

CFR 47 FCC PART 15 SUBPART C ISED RSS-210 Issue 11

TEST REPORT

For

TOY Transmitter

MODEL NUMBER: 55JT, 55JT2, 55JT0

REPORT NUMBER: 4791657244-1-RF-1

ISSUE DATE: February 18, 2025

FCC ID: TG355JT

IC: 20834-55JT

Prepared for

For FCC: FKA Distributing Co., LLC 3000 N. Pontiac Trail Commerce Township, MI 48390 United States For ISED: HoMedics, Inc. 3000 Pontiac Trail Commerce Township MI 48390 United States Of America

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	February 18, 2025	Initial Issue	

Summary of Test Results						
Clause	Clause Test Items FCC/ISED Rules Test Res					
1	20dB Bandwidth and 99% Occupied Bandwidth	CFR 47 FCC §15.215 (c) ISED RSS-Gen Clause 6.7	Pass			
2	Radiated Emission	CFR 47 FCC §15.249 (a)(d)(e) ISED RSS-210 Annex B B.10 CFR 47 FCC §15.205 and §15.209 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass			
3	Conducted Emission Test for AC Power Port	CFR 47 FCC §15.207 RSS-GEN Clause 8.8	N/A			
4 Antenna Requirement CFR 47 FCC §15.203 ISED RSS-Gen Clause 6.8 Pass						
Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China.						

Note 2: The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C, ISED RSS-210 ISSUE 11 > when <Accuracy Method> decision rule is applied.

Note 3: The EUT is powered by battery. It is not applicable for Conducted Emission Test for AC Power Port.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS5
2.	TEST N	IETHODOLOGY6
3.	FACILI	TIES AND ACCREDITATION6
4.	CALIBR	ATION AND UNCERTAINTY7
4	4.1.	MEASURING INSTRUMENT CALIBRATION
4	4.2.	MEASUREMENT UNCERTAINTY7
5.	EQUIP	/IENT UNDER TEST
5	5.1.	DESCRIPTION OF EUT
5	5.2.	CHANNEL LIST
5	5.3.	MAXIMUM FIELD STRENGTH
5	5.4.	TEST CHANNEL CONFIGURATION8
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER9
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS
5	5.7.	DESCRIPTION OF TEST SETUP11
6.	MEASU	RING EQUIPMENT AND SOFTWARE USED12
7.	ANTEN	NA PORT TEST RESULTS13
7	7.1.	20DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH
7	7.2.	DUTY CYCLE
8.	RADIA	ED TEST RESULTS23
8	8.1.	FUNDAMENTAL EMISSION
8	3.2.	RESTRICTED BANDEDGE
8	3.3.	SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)
8	3.4.	SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)45
8	8.5.	SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)51
8	8.6.	SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)54
8	8.7.	SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)56
9.	ANTEN	NA REQUIREMENT

1. ATTESTATION OF TEST RESULTS

Applicant Information for FCC Company Name: Address:	FKA Distributing Co., LLC 3000 N. Pontiac Trail Commerce Township, MI 48390 United States
Applicant Information for IC Company Name: Address:	HoMedics, Inc. 3000 Pontiac Trail Commerce Township MI 48390 United States Of America
Manufacturer Information Company Name: Address:	WENGYUAN COUNTY KAINAN PLASTIC CO.,LTD Weng Cheng Industrial Zone,Weng Cheng Town,Weng Yuag County,Shao Guan City,Guang Dong Province ,China
EUT Information EUT Name: Model: Model Difference: Brand name: Sample Received Date: Sample Status: Sample ID: Date of Tested:	TOY Transmitter 55JT, 55JT2, 55JT0 Please see Clause 5.1 Motor Dayz February 07, 2025 Normal 8109675 February 08, 2025 to February 28, 2025

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C ISED RSS-210 Issue 11

Pass

Prepared By:

Vaniel Zhang

Daniel Zhang Project Engineer

Approved By:

Lephentino

Stephen Guo Operations Manager

Checked By:

Kebo.

Kebo Zhang Senior Project Engineer

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 ISSUE 11 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046.
------------------------------	--

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
DTS and 99% Occupied Bandwidth	±0.0196%			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name:	TOY Transmitter		
Model:	55JT, 55JT2, 55JT0		
Model Difference:	The appearance of PCB is different. 55JT0 adds a left button. 55JT2 adds two buttons.		

Frequency Range:	2410 MHz to 2473 MHz
Type of Modulation:	GFSK
Normal Test Voltage:	Battery 3V

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2410	9	2426	17	2441	25	2458
2	2414	10	2428	18	2442	26	2462
3	2415	11	2429	19	2444	27	2464
4	2416	12	2430	20	2446	28	2465
5	2417	13	2431	21	2450	29	2466
6	2418	14	2433	22	2452	30	2467
7	2419	15	2434	23	2454	31	2469
8	2421	16	2439	24	2456	32	2473

5.3. MAXIMUM FIELD STRENGTH

Test Mode	Frequency	Channel	Maximum Peak field	Maximum Average field
	(MHz)	Number	strength (dBµV/m)	strength (dBµV/m)
GFSK	2410 ~ 2473	1-32[32]	98.67	82.89

5.4. TEST CHANNEL CONFIGURATION

Test Mode Test Channel		Frequency	
GFSK	CH 1(Low Channel), CH 18(MID Channel), CH 32(High Channel)	2410 MHz, 2442 MHz, 2473 MHz	

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2410 MHz ~ 2473 MHz Band						
Test Software Version /						
Modulation Type	Transmit Antenna	Test Channel				
	Number	CH 1	CH 18	CH 32		
GFSK 1		Default	Default	Default		

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Maximum Antenna Gain (dBi)
1	2410-2473	PCB Antenna	1.0

Test Mode	Transmit and Receive Mode	Description						
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.						
Note: The va	Note: The value of the antenna gain was declared by customer							

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

lte	em Equipment Brand Name		Model Name	Specification		
	1	/	/	/	/	

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/

ACCESSORY

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
/	/	/	/	/	/

TEST SETUP

The EUT have the engineer mode inside.

SETUP DIAGRAM FOR TEST

6. MEASURING EQUIPMENT AND SOFTWARE USED

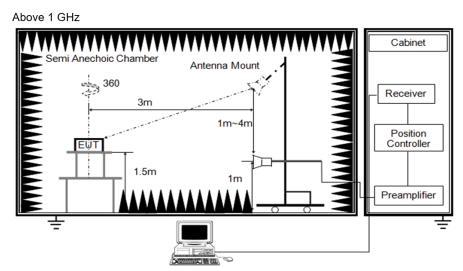
		Radiated	l Emissions			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
MXE EMI Receiver	KESIGHT	HT N9038A MY56400036 Sep.28, 2024		Sep.28, 2024	Sep.27, 2025	
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	May.08, 2023	May.07, 2026	
Preamplifier	HP	8447D	2944A09099	Sep.28, 2024	Sep.27, 2025	
EMI Measurement Receiver	R&S	ESR26	101377	Sep.28, 2024	Sep.27, 2025	
Horn Antenna	TDK	HRN-0118	130939	April 29, 2022	April 28, 2025	
Preamplifier	tior Ι ΙΝΚ ΙΡΔ-02-0118 Ι		TRS-305- 00067	Sep.28, 2024	Sep.27, 2025	
Horn Antenna	Schwarzbeck	BBHA9170	697	June 30, 2024	June 29, 2027	
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Sep.28, 2024	Sep.27, 2025	
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Sep.28, 2024	Sep.27, 2025	
Loop antenna	Schwarzbeck	1519B	00008	April 29, 2022	April 28, 2025	
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Sep.28, 2024	Sep.27, 2025	
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Sep.28, 2024	Sep.27, 2025	
Band Reject Filter Wainwright 2350-2 2483		WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Sep.28, 2024	Sep.27, 2025	
		So	ftware			
[Description		Manufacturer	Name	Version	
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1	

7. ANTENNA PORT TEST RESULTS

7.1. 20DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.249) Subpart C RSS-Gen Issue 5							
Section Test Item Limit Frequency F (MHz)							
CFR 47 FCC §15.215 (c)	20dB for reporting Bandwidth purposes only		2400-2483.5				
ISED RSS-Gen Clause 6.7 Issue 5	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5				


TEST PROCEDURE

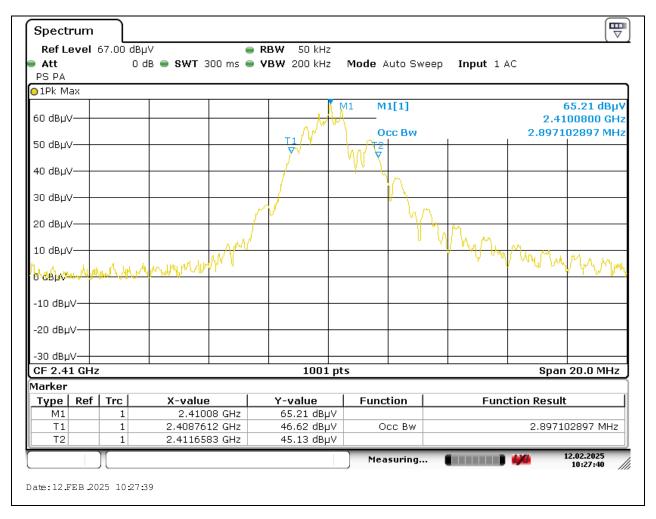
Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Connect the UUT to the spectrum analyzer and use the following settings:

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB/99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

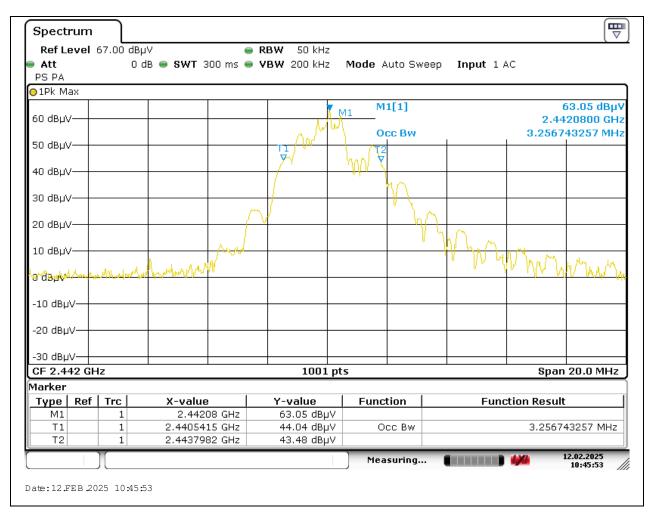


TEST ENVIRONMENT

Temperature	23.5 ℃	Relative Humidity	53%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

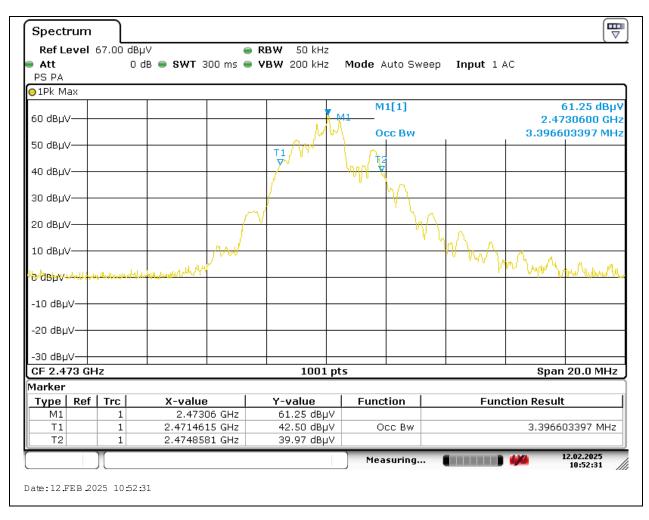
TEST RESULTS

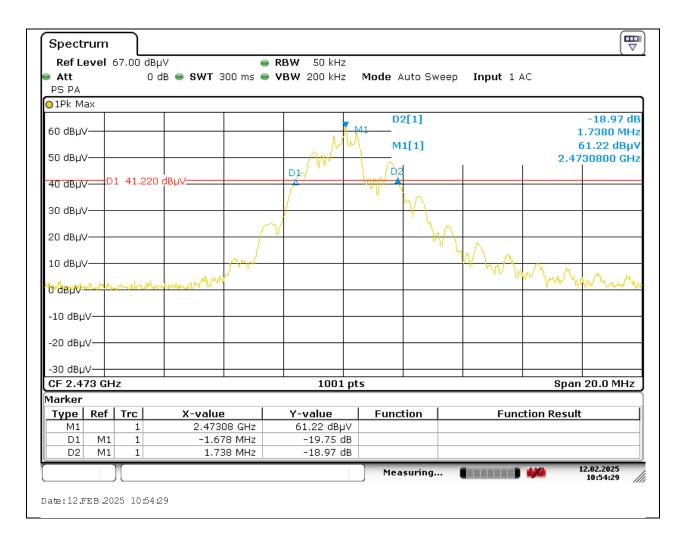
Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2410	2.90	2.96	PASS


UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Ref Le Att	evel i	77.00 di 10		_	RBW 50 kHz VBW 200 kHz		Auto Sw	een Inn i	ut 1 AC		
PS PA				00 1115 0	1011 200 KHZ	Mode	Hato off	00pp			
) 1Pk Ma	ах										
						[02[1]				-19.43 di
70 dBµV						1				1	.5780 MH
						L N	41[1]				5.26 dΒμ ^ν
60 dBµV	-				- M	₩{				2.41	00800 GH
					- Ar I						
50 dBµV			0 10.11		Dtv	60/ 22	2				
40 dBµV		1 45.25	0 dBµV		A	- 1/V	t l				
чо авру					1		10				
30 dBµV							$\langle \rangle$				
oo appv					and y		1 1 1	~			
20 dBµV					/ *		Ϋ́	h m			
				A HB			l I	With	Buch		126Hendren, fillander
10 ¹ 0801	rut ser egge	بمانعيميقتليك لأ	and the second second	while			_	<u> </u>	<u>r vupru</u>	Weight Augus	Althoutys, Jetterreet
0 dBµV−							_				
-10 dBµ\	/										
-20 dBµ\											
CF 2.41	. GHz				1001	pts				Span	20.0 MHz
larker											
Туре	Ref		X-value		Y-value		ction		Function	n Result	
M1		1	2.4100		65.26 dBµ						
D1 D2	M1	1		9 MHz	-20.00 d						
D2	M1	1	1.57	8 MHz	-19.43 d	8					
		Π				Me	asuring			1	2.02.2025

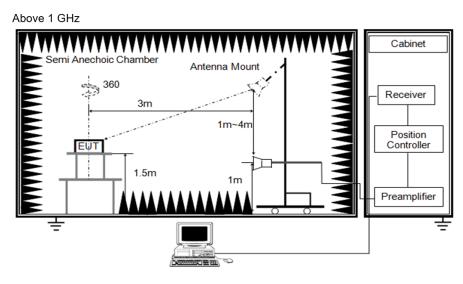
Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2442	3.26	3.32	PASS




Att	evel (57.00 dB 0	μV dB e SWT 300 ms	_	50 kHz 00 kHz	Mode A	uto Sweep	Input 1 A	ιC	
PS PA										
- 60 dBµV	,				w W	1	2[1] 1[1]		6	-19.83 dE 7180 MH: 53.05 dBµ\
50 dBµV				D1	\\	and B2			2.44	20800 GH:
40 dBµV	·	1 43.050	авру			<u>, aha</u>				
30 dBµV	,						N			
20 dBµV	·			Λ—			-4A	~		
10 dBµV			And				·)	V hra	Mur	145 JU
a gabya	marks	Mutant	Manuer Willy					• •	r why h	WWWWWWWWWW
-10 dBµ'	v+									
-20 dBµ'	v- -									
-30 dBµ'	v—									
CF 2.44	12 GH	z	· · ·		1001 pts	;			Span	20.0 MHz
/larker										
Туре	Ref		X-value	Y-va		Funct	ion	Func	tion Result	
M1 D1	M1	1	2.44208 GHz -1.598 MHz)5 dBµ∨ 9.82 dB					
D1 D2	M1	1	1.718 MHz		9.82 dB 9.83 dB					
						Mea	suring		440 1	12.02.2025 10:47:58

Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2473	3.40	3.42	PASS

7.2. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.3 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.0 V

TEST RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)
GFSK	16.25	100	0.1625	16.25	-15.78

Note: Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle

Note: All modes and buttons had been tested, but only the worst data was recorded in the report.

Note: On Time=Pulse width × Pulses per Burst × Bursts per Period

Pulse is the single transmitting time between M1 and D1 showed in the first graph below. Burst is a group of pulses, which is the transmitting time between M1 and D2 showed in the first graph below.

Bursts per Period is showed in the second graph below.

As a result, On Time=0.301ms \times 6 \times 9=16.25ms

REPORT NO.: 4791657244-1-RF-1 Page 21 of 58

Spectrur	n																						[₩
Ref Leve	l 67.00	dBµV						RBV	11	MHz													
Att 🛛		0 dB	😑 S'	wт :	21.5	5 ms	5 👄	VBV	v 31	MHz		Inp	ut 1 A	С									
SGL PS PA																							
🖯 1Pk Clrw 🤇	2Pk Clrv	N																					
			4		hΓ	٦Г	1					D2	2[1]				02		Π			0.2	22 dI
60 dBµV—			┝┼┼┶			++-		+									42				11	1.588	5 m
				IJП								M	1[1]									5.21	
50 dBµV—			Ħf					+													4	F.751	5 m
10 40.44																							
40 dBµV—																			Π				
30 dBµV—			Ш																				
յի գրիչ																							
20 dBµV—		,	Щ			Ш.												\square	Ш	Ш			
		- 11	17	11 11		1										1	11	11	14	1			
aplaed the	hellowe have have have have have been a stand with the second sec	Whitehold	ч	1 V	╨	Y	June -	w.ww	alite and	hill from	Hille		the house the	W	Aller	╟──	Ц	LY	U	4	-\ \	h al uh	nthat
100		i an					7	1	10 A 4	· · ·			10 80.11		0						ľ		,
0 dBµV					+			_									_				+		
-10 dBµV—					+			+									_				+		
-20 dBµV—					+			+													+		
00 Jp. 42																							
-30 dBµV-										001											_		
CF 2.41 G	HZ								1	1001	pts											2.15	ms/
Marker	6 .						-				- 1	F				-					. 1.4		
Type Re M1	ef Trc		X-1	value	e 515				-valu			Funct	tion			Fl	inc	τιο	n R	est	llt		
	11 1				515 01.0			t		L dBµ .00 d													
	11 1			11.5						.00 0 .22 d													
)(22.0	500							-					_			-	12	.02.202	5
												R	eady								12	10:19:4	ю
ate:12.FEB	2025 10	:19:40																					

Ref Level	67.00 dE	βμγ		BW 1 MHz				
		dB 😑 SWT			Inpu	t 1 AC		
SGL PS PA					•			
)1Pk Clrw⊙2	Pk Clrw?		_	_				
	MAA		MINIT	IIII		mm		
8C dBµV							0	
5C dBµV								
₩C dBµV——								ſ
3 <mark>0</mark> dBµV——								
20 dBµV	III Addum	ALANG BURG	palin for		hilmidea line	Krahadiala (hundred and	hadana laransitasian
0 dBµV								
-10 dBµV								
-20 dBµV								
-30 dBµV								
CF 2.41 GH	z	· ·		1001	pts			10.5 ms/
					R	eady 🛛		12.02.2025 10:26:38

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205, §15.209 and §15.249 (a).

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10 and RSS-210 B.10 (a).

Radiation Disturbance Test Limit for FCC

Emissions radia	Emissions radiated outside of the specified frequency bands above 30 MHz						
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Streng (dBuV/m) Quasi-P	at 3 m				
30 - 88	100	40					
88 - 216	150	43.5					
216 - 960	200	46					
Above 960	500	54					
Above 1000	500	Peak	Average				
	300	74	54				

FCC field strength of emissions from intentional radiators operated within these frequency bands						
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)			
902 - 928	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3			
2400 - 2483.5	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3			
5725 – 5875	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3			

The field strength of fundamental and harmonic emissions measured at 3 m shall not exceed the limits in table B2 for ISED.

Table B2 — Field strength limits at various frequencies								
	Field strength (mV/m)							
Frequency bands (MHz)	Fundamental emissions	Harmonic emissions						
902-928	50	0.5						
2400-2483.5	50	0.5						
5725-5875	50	0.5						
24000-24250	250	2.5						

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

FCC Emiss	FCC Emissions radiated outside of the specified frequency bands below 30 MHz							
Frequency (MHz)	Field strength (microvolts/meter) Measurement distance (m							
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30.0	30	30						

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz							
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)					
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300					
490 - 1705 kHz	63.7/F (F in kHz)	30					
1.705 - 30 MHz	0.08	30					

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

z	MHz	GHz
90 - 0.110	149.9 - 150.05	9.0 - 9.2
95 - 0.505	156.52475 - 156.52525	9.3 - 9.5
735 - 2.1905	156.7 - 156.9	10.6 - 12.7
20 - 3.026	162.0125 - 167.17	13.25 - 13.4
25 - 4.128	167.72 - 173.2	14.47 - 14.5
7725 - 4.17775	240 - 285	15.35 - 16.2
0725 - 4.20775	322 - 335.4	17.7 - 21.4
77 - 5.683	399.9 - 410	22.01 - 23.12
15 - 6.218	608 - 614	23.6 - 24.0
6775 - 6.26825	960 - 1427	31.2 - 31.8
175 - 6.31225	1435 - 1626.5	36.43 - 36.5
91 - 8.294	1645.5 - 1648.5	Above 38.6
32 - 8.366	1660 - 1710	
7625 - 8.38675	1718.8 - 1722.2	
1425 - 8.41475	2200 - 2300	
9 - 12.293	2310 - 2390	
51975 - 12.52025	2483.5 - 2500	
57675 - 12.57725	2655 - 2900	
36 - 13.41	3280 - 3287	
42 - 16.423	3332 - 3339	
39475 - 16.69525	3345.8 - 3358	
80425 - 18.80475	3500 - 4400	
- 25.67	4500 - 5150	
5 - 38.25	5350 - 5460	
74.6	7250 - 7750	
- 75.2	8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

For Restricted Bandedge and Spurious Emissions

RBW	1 MHz
VBW	3 MHz
Sweep	Auto
Detector	Peak
Trace	Max hold

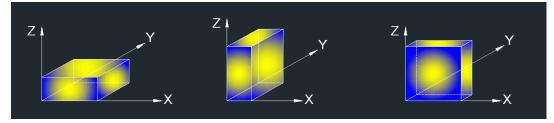
For field strength of fundamental emission

RBW	\geq 20dB Bandwidth or 99% Occupied Bandwidth, which one is greater
VBW	3 imes RBW
Sweep	Auto
Detector	Peak
Trace	Max hold

Note: According to test result of Clause 7.1, RBW is set as 5MHz.

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. AVG Result=Peak Result + Duty Cycle Correction Factor. For the + Duty Cycle Correction Factor please refer to clause 7.2. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For Restricted Bandedge and field strength of fundamental emission: Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Both horizontal and vertical have been tested, only the worst data was recorded in the report.
 All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (30 MHz ~ 1 GHz):

Note:

1. Result Level = Read Level + Correct Factor.

If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
 All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

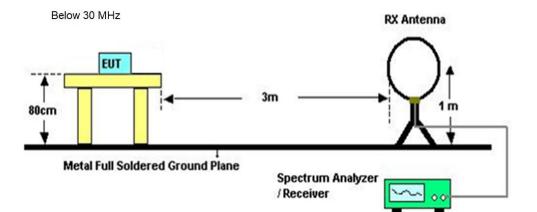
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

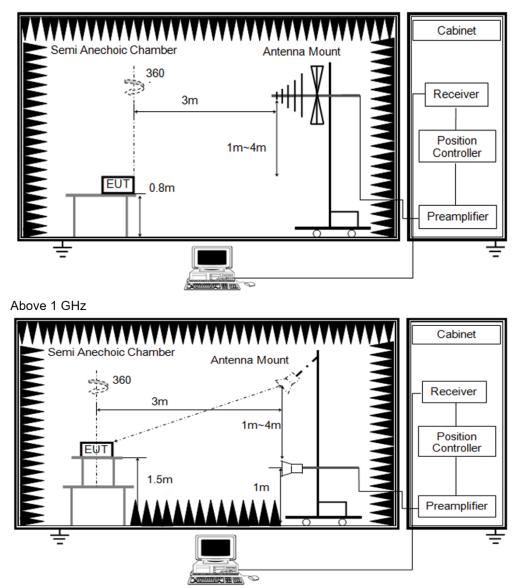
8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:

1. Measurement = Reading Level + Correct Factor.


2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

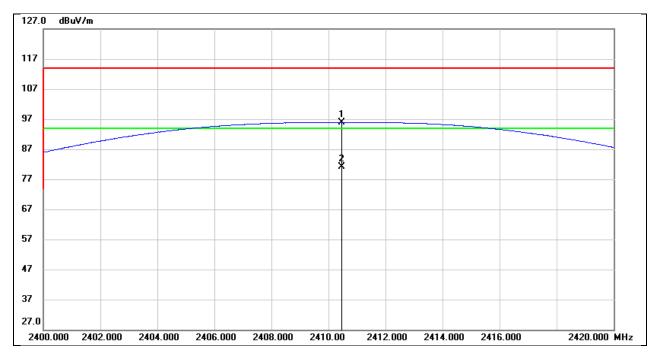

4. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

TEST SETUP

Below 1 GHz and above 30 MHz

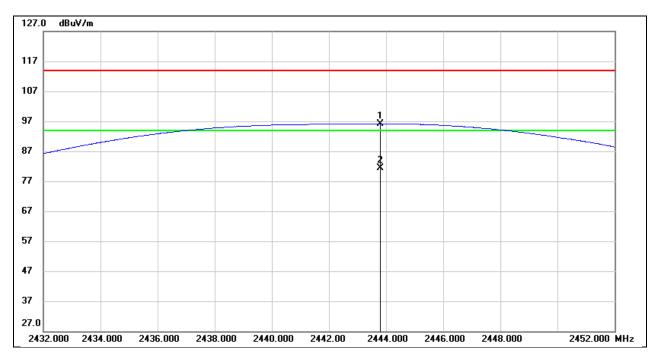
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

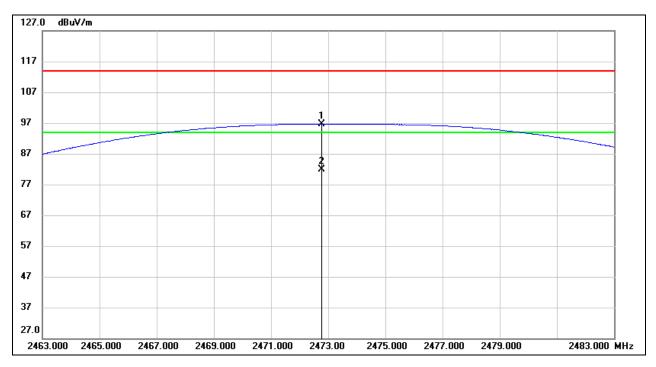

Temperature	23.9 ℃	Relative Humidity	59%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3 V

TEST RESULTS

8.1. FUNDAMENTAL EMISSION

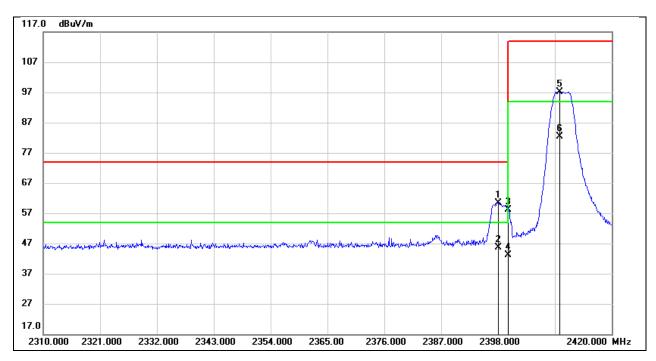

Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Horizontal	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2410.460	64.09	31.80	97.89	114.00	-18.11	Fundamental
2	2410.460	/	/	82.11	94.00	-13.89	Fundamental


Test Mode:	2.4GHz	Frequency(MHz):	2442
Polarity:	Horizontal	Test Voltage:	DC 3 V

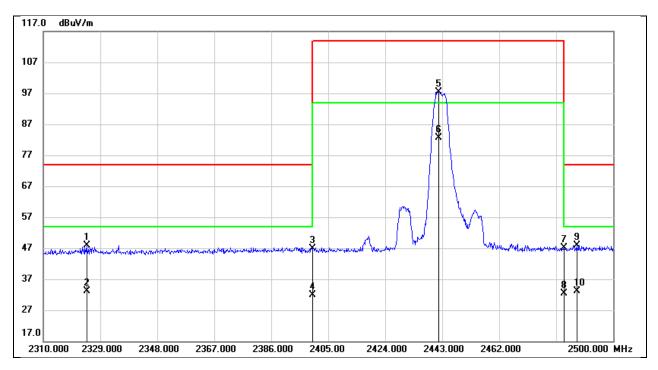
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2443.800	64.33	31.89	98.22	114.00	-17.78	Fundamental
2	2443.800	/	/	82.44	94.00	-13.56	Fundamental

Test Mode:	2.4GHz	Frequency(MHz):	2473
Polarity:	Horizontal	Test Voltage:	DC 3 V



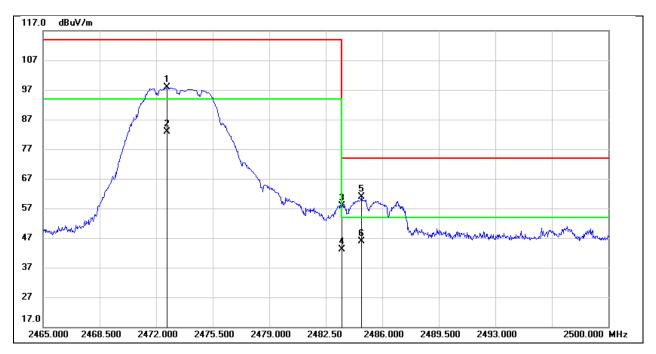
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2472.760	64.70	31.97	98.67	114.00	-17.33	Fundamental
2	2472.760	/	/	82.89	94.00	-13.11	Fundamental

8.2. RESTRICTED BANDEDGE


Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Horizontal	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2398.110	28.73	31.77	60.50	74.00	-13.50	peak
2	2398.110	/	/	44.72	54.00	-9.28	AVG
3	2400.000	26.28	31.77	58.05	74.00	-15.95	peak
4	2400.000	/	/	42.27	54.00	-11.73	AVG
5	2409.990	65.40	31.80	97.20	114.00	-16.80	Max Emission
6	2409.990	/	/	81.42	94.00	-12.58	Position

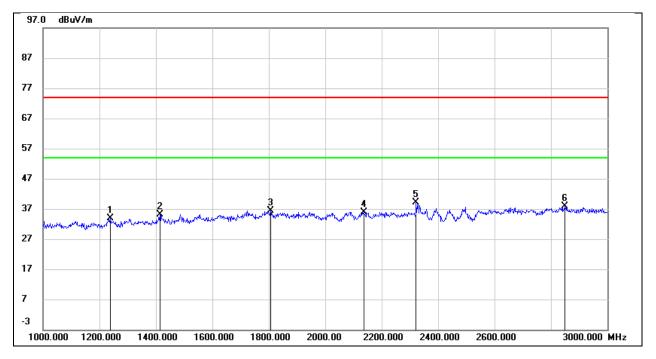
Test Mode:	2.4GHz	Frequency(MHz):	2442
Polarity:	Horizontal	Test Voltage:	DC 3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2324.440	16.48	31.48	47.96	74.00	-26.04	peak
2	2324.440	/	/	32.18	54.00	-21.82	AVG
3	2400.000	15.08	31.77	46.85	74.00	-27.15	peak
4	2400.000	/	/	31.07	54.00	-22.93	AVG
5	2441.860	65.54	31.88	97.42	114.00	-16.58	Max Emission
6	2441.860	/	/	81.64	94.00	-12.36	Position
7	2483.500	15.25	32.00	47.25	74.00	-26.75	peak
8	2483.500	/	/	31.47	54.00	-22.53	AVG
9	2487.840	15.92	32.01	47.93	74.00	-26.07	peak
10	2487.840	/	1	32.15	54.00	-21.85	AVG

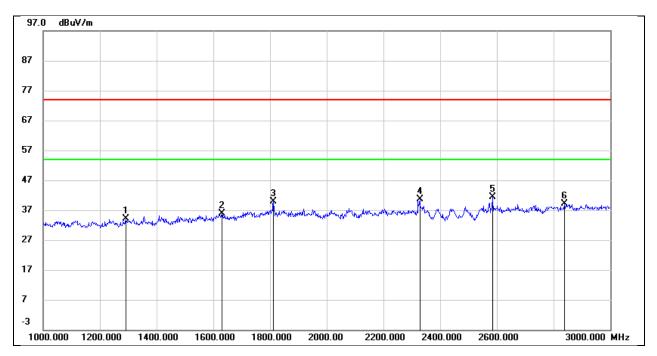
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Test Mode:	2.4GHz	Frequency(MHz):	2473
Polarity:	Horizontal	Test Voltage:	DC 3 V

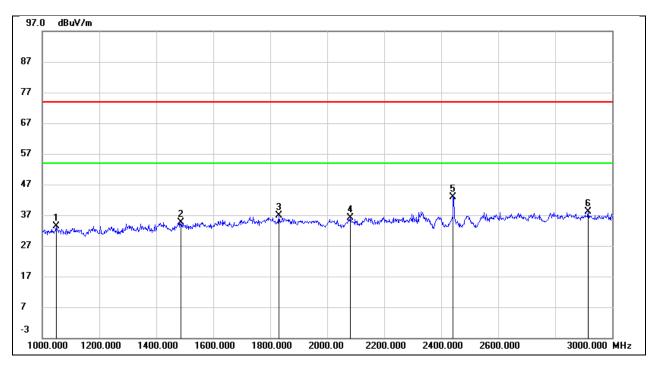


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2472.665	65.81	31.97	97.78	114.00	-16.22	Max Emission
2	2472.665	/	/	82.00	94.00	-12.00	Position
3	2483.500	25.95	32.00	57.95	74.00	-16.05	peak
4	2483.500	/	/	42.17	54.00	-11.83	AVG
5	2484.705	28.87	32.00	60.87	74.00	-13.13	peak
6	2484.705	/	/	45.09	54.00	-8.91	AVG

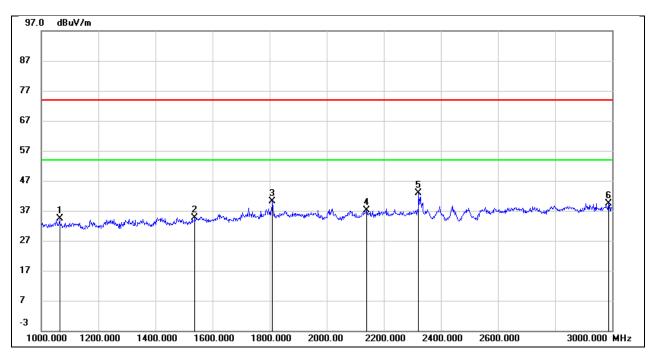
8.3. SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)


Test Mode:	2.4GHZ	Frequency(MHz):	2410
Polarity:	Horizontal	Test Voltage:	DC 3 V

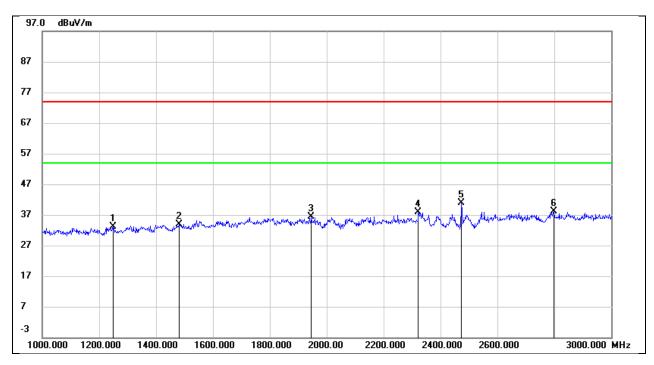
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1238.000	47.05	-13.28	33.77	74.00	-40.23	peak
2	1414.000	47.53	-12.38	35.15	74.00	-38.85	peak
3	1806.000	46.30	-9.97	36.33	74.00	-37.67	peak
4	2136.000	45.57	-9.59	35.98	74.00	-38.02	peak
5	2322.000	47.97	-8.89	39.08	74.00	-34.92	peak
6	2850.000	44.46	-6.69	37.77	74.00	-36.23	peak


Test Mode:	2.4GHZ	Frequency(MHz):	2410
Polarity:	Vertical	Test Voltage:	DC 3 V

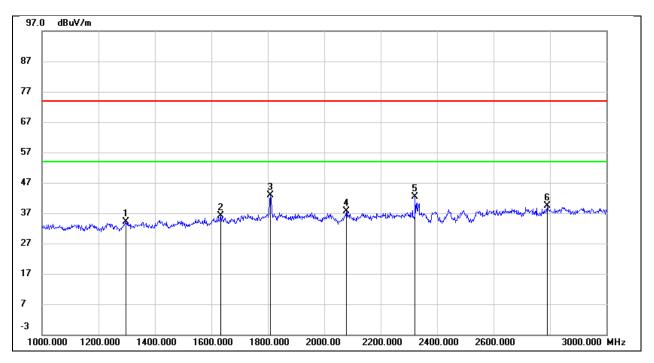
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1292.000	46.82	-12.65	34.17	74.00	-39.83	peak
2	1630.000	46.73	-10.86	35.87	74.00	-38.13	peak
3	1812.000	49.21	-9.37	39.84	74.00	-34.16	peak
4	2328.000	48.57	-8.02	40.55	74.00	-33.45	peak
5	2584.000	48.27	-6.95	41.32	74.00	-32.68	peak
6	2838.000	44.78	-5.61	39.17	74.00	-34.83	peak


Test Mode:	2.4GHZ	Frequency(MHz):	2442
Polarity:	Horizontal	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1048.000	47.69	-14.21	33.48	74.00	-40.52	peak
2	1486.000	46.71	-11.96	34.75	74.00	-39.25	peak
3	1830.000	46.90	-9.97	36.93	74.00	-37.07	peak
4	2080.000	45.99	-9.79	36.20	74.00	-37.80	peak
5	2442.000	51.29	-8.43	42.86	1	/	Fundamental
6	2916.000	44.43	-6.39	38.04	74.00	-35.96	peak

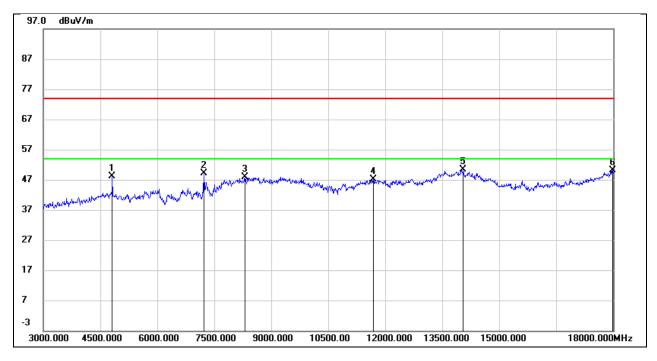

Test Mode:	2.4GHZ	Frequency(MHz):	2442
Polarity:	Vertical	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	47.84	-13.50	34.34	74.00	-39.66	peak
2	1538.000	46.16	-11.53	34.63	74.00	-39.37	peak
3	1810.000	49.47	-9.37	40.10	74.00	-33.90	peak
4	2140.000	45.92	-8.70	37.22	74.00	-36.78	peak
5	2322.000	51.05	-8.05	43.00	74.00	-31.00	peak
6	2988.000	44.20	-4.78	39.42	74.00	-34.58	peak


Test Mode:	2.4GHZ	Frequency(MHz):	2473
Polarity:	Horizontal	Test Voltage:	DC 3 V

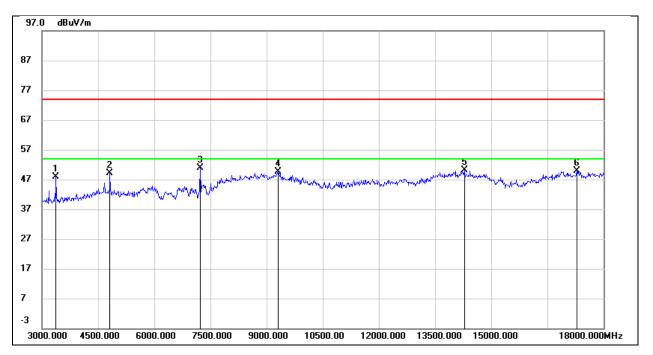
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1248.000	46.37	-13.23	33.14	74.00	-40.86	peak
2	1480.000	45.96	-11.99	33.97	74.00	-40.03	peak
3	1946.000	46.38	-10.06	36.32	74.00	-37.68	peak
4	2322.000	46.76	-8.89	37.87	74.00	-36.13	peak
5	2474.000	49.11	-8.31	40.80	/	/	Fundamental
6	2798.000	45.05	-6.93	38.12	74.00	-35.88	peak

Test Mode:	2.4GHZ	Frequency(MHz):	2473
Polarity:	Vertical	Test Voltage:	DC 3 V

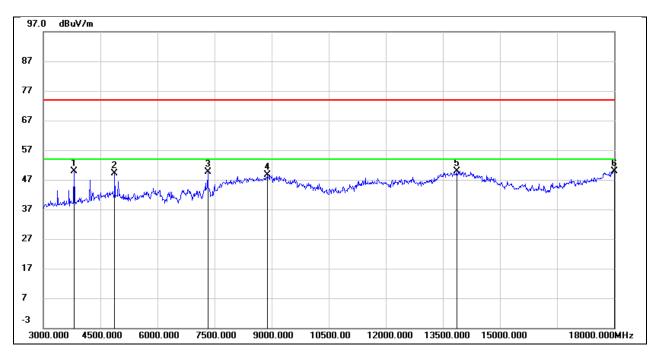


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1296.000	46.77	-12.64	34.13	74.00	-39.87	peak
2	1632.000	46.94	-10.84	36.10	74.00	-37.90	peak
3	1810.000	52.32	-9.37	42.95	74.00	-31.05	peak
4	2078.000	46.63	-8.92	37.71	74.00	-36.29	peak
5	2322.000	50.35	-8.05	42.30	74.00	-31.70	peak
6	2790.000	45.27	-5.88	39.39	74.00	-34.61	peak

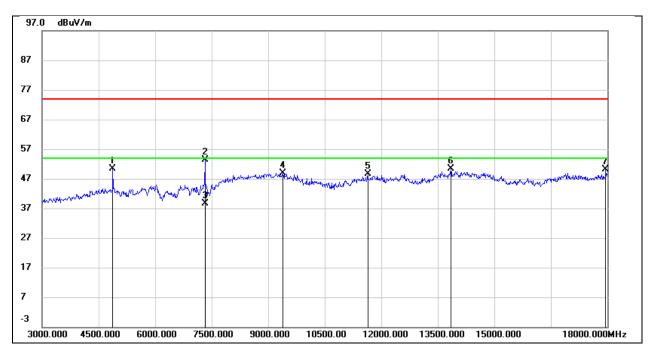
8.4. SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)


Test Mode:	2.4GHZ	Frequency(MHz):	2410
Polarity:	Horizontal	Test Voltage:	DC 3 V

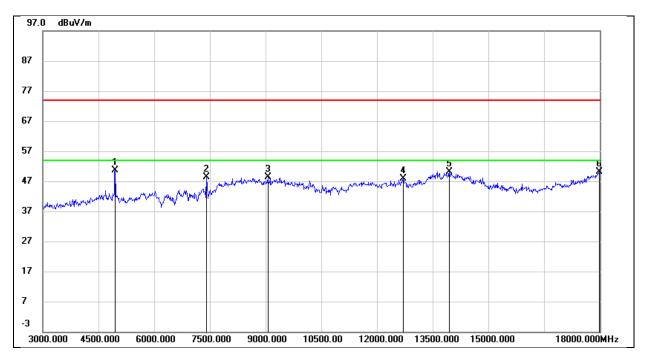
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	47.75	0.50	48.25	74.00	-25.75	peak
2	7230.000	42.31	6.93	49.24	74.00	-24.76	peak
3	8310.000	39.16	8.74	47.90	74.00	-26.10	peak
4	11685.000	28.92	18.31	47.23	74.00	-26.77	peak
5	14055.000	26.69	23.68	50.37	74.00	-23.63	peak
6	17985.000	20.57	29.49	50.06	74.00	-23.94	peak


Test Mode:	2.4GHZ	Frequency(MHz):	2410
Polarity:	Vertical	Test Voltage:	DC 3 V

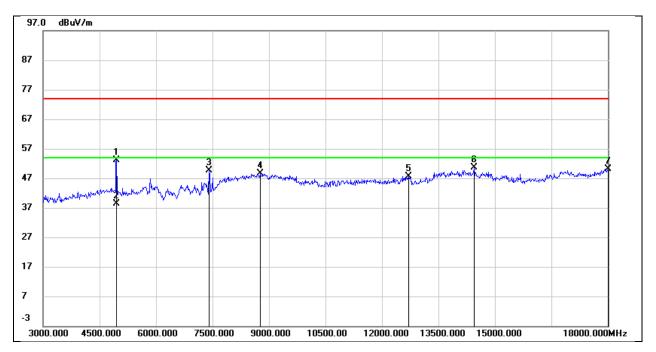
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3375.000	50.90	-2.93	47.97	74.00	-26.03	peak
2	4815.000	47.46	1.59	49.05	74.00	-24.95	peak
3	7230.000	43.14	7.65	50.79	74.00	-23.21	peak
4	9300.000	37.95	11.68	49.63	74.00	-24.37	peak
5	14280.000	27.97	22.05	50.02	74.00	-23.98	peak
6	17280.000	24.41	25.35	49.76	74.00	-24.24	peak


Test Mode:	2.4GHZ	Frequency(MHz):	2442
Polarity:	Horizontal	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3810.000	52.79	-2.91	49.88	74.00	-24.12	peak
2	4875.000	48.38	0.65	49.03	74.00	-24.97	peak
3	7320.000	42.52	7.05	49.57	74.00	-24.43	peak
4	8895.000	38.80	9.84	48.64	74.00	-25.36	peak
5	13860.000	26.62	23.19	49.81	74.00	-24.19	peak
6	18000.000	20.26	29.64	49.90	74.00	-24.10	peak

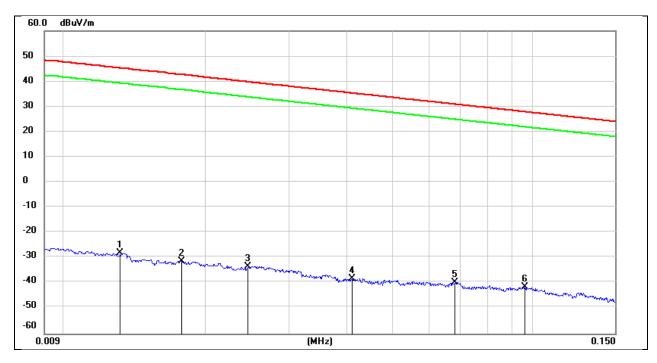

Test Mode:	2.4GHZ	Frequency(MHz):	2442
Polarity:	Vertical	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	48.63	1.78	50.41	74.00	-23.59	peak
2	7320.000	45.72	7.69	53.41	74.00	-20.59	peak
3	7320.000	/	/	37.63	54.00	-15.46	AVG
4	9390.000	36.95	11.99	48.94	74.00	-25.06	peak
5	11640.000	31.70	16.84	48.54	74.00	-25.46	peak
6	13845.000	28.77	21.49	50.26	74.00	-23.74	peak
7	17955.000	22.89	27.18	50.07	74.00	-23.93	peak


Test Mode:	2.4GHZ	Frequency(MHz):	2473
Polarity:	Horizontal	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	49.92	0.83	50.75	74.00	-23.25	peak
2	7410.000	41.21	7.18	48.39	74.00	-25.61	peak
3	9060.000	38.01	10.45	48.46	74.00	-25.54	peak
4	12705.000	28.75	19.25	48.00	74.00	-26.00	peak
5	13950.000	26.51	23.58	50.09	74.00	-23.91	peak
6	17985.000	20.54	29.49	50.03	74.00	-23.97	peak

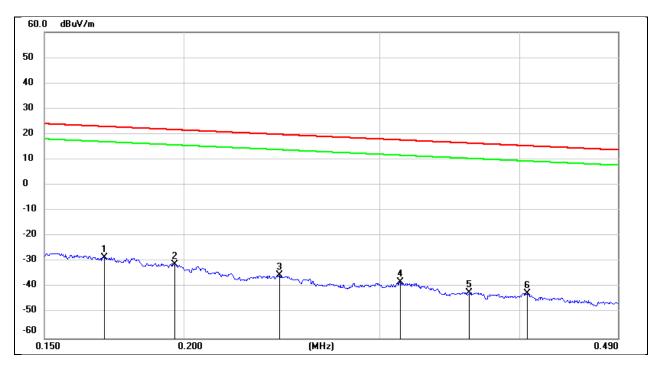
Test Mode:	2.4GHZ	Frequency(MHz):	2473
Polarity:	Vertical	Test Voltage:	DC 3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	51.17	2.00	53.17	74.00	-20.83	peak
2	4950.000	/	/	37.39	54.00	-15.70	AVG
3	7410.000	41.77	7.76	49.53	74.00	-24.47	peak
4	8775.000	38.50	10.02	48.52	74.00	-25.48	peak
5	12705.000	29.48	18.22	47.70	74.00	-26.30	peak
6	14445.000	28.86	21.66	50.52	74.00	-23.48	peak
7	18000.000	22.76	27.44	50.20	74.00	-23.80	peak

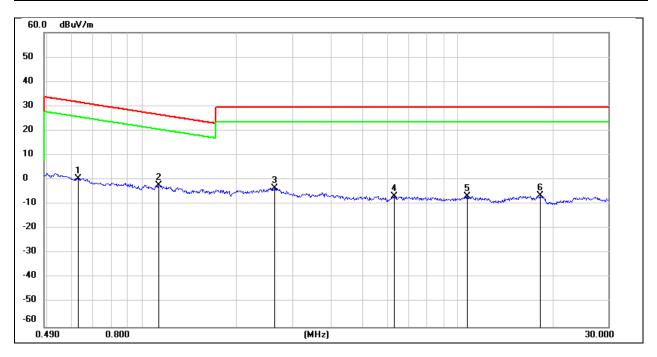
8.5. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)

Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 3 V



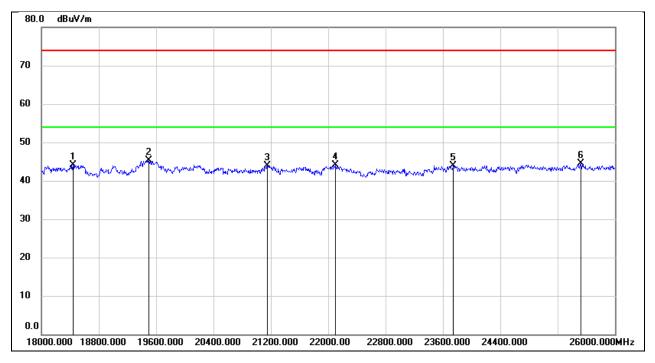
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.0131	73.45	-101.38	-27.93	-79.43	45.25	-6.25	-73.18	peak
2	0.0177	70.07	-101.35	-31.28	-82.78	42.64	-8.86	-73.92	peak
3	0.0246	68.01	-101.36	-33.35	-84.85	39.78	-11.72	-73.13	peak
4	0.0410	63.24	-101.44	-38.20	-89.7	35.35	-16.15	-73.55	peak
5	0.0680	61.92	-101.56	-39.64	-91.14	30.95	-20.55	-70.59	peak
6	0.0961	60.23	-101.76	-41.53	-93.03	27.95	-23.55	-69.48	peak

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 3 V

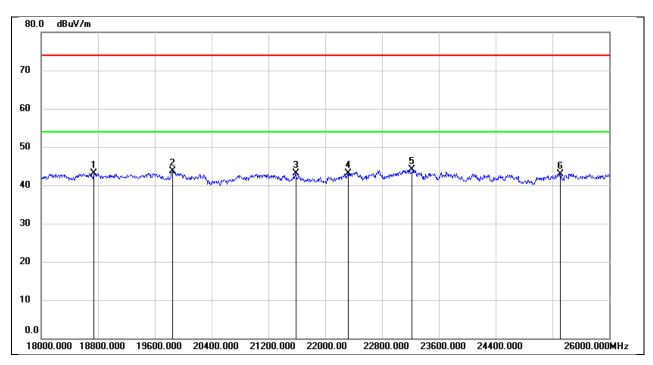
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.1696	73.24	-101.67	-28.43	-79.93	23.02	-28.48	-51.45	peak
2	0.1962	70.79	-101.71	-30.92	-82.42	21.75	-29.75	-52.67	peak
3	0.2436	66.46	-101.79	-35.33	-86.83	19.87	-31.63	-55.20	peak
4	0.3129	63.94	-101.87	-37.93	-89.43	17.69	-33.81	-55.62	peak
5	0.3608	59.87	-101.91	-42.04	-93.54	16.46	-35.04	-58.50	peak
6	0.4062	59.64	-101.96	-42.32	-93.82	15.43	-36.07	-57.75	peak

Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 3 V



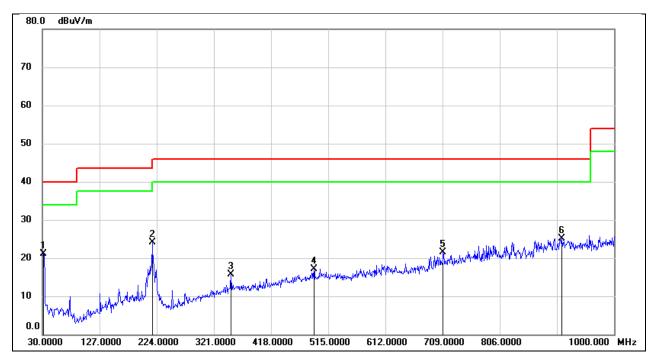
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.6298	62.67	-62.09	0.58	-50.92	31.62	-19.88	-31.04	peak
2	1.1290	59.99	-62.21	-2.22	-53.72	26.55	-24.95	-28.77	peak
3	2.6442	58.30	-61.67	-3.37	-54.87	29.54	-21.96	-32.91	peak
4	6.3033	54.45	-61.31	-6.86	-58.36	29.54	-21.96	-36.40	peak
5	10.7299	53.98	-60.83	-6.85	-58.35	29.54	-21.96	-36.39	peak
6	18.2545	54.43	-60.90	-6.47	-57.97	29.54	-21.96	-36.01	peak

8.6. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)

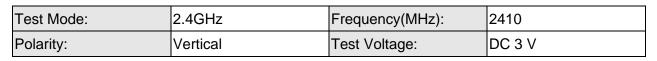

Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Horizontal	Test Voltage:	DC 3 V

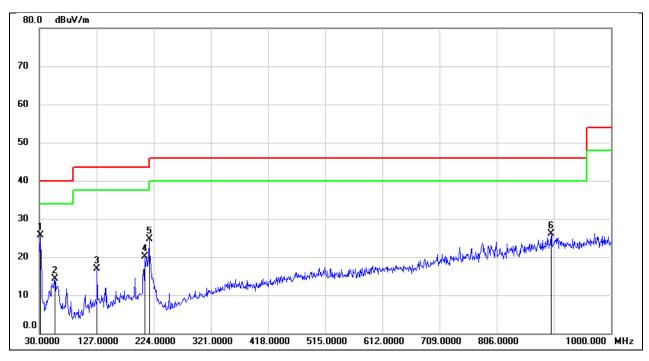
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18440.000	49.33	-5.32	44.01	74.00	-29.99	peak
2	19496.000	50.79	-5.55	45.24	74.00	-28.76	peak
3	21152.000	48.70	-4.81	43.89	74.00	-30.11	peak
4	22104.000	48.44	-4.38	44.06	74.00	-29.94	peak
5	23744.000	47.15	-3.20	43.95	74.00	-30.05	peak
6	25528.000	46.16	-1.65	44.51	74.00	-29.49	peak

Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Vertical	Test Voltage:	DC 3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18736.000	48.51	-5.41	43.10	74.00	-30.90	peak
2	19848.000	49.01	-5.33	43.68	74.00	-30.32	peak
3	21584.000	47.60	-4.56	43.04	74.00	-30.96	peak
4	22328.000	47.20	-4.11	43.09	74.00	-30.91	peak
5	23224.000	47.43	-3.37	44.06	74.00	-29.94	peak
6	25312.000	44.70	-1.70	43.00	74.00	-31.00	peak


8.7. SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)


Test Mode:	2.4GHz	Frequency(MHz):	2410
Polarity:	Horizontal	Test Voltage:	DC 3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.9400	34.78	-13.62	21.16	40.00	-18.84	QP
2	216.2400	36.92	-12.89	24.03	46.00	-21.97	QP
3	350.1000	25.36	-9.58	15.78	46.00	-30.22	QP
4	490.7500	24.95	-7.81	17.14	46.00	-28.86	QP
5	709.9699	25.83	-4.35	21.48	46.00	-24.52	QP
6	911.7300	26.59	-1.41	25.18	46.00	-20.82	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.9400	39.37	-13.62	25.75	40.00	-14.25	QP
2	56.1900	29.62	-15.38	14.24	40.00	-25.76	QP
3	127.9700	31.50	-14.66	16.84	43.50	-26.66	QP
4	208.4800	32.66	-12.48	20.18	43.50	-23.32	QP
5	216.2400	37.62	-12.89	24.73	46.00	-21.27	QP
6	898.1500	27.51	-1.39	26.12	46.00	-19.88	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

DESCRIPTION

Pass

END OF REPORT