.50 20.69 20.50 16QAM 1 0 20.45 20.42 20.51 16QAM 1 8 20.50 20.50 20.49 16QAM 1 14 20.46 20.44 20.42 16QAM 1 14 20.46 20.44 20.42 16QAM 8 0 19.63 19.54 19.46 16QAM 8 7 19.63 19.54 19.46 16QAM 8 7 19.63 19.50 19.46 16QAM 8 7 19.42 19.50 19.43 16QAM 15 0 19.50 19.44 19.41 16QAM 15 0 19.50 19.44 19.41 15 131979 132322 132665</td> | QPSK 8 4 20.57 20.53 QPSK 8 7 20.45 20.57 QPSK 15 0 20.50 20.69 16QAM 1 0 20.45 20.42 16QAM 1 14 20.46 20.44 16QAM 8 0 19.63 19.54 16QAM 8 4 19.50 19.65 16QAM 8 7 19.42 19.50 16QAM 15 0 19.50 19.44 Channel 131979 132322 Frequency (MHz) 1710.7 1745 QPSK 1 0 21.14 21.32 QPSK 1 3 21.00 21.17 QPSK 1 3 21.00 21.17 QPSK 3 0 20.89 20.99 QPSK 3 0 20.89 20.99 QPSK 3 3 21.11 | QPSK 8 4 20.57 20.53 20.51 QPSK 8 7 20.45 20.57 20.42 QPSK 15 0 20.50 20.69 20.50 16QAM 1 0 20.45 20.42 20.51 16QAM 1 8 20.50 20.50 20.49 16QAM 1 14 20.46 20.44 20.42 16QAM 1 14 20.46 20.44 20.42 16QAM 8 0 19.63 19.54 19.46 16QAM 8 7 19.63 19.54 19.46 16QAM 8 7 19.63 19.50 19.46 16QAM 8 7 19.42 19.50 19.43 16QAM 15 0 19.50 19.44 19.41 16QAM 15 0 19.50 19.44 19.41 15 131979 132322 132665 | #### WLAN Conducted Power #### <2.4GHz WLAN ANT 0> | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | |--------|----------------------|---------|--------------------|---------------------------|------------------|-----------------| | | | CH 1 | 2412 | 14.12 | 14.50 | | | | 802.11b 1Mbps | CH 6 | 2437 | 14.21 | 14.50 | 100.00 | | | | CH 11 | 2462 | 14.24 | 14.50 | | | 2.4GHz | | CH 1 | 2412 | 13.51 | 14.00 | | | WLAN | 802.11g 6Mbps | CH 6 | 2437 | 13.64 | 14.00 | 95.37 | | ANT 0 | | CH 11 | 2462 | 13.70 | 14.00 | | | | 802.11n-HT20 | CH 1 | 2412 | 13.37 | 14.00 | | | | MCS0 | CH 6 | 2437 | 13.51 | 14.00 | 94.58 | | | IVICSU | CH 11 | 2462 | 13.57 | 14.00 | | | | 802.11n-HT40
MCS0 | CH 3 | 2422 | 13.82 | 14.00 | | | | | CH 6 | 2437 | 13.66 | 14.00 | 90.91 | | | IVICSU | CH 9 | 2452 | 13.77 | 14.00 | | #### <2.4GHz WLAN ANT 1> | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | |--------|---------------|---------|--------------------|---------------------------
------------------|-----------------| | | | CH 1 | 2412 | 13.68 | 14.00 | | | | 802.11b 1Mbps | CH 6 | 2437 | 13.85 | 14.00 | 100.00 | | | | CH 11 | 2462 | 13.86 | 14.00 | | | 2.4GHz | | CH 1 | 2412 | 13.15 | 13.50 | | | WLAN | 802.11g 6Mbps | CH 6 | 2437 | 13.33 | 13.50 | 95.37 | | ANT 1 | | CH 11 | 2462 | 13.26 | 13.50 | | | | 802.11n-HT20 | CH 1 | 2412 | 13.02 | 13.50 | | | | MCS0 | CH 6 | 2437 | 13.19 | 13.50 | 94.58 | | | IVICSU | CH 11 | 2462 | 13.14 | 13.50 | | | | 802.11n-HT40 | CH 3 | 2422 | 13.25 | 13.50 | | | | | CH 6 | 2437 | 13.34 | 13.50 | 90.91 | | | MCS0 | CH 9 | 2452 | 13.05 | 13.50 | | #### Note: Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Fraguenay | Max. | Max. | Test | | exclusion | | |-----------|-------------|---------|-------|----------|-----------|----------------| | Antenna | Frequency | Tune-up | Power | distance | Result | thresholds for | | (GHz) | Power (dBm) | (mW) | (mm) | | 1-g SAR | | | Ant 0 | 2.462 | 14.50 | 28.18 | 5 | 8.84 | 3.0 | | Ant 1 | 2.462 | 14.00 | 25.12 | 5 | 7.88 | 3.0 | - 2. Base on the result of note1, RF exposure evaluation of 802.11 b and g mode is required. - 3. Per KDB 248227 D01v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion. - 4. Per KDB 248227 D01v02r02, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions: - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. - 5. The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in report. #### <5.2GHz WLAN ANT 0> | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | | |--------|------------------------|---------|--------------------|---------------------------|------------------|-----------------|--| | | 000 44 - 11700 | CH 36 | 5180 | 12.71 | 13.00 | | | | | 802.11n-HT20
MCS0 | CH 40 | 5200 | 12.66 | 13.00 | 95.05 | | | | MCSU | CH 48 | 5240 | 12.82 | 13.50 | | | | 5.2GHz | 802.11n-HT40 | CH 38 | 5190 | 12.53 | 13.00 | 00.04 | | | WLAN | MCS0 | CH 46 | 5230 | 12.56 | 13.00 | 90.91 | | | ANT 0 | 000 44 co VIIITO | CH 36 | 5180 | 12.61 | 13.00 | | | | | 802.11ac-VHT20
MCS0 | CH 40 | 5200 | 12.60 | 13.00 | 95.07 | | | | MCSU | CH 48 | 5240 | 12.68 | 13.00 | | | | | 802.11ac-VHT40 | CH 38 | 5190 | 12.46 | 13.00 | 04.25 | | | | MCS0 | CH 46 | 5230 | 12.38 | 12.50 | 91.35 | | | | 802.11ac-VHT80
MCS0 | CH 42 | 5210 | 12.28 | 12.50 | 84.06 | | #### <5.2GHz WLAN ANT 1> | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | |--------|------------------------|---------|--------------------|---------------------------|------------------|-----------------| | | 902 445 UT20 | CH 36 | 5180 | 12.63 | 13.00 | | | | 802.11n-HT20
MCS0 | CH 40 | 5200 | 12.54 | 13.00 | 95.05 | | | MCSU | CH 48 | 5240 | 12.71 | 13.00 | | | 5.2GHz | 802.11n-HT40 | CH 38 | 5190 | 12.26 | 12.50 | 90.91 | | WLAN | MCS0 | CH 46 | 5230 | 12.31 | 12.50 | 90.91 | | ANT 1 | 802.11ac-VHT20 | CH 36 | 5180 | 12.55 | 13.00 | | | | MCS0 | CH 40 | 5200 | 12.47 | 13.00 | 95.07 | | | MCSO | CH 48 | 5240 | 12.36 | 12.50 | | | | 802.11ac-VHT40 | CH 38 | 5190 | 12.25 | 12.50 | 91.35 | | | MCS0 | CH 46 | 5230 | 12.31 | 12.50 | 91.33 | | | 802.11ac-VHT80
MCS0 | CH 42 | 5210 | 12.13 | 12.50 | 84.06 | #### Note: 1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test* separation distances ≤50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for1-g SAR, where - · f(GHz) is the RF channel transmit frequency in GHz - · Power and distance are rounded to the nearest mW and mm before calculation - · The result is rounded to one decimal place for comparison | Antenna Frequency | | Max. | Max. | Test | | exclusion | |-------------------|-------|-------------|-------------------------------|------|----------------|-----------| | | | Tune-up | Tune-up Power distance Result | | thresholds for | | | | (GHz) | Power (dBm) | (mW) | (mm) | | 1-g SAR | | ANT 0 | 5.240 | 13.50 | 22.39 | 5 | 10.25 | 3.0 | | ANT 1 | 5.240 | 13.00 | 19.95 | 5 | 9.13 | 3.0 | - 2. Per KDB 248227 D01v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion. - 3. The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in report. #### <5.8GHz WLAN ANT 0> | | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | | |--------|------------------------|---------|--------------------|---------------------------|------------------|-----------------|--| | | 000 44 - 11700 | CH 149 | 5745 | 12.90 | 13.50 | | | | | 802.11n-HT20
MCS0 | CH 157 | 5785 | 12.91 | 13.50 | 95.05 | | | | MCSU | CH 165 | 5825 | 13.04 | 13.50 | | | | 5.8GHz | 802.11n-HT40 | CH 151 | 5755 | 12.58 | 13.00 | 90.91 | | | WLAN | MCS0 | CH 159 | 5795 | 12.60 | 13.00 | | | | ANT 0 | 902 11cc V/UT20 | CH 149 | 5745 | 12.82 | 13.50 | | | | | 802.11ac-VHT20
MCS0 | CH 157 | 5785 | 12.86 | 13.50 | 95.07 | | | | MCSU | CH 165 | 5825 | 12.94 | 13.50 | | | | | 802.11ac-VHT40 | CH 151 | 5755 | 12.41 | 12.50 | 01.25 | | | | MCS0 CH 159 | | 5795 | 12.43 | 12.50 | 91.35 | | | | 802.11ac-VHT80
MCS0 | CH 155 | 5775 | 12.25 | 12.50 | 84.06 | | ### <5.8GHz WLAN ANT 1> | | Mode Channel Frequency (MHz) | | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | | | |--------|------------------------------|--------|---------------------------|------------------|-----------------|-------|--| | | 000 44 11700 | CH 149 | 5745 | 12.58 | 13.00 | | | | | 802.11n-HT20
MCS0 | CH 157 | 5785 | 12.45 | 12.50 | 95.05 | | | | IVICSU | CH 165 | 5825 | 12.33 | 12.50 | | | | 5.8GHz | 802.11n-HT40 | CH 151 | 5755 | 12.30 | 12.50 | 90.91 | | | WLAN | MCS0 | CH 159 | 5795 | 12.24 | 12.50 | 90.91 | | | ANT 1 | 000 44 co VI ITOO | CH 149 | 5745 | 12.56 | 13.00 | | | | | 802.11ac-VHT20
MCS0 | CH 157 | 5785 | 12.54 | 13.00 | 95.07 | | | | IVICSU | CH 165 | 5825 | 12.63 | 13.00 | | | | | 802.11ac-VHT40 | CH 151 | 5755 | 12.22 | 12.50 | 04.25 | | | | MCS0 CH 159 | | 5795 | 12.19 | 12.50 | 91.35 | | | | 802.11ac-VHT80
MCS0 | CH 155 | 5775 | 11.89 | 12.00 | 84.06 | | #### Note: 4. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test* separation distances ≤50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for1-g SAR, where - f(GHz) is the RF channel transmit frequency in GHz - · Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Antenna | Fraguenav | Max. | Max. | Test | | exclusion | |---------|--------------------|-------------|-------|----------|--------|----------------| | | Frequency
(GHz) | Tune-up | Power | distance | Result | thresholds for | | | | Power (dBm) | (mW) | (mm) | | 1-g SAR | | ANT 0 | 5.825 | 13.50 | 22.39 | 5 | 10.81 | 3.0 | | ANT 1 | 5.745 | 13.00 | 19.95 | 5 | 9.56 | 3.0 | - 5. Per KDB 248227 D01v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion. - 6. The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in report. #### <2.4GHz WLAN ANT 0+1> | 2.40. | Mode | Channel | Frequency
(MHz) | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | |-------------|----------------------|---------|--------------------|---------------------------|------------------|-----------------| | 2.4GHz | 802.11n-HT20
MCS0 | CH 1 | 2412 | 16.43 | 17.00 | | | WLAN
ANT | | CH 6 | 2437 | 16.63 | 17.00 | 94.58 | | 0+1 | | CH 11 | 2462 | 16.63 | 17.00 | | | 0+1 | 802.11n-HT40
MCS0 | CH 3 | 2422 | 16.99 | 17.50 | | | | | CH 6 | 2437 | 16.90 | 17.50 | 90.91 | | | | CH 9 | 2452 | 16.81 | 17.50 | | #### <5.2GHz WLAN ANT 0+1> | | Mode | Mode Channel Frequer (MHz) | | Average
power
(dBm) | Tune-Up
Limit | Duty
Cycle % | | |----------------|----------------------|----------------------------|------|---------------------------|------------------|-----------------|--| | | 802.11n-HT20 | CH 36 | 5180 | 15.91 | 16.50 | | | | 5 00 U- | MCS0 | CH 40 | 5200 | 15.80 | 16.50 | 95.05 | | | 5.2GHz
WLAN | IVICSU | CH 48 | 5240 | 16.02 | 16.50 | | | | ANT | 802.11n-HT40
MCS0 | CH 38 | 5190 | 15.80 | 16.50 | 90.91 | | | 0+1 | | CH 46 | 5230 | 15.91 | 16.50 | 90.91 | | | 011 | 802.11ac-VHT20 | CH 36 | 5180 | 15.80 | 16.50 | | | | | MCS0 | CH 40 | 5200 | 15.80 | 16.50 | 95.07 | | | | MCGO | CH 48 | 5240 | 15.80 | 16.50 | | | | | 802.11ac-VHT40 | CH 38 | 5190 | 15.80 | 16.50 | 91.35 | | | | MCS0 | CH 46 | 5230 | 15.80 | 16.50 | 91.33 | | | 802.11ac-VHT80 | CLI 40 | F040 | 45.04 | 40.50 | 04.00 | |----------------|--------|------|-------|-------|-------| | MCS0 | CH 42 | 5210 | 15.91 | 16.50 | 84.06 | #### <5.8GHz WLAN ANT 0+1> | | Mode Channel Frequency power (MHz) (dBm) | | Tune-Up
Limit | Duty
Cycle % | | | | |----------------|--|--------
------------------|-----------------|-------|-------|--| | | 902 445 UT20 | CH 149 | 5745 | 16.02 | 16.50 | | | | | 802.11n-HT20
MCS0 | CH 157 | 5785 | 15.91 | 16.50 | 95.05 | | | E OCH- | | CH 165 | 5825 | 15.91 | 16.50 | ı | | | 5.8GHz
WLAN | 802.11n-HT40 | CH 151 | 5755 | 15.91 | 16.50 | 90.91 | | | ANT | MCS0 | CH 159 | 5795 | 15.80 | 16.50 | | | | 0+1 | 802.11ac-VHT20 | CH 149 | 5745 | 15.91 | 16.50 | | | | " | | CH 157 | 5785 | 15.91 | 16.50 | 95.07 | | | | MCS0 | CH 165 | 5825 | 16.02 | 16.50 | | | | | 802.11ac-VHT40 | CH 151 | 5755 | 15.68 | 16.00 | 01.25 | | | | MCS0 | CH 159 | 5795 | 15.68 | 16.00 | 91.35 | | | | 802.11ac-VHT80
MCS0 | CH 155 | 5775 | 15.80 | 16.50 | 84.06 | | # 14. EUT Antenna Location Main Antenna supported TX bands: UMTS Band II/V FDD LTE Band 2/4/5/13/66 WLAN antenna supported bands : 2.4GHz/5GHz #### **EUT Antenna Distance:** | Antenna Location | Support | Тор | Bottom | Left | Right | |------------------|----------|----------|----------|----------|----------| | | Function | Side(mm) | Side(mm) | Side(mm) | Side(mm) | | Main Antenna | TX/RX | 97.5 | 14.4 | 17.6 | 48.1 | | Aux Antenna | DRX | 10.8 | 101.8 | 18.9 | 46.3 | | WLAN Ant 0 | TX/RX | 43.1 | 66.7 | 6.3 | 58.1 | | WLAN Ant 1 | TX/RX | 44.2 | 65.6 | 56.9 | 7.5 | # 15. Block diagram of the tests to be performed # 15.1. Body Tel: 86-755-36698555 Http://www.morlab.cn # 16. Test Results List # 16.1. Test Guidance - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: | $\square \le 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 10 | |--| | MHz | | □ ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is | | between 100 MHz and 200 MHz | | \square ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 20 | | MHz | - 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 4. Per KDB648474 D04v01r03, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, when hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg, however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for tablet modes to compare with the 1.2 W/kg SAR test reduction threshold. - 5. Per KDB248227 D01v02r02,a Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies required for operations in the U.S. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. Unless it is permitted by specific KDB procedures or continuous transmission is specifically restricted by the device, the reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. When a device is not capable of sustaining continuous transmission or the output can become nonlinear, and it is limited by hardware design and unable to transmit at higher than 85% duty factor, a periodic duty factor within 15% of the maximum duty factor the device is capable of transmitting should be used. The reported SAR must be scaled to the maximum transmission duty factor to determine compliance. Descriptions of the procedures applied to establish the specific duty factor used for SAR testing are required in SAR reports to support the test results. 6. Per KDB648474 D04v01r03, when the aggregate SAR from multiple antennas at any location in the combined SAR distribution is either 1.2 W/kg where at least 90% of the SAR is attributed to a single SAR distribution or ≤ 0.4 W/kg where no more than one SAR distribution is contributing > 0.1 W/kg, the antennas may be considered spatially separated. In this report, the MIMO mode SAR is not required for the SAR of the WLAN antennas on the top side and bottom side are less than 1.2 W/kg on 1-g. # 16.2. Body SAR Data ## > WCDMA Body SAR | | TODIII TOOGY OF III | | | | | | | | |------|---------------------|---------------|------|-------|---------|---------|--------|----------| | Plot | | | | Ave. | Tune-up | Tune-up | Meas. | Reported | | No. | Band/Mode | Test Position | CH. | Power | Limit | Scaling | SAR1g | SAR1g | | INO. | | | | (dBm) | (dBm) | Factor | (W/kg) | (W/kg) | | 1# | Band II/RMC | Front Side | 9400 | 21.64 | 22.50 | 1.219 | 0.419 | 0.511 | | | Band II/RMC | Back Side | 9400 | 21.64 | 22.50 | 1.219 | 0.395 | 0.482 | | | Band II/RMC | Left Side | 9400 | 21.64 | 22.50 | 1.219 | 0.280 | 0.341 | | | Band II/RMC | Right Side | 9400 | 21.64 | 22.50 | 1.219 | 0.267 | 0.325 | | | Band II/RMC | Top Side | 9400 | 21.64 | 22.50 | 1.219 | 0.102 | 0.124 | | | Band II/RMC | Bottom Side | 9400 | 21.64 | 22.50 | 1.219 | 0.277 | 0.338 | | | | | | | | | | | | 2# | Band V/RMC | Front Side | 4183 | 21.78 | 22.50 | 1.180 | 0.522 | 0.616 | | | Band V/RMC | Back Side | 4183 | 21.78 | 22.50 | 1.180 | 0.496 | 0.585 | | | Band V/RMC | Left Side | 4183 | 21.78 | 22.50 | 1.180 | 0.284 | 0.335 | | | Band V/RMC | Right Side | 4183 | 21.78 | 22.50 | 1.180 | 0.122 | 0.144 | | | Band V/RMC | Top Side | 4183 | 21.78 | 22.50 | 1.180 | 0.046 | 0.054 | | | Band V/RMC | Bottom Side | 4183 | 21.78 | 22.50 | 1.180 | 0.075 | 0.088 | # > FDD-LTE QPSK Body SAR | Dist | - | | | Ave. | Tune-up | Tune-up | Meas. | Reported | |------|----------------------|---------------|-------|-------|---------|---------|--------|----------| | Plot | Band/Mode | Test Position | CH. | Power | Limit | Scaling | SAR1g | SAR1g | | No. | | | | (dBm) | (dBm) | Factor | (W/kg) | (W/kg) | | | LTE Band 2/1RB#0 20M | Front Side | 18900 | 23.33 | 23.50 | 1.040 | 0.690 | 0.718 | | | LTE Band 2/1RB#0 20M | Back Side | 18900 | 23.33 | 23.50 | 1.040 | 0.778 | 0.809 | | | LTE Band 2/1RB#0 20M | Left Side | 18900 | 23.33 | 23.50 | 1.040 | 0.254 | 0.264 | | | LTE Band 2/1RB#0 20M | Right Side | 18900 | 23.33 | 23.50 | 1.040 | 0.185 | 0.192 | | | LTE Band 2/1RB#0 20M | Top Side | 18900 | 23.33 | 23.50 | 1.040 | 0.110 | 0.114 | | | LTE Band 2/1RB#0 20M | Bottom Side | 18900 | 23.33 | 23.50 | 1.040 | 0.265 | 0.276 | | 3# | LTE Band 2/1RB#0 20M | Back Side | 18700 | 23.32 | 23.50 | 1.042 | 0.828 | 0.863 | | | LTE Band 2/1RB#0 20M | Back Side | 19100 | 23.27 | 23.50 | 1.054 | 0.658 | 0.694 | | | | | | Ave. | Tune-up | Tune-up | Meas. | Reported | |------|-----------------------|---------------|-------|-------|---------|---------|--------|----------| | Plot | Band/Mode | Test Position | CH. | Power | Limit | Scaling | SAR1g | SAR1g | | No. | | | | (dBm) | (dBm) | Factor | (W/kg) | (W/kg) | | | LTE Band 2/50RB#0 20M | Front Side | 18900 | 22.37 | 22.50 | 1.030 | 0.570 | 0.587 | | | LTE Band 2/50RB#0 20M | Back Side | 18900 | 22.37 | 22.50 | 1.030 | 0.616 | 0.635 | | | LTE Band 2/50RB#0 20M | Left Side | 18900 | 22.37 | 22.50 | 1.030 | 0.206 | 0.212 | | | LTE Band 2/50RB#0 20M | Right Side | 18900 | 22.37 | 22.50 | 1.030 | 0.149 | 0.154 | | | LTE Band 2/50RB#0 20M | Top Side | 18900 | 22.37 | 22.50 | 1.030 | 0.097 | 0.100 | | | LTE Band 2/50RB#0 20M | Bottom Side | 18900 | 22.37 | 22.50 | 1.030 | 0.209 | 0.215 | | , | | | | | | | | • | | | LTE Band 4/1RB#0 20M | Front Side | 20175 | 21.51 | 22.50 | 1.256 | 0.506 | 0.636 | | 4# | LTE Band 4/1RB#0 20M | Back Side | 20175 | 21.51 | 22.50 | 1.256 | 0.604 | 0.759 | | | LTE Band 4/1RB#0 20M | Left Side | 20050 | 21.51 | 22.50 | 1.256 | 0.233 | 0.293 | | | LTE Band 4/1RB#0 20M | Right Side | 20300 | 21.51 | 22.50 | 1.256 | 0.122 | 0.153 | | | LTE Band 4/1RB#0 20M | Top Side | 20300 | 21.51 | 22.50 | 1.256 | 0.091 | 0.114 | | | LTE Band 4/1RB#0 20M | Bottom Side | 20300 | 21.51 | 22.50 | 1.256 | 0.200 | 0.251 | | | | | | | | | | | | | LTE Band 4/50RB#0 20M | Front Side | 20175 | 20.38 | 21.50 | 1.294 | 0.398 | 0.515 | | | LTE Band 4/50RB#0 20M | Back Side | 20175 | 20.38 | 21.50 | 1.294 | 0.429 | 0.555 | | | LTE Band 4/50RB#0 20M | Left Side | 20175 | 20.38 | 21.50 | 1.294 | 0.187 | 0.242 | | | LTE Band 4/50RB#0 20M | Right Side | 20175 | 20.38 | 21.50 | 1.294 | 0.092 | 0.119 | | | LTE Band 4/50RB#0 20M | Top Side | 20175 | 20.38 | 21.50 | 1.294 | 0.051 | 0.066 | | | LTE Band 4/50RB#0 20M | Bottom Side | 20175 | 20.38 | 21.50 | 1.294 | 0.164 | 0.212 | | | | | | | | | | | | | LTE Band 5/1RB#0 10M | Front Side | 20525 | 21.50 | 22.50 | 1.259 | 0.593 | 0.747 | | 5# | LTE Band 5/1RB#0 10M | Back Side | 20525 | 21.50 | 22.50 | 1.259 | 0.615 |
0.774 | | | LTE Band 5/1RB#0 10M | Left Side | 20525 | 21.50 | 22.50 | 1.259 | 0.150 | 0.189 | | | LTE Band 5/1RB#0 10M | Right Side | 20525 | 21.50 | 22.50 | 1.259 | 0.306 | 0.385 | | | LTE Band 5/1RB#0 10M | Top Side | 20525 | 21.50 | 22.50 | 1.259 | 0.040 | 0.050 | | | LTE Band 5/1RB#0 10M | Bottom Side | 20525 | 21.50 | 22.50 | 1.259 | 0.057 | 0.072 | | | | | | | | | | | | | LTE Band 5/25RB#0 10M | Front Side | 20525 | 20.44 | 21.50 | 1.276 | 0.486 | 0.620 | | | LTE Band 5/25RB#0 10M | Back Side | 20525 | 20.44 | 21.50 | 1.276 | 0.584 | 0.745 | | | LTE Band 5/25RB#0 10M | Left Side | 20525 | 20.44 | 21.50 | 1.276 | 0.117 | 0.149 | | | LTE Band 5/25RB#0 10M | Right Side | 20525 | 20.44 | 21.50 | 1.276 | 0.251 | 0.320 | | | LTE Band 5/25RB#0 10M | Top Side | 20525 | 20.44 | 21.50 | 1.276 | 0.031 | 0.040 | | | LTE Band 5/25RB#0 10M | Bottom Side | 20525 | 20.44 | 21.50 | 1.276 | 0.047 | 0.060 | | | | | | Ave. | Tune-up | Tune-up | Meas. | Reported | |------|------------------------|---------------|--------|-------|---------|---------|--------|----------| | Plot | Band/Mode | Test Position | CH. | Power | Limit | Scaling | SAR1g | SAR1g | | No. | 24.14,545 | | 0 | (dBm) | (dBm) | Factor | (W/kg) | (W/kg) | | | LTE Band 13/1RB#0 10M | Front Side | 23230 | 21.60 | 22.50 | 1.230 | 0.448 | 0.551 | | 6# | LTE Band 13/1RB#0 10M | Back Side | 23230 | 21.60 | 22.50 | 1.230 | 0.469 | 0.577 | | | LTE Band 13/1RB#0 10M | Left Side | 23230 | 21.60 | 22.50 | 1.230 | 0.245 | 0.301 | | | LTE Band 13/1RB#0 10M | Right Side | 23230 | 21.60 | 22.50 | 1.230 | 0.291 | 0.358 | | | LTE Band 13/1RB#0 10M | Top Side | 23230 | 21.60 | 22.50 | 1.230 | 0.039 | 0.048 | | | LTE Band 13/1RB#0 10M | Bottom Side | 23230 | 21.60 | 22.50 | 1.230 | 0.058 | 0.071 | | | | | | | | | | | | | LTE Band 13/25RB#0 10M | Front Side | 23230 | 20.52 | 21.50 | 1.253 | 0.383 | 0.480 | | | LTE Band 13/25RB#0 10M | Back Side | 23230 | 20.52 | 21.50 | 1.253 | 0.389 | 0.487 | | | LTE Band 13/25RB#0 10M | Left Side | 23230 | 20.52 | 21.50 | 1.253 | 0.208 | 0.261 | | | LTE Band 13/25RB#0 10M | Right Side | 23230 | 20.52 | 21.50 | 1.253 | 0.246 | 0.308 | | | LTE Band 13/25RB#0 10M | Top Side | 23230 | 20.52 | 21.50 | 1.253 | 0.032 | 0.040 | | | LTE Band 13/25RB#0 10M | Bottom Side | 23230 | 20.52 | 21.50 | 1.253 | 0.047 | 0.058 | | | | | | | • | | | | | | LTE Band 66/1RB#0 20M | Front Side | 132322 | 21.50 | 22.50 | 1.259 | 0.485 | 0.611 | | 7# | LTE Band 66/1RB#0 20M | Back Side | 132322 | 21.50 | 22.50 | 1.259 | 0.509 | 0.641 | | | LTE Band 66/1RB#0 20M | Left Side | 132322 | 21.50 | 22.50 | 1.259 | 0.227 | 0.286 | | | LTE Band 66/1RB#0 20M | Right Side | 132322 | 21.50 | 22.50 | 1.259 | 0.104 | 0.131 | | | LTE Band 66/1RB#0 20M | Top Side | 132322 | 21.50 | 22.50 | 1.259 | 0.076 | 0.096 | | | LTE Band 66/1RB#0 20M | Bottom Side | 132322 | 21.50 | 22.50 | 1.259 | 0.193 | 0.243 | | | | | | | | | | | | | LTE Band 66/50RB#0 20M | Front Side | 132322 | 20.71 | 21.50 | 1.199 | 0.384 | 0.461 | | | LTE Band 66/50RB#0 20M | Back Side | 132322 | 20.71 | 21.50 | 1.199 | 0.394 | 0.473 | | | LTE Band 66/50RB#0 20M | Left Side | 132322 | 20.71 | 21.50 | 1.199 | 0.180 | 0.216 | | | LTE Band 66/50RB#0 20M | Right Side | 132322 | 20.71 | 21.50 | 1.199 | 0.084 | 0.101 | | | LTE Band 66/50RB#0 20M | Top Side | 132322 | 20.71 | 21.50 | 1.199 | 0.043 | 0.052 | | | LTE Band 66/50RB#0 20M | Bottom Side | 132322 | 20.71 | 21.50 | 1.199 | 0.155 | 0.186 | # WLAN Body SAR | _ | WLAN BOUY SAK | | | | | | | | | | |------|-----------------------|---------------|-------|-------|---------|---------|--------|----------|--|--| | Plot | | | | Ave. | Tune-up | Tune-up | Meas. | Reported | | | | No. | Band/Mode | Test Position | CH. | Power | Limit | Scaling | SAR1g | SAR1g | | | | 110. | | | | (dBm) | (dBm) | Factor | (W/kg) | (W/kg) | | | | | Ant 0 | | | | | | | | | | | | WLAN2.4GHz/802.11b | Front Side | 11 | 14.24 | 14.50 | 1.062 | 0.132 | 0.140 | | | | | WLAN2.4GHz/802.11b | Back Side | 11 | 14.24 | 14.50 | 1.062 | 0.124 | 0.132 | | | | 8# | WLAN2.4GHz/802.11b | Left Side | 11 | 14.24 | 14.50 | 1.062 | 0.184 | 0.195 | | | | | WLAN2.4GHz/802.11b | Right Side | 11 | 14.24 | 14.50 | 1.062 | 0.019 | 0.020 | | | | | WLAN2.4GHz/802.11b | Top Side | 11 | 14.24 | 14.50 | 1.062 | 0.042 | 0.045 | | | | | WLAN2.4GHz/802.11b | Bottom Side | 11 | 14.24 | 14.50 | 1.062 | 0.022 | 0.023 | | | | | | | Ant 1 | | | | | | | | | | WLAN2.4GHz/802.11b | Front Side | 11 | 13.86 | 14.00 | 1.033 | 0.108 | 0.112 | | | | | WLAN2.4GHz/802.11b | Back Side | 11 | 13.86 | 14.00 | 1.033 | 0.156 | 0.161 | | | | | WLAN2.4GHz/802.11b | Left Side | 11 | 13.86 | 14.00 | 1.033 | 0.025 | 0.026 | | | | | WLAN2.4GHz/802.11b | Right Side | 11 | 13.86 | 14.00 | 1.033 | 0.071 | 0.073 | | | | | WLAN2.4GHz/802.11b | Top Side | 11 | 13.86 | 14.00 | 1.033 | 0.031 | 0.032 | | | | | WLAN2.4GHz/802.11b | Bottom Side | 11 | 13.86 | 14.00 | 1.033 | 0.018 | 0.019 | | | | | | | Ant 0 | | | | | | | | | | WLAN5.2GHz/802.11n-20 | Front Side | 48 | 12.82 | 13.50 | 1.169 | 0.346 | 0.426 | | | | | WLAN5.2GHz/802.11n-20 | Back Side | 48 | 12.82 | 13.50 | 1.169 | 0.358 | 0.440 | | | | | WLAN5.2GHz/802.11n-20 | Left Side | 48 | 12.82 | 13.50 | 1.169 | 0.397 | 0.488 | | | | | WLAN5.2GHz/802.11n-20 | Right Side | 48 | 12.82 | 13.50 | 1.169 | 0.096 | 0.118 | | | | | WLAN5.2GHz/802.11n-20 | Top Side | 48 | 12.82 | 13.50 | 1.169 | 0.194 | 0.239 | | | | | WLAN5.2GHz/802.11n-20 | Bottom Side | 48 | 12.82 | 13.50 | 1.169 | 0.101 | 0.124 | | | | | | | Ant 1 | | | | | | | | | | WLAN5.2GHz/802.11n-20 | Front Side | 48 | 12.71 | 13.00 | 1.069 | 0.194 | 0.218 | | | | | WLAN5.2GHz/802.11n-20 | Back Side | 48 | 12.71 | 13.00 | 1.069 | 0.207 | 0.233 | | | | | WLAN5.2GHz/802.11n-20 | Left Side | 48 | 12.71 | 13.00 | 1.069 | 0.100 | 0.112 | | | | 9# | WLAN5.2GHz/802.11n-20 | Right Side | 48 | 12.71 | 13.00 | 1.069 | 0.625 | 0.703 | | | | | WLAN5.2GHz/802.11n-20 | Top Side | 48 | 12.71 | 13.00 | 1.069 | 0.095 | 0.107 | | | | | WLAN5.2GHz/802.11n-20 | Bottom Side | 48 | 12.71 | 13.00 | 1.069 | 0.049 | 0.055 | | | | | | | Ant 0 | | | | | | | | | | WLAN5.8GHz/802.11n-20 | Front Side | 165 | 13.04 | 13.50 | 1.112 | 0.287 | 0.336 | | | | | WLAN5.8GHz/802.11n-20 | Back Side | 165 | 13.04 | 13.50 | 1.112 | 0.232 | 0.271 | | | | 10# | WLAN5.8GHz/802.11n-20 | Left Side | 165 | 13.04 | 13.50 | 1.112 | 0.681 | 0.796 | | | | | WLAN5.8GHz/802.11n-20 | Right Side | 165 | 13.04 | 13.50 | 1.112 | 0.164 | 0.192 | | | | | WLAN5.8GHz/802.11n-20 | Top Side | 165 | 13.04 | 13.50 | 1.112 | 0.190 | 0.222 | | | | | | | | | | | | | | | | WLAN5.8GHz/802.11n-20 | Bottom Side | 165 | 13.04 | 13.50 | 1.112 | 0.110 | 0.129 | | |-----------------------|-------------|-----|-------|-------|-------|-------|-------|--| | Ant 1 | | | | | | | | | | WLAN5.8GHz/802.11n-20 | Front Side | 149 | 12.58 | 13.00 | 1.102 | 0.250 | 0.290 | | | WLAN5.8GHz/802.11n-20 | Back Side | 149 | 12.58 | 13.00 | 1.102 | 0.267 | 0.309 | | | WLAN5.8GHz/802.11n-20 | Left Side | 149 | 12.58 | 13.00 | 1.102 | 0.136 | 0.158 | | | WLAN5.8GHz/802.11n-20 | Right Side | 149 | 12.58 | 13.00 | 1.102 | 0.662 | 0.767 | | | WLAN5.8GHz/802.11n-20 | Top Side | 149 | 12.58 | 13.00 | 1.102 | 0.149 | 0.173 | | | WLAN5.8GHz/802.11n-20 | Bottom Side | 149 | 12.58 | 13.00 | 1.102 | 0.103 | 0.119 | | Note: The WLAN Reported 1g SAR (W/kg) has been calculated together with the duty cycle scaling factor. Tel: 86-755-36698555 Http://www.morlab.cn # 16.3. Repeated SAR Measurement In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2)through 4) do not apply. - 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. ### Repeated SAR | Plot | | | | Ave. | Tune-up | Tune-up | Meas. | Reported | |------|----------------------|---------------|-------|-------|---------|---------|--------|----------| | | Band/Mode | Test Position | CH. | Power | Limit | Scaling | SAR1g | SAR1g | | No. | | | | (dBm) | (dBm) | Factor | (W/kg) | (W/kg) | | OR | LTE Band 2/1RB#0 20M | Back Side | 18700 | 23.32 | 23.50 | 1.042 | 0.828 | 0.863 | | | LTE Band 2/1RB#0 20M | Back Side | 18700 | 23.32 | 23.50 | 1.042 | 0.822 | 0.857 | # 17. Simultaneous Transmission Evaluation #### Simultaneous Evaluation: | No. | Simultaneous Transmission Consideration | Body | |-----|---|------| | 1 | WWAN + WLAN 2.4GHz | Yes | | 2 | WWAN + WLAN 5GHz | Yes | | 3 | WLAN 2.4GHz(MIMO) | Yes | | 4 | WLAN 5GHz(MIMO) | Yes | | 5 | WWAN + WLAN 2.4GHz(MIMO) | Yes | | 6 | WWAN + WLAN 5GHz(MIMO) | Yes | #### Note: - 1. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another WWAN transmitter. Both transmitter often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR
measurements were evaluated for a single transmission frequency RF signal. - 2. The hotspot SAR result may overlap with the body-worn accessory SAR requirements, per KDB 941225 D06, the more conservative configurations can be considered, thus excluding some unnecessary body-worn accessory SAR tests. - GSM supports voice and data transmission, though not simultaneously. WCDMA supports voice and data transmission simultaneously. - 4. Simultaneous Transmission SAR evaluation is not required for BT and Wi-Fi, because the software mechanism have been incorporated to guarantee that the WLAN and Bluetooth transmitters would not simultaneously operate. - 5. Per KDB 447498D01v06, Simultaneous Transmission SAR Evaluation procedures is as followed: - Step 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. - Step 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated - Step 3: If the ratio of SAR to peak separation distance is ≤ 0.04, Simultaneous SAR measurement is not required. - Step 4: If the ratio of SAR to peak separation distance is > 0.04, Simultaneous SAR measurement is required and simultaneous transmission SAR value is calculated. (The ratio is determined by: (SAR1 + SAR2) ^ 1.5/Ri ≤ 0.04, Ri is the separation distance between the peak SAR locations for the antenna pair in mm. # ➤ Body Simultaneous Transmission for WWAN+2.4GHz/5GHzWLAN | Body Sil | Hullaneous | Iransmission for www.h+2.4GHz/5GHzwlan | | | | | | | |----------|------------|--|---------|--------|--------|--------|--------|--| | | | | 1 | 2 | 3 | 1+2 | 1+3 | | | | | Exposure | WWAN | 2.4GHz | 5GHz | Summed | Summed | | | WWAI | WWAN Band | | VVVVAIN | WLAN | WLAN | 1g SAR | | | | | | Position | 1g SAR | 1g SAR | 1g SAR | · · | 1g SAR | | | | | | (W/kg) | (W/kg) | (W/kg) | (W/kg) | (W/kg) | | | | | Front Side | 0.511 | 0.140 | 0.426 | 0.651 | 0.937 | | | | | Back Side | 0.482 | 0.161 | 0.440 | 0.643 | 0.922 | | | | WCDMA | Left side | 0.341 | 0.195 | 0.796 | 0.536 | 1.137 | | | | Band II | Right side | 0.325 | 0.073 | 0.767 | 0.398 | 1.092 | | | | | Top side | 0.124 | 0.045 | 0.239 | 0.169 | 0.363 | | | MCDMA | | Bottom side | 0.338 | 0.023 | 0.129 | 0.361 | 0.467 | | | WCDMA | | Front Side | 0.616 | 0.140 | 0.426 | 0.756 | 1.042 | | | | | Back Side | 0.585 | 0.161 | 0.440 | 0.746 | 1.025 | | | | WCDMA | Left side | 0.335 | 0.195 | 0.796 | 0.530 | 1.131 | | | | Band V | Right side | 0.144 | 0.073 | 0.767 | 0.217 | 0.911 | | | | | Top side | 0.054 | 0.045 | 0.239 | 0.099 | 0.293 | | | | | Bottom side | 0.088 | 0.023 | 0.129 | 0.111 | 0.217 | | | | | Front Side | 0.718 | 0.140 | 0.426 | 0.858 | 1.144 | | | | | Back Side | 0.863 | 0.161 | 0.440 | 1.024 | 1.303 | | | | LTE Band | Left side | 0.264 | 0.195 | 0.796 | 0.459 | 1.060 | | | | 2 | Right side | 0.192 | 0.073 | 0.767 | 0.265 | 0.959 | | | | | Top side | 0.114 | 0.045 | 0.239 | 0.159 | 0.353 | | | | | Bottom side | 0.276 | 0.023 | 0.129 | 0.299 | 0.405 | | | | | Front Side | 0.636 | 0.140 | 0.426 | 0.776 | 1.062 | | | | | Back Side | 0.759 | 0.161 | 0.440 | 0.920 | 1.199 | | | | LTE Band | Left side | 0.293 | 0.195 | 0.796 | 0.488 | 1.089 | | | 1.75 | 4 | Right side | 0.153 | 0.073 | 0.767 | 0.226 | 0.920 | | | LTE | | Top side | 0.114 | 0.045 | 0.239 | 0.159 | 0.353 | | | | | Bottom side | 0.251 | 0.023 | 0.129 | 0.274 | 0.380 | | | | | Front Side | 0.747 | 0.140 | 0.426 | 0.887 | 1.173 | | | | | Back Side | 0.774 | 0.161 | 0.440 | 0.935 | 1.214 | | | | LTE Band | Left side | 0.189 | 0.195 | 0.796 | 0.384 | 0.985 | | | | 5 | Right side | 0.385 | 0.073 | 0.767 | 0.458 | 1.152 | | | | | Top side | 0.050 | 0.045 | 0.239 | 0.095 | 0.289 | | | | | Bottom side | 0.072 | 0.023 | 0.129 | 0.095 | 0.201 | | | | LTE Band | Front Side | 0.551 | 0.140 | 0.426 | 0.691 | 0.977 | | | | 13 | Back Side | 0.577 | 0.161 | 0.440 | 0.738 | 1.017 | | | | Left side | 0.301 | 0.195 | 0.796 | 0.496 | 1.097 | |----------|-------------|-------|-------|-------|-------|-------| | | Right side | 0.358 | 0.073 | 0.767 | 0.431 | 1.125 | | | Top side | 0.048 | 0.045 | 0.239 | 0.093 | 0.287 | | | Bottom side | 0.071 | 0.023 | 0.129 | 0.094 | 0.200 | | | Front Side | 0.611 | 0.140 | 0.426 | 0.751 | 1.037 | | | Back Side | 0.641 | 0.161 | 0.440 | 0.802 | 1.081 | | LTE Band | Left side | 0.286 | 0.195 | 0.796 | 0.481 | 1.082 | | 66 | Right side | 0.131 | 0.073 | 0.767 | 0.204 | 0.898 | | | Top side | 0.096 | 0.045 | 0.239 | 0.141 | 0.335 | | | Bottom side | 0.243 | 0.023 | 0.129 | 0.266 | 0.372 | # **▶** Body Simultaneous Transmission for 2.4GHz/5GHz(MIMO) | Dody ominantarioo | | 21.101.12001.12(11 | | | |-------------------|---|--------------------|--------|--------------------------------| | | | 1 | 2 | | | WWAN Band | Exposure Position | Ant 0 | Ant 1 | 1+2
Summed | | | 2/1000000000000000000000000000000000000 | 1g SAR | 1g SAR | 1g SAR (W/kg) | | | | (W/kg) | (W/kg) | 19 5/ ii (((() /) () /) | | | Front Side | 0.140 | 0.112 | 0.252 | | | Back Side | 0.132 | 0.161 | 0.293 | | 2.4GHz WLAN | Left side | 0.195 | 0.026 | 0.221 | | 2.4GHZ WLAIN | Right side | 0.020 | 0.073 | 0.093 | | | Top side | 0.045 | 0.032 | 0.077 | | | Bottom side | 0.023 | 0.019 | 0.042 | | | Front Side | 0.426 | 0.218 | 0.644 | | | Back Side | 0.440 | 0.233 | 0.673 | | 5.2GHz WLAN | Left side | 0.488 | 0.112 | 0.600 | | 5.2GHZ WLAIN | Right side | 0.118 | 0.703 | 0.821 | | | Top side | 0.239 | 0.107 | 0.346 | | | Bottom side | 0.124 | 0.055 | 0.179 | | | Front Side | 0.336 | 0.290 | 0.626 | | | Back Side | 0.271 | 0.309 | 0.580 | | 5.8GHz WLAN | Left side | 0.796 | 0.158 | 0.954 | | 5.0GHZ WLAIN | Right side | 0.192 | 0.767 | 0.959 | | | Top side | 0.222 | 0.173 | 0.395 | | | Bottom side | 0.129 | 0.119 | 0.248 | ## Body Simultaneous Transmission for WWAN+2.4GHz(MIMO) | | | | 1 | 2 | | |---------|-------------|-------------------|---------|-------------|---------------| | | | | WWAN | 2.4GHz WLAN | 1+2 | | WWA | N Band | Exposure Position | VVVVAIN | (MIMO) | Summed | | | | | 1g SAR | 1g SAR | 1g SAR (W/kg) | | | | | (W/kg) | (W/kg) | | | | | Front Side | 0.511 | 0.252 | 0.763 | | | | Back Side | 0.482 | 0.293 | 0.775 | | | WCDMA | Left side | 0.341 | 0.221 | 0.562 | | | Band II | Right side | 0.325 | 0.093 | 0.418 | | | | Top side | 0.124 | 0.077 | 0.201 | | WCDMA | | Bottom side | 0.338 | 0.042 | 0.380 | | WCDIVIA | | Front Side | 0.616 | 0.252 | 0.868 | | | | Back Side | 0.585 | 0.293 | 0.878 | | | WCDMA | Left side | 0.335 | 0.221 | 0.556 | | | Band V | Right side | 0.144 | 0.093 | 0.237 | | | | Top side | 0.054 | 0.077 | 0.131 | | | | Bottom side | 0.088 | 0.042 | 0.130 | | | | Front Side | 0.718 | 0.252 | 0.970 | | | | Back Side | 0.863 | 0.293 | 1.156 | | | LTE Band 2 | Left side | 0.264 | 0.221 | 0.485 | | | LTE Band 2 | Right side | 0.192 | 0.093 | 0.285 | | | | Top side | 0.114 | 0.077 | 0.191 | | | | Bottom side | 0.276 | 0.042 | 0.318 | | | | Front Side | 0.636 | 0.252 | 0.888 | | | | Back Side | 0.759 | 0.293 | 1.052 | | | LTE Dond 4 | Left side | 0.293 | 0.221 | 0.514 | | LTE | LTE Band 4 | Right side | 0.153 | 0.093 | 0.246 | | LTE | | Top side | 0.114 | 0.077 | 0.191 | | | | Bottom side | 0.251 | 0.042 | 0.293 | | | | Front Side | 0.747 | 0.252 | 0.999 | | | | Back Side | 0.774 | 0.293 | 1.067 | | | LTE Dand 5 | Left side | 0.189 | 0.221 | 0.410 | | | LTE Band 5 | Right side | 0.385 | 0.093 | 0.478 | | | | Top side | 0.050 | 0.077 | 0.127 | | | | Bottom side | 0.072 | 0.042 | 0.114 | | | LTE Dand 40 | Front Side | 0.551 | 0.252 | 0.803 | | | LTE Band 13 | Back Side | 0.577 | 0.293 | 0.870 | | | | Left side | 0.301 | 0.221 | 0.522 | |--|--------------|-------------|-------|-------|-------| | | | Right side | 0.358 | 0.093 | 0.451 | | | | Top side | 0.048 | 0.077 | 0.125 | | | | Bottom side | 0.071 | 0.042 | 0.113 | | | | Front Side | 0.611 | 0.252 | 0.863 | | | | Back Side | 0.641 | 0.293 | 0.934 | | | LTE Band 66 | Left side | 0.286 | 0.221 | 0.507 | | | LIE Ballu 00 | Right side | 0.131 | 0.093 | 0.224 | | | | Top side | 0.096 | 0.077 | 0.173 | | | | Bottom side | 0.243 | 0.042 | 0.285 | # > Body Simultaneous Transmission for WWAN+5GHz(MIMO) | | | | 1 | 2 | | |----------|-------------|-------------------|--------|-----------|---------------| | | | | 1 | | | | | | | WWAN | 5GHz WLAN | 1+2 | | WWA | N Band | Exposure Position | ***** | (MIMO) | Summed | | | | | 1g SAR | 1g SAR | 1g SAR (W/kg) | | | | | (W/kg) | (W/kg) | | | | | Front Side | 0.511 | 0.644 | 1.155 | | | | Back Side | 0.482 | 0.673 | 1.155 | | | WCDMA | Left side | 0.341 | 0.954 | 1.295 | | | Band II | Right side | 0.325 | 0.959 | 1.284 | | | | Top side | 0.124 | 0.395 | 0.519 | | WCDMA | | Bottom side | 0.338 | 0.248 | 0.586 | | VVCDIVIA | | Front Side | 0.616 | 0.644 | 1.260 | | | | Back Side | 0.585 | 0.673 | 1.258 | | | WCDMA | Left side | 0.335 | 0.954 | 1.289 | | | Band V | Right side | 0.144 | 0.959 | 1.103 | | | | Top side | 0.054 | 0.395 | 0.449 | | | | Bottom side | 0.088 | 0.248 | 0.336 | | | | Front Side | 0.718 | 0.644 | 1.362 | | | | Back Side | 0.863 | 0.673 | 1.536 | | | LTE Band 2 | Left side | 0.264 | 0.954 | 1.218 | | | LIE Ballu 2 | Right side | 0.192 | 0.959 | 1.151 | | LTE | | Top side | 0.114 | 0.395 | 0.509 | | | | Bottom side | 0.276 | 0.248 | 0.524 | | | | Front Side | 0.636 | 0.644 | 1.280 | | | LTE Band 4 | Back Side | 0.759 | 0.673 | 1.432 | | | | Left side | 0.293 | 0.954 | 1.247 | Tel: 86-755-36698555 Http://www.morlab.cn | Right side | | | | | | |
--|--|--------------|-------------|-------|-------|-------| | Bottom side 0.251 0.248 0.499 | | | Right side | 0.153 | 0.959 | 1.112 | | Front Side 0.747 0.644 1.391 Back Side 0.774 0.673 1.447 Left side 0.189 0.954 1.143 Right side 0.385 0.959 1.344 Top side 0.050 0.395 0.445 Bottom side 0.072 0.248 0.320 Front Side 0.551 0.644 1.195 Back Side 0.577 0.673 1.250 Left side 0.301 0.954 1.255 Right side 0.358 0.959 1.317 Top side 0.048 0.395 0.443 Bottom side 0.071 0.248 0.319 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Top side | 0.114 | 0.395 | 0.509 | | Back Side 0.774 0.673 1.447 | | | Bottom side | 0.251 | 0.248 | 0.499 | | Left side 0.189 0.954 1.143 Right side 0.385 0.959 1.344 Top side 0.050 0.395 0.445 Bottom side 0.551 0.644 1.195 Back Side 0.577 0.673 1.250 Left side 0.301 0.954 1.255 Right side 0.358 0.959 1.317 Top side 0.048 0.395 0.443 Bottom side 0.071 0.248 0.319 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.286 0.959 1.090 Top side 0.096 0.395 0.491 | | | Front Side | 0.747 | 0.644 | 1.391 | | Right side | | | Back Side | 0.774 | 0.673 | 1.447 | | Right side | | LTC Dand C | Left side | 0.189 | 0.954 | 1.143 | | Bottom side 0.072 0.248 0.320 | | LIE Band 5 | Right side | 0.385 | 0.959 | 1.344 | | Front Side | | | Top side | 0.050 | 0.395 | 0.445 | | LTE Band 13 Back Side 0.577 0.673 1.250 Left side 0.301 0.954 1.255 Right side 0.358 0.959 1.317 Top side 0.048 0.395 0.443 Bottom side 0.071 0.248 0.319 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Bottom side | 0.072 | 0.248 | 0.320 | | LTE Band 13 Left side 0.301 0.954 1.255 Right side 0.358 0.959 1.317 Top side 0.048 0.395 0.443 Bottom side 0.071 0.248 0.319 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | LTE Band 13 | Front Side | 0.551 | 0.644 | 1.195 | | Right side 0.358 0.959 1.317 Top side 0.048 0.395 0.443 Bottom side 0.071 0.248 0.319 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Back Side | 0.577 | 0.673 | 1.250 | | Right side 0.358 0.959 1.317 Top side 0.048 0.395 0.443 Bottom side 0.071 0.248 0.319 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Left side | 0.301 | 0.954 | 1.255 | | Bottom side 0.071 0.248 0.319 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Right side | 0.358 | 0.959 | 1.317 | | Example 1 Front Side 0.611 0.644 1.255 Back Side 0.641 0.673 1.314 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Top side | 0.048 | 0.395 | 0.443 | | Back Side 0.641 0.673 1.314 LTE Band 66 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Bottom side | 0.071 | 0.248 | 0.319 | | LTE Band 66 Left side 0.286 0.954 1.240 Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Front Side | 0.611 | 0.644 | 1.255 | | Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | | Back Side | 0.641 | 0.673 | 1.314 | | Right side 0.131 0.959 1.090 Top side 0.096 0.395 0.491 | | LTE Bond 66 | Left side | 0.286 | 0.954 | 1.240 | | | | LIE Dallu 00 | Right side | 0.131 | 0.959 | 1.090 | | Bottom side 0.243 0.248 0.491 | | | Top side | 0.096 | 0.395 | 0.491 | | | | | Bottom side | 0.243 | 0.248 | 0.491 | # 18. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | Table 8.1. Standard Uncertainty for Assumed Distribution - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. | | T | 1 | | | 1 | 1 | 1 | |-----------------------------------|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------| | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | | Measurement System | | | | | • | • | | | Probe Calibration | 6.0 | N | 1 | 1 | 1 | 6.0 | 6.0 | | Axial Isotropy | 4.7 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | Hemispherical Isotropy | 9.6 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | Boundary Effects | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.7 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | System Detection Limits | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Modulation Response | 3.2 | R | 1.732 | 1 | 1 | 1.8 | 1.8 | | Readout Electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response Time | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Integration Time | 2.6 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | RF Ambient Noise | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | RF Ambient Reflections | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Probe Positioner | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | Probe Positioning | 2.9 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Max. SAR Eval. | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | Test Sample Related | | | | | | | | | Device Positioning | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | | Device Holder | 3.6 | N | 1 | 1 | 1 | 0.089 | 0.089 | | Power Drift | 5.0 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | Power Scaling | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 6.1 | R | 1.732 | 1 | 1 | 3.5 | 3.5 | | SAR correction | 0.0 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | Liquid Conductivity Repeatability | 0.2 | N | 1 | 0.78 | 0.71 | 0.1 | 0.1 | | Liquid Conductivity (target) | 5.0 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | Liquid Conductivity (mea.) | 2.5 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | Temp. unc Conductivity | 3.4 | R | 1.732 | 0.78 | 0.71 | 1.5 | 1.4 | | Liquid Permittivity Repeatability | 0.15 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | Liquid Permittivity (target) | 5.0 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | Liquid Permittivity (mea.) | 2.5 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | Temp. unc Permittivity | 0.83 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | Combined Std. Uncertainty | | | | | |
11.4% | 11.4% | | Coverage Factor for 95 % | | | | | | K=2 | K=2 | | Exp | Expanded STD Uncertainty | | | | | 22.9% | 22.7% | | | 1 | ı | | | 1 | ı | 1 | |-----------------------------------|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------| | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | | Measurement System | | | | | | | | | Probe Calibration | 6.55 | N | 1 | 1 | 1 | 6.0 | 6.0 | | Axial Isotropy | 4.7 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | Hemispherical Isotropy | 9.6 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | Boundary Effects | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | Linearity | 4.7 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | System Detection Limits | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Modulation Response | 3.2 | R | 1.732 | 1 | 1 | 1.8 | 1.8 | | Readout Electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response Time | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Integration Time | 2.6 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | RF Ambient Noise | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | RF Ambient Reflections | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Probe Positioner | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | Probe Positioning | 6.7 | R | 1.732 | 1 | 1 | 3.9 | 3.9 | | Max. SAR Eval. | 4.0 | R | 1.732 | 1 | 1 | 2.3 | 2.3 | | Test Sample Related | | • | | | | • | | | Device Positioning | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | | Device Holder | 3.6 | N | 1 | 1 | 1 | 0.089 | 0.089 | | Power Drift | 5.0 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | Power Scaling | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 6.1 | R | 1.732 | 1 | 1 | 3.8 | 3.8 | | SAR correction | 0.0 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | Liquid Conductivity Repeatability | 0.2 | N | 1 | 0.78 | 0.71 | 0.1 | 0.1 | | Liquid Conductivity (target) | 5.0 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | Liquid Conductivity (mea.) | 2.5 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | Temp. unc Conductivity | 3.4 | R | 1.732 | 0.78 | 0.71 | 1.5 | 1.4 | | Liquid Permittivity Repeatability | 0.15 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | Liquid Permittivity (target) | 5.0 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | Liquid Permittivity (mea.) | 2.5 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | Temp. unc Permittivity | 0.83 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | Combined Std. Uncertainty | | | | | | 12.5% | 12.5% | | Coverage Factor for 95 % | | | | | | K=2 | K=2 | | Expanded STD Uncertainty | | | | | 25.1 % | 25.1% | | Tel: 86-755-36698555 Http://www.morlab.cn # **Annex A General Information** #### 1. Identification of the Responsible Testing Laboratory | Laboratory Name: | Shenzhen Morlab Communications Technology Co., | | | |---------------------|--|--|--| | | Ltd.Morlab Laboratory | | | | Laboratory Address: | FL.3, Building A, FeiYang Science Park, No.8 LongChang | | | | | Road, Block 67, BaoAn District, ShenZhen, GuangDong | | | | | Province, P. R. China | | | | Telephone: | +86 755 36698555 | | | | Facsimile: | +86 755 36698525 | | | ## 2. Identification of the Responsible Testing Location | Name: | Shenzhen Morlab Communications Technology Co., Ltd | | |----------|--|--| | | Morlab Laboratory | | | Address: | FL.3, Building A, FeiYang Science Park, No.8 LongChang | | | | Road, Block 67, BaoAn District, ShenZhen, GuangDong | | | | Province, P. R. China | | #### 3. Facilities and Accreditations All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174. #### Note: The main report is end here and the other Annex (B,C,D,E) will be submitted separately. ***** END OF MAIN REPORT *****