

Radio Test Report

Redtail Telematics Ltd VLU6M3 4901-2207-01

47 CFR Part 90B & 90I Effective Date 1st October 2019 → 47CFR part 2J 2019 TNB: Licensed Non-Broadcast Station Transmitter Test Date: 30th July 2020 to 6th November 2020 Report Number: 09-12252-2-20 Issue 01

> **R.N. Electronics Ltd.** Arnolds Court Arnolds Farm Lane Mountnessing Essex CM13 1UT

U.K.

www.RNelectronics.com

Telephone: +44 (0) 1277 352219 Email: sales@RNelectronics.com

This report is not to be reproduced by any means except in full and in any case not without the written approval of R.N. Electronics Ltd.

Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT Certificate of Test 12252-2

The equipment noted below has been fully tested by R.N. Electronics Limited and, where appropriate, conforms to the relevant subpart of FCC Part 90B & 90I. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

Equipment:	VLU6M3
Model Number:	4901-2207-01
Unique Serial Number:	129701D (Transient frequency behaviour, frequency stability) 1297000 (All other tests)
Applicant:	Redtail Telematics Ltd Plextek Building London Road Great Chesterford Essex CB10 1NY
Proposed FCC ID Full measurement results are detailed in Report Number:	2AXBF-VLU6M32207-01 09-12252-2-20 Issue 01
Test Standards:	47 CFR Part 90B & 90I Effective Date 1st October 2019 → 47CFR part 2J 2019 TNB: Licensed Non-Broadcast Station Transmitter

NOTE:

Certain tests were not performed based upon manufacturer's declarations. Certain other requirements are subject to manufacturer declaration only and have not been tested / verified. For details refer to section 3 of this report.

DEVIATIONS:

No deviations have been applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Date Of Test:	30th July 2020 to 6 th November 2020	
Test Engineer:		and the second s
Approved By: Radio Approvals Manager		
Customer Representative:		UKAS 2360

ALL RIGHTS RESERVED

1 Contents

1	Contents	
2	Equipment under test (EUT)	4
2	.1 Equipment specification	4
2	.2 Configurations for testing	5
2	.3 Functional description	5
2	.4 Modes of operation	
2	.5 Emissions configuration	
3	Summary of test results	8
4	Specifications	9
4	.1 Relevant standards	9
4	.2 Deviations	
4	.3 Tests at extremes of temperature & voltage	9
4	.4 Test fixtures	9
5	Tests, methods and results	10
5	.1 Radiated emissions	10
5	.2 Conducted emissions	12
5	.3 RF Output Power	
	.4 Frequency stability	
5	.5 Occupied bandwidth	15
5	.6 Emission mask	17
5	.7 Modulation limiting	
5	.8 Modulation frequency response	18
5	.9 Transient frequency behaviour	19
5	.10 Adjacent channel power	20
5	.11 Duty Cycle	21
6	Plots/Graphical results	
6	.1 Occupied bandwidth	23
6	.2 Emission mask	24
6	.3 Transient frequency behaviour	
6	.4 Duty Cycle	
7	Photographs	
7	.1 EUT Front View	
7	.2 EUT Reverse Angle	
7	.3 EUT Left side View	
7	.4 EUT Right side View	
7	.5 EUT Antenna	
7	.6 EUT Display & Controls	
	.7 EUT Internal photos	
	.8 EUT ID Label	
	.9 EUT Chassis	
	.10 8-30MHz Spurious emissions test set-up	
	.11 30-1000MHz Spurious emissions test set-up	
	.12 Above 1GHz Spurious emissions test set-up	
8	Test equipment calibration list	
9	Auxiliary and peripheral equipment	
-	.1 Customer supplied equipment	
-	.2 RN Electronics supplied equipment	
10	Condition of the equipment tested	
	0.1 Modifications before test	
	0.2 Modifications during test	
11	Description of test sites	
12	Abbreviations and units	43

2 Equipment under test (EUT)

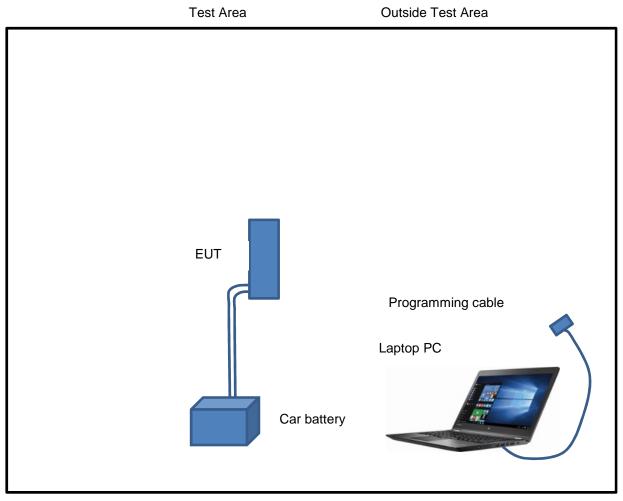
2.1 Equipment specification

Redtail Telematics Ltd		
0		
Redtail Telematics Ltd		
VLU6M3		
4901-2207-01		
129701D (Transient frequency behaviour, frequency stability)		
1297000 (All other tests)		
21st July 2020		
30th July 2020 to 1st September 2020		
To demonstrate design compliance to the relevant rules of Chapter 47 of the Code of Federal Regulations.		
28 th November 2020		
Stolen vehicle recover	у.	
Height	33 mm	
Width	67 mm	
Depth	131 mm	
Weight	0.16 kg	
Voltage	9-30 V DC	
Current	0.8 A max @ 12 V DC	
	VLU6M3 4901-2207-01 129701D (Transient fr 1297000 (All other tes 21st July 2020 30th July 2020 to 1st \$ To demonstrate design the Code of Federal R 28 th November 2020 Stolen vehicle recover Height Width Depth Weight Voltage	

2.2 Configurations for testing

General Parameters	
EUT Normal use position	Vehicle mounted
Choice of model(s) for type tests	Production samples
Antenna details	1metre PVC coated copper wire
Antenna port	yes (not 50ohms) antenna fitted to connector.
Baseband Data port (yes/no)?	No
Highest Signal generated in EUT	173.075 MHz
Lowest Signal generated in EUT	8 MHz (VCO)
Hardware Version	1.0.0
Software Version	N/A
Firmware Version	108.28
Type of Equipment	Stand alone
Technology Type	VHF PMR
Geo-location (yes/no)	
TX Parameters	
Alignment range – transmitter	173.075 MHz
EUT Declared Modulation Parameters	MSK 1200bps, FSK 50bps
EUT Declared Power level	+33dBm max
EUT Declared Signal Bandwidths	10 kHz
EUT Declared Channel Spacing's	12.5 kHz
	Stolen/Active mode (MSK) = 200ms every 2 seconds
EUT Declared Duty Cycle	Normal mode (MSK) = 200ms every 17.5 seconds +- 2.5
	seconds
	Status update mode (FSK) = 1.75 seconds typically every week
Unmodulated carrier available?	Yes in burst mode
Declared frequency stability	<5 ppm
RX Parameters	
Alignment range – receiver	173.075 MHz
EUT Declared RX Signal Bandwidth	12.5 kHz
Receiver Signal Level (RSL)	Not declared
Method of Monitoring Receiver BER	Not required
FCC Parameters	
FCC Transmitter Class	TNB: Licensed Non-Broadcast Station Transmitter

2.3 Functional description


VLU6M3 is a vehicle security device, using proprietary VHF communication and radio location techniques to enable recovery of a stolen vehicle. The product is designed for covert installation and is powered from the vehicle. If the external power is lost it will run from an internal 6V primary cell. The radio transceiver is a discrete design, operating at a single frequency 173.075MHz (for US and Latam markets) with a nominal transmit power of 31.8dBm, using either FSK or MSK modulation. Bit rates: FSK 50 bps, MSK 1200 bps.

2.4 Modes of operation

Mode Referen	ce Description	Used for testing
TX 1	The EUT is transmitting bursts of data every 2 seconds at 173.075 MHz, MSK 1200bps, stolen/active mode	Yes
TX 2	The EUT is transmitting bursts of data every 16 seconds at 173.075 MHz, MSK 1200bps, normal mode	Yes
ГХ 3	The EUT is transmitting bursts of data every 47 seconds at 173.075 MHz, FSK 50bps, update status mode	Yes
RX	The EUT is in continuous receive at 173.075 MHz	No
CW	The EUT is transmitting bursts unmodulated (CW) at 173.075 MHz	Yes

Note: TX3 mode is sped up for purposes of test and is typically once a week transmission.

2.5 Emissions configuration

The equipment under test was powered using a 12 Volt car battery and placed on a turntable. The EUT's wire antenna was extended vertically and attached to a plastic pole for support. Using a laptop PC running engineering software, the EUT was configured into the relevant test modes as stated in section 2.4. The laptop PC was removed from the chamber prior to test. In order to test frequency stability and transient frequency behaviour a matching circuit pcb board was provided by Redtail Telematics Ltd to allow connection of the 377 Ω antenna circuit to a 50 Ω measurement port, the circuit attenuated the conducted RF output power by approximately 15dB in band, and where applicable, was compensated for during tests.

2.5.1 Signal leads

Port Name	Cable Type	Connected
VHF antenna	PVC coated wire	Yes
Supply ground	PVC coated wire	Yes
Vehicle supply	PVC coated wire	Yes
GPIO (3 lines)	PVC coated wire	Yes

3 Summary of test results

The VLU6M3, 4901-2207-01 was tested for compliance to the following standard :

47 CFR Part 90B & 90I Effective Date 1st October 2019 → 47CFR part 2J 2019 TNB: Licensed Non-Broadcast Station Transmitter

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Title	References	Results
Transmitter Tests		
1. Radiated emissions	FCC Part 90I Clause 90.210(b),	PASSED ¹
	47CFR part 2J Clause 2.1053	INCOLD
2. Conducted emissions	FCC Part 90I Clause 90.210(b),	NOT APPLICABLE ²
	47CFR part 2J Clause 2.1051	
3. Rated output Power	FCC Part 90B Clause 90.20(e)6(iii),	PASSED
	47CFR part 2J Clause 2.1046	INCOLD
4. Frequency stability	FCC Part 90I Clause 90.213(a),	PASSED
	47CFR part 2J Clause 2.1055	IASSED
	FCC Part 90I Clause 90.209,	
5. Occupied bandwidth	FCC Part 90B Clause 90.20(e)6(ii),	PASSED
	47CFR part 2J Clause 2.1049	
6. Emission mask	FCC Part 90I Clause 90.210(b)	PASSED
7. Modulation limiting	47CFR part 2J Clause 2.1047(b)	NOT APPLICABLE ³
8. Modulation frequency response	47CFR part 2J Clause 2.1047(a)	NOT APPLICABLE ³
9. Transient frequency behaviour	FCC Part 90I Clause 90.214	PASSED
10. Adjacent channel power	FCC Part 90I Clause 90.221	NOT APPLICABLE ⁴
11. Duty Cycle	FCC Part 90B Clause 90.20(e)6(v)	PASSED

¹ Spectrum investigated up to a frequency of 2 GHz based on the highest signal generated in equipment of 173.075 MHz. Integral antenna was in place for tests.

² The EUT has no antenna port and a temporary connection could not be made to 50ohms measuring equipment without the need for a matching board which attenuated maximum power observed by approx. 15dB in band. Therefore Radiated emissions tests performed with permanent antenna in place.

³ Not applicable to digitally modulated equipment.

⁴ Only applicable to transmitters within the 450 - 470 MHz, 809 - 824 MHz and 854 - 869 MHz frequency bands.

4 Specifications

The tests were performed and operated in accordance with R.N. Electronics Ltd procedures and the relevant standards listed below.

4.1 Relevant standards

Ref.	Standard Number	Version	Description
4.1.1	FCC Part 90I	2019	Part 90 - Private Land Mobile Radio Services - Subpart I -
			General Technical standards
4.1.2	47CFR part 2J	2019	Part 2 – Frequency Allocations and radio treaty matters; General
			rules and regulations
4.1.3	ANSI C63.26	2015	American National Standard for Compliance testing of
			transmitters used in Licensed radio services
4.1.4	TIA 603 E	2016	Land Mobile FM or PM Communications Equipment
			Measurement and Performance Standards
4.1.5	FCC Part 90B	2019	Part 90 - Private Land Mobile Radio Services - Subpart B – Public
			Safety Radio Pool

4.2 **Deviations**

No deviations were applied.

4.3 Tests at extremes of temperature & voltage

The following test conditions were used to simulate testing at nominal or extremes.

Temperature Test Conditions		Voltage Test Conditions	
T nominal	20 °C	V nominal	12V DC
T minimum	-30 °C	V minimum	9V DC
T maximum	50 °C	V maximum	30V DC

Extremes of voltage are based upon manufacturer's declaration.

Extremes of temperature are based upon the requirements of 47 CFR 2.1055.

The ambient test conditions of humidity and pressure in the laboratory were as specified in each specific test section within this report

4.4 **Test fixtures**

In order to measure RF parameters at temperature extremes, the EUT was tested in a temperature controlled chamber as follows:

A temporary RF port was created for testing by use a matching network board supplied by applicant.

5 Tests, methods and results

5.1 Radiated emissions

5.1.1 Test methods

Test Requirements:

	47CFR part 2J Clause 2.1053 [Reference 4.1.2 of this report]
Test Method:	ANSI C63.26 Clause 5.5 [Reference 4.1.3 of this report]
Limits:	FCC Part 90I Clause 90.210(b)(3) [Reference 4.1.1 of this report]

FCC Part 90I Clause 90.210(b) [Reference 4.1.1 of this report],

5.1.2 Configuration of EUT

The EUT was tested in an ALSE and ambient conditions were monitored. Three orthogonal planes were examined. No discernible difference was noted between TX1 to TX3 modes. Therefore, the EUT was operated in TX1 mode for this test.

5.1.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment noted in the 'Test Equipment' Section. Peak field strength from the EUT was maximised by rotating it 360 degrees.

8 -30 MHz.

The bottom of the loop antenna was placed at a height of 1m in line with the EUT and a pre scan was performed to determine any radiated emissions in this range.

30MHz - 1GHz.

The measuring antenna was scanned 1 - 4m in both Horizontal and Vertical polarisations. Substitution method was performed using tuned dipoles / a calibrated bi-conical antenna.

1GHz – 2 GHz.

The measuring antenna was used in both Horizontal and Vertical polarisations. Substitution method was performed using standard gain horn antennas.

Tests were performed in Site H and B.

5.1.4 Test equipment

E005, E007-2, E289, E428, E534, E745, E777, E914, TMS81, TMS814

See Section 8 for more details

5.1.5 Test results

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	50kPa

Setup Table

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	FSK
Single channel	173.075 MHz

Spurious Frequency (MHz)	Measured Spurious Level (dBm)	Difference to Limit (dB)	Antenna Polarisation	EUT Polarisation
346.15	-30.8	-10.8	Vertical	Side
346.15	-33.1	-13.1	Horizontal	Flat
519.225	-54.8	-34.8	Vertical	Flat
519.225	-54.1	-34.1	Horizontal	Upright
865.375	-51.2	-31.2	Vertical	Side
865.375	-57.4	-37.4	Horizontal	Side
1038.45	-42.0	-22.0	Vertical	Side

©2020 RN ELECTRONICS LIMITED

ALL RIGHTS RESERVED

1038.45	-42.7	-22.7	Horizontal	Upright
1384.6	-49.5	-29.5	Vertical	Side
1384.6	-48.2	-28.2	Horizontal	Flat
1557.675	-49.3	-29.3	Vertical	Side
1557.675	-49.3	-29.3	Horizontal	Upright

Note: results shown are with permanent antenna in place. No other signals were observed.

LIMITS:

Part 90.210(d)(3), On any frequency removed from the centre of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation: $50 + 10 \log (P) dB = -20 dBm$.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

30MHz - 1000MHz ±6.1dB, 1 - 2 GHz ±3.5dB

5.2 Conducted emissions

NOT APPLICABLE: The EUT has no antenna port and a temporary connection could not be made to 50 ohms measuring equipment without the need for a matching board which attenuated maximum power observed by approx. 15 dB in band. Therefore Radiated emissions tests performed with permanent antenna in place.

5.3 **RF Output Power**

5.3.1 Test methods

Test Requirements:	FCC Part 90B Clause 90.20(e)6(iii) [Reference 4.1.5 of this report],
	47CFR part 2J Clause 2.1053 [Reference 4.1.2 of this report]
Test Method:	ANSI C63.26 Clause 5.5 [Reference 4.1.3 of this report]
Limits:	FCC Part 90B Clause 90.20(e)6(iii) [Reference 4.1.5 of this report]

5.3.2 Configuration of EUT

The EUT was tested in a Chamber and ambient conditions were monitored. Three orthogonal planes were examined. No discernible difference was noted between TX1 to TX3 modes. Therefore, the EUT was operated in TX1 mode for this test.

5.3.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment noted in the 'Test Equipment' Section. Peak field strength from the EUT was maximised by rotating it 360 degrees along with scanning the measuring antenna 1 - 4m in both Horizontal and Vertical polarisations. Substitution method was then performed using a calibrated bi-conical antenna. Peak E.R.P was then calculated from the measured results plus path loss from the substitution.

Tests were performed in Site H.

5.3.4 Test equipment

E534, E535, E745, E830, E914, TMS814

See Section 8 for more details

5.3.5 Test results

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	50kPa

Setup Table

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	FSK
Single channel	173.075 MHz

	Measured ERP	Measured ERP	Antenna	
Frequency (MHz)	(dBm)	(Watts)	polarisation	EUT polarisation
173.075	31.9	1.549	Vertical	Upright

Note: only maximum ERP/worst case power and position/polarisation shown.

LIMITS:

Part 90B: 90.20€6 (iii) Mobile transmitters operating on this frequency with emissions authorized in a maximum bandwidth of 12.5 kHz are limited to 5.0 watts power output (37 dBm). Mobile transmitters operating on this frequency with emissions authorized in a maximum bandwidth of 20 kHz are limited to 2.5 watts power output (34 dBm).

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm 3.5$ dB

5.4 Frequency stability

5.4.1 Test methods

FCC Part 90I Clause 90.213(a) [Reference 4.1.1 of this report],
47CFR part 2J Clause 2.1055 [Reference 4.1.2 of this report]
TIA 603-E Clause 2.2.2 [Reference 4.1.4 of this report]
FCC Part 90I Clause 90.213(a) [Reference 4.1.1 of this report]

5.4.2 Configuration of EUT

The EUT was placed in a temperature controlled chamber and thermal balance was achieved before tests began. Measurements were made at the temporary RF port. The EUT was operated in CW mode for this test.

5.4.3 Test procedure

Tests were made in accordance with the Test Method noted above, using the measuring equipment listed in the 'Test Equipment' Section. Temperature stability was achieved at each test level before taking measurements. The measurement was performed on a CW signal. Tests were performed using Test Site A.

5.4.4 Test equipment

E434, E755, E866, P284, TMS38, TMS57, TMS80

See Section 8 for more details

5.4.5 Test results

Temperature of test environment	23°C
Humidity of test environment	60%
Pressure of test environment	102kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	CW
Single channel	173.075 MHz

Test conditions		Frequency Error (MHz)
		Single channel
50°C	Volts Nominal (12)	173.074934
40°C	Volts Nominal (12)	173.074906
30°C	Volts Nominal (12)	173.074973
20°C	Volts Minimum (9)	173.075073
	Volts Nominal (12)	173.075035
	Volts Maximum (30)	173.075065
10°C	Volts Nominal (12)	173.075054
0°C	Volts Nominal (12)	173.074976
-10°C	Volts Nominal (12)	173.074845
-20°C	Volts Nominal (12)	173.074793
-30°C	Volts Nominal (12)	173.075033
Max Frequency Error per chan (Hz)		+94 / -207
Max Frequency Error observed (MHz)		0.000207
Max Frequency Error	per chan (ppm)	1.2

LIMITS: Part 90.213: 5 ppm

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm 0.7$ ppm

ALL RIGHTS RESERVED

5.5 Occupied bandwidth

5.5.1 Test methods

FCC Part 90I Clause 90.209 [Reference 4.1.1 of this report],
FCC Part 90B Clause 90.20€6(ii) [Reference 4.1.5 of this report],
47CFR part 2J Clause 2.1049 [Reference 4.1.2 of this report]
ANSI C63.26 Clause 5.4 [Reference 4.1.3 of this report]
FCC Part 90I Clause 90.209 [Reference 4.1.1 of this report]
FCC Part 90B Clause 90.20€6(ii) [Reference 4.1.5 of this report],

5.5.2 Configuration of EUT

The EUT was operated on a test bench and measurements were made at the temporary RF port. No discernible difference was noted between TX1 & TX2 modes. Therefore, the EUT was operated in TX1 and TX3 modes for this test.

5.5.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment noted in the 'Test Equipment' Section. A 620 Hz RBW, 3x VBW, auto sweep time and max hold settings were used for the 99% bandwidth.

5.5.4 Test equipment

E534, E745, E914

See Section 8 for more details

5.5.5 Test results

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	101kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	MSK
Single channel	173.075 MHz

	Single channel
99 % Bandwidth (kHz) Nominal Temp & Volts	7.8
Plot for 99 % Bandwidth (kHz) Nominal Temp & Volts	12252-1 MSK OBW

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	FSK
Single channel	173.075 MHz

	Single channel
99 % Bandwidth (kHz) Nominal Temp & Volts	5.7
Plot for 99 % Bandwidth (kHz) Nominal Temp & Volts	12252-2 FSK OBW

Any analyser plots can be found in Section 6 of this report.

LIMITS:

Part 90.209 (B)(5), Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized a 11.25 kHz bandwidth.

These results show that the EUT has PASSED this test.

File Name: Redtail Telematics Ltd.12252-2 Issue 01

QMF21J - Issue 05 - RNE Issue 03; FCC Part 90B & 90I 2019

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: <± 1.9 %

5.6 Emission mask

5.6.1 Test methods

Test Requirements:	FCC Part 90I Clause 90.210(b) [Reference 4.1.1 of this report]
Test Method:	ANSI C63.26 Clause 5.5 [Reference 4.1.3 of this report]
Limits:	FCC Part 90I Clause 90.210(b) [Reference 4.1.1 of this report]

5.6.2 Configuration of EUT

The EUT was operated on a test bench. Measurements were made at the temporary RF port. No discernible difference was noted between TX1 & TX2 modes. Therefore, the EUT was operated in TX1 and TX3 modes for this test.

5.6.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test equipment used' Section. The analyser was tuned to the nominal centre frequency with span initially greater than 250% bandwidth and allowed to sweep enough times to capture the entire power envelope. The frequencies at which the spurious emission limits were last exceeded were noted. Plots were taken referenced to the applicable spectrum mask.

Tests were performed is test site H.

5.6.4 Test equipment

E534, E535, E745, E914

See Section 8 for more details

5.6.5 Test results

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	101kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	FSK
Single channel	173.075 MHz

	Single channel
plot reference	MSK FCC part 90.210 emission mask D (12.5kHz)
plot reference	FSK FCC part 90.210 emission mask D (12.5kHz)

Any analyser plots can be found in Section 6 of this report.

LIMITS:

Part 90.210

(d) *Emission Mask D*—12.5 *kHz channel bandwidth equipment.* For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB. (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d -2.88 kHz) dB.

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $\pm 2.8 \text{ dB}$ up to 26.5 GHz

File Name: Redtail Telematics Ltd.12252-2 Issue 01 QMF21J - Issue 05 - RNE Issue 03; FCC Part 90B & 90I 2019

5.7 Modulation limiting

NOT APPLICABLE: Not applicable to digitally modulated equipment.

5.8 Modulation frequency response

NOT APPLICABLE: Not applicable to digitally modulated equipment.

5.9 Transient frequency behaviour

5.9.1 Test methods

Test Requirements:	FCC Part 90I Clause 90.214 [Reference 4.1.1 of this report]
Test Method:	ANSI C63.26 Clause 6.5.2.2 [Reference 4.1.3 of this report]
Limits:	FCC Part 90I Clause 90.214 [Reference 4.1.1 of this report]

5.9.2 Configuration of EUT

The EUT was operated on a test bench. Measurements were made at the temporary RF port. The EUT was operated in CW mode for this test.

5.9.3 Test procedure

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test Equipment' Section. The EUT was repeatedly keyed up and down and the frequency vs. time curve observed from the discriminator output of a modulation analyser using a storage oscilloscope. Tests were performed in Site A.

5.9.4 Test equipment

E131, E249, E434, E532, E627, E699, E755, P281, TMS206, TMS30

See Section 8 for more details

5.9.5 Test results

Temperature of test environment	21°C
Humidity of test environment	60%
Pressure of test environment	102kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	CW
Single channel	173.075 MHz

	Single channel
TX ON Result	PASSED
TX ON Plot Reference	12252-2 TX on transient
TX OFF Result	PASSED
TX OFF Plot Reference	12252-2 TX off transient

LIMITS:

Transient Frequency Behaviour for Equipment Designed to Operate on 12.5 kHz Channels for equipment operating in the frequency band 150 to 174 MHz:

t¹ (±12.5 kHz) 5.0 ms t² (±6.25 kHz) 20.0 ms t³ (±12.5 kHz) 5.0 ms

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

<± 185 Hz

5.10 Adjacent channel power

NOT APPLICABLE: Only applicable to transmitters within the 450 – 470 MHz, 809 – 824 MHz and 854 – 869 MHz frequency bands

5.11 **Duty Cycle**

5.11.1 **Test methods**

Test Requirements: Test Method: Limits:

FCC Part 90B Clause 90.20(e)6(v) [Reference 4.1.5 of this report] ANSI C63.26 Clause 6.5.2.2 [Reference 4.1.3 of this report] FCC Part 90B Clause 90.20(e)6(v) [Reference 4.1.5 of this report]

5.11.2 **Configuration of EUT**

The EUT was operated on a test bench. Measurements were made at the temporary RF port. the EUT was operated in TX1, TX2 and TX3 modes for this test.

5.11.3 **Test procedure**

Tests were made in accordance with the Test Method noted above using the measuring equipment listed in the 'Test Equipment' Section. An analyser in zerospan/Time Domain mode, was centred on the EUT frequency and the EUT was allowed to automatically key up and down. The observed time domain was plotted and timings calculated.

Tests were performed in Site A.

5.11.4 **Test equipment**

E534, E535, E745, E830, E914

See Section 8 for more details

5.115 **Test results**

Temperature of test environment	21°C
Humidity of test environment	60%
Pressure of test environment	102kPa

Band	173.075 MHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	CW
Single channel	173.075 MHz

	Single channel
Normal mode – On time (ms)	200.5
Plot Reference	12252-2 MSK on time
Normal mode – period (s)	16.1
Plot Reference	12252-2 MSK cycle
Tracking mode – On time (ms)	200.3 ms
Plot Reference	12252-2 MSK stolen tracking mode Duty cycle
Tracking mode – period (s)	1.971
Plot Reference	12252-2 MSK stolen tracking mode Duty cycle
Status update mode – On time (s)	1.736
Plot Reference	12252-2 FSK on time
Status update – period (s)	47.22
Plot Reference	12252-2 FSK cycle

Note: Status update mode was provided in an increased cycle time/period for test only and is typically every seven days / once a week transmission rate.

LIMITS:

 $90.20 \in 6(v)$ Transmissions from mobiles shall be limited to 400 milliseconds for every 10 seconds, except when a vehicle is being tracked actively transmissions are limited to 400 milliseconds for every second. Alternatively, transmissions from mobiles shall be limited to 7200 milliseconds for every 300 seconds with a maximum of six such messages in any 30 minute period.

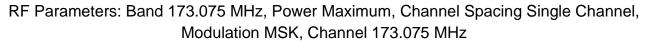
These results show that the EUT has PASSED this test.

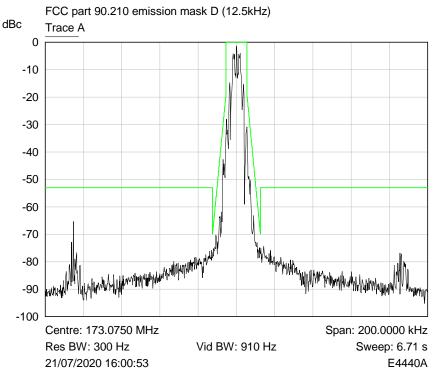
The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: Duty cycle $|<\pm 2.57$ ms

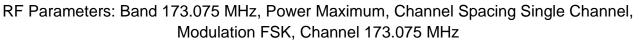
6 Plots/Graphical results

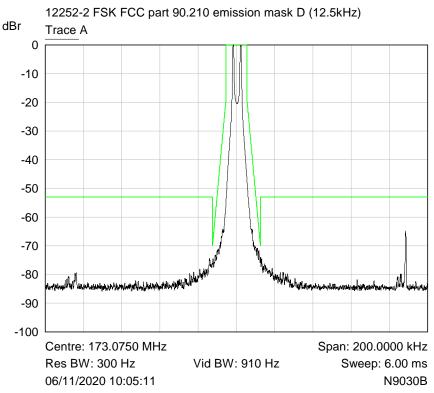

6.1 Occupied bandwidth

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz

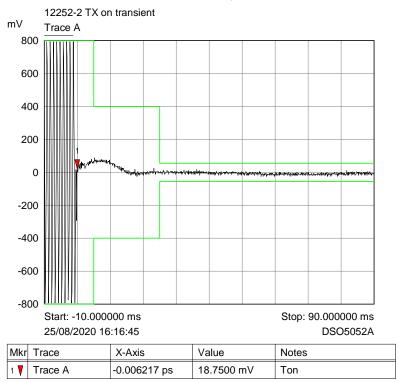

Plot for 99 % Bandwidth (kHz) Nominal Temp & Volts

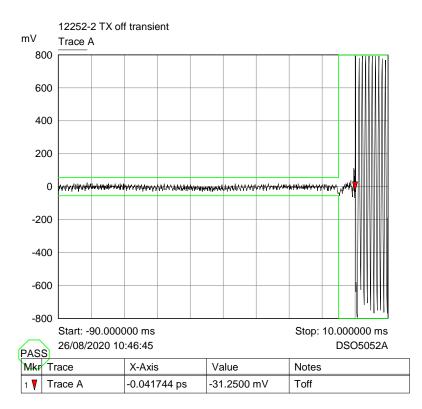

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation FSK, Channel 173.075 MHz


Plot for 99 % Bandwidth (kHz) Nominal Temp & Volts


6.2 Emission mask

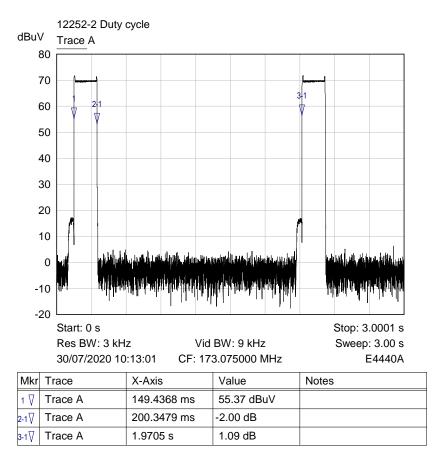
Nominal Temperature, Nominal Voltage



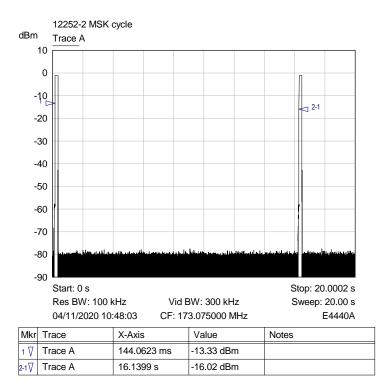

Nominal Temperature, Nominal Voltage

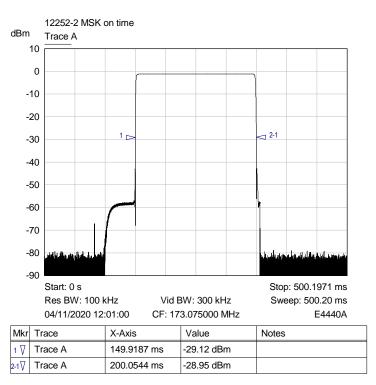
6.3 Transient frequency behaviour

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation CW, Channel 173.075 MHz


TX ON Result

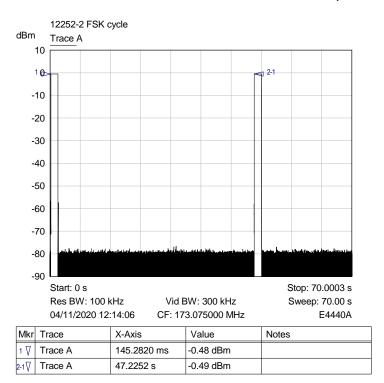
TX OFF Result

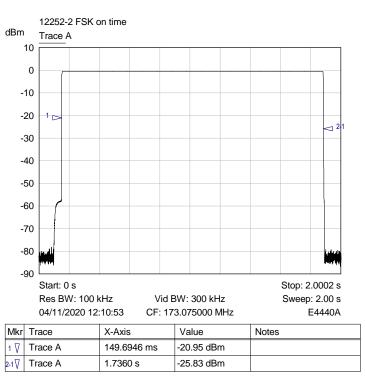

6.4 Duty Cycle


RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz – Active/stolen tracking mode

Cycle/period and on time

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation MSK, Channel 173.075 MHz – Normal mode

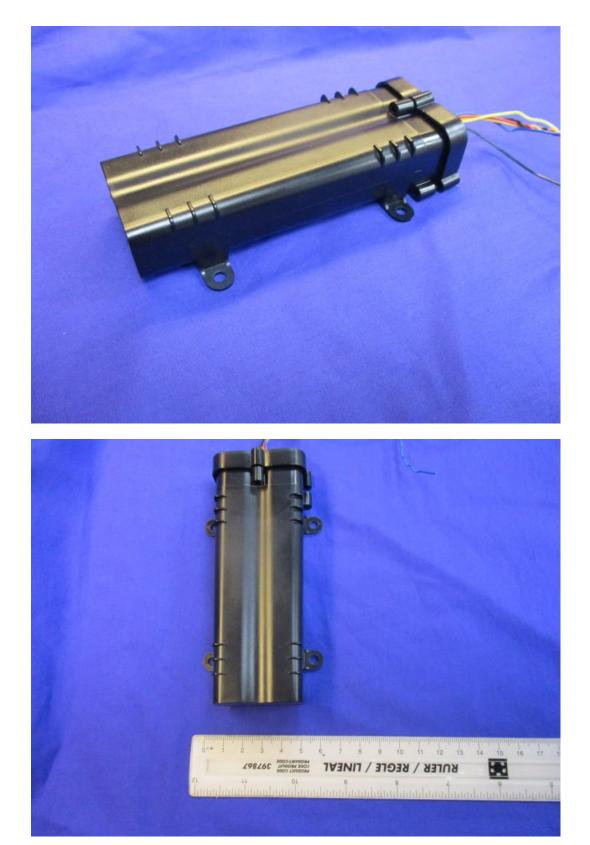




Cycle/period time

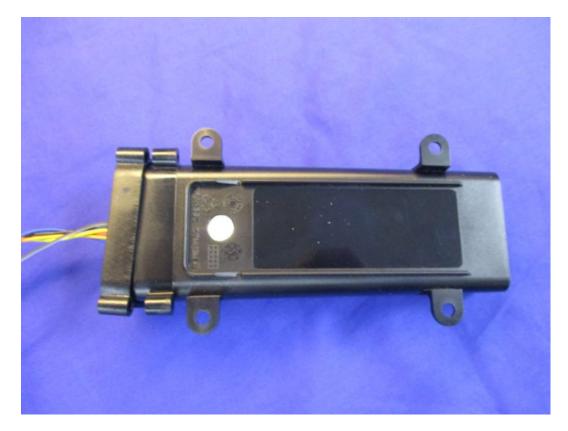
TX on time

RF Parameters: Band 173.075 MHz, Power Maximum, Channel Spacing Single Channel, Modulation FSK, Channel 173.075 MHz – Status update mode



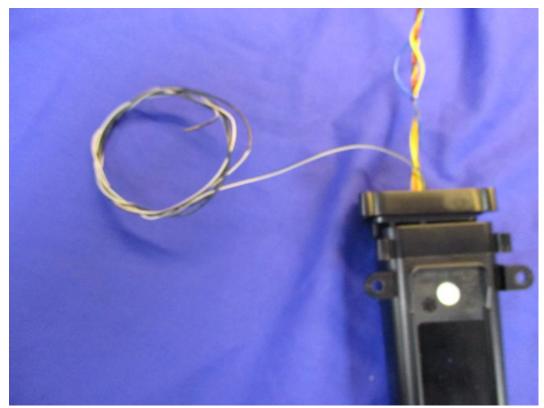
Cycle/period time

TX on time


7 Photographs

7.1 EUT Front View

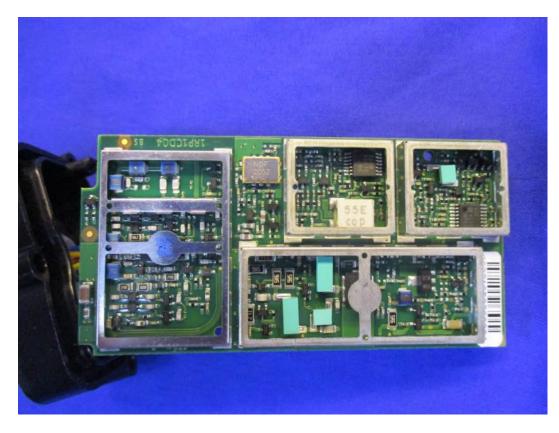
7.2 EUT Reverse Angle

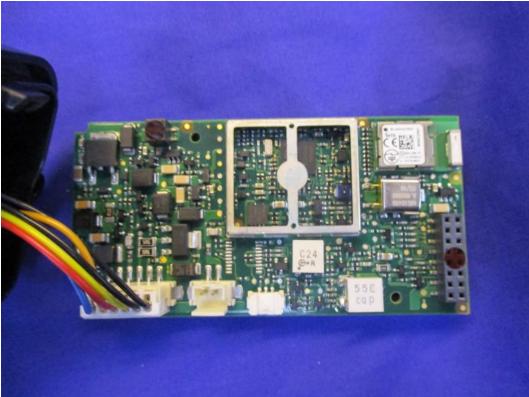

7.3 EUT Left side View

7.4 EUT Right side View

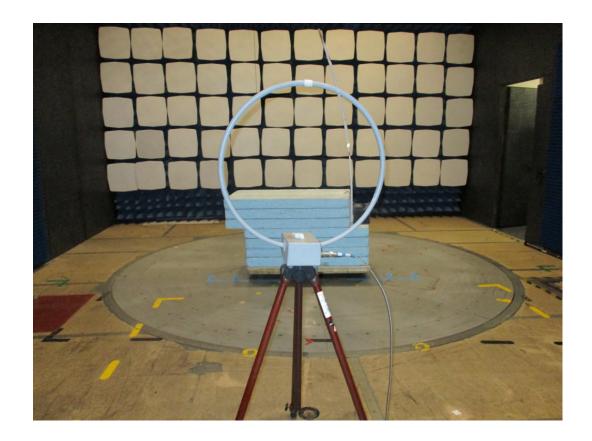
7.5 EUT Antenna

Note: Antenna shown coiled up, for test purposes this was vertically stretched out.

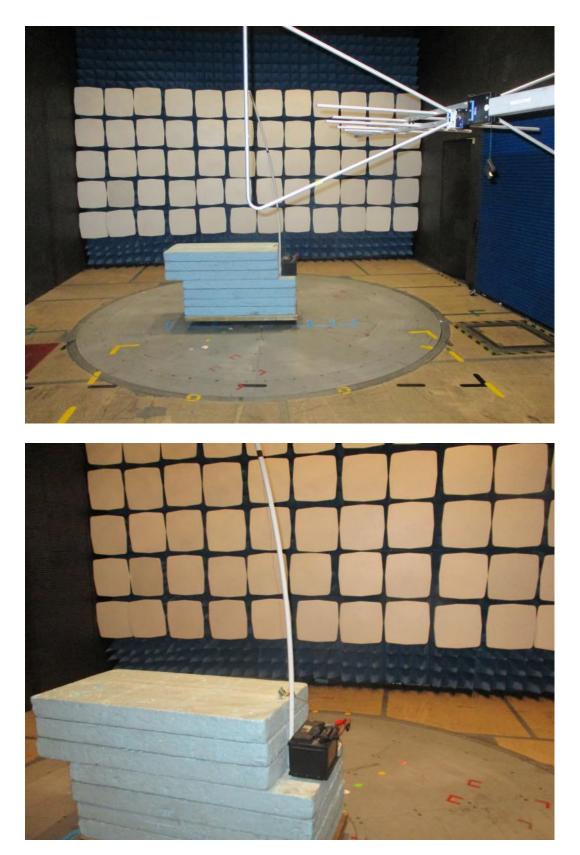

7.6 EUT Display & Controls


The EUT has not display or controls

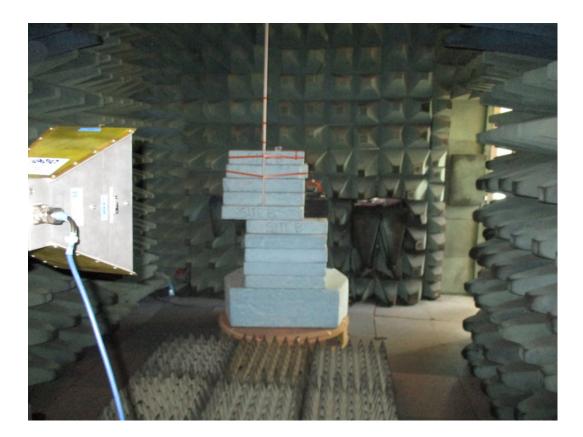
7.7 EUT Internal photos


7.8 EUT ID Label

No label was available at the time of test.


7.9 EUT Chassis

The EUT has no chassis.


7.10 8-30MHz Spurious emissions test set-up

7.11 30-1000MHz Spurious emissions test set-up

7.12 Above 1GHz Spurious emissions test set-up

8 Test equipment calibration list

The following is a list of the test equipment used by R.N. Electronics Ltd to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

RN No.	Model No.	Description	Manufacturer	Calibration date	Cal period
			MCL		•
E005	8447F	Pre-Amplifier 10MHz to 1000MHz	Microwave+Mini-	05-Jun-2020	12 months
			circuits		
E007-2	VHA9103	Antenna Bi-con	Schwarzbeck	21-Apr-2020	36 months
E131	E4421A (ESG-3000A)	Signal Generator 250kHz – 3GHz	Hewlett Packard	15-Jan-2019	24 months
E249	8471E	Detector 0.01 to 12GHz	Hewlett Packard	12-Mar-2020	12 months
E289	8449B	Pre-Amplifier 1GHz – 26.5GHz	Hewlett Packard	24-Apr-2020	12 months
E428	HF906	Horn Antenna 1-18 GHz	Rohde & Schwarz	30-Apr-2020	12 months
E434	G3RUH	10MHz GPS Disciplined Oscillator	G3RUH - James Miller	#28-Aug-2020	6 months
E532	-	Power Combiner 75-225MHz	AFL	Not appli	cable
E534	E4440A	PSA 3 Hz - 26.5 GHz	Agilent Technologies	20-Jan-2020	24 months
E535	N9039A	9 kHz - 1 GHz RF Filter Section	Agilent Technologies	20-Jan-2020	12 months
E627	DSO5052A	Oscilloscope 500MHz 2CH 4GSa/s	Agilent Technologies	15-Jul-2020	12 months
E699	2305	Modulation Meter	Marconi Instruments	14-Oct-2019	12 months
E745	2017 4/2dB	Attenuator 4/2dB 30-1000MHz	RN Electronics	07-Feb-2020	12 months
E755	N9030B	PXA 3Hz to 50GHz	Keysight Technologies	#04-Aug-2020	12 months
E777	MG3695B	Signal Generator 8MHz - 50GHz	Anritsu	19-Jun-2020	12 months
E830	N5181A	Signal Generator 100kHz to 6GHz	Agilent Technologies	21-Aug-2020	12 months
E866	42N50A-30	Attenuator 18GHz 50W N-type	Anritsu	30-Jan-2020	12 months
E914	VULB 9163	Antenna BiLog 30MHz to 3GHz	Schwarzbeck	30-Apr-2020	12 months
P281	L30-2	PSU 30V 2A	Farnell	07-Apr-2020	12 months
P284	9231	PSU Dual 30V 1A	Racal-Dana	08-Apr-2020	12 months
TMS206	4901.01B	Power Divider 50Ω 6dB 1W DC-2GHz	Suhner	28-Jul-2020	12 months
TMS30	778D	Dual Directional Coupler 100MHz to 2GHz	Hewlett Packard	29-Jun-2020	12 months
TMS38	VMT04/140	Environmental Oven	Heraeus Votsch	Not appli	cable
TMS57	PM2534	Digital Multimeter	Philips	20-Mar-2019	24 months
TMS80	206-3722	Digital Thermometer & K Probe	RS Components	20-Nov-2019	12 months
TMS81	6502	Antenna active loop	EMCO	24-Jun-2019	24 months
TMS814	MP627A	Antenna Doublet 200-1700 MHz	Anritsu	27-May-2020	12 months

Equipment was within calibration dates for tests and has been re-calibrated during/since date of tests.

9 Auxiliary and peripheral equipment

9.1 Customer supplied equipment

Item No.	Model No.	Description	Manufacturer	Serial No.
1	E6540	Laptop PC	Dell	3680025917
2	Not stated	USB to serial adapter	Generic	Not stated
3	8TP3CD01	VLU7 Test Fixture	Plextek Ltd	8T212

9.2 RN Electronics supplied equipment

No RN Electronics Ltd supplied equipment was used.

10 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

10.1 Modifications before test

No modifications were made before test by RN Electronics Ltd.

10.2 Modifications during test

No modifications were made during test by RN Electronics Ltd.

11 Description of test sites

- Site A Radio Laboratory and Anechoic Chamber
- Site B Semi-Anechoic Chamber and Control Room FCC Registration No. 293246, IC Registration No. 5612A-4
- Site C Transient Laboratory
- Site D Screened Room (Conducted Immunity)
- Site E Screened Room (Control Room for Site D)
- Site F Screened Room (Conducted Emissions)
- Site G Screened Room (Control Room for Site H)
- Site H 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 293246, IC Registration No. 5612A-2
- Site J Transient Laboratory
- Site K Screened Room (Control Room for Site M)
- Site M 3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 293246, IC Registration No. 5612A-3
- Site N Radio Laboratory
- Site Q Fully-Anechoic Chamber
- Site OATS 3m and 10m Open Area Test Site FCC Registration No. 293246, IC Registration No. 5612A-1
- Site R Screened Room (Conducted Immunity)
- Site S Safety Laboratory
- Site T Transient Laboratory

RN Electronics CAB identifier as issued by Innovation, Science and Economic Development Canada is UK0002

RN Electronics CAB identifier as issued by FCC is UK0015

12 Abbreviations and units

μÅmmicroAmps per metreLOLocal OscillatorμVmicroVattsmAmilliAmpsμWmicroVattsmaxmaximumACAlternating CurrentkPaKilopascalALSEÅbsorber Lined ScreenedMbit/sMegaHertzAmbAmbitude ModulationMHzMegaHertzAmbAmbientmicMicrophoneATPCAutomatic Transmit PowerminminimumControlminmilliMetresBERBit Error RatemmmilliMetres°CDegrees CelsiusmsmilliWattsC/ICarrier / InterferermWmilliWattsCortoolnomNot ApplicableAdministrationsNANot ApplicableAdministrationsNANot ApplicableCSChannel SpacingnomNominalCSControlous WaveOATSOpen Area Test SiteCMdeciBelsOFDMMultiplexingdBµ/wdeciBels relative to 1µ/mppmParts per milliondBµ/wdeciBels relative to 1µ/MPRSSeudora molease Shift KeyingdBdeciBels relative to 1µ/MPRSSeudora molease Shift KeyingdBligital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic RadiatedRFRadio and Telecommunication Terminal EquipmentDTADijtal Transmision AnalyserRefReferenceEIRPEquivalent Isotropic RadiatedRFCRemote Frequency Control <th>%</th> <th>Percent</th> <th>LBT</th> <th>Listen Before Talk</th>	%	Percent	LBT	Listen Before Talk
µWmicroWattsmaxmaximumACAlternating CurrentkPaKilopascalALSEEnclosureMbit/sMegaBits per secondAMAmplitude ModulationMHzMegaHertzAmbAmbientmicMicrophoneATPCControlminminimumBERBit Error RatemmmilliMetres°CDegrees CelsiusmsmilliMetres°CDegrees CelsiusmsmilliMetres°CDegrees ColsiusmsmilliMetres°CDegrees ColsiusmsmilliSecondsC/ICarrier / InterferermoNot ApplicableCSCoherent OFDMnomNot ApplicableCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SiteCWContinuous WaveOATSOpen Area Test SitedBdeciBelsofFDMMultiplexingdBLµ/mdeciBels relative to 1µ/MpmParts per milliondBLdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBCdeciBels relative to 1mWOPSKQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKRadia art Telecommunication Terminal EquipmentdBLguivalent Isotropic RadiatedRFRadia FrequencydBLdeciBels relative to 1mWQPSKQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Amplitude Modulation	µA/m	microAmps per metre	LO	Local Oscillator
ACAlternating CurrentkPaKilopascalALSEAbsorber Lined Screened EnclosureMbit/sMegaBits per secondAMAmplitude ModulationMHzMegaHertzAmbAmbientmicMicrophoneATPCAutomatic Transmit Power ControlminminimumBERBit Error RatemmmilliMetres°CDegrees CelsiusmsmilliSecondsC/ICarrier / Interferer European Conference of PostalNANot ApplicableCEPTand Telecommunications AdministrationsNANot ApplicableCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SiteGBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/wdeciBels relative to 1µ/mppmParts per milliondBmdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBmdeciBels relative to 1mWQPSKQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic RadiatedRFRadio Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEuropean UnionRSLReceived Signal LevelEIRPEffective Radiated PowerRTPRomot Tensmit Power ControlFSKFrequency ModulationRTPReceiver Control <t< td=""><td>μV</td><td>microVolts</td><td>mA</td><td>milliAmps</td></t<>	μV	microVolts	mA	milliAmps
ALSEAbsorber Lined Screened EnclosureMbit/sMegaBits per secondAMAmplitude ModulationMHzMegaHertzAmbAmbientmicMicrophoneATPCAutomatic Transmit Power ControlminminimumBERBit Error RatemmmilliMetresCCDegrees CelsiusmsmilliWattsCHICarrier / Interferer European Conference of PostalNANot ApplicableCCCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SileCWContinuous WaveOATSOpen Area Test SiledBadeciBelsOFDMOuthogonal Frequency Division MultiplexingdBu/wdeciBels relative to 1µ/WPRBSPseudo Random Bit SequencedBcdeciBels relative to 1µWQPSKQuadrature Amplitude ModulationdBmdeciBels relative to TimWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTE Radio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFCRemote Frequency ControlEUTEquipment Under TestRTPRomote Transmit Power ControlEUTEquipment Under TestRTPRemote Transmit Power ControlFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxRece	μW	microWatts	max	maximum
ALSE EnclosureEnclosureMbit/sMegabits per secondAMAmplitude ModulationMHzMegaHertzAmbAmbientmicMicrophoneATPCAutomatic Transmit Power ControlminminimumBERBit Error Ratemmmililiketres°CDegrees CelsiusmsmilliSecondsC/ICarrier / Interferer European Conference of PostalmWmilliWattsCEPTand Telecommunications AdministrationsNANot ApplicableCOFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBels relative to 1µVPRBPrequency Division MultiplexingdBµ/mdeciBels relative to 1µVPRBPrequence Andom Bit SequencedBdeciBels relative to 1µVPRBPrequency Division MultiplexingDCDirect CurrentR&TTE Radio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLRceived Signal LevelEUTEquipment Under TestRTPRomot Erransmit Power ControlFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceiver <t< td=""><td>AC</td><td>Alternating Current</td><td>kPa</td><td>Kilopascal</td></t<>	AC	Alternating Current	kPa	Kilopascal
AmbAmbientmicMicrophoneATPCAutomatic Transmit Power ControlminminimumBERBit Error RatemmmilliMetres°CDegrees CelsiusmsmilliSecondsC/ICarrier / Interferer European Conference of PostalmWmilliWattsCEPTand Telecommunications AdministrationsNANot ApplicableCOFDMCoherent OFDMnomNorminalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOuthogonal Frequency Division MultiplexingdBµ/wdeciBels relative to 1µ/mppmParts per milliondBmdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBmdeciBels relative to 1mWQPSKQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Amplitude ModulationdBmlogital Transmission AnalyserRefReferenceEIRPEquipmentRSTRadio Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEuropean UnionRSLReceived Signal LevelEUEquipment Under TestRTPRomote Transmit Power ControlFSKFrequency Shift KeyingRxReceiverGGigaHertzSignal to Noise And DistortionFIZGigaHertzSignal to Noise And DistortionFIXIrequency Shift KeyingKxTransmitter<	ALSE		Mbit/s	MegaBits per second
ATPCAutomatic Transmit Power ControlminminimumBERBit Error RatemmmilliMetres°CDegrees CelsiusmsmilliSecondsC/ICarrier / InterferermWmilliWattsEuropean Conference of PostalmWmilliWattsCEPTand Telecommunications AdministrationsNANot ApplicableCOFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/wdeciBels relative to 1µ/VPRBSPseudo Random Bit SequencedBadeciBels relative to 1µVQPSKQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio Frequency ControlEIRPEquivalent Isotropic Radiated PowerRFCReceived Signal LevelEUEuropean UnionRSLReceived Signal LevelEUEuropean UnionRTPCRemote Transmit Power ControlFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivedGHzGigaHertzSignal to Noise And DistortionFLHertzTXTansmitterFLIntermediate FrequencyVVolts	AM	Amplitude Modulation	MHz	MegaHertz
ATPC ControlControlminminimumBERBit Error RatemmmilliMetres°CDegrees CelsiusmsmilliSecondsC/ICarrier / InterferermWmilliWattsEuropean Conference of PostalmWmilliWattsCEPTand TelecommunicationsNANot ApplicableCGFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/wdeciBels relative to 1µ/mppmParts per milliondBmdeciBels relative to 1µ/MPRBSPseudo Random Bit SequencedBmdeciBels relative to 0 arrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivedGGigal HertzSINADSignal to Noise And DistortionFIXFrequency Shift KeyingS </td <td>Amb</td> <td>Ambient</td> <td>mic</td> <td>Microphone</td>	Amb	Ambient	mic	Microphone
°CDegrees CelsiusmsmilliSecondsC/ICarrier / Interferer European Conference of PostalmWmilliWattsCEPTand Telecommunications AdministrationsNANot ApplicableCOFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµA/mdeciBels relative to 1µA/mppmParts per milliondBµdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to 1µVQPSKQuadrature Amplitude ModulationdBmdeciBels relative to CarrierQAKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEuropean UnionRTPCRemote Frequency ControlFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHettzSINADSignal to Noise And DistortionFSKFrequency Shift KeyingKxTransmitterFIIntermediate FrequencyVVotts	ATPC		min	minimum
C/ICarrier / Interferer European Conference of PostalmWmilliWattsCEPTand Telecommunications AdministrationsNANot ApplicableCOFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/mdeciBels relative to 1µ/mppmParts per milliondBµ/wdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEuquingment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramsSSecondsGHzGigal HertzSINADSignal to Noise And DistortionHzHertzTxTransmitter	BER	Bit Error Rate	mm	milliMetres
CEPTEuropean Conference of Postal and Telecommunications AdministrationsNANot ApplicableCOFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/wdeciBels relative to 1µ/vPRBSPseudo Random Bit SequencedBcdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to CarrierQAMQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEffective Radiated PowerRFCRemote Frequency ControlEUEquipment Under TestRTPCRemote Frequency ControlEUEquipment Under TestRTPCRemote Transmit Power ControlFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigal HertzSINADSignal to Noise And DistortionHzHertzTxTransmitter	°C	Degrees Celsius	ms	milliSeconds
CEPT AdministrationsNANot ApplicableCOFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/mdeciBels relative to 1µ/mppmParts per milliondBµ/mdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	C/I	Carrier / Interferer	mW	milliWatts
AdministrationsCOFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/mdeciBels relative to 1µ/mppmParts per milliondBµVdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEuropean UnionRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts		European Conference of Postal		
COFDMCoherent OFDMnomNominalCSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµA/mdeciBels relative to 1µA/mppmParts per milliondBµVdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	CEPT		NA	Not Applicable
CSChannel SpacingnWnanoWattCWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµA/mdeciBels relative to 1µA/mppmParts per milliondBµVdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEuropean UnionRTPCRemote Transmit Power ControlFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTraTransmitterIFIntermediate FrequencyVVolts				
CWContinuous WaveOATSOpen Area Test SitedBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµA/mdeciBels relative to 1µA/mppmParts per milliondBµVdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts				
dBdeciBelsOFDMOrthogonal Frequency Division MultiplexingdBµ/mdeciBels relative to 1µ/mppmParts per milliondBµVdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUEuropean UnionRTPCRemote Transmit Power ControlFMFrequency ModulationRTPCRemote Transmit Power ControlFMFrequency Shift KeyingRxReceivergGramssSecondsGHzGigal HertzXINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts				
dBdeciBeisOFDMMultiplexingdBµA/mdeciBels relative to 1µA/mppmParts per milliondBµVdeciBels relative to 1µVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	CW	Continuous Wave	OATS	•
dBμVdeciBels relative to 1μVPRBSPseudo Random Bit SequencedBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	dB	deciBels	OFDM	
dBcdeciBels relative to CarrierQAMQuadrature Amplitude ModulationdBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	dBµA/m	deciBels relative to 1µA/m	ppm	Parts per million
dBmdeciBels relative to 1mWQPSKQuadrature Phase Shift KeyingDCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	dBµV	deciBels relative to 1µV	PRBS	Pseudo Random Bit Sequence
DCDirect CurrentR&TTERadio and Telecommunication Terminal EquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	dBc	deciBels relative to Carrier	QAM	Quadrature Amplitude Modulation
DCDirect CurrentR&TTEEquipmentDTADigital Transmission AnalyserRefReferenceEIRPEquivalent Isotropic Radiated PowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	dBm	deciBels relative to 1mW	QPSK	Quadrature Phase Shift Keying
EIRPEquivalent Isotropic Radiated PowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	DC	Direct Current	R&TTE	
EIRPPowerRFRadio FrequencyERPEffective Radiated PowerRFCRemote Frequency ControlEUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	DTA	Digital Transmission Analyser	Ref	Reference
EUEuropean UnionRSLReceived Signal LevelEUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramsSSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	EIRP		RF	Radio Frequency
EUTEquipment Under TestRTPRoom Temperature and PressureFMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	ERP	Effective Radiated Power	RFC	Remote Frequency Control
FMFrequency ModulationRTPCRemote Transmit Power ControlFSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	EU	European Union	RSL	Received Signal Level
FSKFrequency Shift KeyingRxReceivergGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	EUT	Equipment Under Test	RTP	Room Temperature and Pressure
gGramssSecondsGHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	FM	Frequency Modulation	RTPC	Remote Transmit Power Control
GHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	FSK	Frequency Shift Keying	Rx	Receiver
GHzGigaHertzSINADSignal to Noise And DistortionHzHertzTxTransmitterIFIntermediate FrequencyVVolts	g	Grams	S	Seconds
IF Intermediate Frequency V Volts		GigaHertz	SINAD	Signal to Noise And Distortion
	Hz	Hertz	Tx	-
kHz kiloHertz	IF	Intermediate Frequency	V	Volts
	kHz	kiloHertz		