

FCC Test Report

Report No.: AGC07307220901FE06

FCC ID : 2AY9HVR2240009

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Bluetooth FM Transmitter

BRAND NAME : onn.

MODEL NAME : 100109881

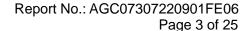
APPLICANT: Artsun Enterprise Company Limited

DATE OF ISSUE : Oct. 17, 2022

STANDARD(S) : FCC Part 15.239

REPORT VERSION : V1.0

Attestation of Global Lance (Shenzhen) Co., Ltd



Page 2 of 25

REPORT REVISE RECORD

Report Versi	on Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Oct. 17, 2022	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2 TABLE OF CARRIER FREQUENCYS	6
2.3 RELATED SUBMITTAL(S) / GRANT (S)	
2.4 SPECIAL ACCESSORIES	
2.5 EQUIPMENT MODIFICATIONS	
3. TEST ENVIRONMENT	8
3.1 ADDRESS OF THE TEST LABORATORY	ε
3.2 TEST FACILITY	8
3.3 ENVIRONMENTAL CONDITIONS	g
3.4 MEASUREMENT UNCERTAINTY	g
3.5 LIST OF EQUIPMENTS USED	
4. SYSTEM TEST CONFIGURATION	11
4.1 EUT CONFIGURATION	11
4.2 EUT EXERCISE	11
4.3 CONFIGURATION OF TESTED SYSTEM	11
4.4. EQUIPMENT USED IN TESTED SYSTEM	11
4.5. SUMMARY OF TEST RESULTS	
5. DESCRIPTION OF TEST MODES	13
6. OCCUPIED BANDWIDTH	14
6.1. MEASUREMENT PROCEDURE	14
6.2 MEASUREMENT PROCEDURE	14
6.3. TEST SETUP	14
6.4. TEST RESULT	15
7. RADIATED EMISSION	
7.1. MEASUREMENT PROCEDURE	17
7.2.TEST SETUP	19
7.3. TEST RESULTFOR FIELD STRENGTH OF FUNDAM	1ENTAL20
7.4 TEST RESULT FOR SPURIOUS EMISSION	21

Page 4 of 25

8. AC Power LINE CONDUCTED EMISSION TEST	23
8.1 LIMITS OF LINE CONDUCTED EMISSION TEST	23
8.2 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)	23
8.3 PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	24
8.4 FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	24
8.5 MEASUREMENT RESULTS	24
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	25
APPENDIX R. PHOTOGRAPHS OF FUT	25

Page 5 of 25

1. VERIFICATION OF CONFORMITY

. VERIFICATION OF CONFORMITT			
Applicant	Artsun Enterprise Company Limited		
Address	19H Maxgrandplaza, No.3 Tai Yau Street, San Po Kong, Kowloon, HongKong		
Manufacturer	Artsun Enterprise Company Limited		
Address	19H Maxgrand plaza, No.3 Tai Yau Street, San Po Kong, Kowloon, HongKong		
Factory	TELSTAR VIETNAM COMPANY LIMITED		
Address	CN-07-01 factory, lot CN-07, Van Trung Industrial Park, Van Trung Ward, Viet Yen District, Bac Giang Province, Viet Nam		
Product Designation	Bluetooth FM Transmitter		
Brand Name	onn.		
Test Model	100109881		
Date of receipt of test item	Sep. 23, 2022		
Date of test	Sep. 23, 2022 to Oct. 14, 2022		
Deviation	No any deviation from the test method		
Condition of Test Sample	Normal		
Test Result	Pass		
Report Template	AGCTR-ER-FCC-FMV1.0		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.239.

Prepared By	Cool chery.	
	Cool Cheng (Project Engineer)	Oct. 17, 2022
Reviewed By	Calvin Lin	
	Calvin Liu (Reviewer)	Oct. 17, 2022
Approved By	Max Zhang	
·	Max Zhang (Authorized Officer)	Oct. 17, 2022

Page 6 of 25

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Equipment Specification	FM Transmitter
Test Frequency	Low: 88.1MHz; Middle:98.0MHz; High: 107.9MHz
Hardware Version	RVE:01
Software Version	V1.0
Operation Frequency	88.1MHz-107.9MHz
Modulation Type	FM
Number of channels	199(Channel spacing 100kHz)
Field Strength(3m)	43.50dBuV/m(PK)@3m
Antenna Designation	Monopole Antenna
Antenna Gain	0dBi
Power Supply	DC 12V~24V
Adapter Information	N/A

2.2 TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	1	88.10
	2	88.20
00 4041 - 407 0041 -	100	98.00
88.1MHz-107.9MHz	101	98.10
	198	107.80
	199	107.90

Page 7 of 25

2.3 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AY9HVR2240009** filing to comply with FCC Part 15 requirements.

2.4 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

2.5 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 8 of 25

3. TEST ENVIRONMENT

3.1 ADDRESS OF THE TEST LABORATORY

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 9 of 25

3.3 ENVIRONMENTAL CONDITIONS

	NORMAL CONDITIONS	EXTREME CONDITIONS		
Temperature range (℃)	15 - 35	-20 - 50		
Relative humidty range	20 % - 75 %	20 % - 75 %		
Pressure range (kPa)	86 - 106	86 - 106		
Power supply				
Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer				

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.8 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	U _c = ±2 %
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %

Page 10 of 25

3.5 LIST OF EQUIPMENTS USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	R&S	ESCI	10096	Mar. 28, 2022	Mar. 27, 2023
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Nov. 17, 2021	Nov. 16, 2022
Signal Analyzer	Aglient	N9020A	MY52090123	Aug. 04, 2022	Aug. 03, 2023
Attenuator	ZHINAN	E-002	N/A	Aug. 04, 2022	Aug. 03, 2024
Horn Antenna	SCHWARZBEC	BBHA9170	768	Oct. 31, 2021	Oct. 30, 2023
Active Loop Antenna (9K-30Mhz)	ZHINAN	ZN30900C	18051	Mar. 12, 2022	Mar. 11, 2024
Double-Ridged Waveguide Horn	ETS	3117	00034609	Apr. 23, 2021	Apr. 22, 2023
Preamplifier Assembly	ETS	3117PA	00225134	Sep. 01, 2022	Sep. 02, 2024
Wideband Antenna	SCHWARZBECK	VULB9168	VULB9168-4 94	Jan. 08, 2021	Jan. 07, 2023
Test Software	FARA	EZ-EMC	Ver.RA-03A	N/A	N/A

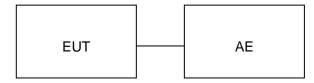
Page 11 of 25

4. SYSTEM TEST CONFIGURATION

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 CONFIGURATION OF TESTED SYSTEM

Radiated Emission Configure:

Conducted Emission Configure:

4.4. EQUIPMENT USED IN TESTED SYSTEM

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

☐ Test Accessories Come From The Laboratory

Item	Equipment	Model No.	ID or Specification	Remark
1	Battery	L2 400-H	DC 12V	AE
2	Battery	N/A	DC 12V	AE

Test Accessories Come From The Manufacturer

Item	Equipment	Model No.	ID or Specification	Remark
1	Bluetooth FM Transmitter	100109881	2AY9HVR2240009	EUT

Page 12 of 25

4.5. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.239	Field Strength of Fundamental and Spurious Emission	Compliant
15.215	Bandwidth	Compliant
15.207	Line Conducted Emission	Not applicable

Note: 1.N/A means not applicable.

2. The device under test is battery-powered and does not require evaluation of AC Power Line Conducted Emission.

Page 13 of 25

5. DESCRIPTION OF TEST MODES

Summary table of Test Cases				
Test Item	Product Specifications/ Modulation			
rest item	FM			
Radiated&Conducted Test Cases	Mode 1: FM TX_88.1 MHz			
	Mode 2: FM TX_98.0 MHz			
	Mode 3: FM TX_107.9 MHz			

Note:

- 1. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 2. All the requirements have been tested by modulating the transmitter with a 2.5 kHz tone at a fixed level which set to the manufacturer's maximum rated input to the modulator.
- 3. Only the result of the worst case was recorded in the report, if no other cases.
- 4. Tuning-Range confirmed 88.1 ~ 107.9 MHz.
- 5. To start the radio test and cycle through the different modes press the user button on top of the EUT.

Page 14 of 25

6. OCCUPIED BANDWIDTH

6.1. MEASUREMENT PROCEDURE

The occupied bandwidth shall not exceed the 200 kHz authorized bandwidth.

6.2 MEASUREMENT PROCEDURE

1. Set the parameters of SPA as below:

Centre frequency = Operation Frequency

RBW=3KHz

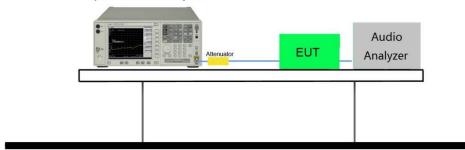
VBW=10KHz

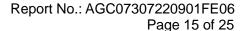
Span: 150kHz

Sweep time: Auto

For the occupied bandwidth measurements, the input signal shall be a 2.5 kHz tone.

The level of the tone shall be 16 dB higher than that required to produce a frequency deviation

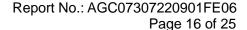

of 75 kHz, or 50% of the manufacturer's rated deviation, whichever is less.


Alternatively, in the event that a 16 dB increase cannot be achieved, the level of the tone shall be set to the manufacturer's maximum rated input to the modulator.

- 2.Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 3. Record the plots and Reported.

6.3. TEST SETUP

Spectrum Analyzer



6.4. TEST RESULT

Test Data of Occupied Bandwidth and -20dB Bandwidth						
Test Mode	Test Channel (MHz)	99% Occupied Bandwidth (KHz)	-20dB Bandwidth (KHz)	Limits (KHz)	Pass or Fail	
FM	88.1	60.470	65.81	\$200	Pass	
FM	98.0	60.954	65.88	\$200	Pass	
FM	107.9	62.124	66.73	\$200	Pass	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 17 of 25

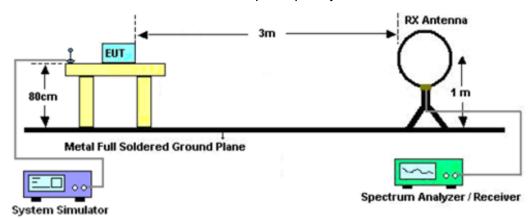
7. RADIATED EMISSION

7.1. MEASUREMENT PROCEDURE

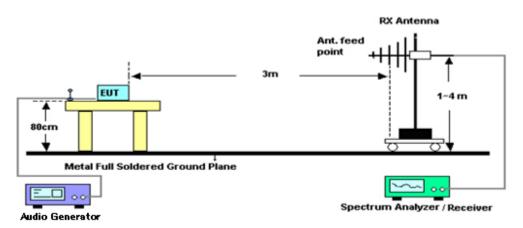
- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Page 18 of 25

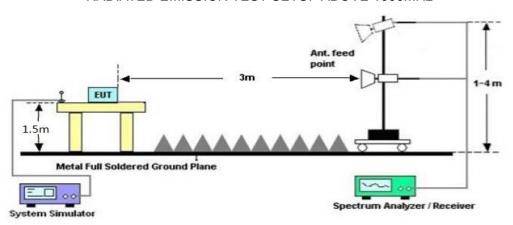
The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting		
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP		
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP		
Start ~Stop Frequency	1GHz~26.5GHz		
Start ~Stop i requerity	1MHz/3MHz for Peak, 1MHz/3MHz for Average		

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



7.2.TEST SETUP

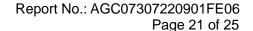

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 20 of 25

7.3. TEST RESULTFOR FIELD STRENGTH OF FUNDAMENTAL

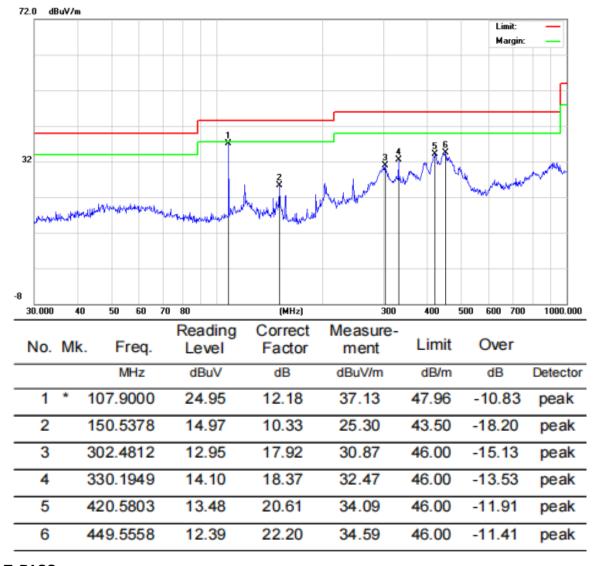

TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL

Frequency MHz	Polarization	Level dB(uV/m) PK	Limit dB(uV/m) AV	Margin dB	Pass/Fail	Detector
88.100	Н	27.47	47.96	20.49	Pass	PK
88.100	V	39.58	47.96	8.38	Pass	PK
98.000	Н	29.88	47.96	18.08	Pass	PK
98.000	V	40.81	47.96	7.15	Pass	PK
107.900	Н	37.13	47.96	10.83	Pass	PK
107.900	V	44.03	47.96	3.93	Pass	PK

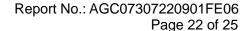
TEST RESULT FOR FIELD STRENGTH OF BAND EDGE EMISSION

Frequency MHz	Polarization	Level dB(uV/m) QP	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Detector
88.000	Н	24.34	40	15.66	Pass	QP
88.000	V	33.82	40	6.18	Pass	QP
108.000	Н	26.34	43.5	17.16	Pass	QP
108.000	V	32.62	43.5	10.88	Pass	QP

Note: The above two frequencies are the worst case for the band edge emission test.

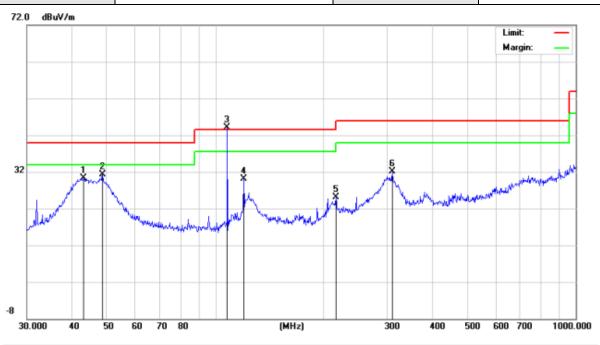

7.4. TEST RESULT FOR SPURIOUS EMISSION

RADIATED EMISSION FROM BELOW 30MHz


The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

RADIATED EMISSION FROM 30MHZ TO 1000MHz

EUT	Car MP3 Player	Model Name	VM-207
Temperature	22°C	Relative Humidity	54%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal



RESULT: PASS

EUT	Car MP3 Player	Model Name	VM-207
Temperature	22°C	Relative Humidity	54%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		43.0504	20.91	9.49	30.40	40.00	-9.60	peak
2		48.6719	21.00	10.22	31.22	40.00	-8.78	peak
3	*	107.9000	32.56	11.47	44.03	47.96	-3.93	peak
4	,	119.8556	18.11	12.05	30.16	43.50	-13.34	peak
5		216.0240	13.80	11.40	25.20	46.00	-20.80	peak
6	;	309.9977	16.58	15.48	32.06	46.00	-13.94	peak

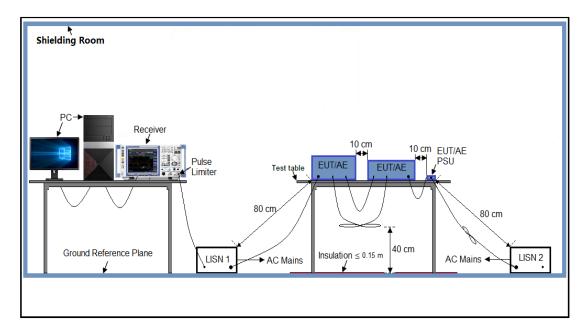
RESULT: PASS

Note: 1. Factor=Antenna Factor+ Cable loss -Amplifier gain, Over=Measurement-Limit.

- 2. The "Factor" valuecan be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The mode 3 is the worst case and recorded in the report.
- 4. Which above 1GHz are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Page 23 of 25

8. AC Power LINE CONDUCTED EMISSION TEST


8.1 LIMITS OF LINE CONDUCTED EMISSION TEST

Francis	Maximum RF Line Voltage			
Frequency	Q.P. (dBµV)	Average (dBμV)		
150kHz~500kHz	66-56	56-46		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

8.2 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Page 24 of 25

8.3 PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 12-24V power which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

8.4 FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

8.5 MEASUREMENT RESULTS

Note: 1.N/A means not applicable.

2. The device under test is battery-powered and does not require evaluation of AC Power Line Conducted Emission.

Page 25 of 25

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: AGC07307220901AP01

APPENDIX B: PHOTOGRAPHS OF EUT

Refer to the Report No.: AGC07307220901AP02

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd. (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.