

MPE Calculation

Model

: US-SK103, US-OSK103, CE-SK103, EU-OSK103

Product Type

: Smart Kit

Applicant

: GD Midea Air-conditioning Equipment Co.,Ltd

Address

: Midea Industrial District, Beijiao, Shunde, Foshan, Guangdong, China

Manufacturer

: GD Midea Air-conditioning Equipment Co. Ltd

Address

Midea Industrial District, Beijiao, Shunde, Foshan, Guangdong, China

FCC ID

2ADQOMDNA19

IC

12575A-MDNA19

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f²)	30
30–300	27.5	0.073	0.2	30
300–1,500	1	1	f/1500	30
1,500-100,000	1	1	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/ $(4\pi R^2)$ = power density (in appropriate units, e.g. mW/cm2);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

China

Maximum peak output power at antenna input terminal (dBm):	15.0	
Maximum peak output power at antenna input terminal (mW):		
Prediction distance (cm):		
Antenna Gain, typical (dBi):	2.1	
Maximum Antenna Gain (numeric):	1.62	
The worst case is power density at predication frequency at 20 cm (mW/cm2):		
MPE limit for general population exposure at prediction frequency (mW/cm2):		

0.01 (mW/cm2) < 1 (mW/cm2)

Result: Compliant

TUV SUD China, Guangzhou Branch

Reviewed by:

Prepared By:

Tony Liu / Project Reviewer

Date: 2018-11-29

Kevin Ouyang / Project Handler Date: 2018-11-29