

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 2002RSU019-U1 Report Version: V01 Issue Date: 03-19-2020

MEASUREMENT REPORT

FCC PART 15.249 / RSS-210

FCC ID:	BRWSPMAR630
IC:	6157A-SPMAR630
Applicant:	Horizon Hobby, LLC

Application Type:	Certification
Product:	AR630 SAFE and AS3X 6CH Receiver
Model No.:	AR630
Brand Name:	Spektrum
FCC Classification:	Part 15 Low Power Communication Device Transmitter
	(DXX)
FCC Rule Part(s):	Part 15.249
ISED Rule(s):	RSS-210 Issue 10, RSS-Gen Issue 5
Test Procedure(s):	ANSI C63.10 - 2013
Test Date:	January 29 ~ March 07, 2020

Surry Sur (Sunny Sun) **Reviewed By:** sbin Wu Approved By: TESTING LABORATORY CERTIFICATE #3628.01 (Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2002RSU019-U1	Rev. 01	Initial Report	03-19-2020	Valid

CONTENTS

Des	scription	n	Page
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	OUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Operation Frequency and Channel List	
	2.3.	Test Configuration	
	2.4.	EMI Suppression Device(s)/Modifications	8
	2.5.	Labeling Requirements	8
3.	DESC	RIPTION OF TEST	9
	3.1.	Evaluation Procedure	9
	3.2.	AC Line Conducted Emissions	9
	3.3.	Radiated Emissions	10
4.	ANTE	NNA REQUIREMENTS	11
5.	TEST	EQUIPMENT CALIBRATION DATE	12
6.	MEAS	UREMENT UNCERTAINTY	
7.		RESULT	
	7.1.	Summary	
	7.2.	Conducted Emission	
	7.2.1.	Test Limit	
		Test Setup	
	7.2.3. 7.3.	Test Result	
	7.3.1.	Radiated Emission Test Limit	
	7.3.1.	Test Setup	
	7.3.3.	Test Result	
	7.3.3.	Radiated Restricted Band Edge Measurement	
	7.4.1.	Test Limit	
	7.4.1.	Test Setup	
	7.4.3.	Test Result	
	7.5.	20dB Spectrum Bandwidth Measurement	
	7.5.1.	Test Limit	
	7.5.2.	Test Procedure used	

	7.5.3.	Test Setting	32
	7.5.4.	Test Setup	32
	7.5.5.	Test Result	33
	7.6. 9	99% Bandwidth Measurement	34
	7.6.1.	Test Limit	34
	7.6.2.	Test Procedure used	34
	7.6.3.	Test Setting	34
	7.6.4.	Test Setup	34
	7.6.5.	Test Result	35
8.	CONCL	USION	36
Арр	endix A	- Test Setup Photograph	37
Арр	endix B	- EUT Photograph	38

General Information

Applicant:	Horizon Hobby, LLC
Applicant Address:	2904 Research Rd., Champaign IL 61822
Manufacturer:	HANA
Manufacturer Address:	RUA DE PEQUIM NO. 126, EDF, COMMERCIAL 1 TAK C18, MACAU,
Manufacturer Address:	CNSHA, Country CN
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development
	Zone, Suzhou, China

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Designation No. CN1166) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

A	ccredited Laboratory
	A2LA has occredited
	CHNOLOGY (SUZHOU) CO., LTD. zhou, Jiangsu, People's Republic of China
	for technical competence in the field of
	Electrical Testing
General requirements for the ca technical competence for a	i in accordance with the recognized international Standard ISO/IEC 170252017 impetence of testing and calibration laboratories. This accreditation demonstrate a defined scope and the operation of a laboratory quality management system er to joint ISO-ILAC-IAF Communiqué dated April 2017).
and the second s	Presented this 24 th day of July 2018.
	President and CEO For the Accessition council relative House 11 (2020)

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	AR630 SAFE and AS3X 6CH Receiver
Model No.:	AR630
Brand Name:	Spektrum
Power Supply:	By Battery
Frequency Range:	2402 ~ 2478 MHz
Channel Number:	23
Type of Modulation:	GFSK
Identification Number:	01

2.2. Operation Frequency and Channel List

Channel	Frequency	Channel	Frequency
00	2402 MHz	12	2440 MHz
01	2404 MHz	13	2446 MHz
02	2407 MHz	14	2450 MHz
03	2411 MHz	15	2456 MHz
04	2414 MHz	16	2459 MHz
05	2417 MHz	17	2463 MHz
06	2420 MHz	18	2466 MHz
07	2424 MHz	19	2469 MHz
08	2427 MHz	20	2473 MHz
09	2430 MHz	21	2476 MHz
10	2433 MHz	22	2478 MHz
11	2437 MHz		

Note: The engineer test sample was provided by the manufacturer, it was configured into fixed frequency T_X status after power on.

2.3. Test Configuration

The EUT was tested as described in this report is compliance with the requirements limits of FCC Rules Part 15.207,15.209, 15.215 and 15.249. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.4. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSS-Gen Issue 5 Section 4

In addition to complying with the applicable RSSs and RSP-100, each unit of a product model (i.e. of a radio apparatus) shall meet the labelling requirements set out in this section prior to being marketed in Canada or imported into Canada.

For information regarding the labelling option, see Section 4.1, 4.2, 4.3 4.4. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements. Please see attachment for IC label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the requirements provided in FCC 15.207, 15.209, 15.215 and 15.249 were performed in the report of the EUT.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150 kHz to 30 MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9 kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-25GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

• The antenna of the EUT applies an IPEX connector coupling to the EUT.

Conclusion:

This unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2020/04/15
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2020/06/13
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2020/06/13
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2020/08/08
Shielding Room	MIX-BEP	Chamber-SR2	MRTSUE06215	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Туре No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2020/03/31
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2021/02/23
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	ТDК	Chamber-AC1	MRTSUE06212	1 year	2020/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2020/10/27
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2021/02/23
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2020/12/15
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2020/04/30

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2020/04/15
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06452	1 year	2020/07/11
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2020/04/15
Power Meter	Agilent	U2021XA	MRTSUE06030	1 year	2020/11/18
USB wideband power sensor	Keysight	U2021XA	MRTSUE06446	1 year	2020/06/30
USB wideband power sensor	Keysight	U2021XA	MRTSUE06447	1 year	2020/06/30
Bluetooth Test Set	Anritsu	MT8852B-042	MRTSUE06389	1 year	2020/06/13
Audio Analyzer	Agilent	U8903B	MRTSUE06143	1 year	2020/06/13
Modulation Analyzer	HP	8901A	MRTSUE06098	1 year	2020/10/10
Wideband Radio Communication Tester	R&S	CMW 500	MRTSUE06243	1 year	2020/11/07
DC Power Supply	GWINSTEK	DPS-3303C	MRTSUE06064	N/A	N/A
Temperature & Humidity Chamber	BAOYT	BYH-150CL	MRTSUE06051	1 year	2020/11/07
Thermohygrometer	testo	608-H1	MRTSUE06401	1 year	2020/08/08

Software	Version	Function
EMI Software	V3	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Emis	conducted Emission Measurement - SR2				
The maxim	The maximum measurement uncertainty is evaluated as:				
9kHz~150k	Hz: 3.84dB				
150kHz~30	MHz: 3.46dB				
Radiated Emiss	ion Measurement - AC1				
The maxim	um measurement uncertainty is evaluated as:				
Horizontal:	30MHz~300MHz: 4.07dB				
	300MHz~1GHz: 3.63dB				
	1GHz~18GHz: 4.16dB				
Vertical:	30MHz~300MHz: 4.18dB				
	300MHz~1GHz: 3.60dB				
	1GHz~18GHz: 4.76dB				
Radiated Emissi	ion Measurement - AC2				
The maxim	um measurement uncertainty is evaluated as:				
Horizontal:	30MHz~300MHz: 3.75dB				
	300MHz~1GHz: 3.53dB				
	1GHz~18GHz: 4.28dB				
Vertical:	30MHz~300MHz: 3.86dB				
	300MHz~1GHz: 3.53dB				
	1GHz~18GHz: 4.33dB				

7. TEST RESULT

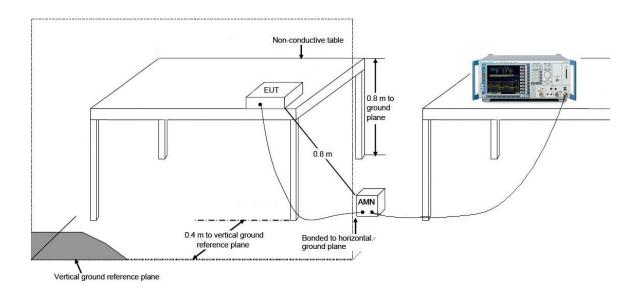
7.1. Summary

FCC Part	RSS	Test	Test	Test	Test	Reference
Section(s)	Section(s)	Description	Limit	Condition	Result	
15.207	RSS-Gen Clause 8.8	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.2
15.209 15.249	RSS-Gen Clause 8.9; RSS-210 Annex B.10	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.3 & 7.4
15.215(c)	N/A	20dB Spectrum Bandwidth	20 dB bandwidth of the emission in the specific band	Conducted	Pass	Section 7.5
N/A	RSS-GEN Clause 6.7	99% Occupied Bandwidth	N/A		Pass	Section 7.6

Notes:

1. All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

- 2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. "N/A" means that the test item is not applicable, and the details information refer to relevant section.


7.2. Conducted Emission

7.2.1.Test Limit

FCC Part 15.207 & RSS-Gen Limits						
Frequency (MHz)	QP (dBuV)	AV (dBuV)				
0.15 ~ 0.50	66 ~ 56	56 ~ 46				
0.50 ~ 5.0	56	46				
5.0 ~ 30 60 50						
Note 1: The lower limit shall appl	y at the transition frequencies.					

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.2.2.Test Setup

7.2.3.Test Result

The EUT is powered by battery, so this requirement does not apply.

7.3. Radiated Emission

7.3.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.249 & RSS-210						
Fundamental Frequency	Fundamental Frequency Field Strength of Fundamental Field Strength of Harmoni					
(MHz)	(mV/m)	(uV/m)				
902 ~ 908	50	500				
2400 ~ 2483.5	50	500				
5725 ~ 5875	50	500				
24000 ~ 24250 250 2500						
Note: FCC Part 15.249 (d), Emissions radiated outside of the specified frequency bands, except for						
harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general						
radiated emission limits in §15.20	09, whichever is the lesser attenua	tion.				

FCC Part 15 Subpart C Paragraph 15.209 & RSS-Gen						
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)				
0.009 ~ 0.490	2400/F(kHz)	300				
0.490 ~ 1.705	24000/F(kHz)	30				
1.705 ~ 30.0	30	30				
30 ~ 88	100**	3				
88 ~ 216	150**	3				
216 ~ 960	200**	3				
Above 960	500	3				

Note 1: The lower limit shall apply at the transition frequency.

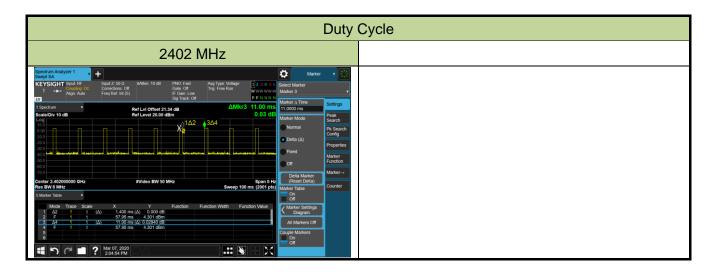
Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m).

7.3.2.Test Setup

<u>30MHz ~ 1GHz Test Setup:</u>

1GHz ~ 25GHz Test Setup:


7.3.3.Test Result

Product	AR630 SAFE and AS3X 6CH Receiver	Temperature	24°C
Test Engineer	David Lv	Relative Humidity	59%
Test Site	TR3	Test Date	2020/03/07

Time On	One Period	Duty Cycle	Duty Cycle Factor
(ms)	(ms)	(%)	(dB)
12.6	100	12.6	-18.0

Note:

- 1. Duty Cycle Factor = 20*Log (Duty Cycle)
- 2. Time On (ms) = 1.4 * 9 (ms) = 12.6 (ms).

Product	AR630 SAFE and AS3X 6CH Receiver	Temperature	24°C
Test Engineer	David Lv	Relative Humidity	59%
Test Site	AC1	Test Date	2020/03/07
Remark	Fundamental Radiated Emission		

Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Margin	Detector	Polarization
(MHz)	Level	(dB)	Factor	Level	(dBµV/m)	(dB)		
	(dBµV)		(dB)	(dBµV/m)				
	63.9	33.1	N/A	97.0	114.0	-17.0	PK	Horizontal
2402	63.9	33.1	-18.0	79.0	94.0	-15.0	AV	Horizontal
2402	57.1	33.1	N/A	90.2	114.0	-23.8	PK	Vertical
	57.1	33.1	-18.0	72.2	94.0	-21.8	AV	Vertical
	64.0	33.1	N/A	97.1	114.0	-16.9	PK	Horizontal
2440	64.0	33.1	-18.0	79.1	94.0	-14.9	AV	Horizontal
2440	56.8	33.1	N/A	89.9	114.0	-24.1	PK	Vertical
	56.8	33.1	-18.0	71.9	94.0	-22.1	AV	Vertical
	63.9	33.0	N/A	96.9	114.0	-17.1	PK	Horizontal
0.470	63.9	33.0	-18.0	78.9	94.0	-15.1	AV	Horizontal
2478	56.4	33.0	N/A	89.4	114.0	-24.6	PK	Vertical
	56.4	33.0	-18.0	71.4	94.0	-22.6	AV	Vertical
Note: Peak Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)								
Average Me	Average Measure Level = Peak Measure Level + Duty Cycle Factor							
Factor (dB)	= Cable Lo	oss (dB) +	Antenna Fa	actor (dB/m))			

Product	AR630 SAFE and AS3X 6CH Receiver	Temperature	24°C		
Test Engineer	David Lv	Relative Humidity	59%		
Test Site	AC2	Test Date	2020/02/29		
Remark:	Harmonics Radiated Emission - Below 1GHz (Worst case mode)				

Frequency (MHz)	Reading Level (dBµV)	Factor (dB)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
71.7	11.0	11.5	22.5	40.0	-17.5	QP	Horizontal
155.6	8.7	15.6	24.3	43.5	-19.2	QP	Horizontal
193.0	7.4	11.9	19.3	43.5	-24.2	QP	Horizontal
274.9	8.4	14.1	22.5	46.0	-23.5	QP	Horizontal
299.2	13.0	14.8	27.8	46.0	-18.2	QP	Horizontal
750.2	4.4	23.5	27.9	46.0	-18.1	QP	Horizontal
71.7	10.0	11.5	21.5	40.0	-18.5	QP	Vertical
155.6	5.6	15.6	21.2	43.5	-22.3	QP	Vertical
299.7	8.1	14.8	22.9	46.0	-23.1	QP	Vertical
559.1	5.0	20.3	25.3	46.0	-20.7	QP	Vertical
597.5	5.3	21.2	26.5	46.0	-19.5	QP	Vertical
750.2	6.3	23.5	29.8	46.0	-16.2	QP	Vertical

Note:

1. Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

 The test trace is same as the ambient noise (the test frequency range: 9kHz ~ 30MHz), therefore no data appear in the report.

Product	AR630 SAFE and AS3X 6CH Receiver	Temperature	24°C
Test Engineer	David Lv	Relative Humidity	59%
Test Site	AC2	Test Date	2020/03/07
Remark:	Harmonics Radiated Emission - Above 1	GHz	

Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Margin	Detector	Polarization
(MHz)	Level	(dB)	Factor	Level	(dBµV/m)	(dB)		
	(dBµV)		(dB)	(dBµV/m)				
2402MHz							· · · · · ·	
4804.0	41.0	7.6	N/A	48.6	74.0 (Note 2)	-25.4	PK	Horizontal
6074.5	36.0	9.8	N/A	45.8	74.0 (Note 2)	-28.2	PK	Horizontal
7206.0	43.8	13.3	N/A	57.1	74.0	-16.9	PK	Horizontal
7206.0	43.8	13.3	-18.0	39.1	54.0	-14.9	AV	Horizontal
4804.0	38.6	7.5	N/A	46.1	74.0 (Note 2)	-27.9	PK	Vertical
6295.5	37.0	10.1	N/A	47.1	74.0 (Note 2)	-26.9	PK	Vertical
7206.0	46.1	13.3	N/A	59.4	74.0	-14.6	PK	Vertical
7206.0	46.1	13.3	-18.0	41.4	54.0	-12.6	AV	Vertical
2440MHz								
4880.0	39.1	7.5	N/A	46.6	74.0 (Note 2)	-27.4	PK	Horizontal
7320.0	41.5	13.4	N/A	54.9	74.0	-19.1	PK	Horizontal
7320.0	41.5	13.4	-18.0	36.9	54.0	-17.1	AV	Horizontal
8735.0	35.3	16.2	N/A	51.5	74.0 (Note 2)	-22.5	PK	Horizontal
4880.0	38.4	7.6	N/A	46.0	74.0 (Note 2)	-28.0	PK	Vertical
7320.0	42.7	13.5	N/A	56.2	74.0	-17.8	PK	Vertical
7320.0	42.7	13.5	-18.0	38.2	54.0	-15.8	AV	Vertical
8735.0	35.1	16.2	N/A	51.3	74.0 (Note 2)	-22.7	PK	Vertical
2478MHz								
4956.0	40.1	7.8	N/A	47.9	74.0 (Note 2)	-26.1	PK	Horizontal
7432.0	39.4	13.8	N/A	53.2	74.0 (Note 2)	-20.8	PK	Horizontal
8735.0	34.2	16.2	N/A	50.4	74.0 (Note 2)	-23.6	PK	Horizontal
4689.0	35.4	7.0	N/A	42.4	74.0 (Note 2)	-31.6	PK	Vertical
7432.0	40.4	13.8	N/A	54.2	74.0	-19.8	PK	Vertical
7432.0	40.4	13.8	-18.0	36.2	54.0	-17.8	AV	Vertical
8692.5	34.2	16.3	N/A	50.5	74.0 (Note 2)	-23.5	PK	Vertical
Note:								

1. Measure Level $(dB\mu V/m) = Reading Level (dB\mu V) + Factor (dB)$

Average Measure Level = Peak Measure Level + Duty Cycle Factor

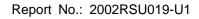
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre Amplifier Gain (dB)

- 2. Average measurement was not performed when the peak level lower than average limit.
- The test trace is same as the ambient noise (the test frequency range: 18GHz ~ 25GHz), therefore no data appear in the report.

7.4. Radiated Restricted Band Edge Measurement

7.4.1.Test Limit

For 15.205 requirement:


Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 – 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

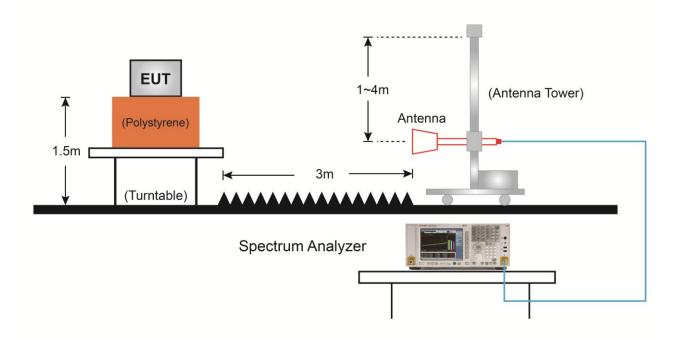
FCC Part 15 Subpart C Paragraph 15.209						
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meter]				
0.009 ~ 0.490	2400/F (kHz)	300				
0.490 ~ 1.705	24000/F (kHz)	30				
1.705 ~ 30	30	30				
30 ~ 88	100	3				
88 ~ 216	150	3				
216 ~ 960	200	3				
Above 960	500	3				

For RSS-Gen Section 8.10 Requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 8.10 of RSS-Gen, must

also comply with the radiated emission limits specified in Section 8.9.

Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 -1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 -2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 -13.41	3260 - 3267	
16.42 - 16.423	3332 -3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		


devices are set out in the 200 and 300 series of RSSs.

All out of band emissions appearing in a restricted band as specified in Section 8.10 of the RSS-Gen must not exceed the limits shown in Table per Section 8.9.

Frequency	Field Strength	Magnetic Field Strengt	Measured Distance
[MHz]	[uV/m]	h (H-Field) [uA/m]	[Meters]
0.009 - 0.490 ¹		6.37/F (F in kHz)	300
0.490 - 1.705		6.37/F (F in kHz)	30
1.705 - 30		0.08	30
30 - 88	100		3
88 - 216	150		3
216 - 960	200		3
Above 960	500		3
Note: The emission limits	for the bands 9 - 90kHz a	and 110 - 490kHz are base	ed on measurements
employing a linear average	ge detector.		

7.4.2.Test Setup

7.4.3.Test Result

Onto	AC1				Tim	ie: 20	20/03/07 - 1	3:22		
Limi	t: FCC_	Part15.209_R	E(3m)		Eng	ginee	r: David Lv			
Prob	be: BBH	A9120D_1-18	GHz		Pol	arity:	Horizontal			
EUT	: AR630) SAFE and AS	S3X 6CH Re	eceiver	Pov	wer: E	By Battery			
Test	Mode:	Transmit at fre	equency 240	2MHz	·					
	130					1				
Level(dBuV/m)	80 70 60	u, sidey, dyalow, daya, viqay, ayanda ay	hydras lanzariy lyr dir taraa ania					1	2	3
	50									
	40 30	2315 2320 2325	2330 2335	2340 2345 23	50 2355 2 Frequency		2365 2370 23	75 2380 2385	2390 2395 ;	2400 2405
No	40 30	2315 2320 2325 Frequency	2330 2335 Reading	2340 2345 23 Factor		(MHz)	2365 2370 23 Measure	75 2380 2385	2390 2395 ; Margin	2400 2405 Type
No	40 30 2310				Frequency	(MHz)				I
No	40 30 2310	Frequency	Reading	Factor	Frequency Duty Cy	(MHz)	Measure	Limit	Margin	I
No 1	40 30 2310	Frequency	Reading Level	Factor	Frequency Duty Cy Factor	(MHz)	Measure Level	Limit	Margin	I
	40 30 2310	Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Frequency Duty Cy Factor (dB)	(MHz)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Туре
	40 30 2310	Frequency (MHz) 2378.067	Reading Level (dBuV) 26.980	Factor (dB) 33.103	Frequency Duty Cy Factor (dB) N/A	(MHz)	Measure Level (dBuV/m) 60.083	Limit (dBuV/m) 74.000	Margin (dB) -13.917	Type
1	40 30 2310	Frequency (MHz) 2378.067 2378.067	Reading Level (dBuV) 26.980 26.980	Factor (dB) 33.103 33.103	Frequency Duty Cy Factor (dB) N/A -18.0	(MHz)	Measure Level (dBuV/m) 60.083 42.083	Limit (dBuV/m) 74.000 54.000	Margin (dB) -13.917 -11.917	Type PK AV

Note: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Site	AC1				Ti	me: 20	20/03/07 - 13	3:28		
Limi	t: FCC_	Part15.209_R	E(3m)		E	Engineer: David Lv				
Prob	e: BBH	A9120D_1-18	GHz		P	Polarity: Vertical				
EUT	: AR630	SAFE and AS	S3X 6CH Re	eceiver	P	Power: By Battery				
Test	Mode:	Transmit at fre	quency 240	2MHz						
	130					1		1		
Level(dBuV/m)	80 70 60 downedd 50 40 30 2310 2	2315 2320 2325	2330 2335	2340 2345 23	50 2355 Frequen		365 2370 2375	5 2380 2385	2	3
No	Mark	Frequency	Reading	Factor	Duty C	Velo	Measure	Limit	Margin	Туре
					-	-				Type
		(MHz)	Level	(dB)	Factor	-	Level	(dBuV/m)	(dB)	туре
			(dBuV)		Factor (dB)	-	Level (dBuV/m)	`````		
1		2362.488	(dBuV) 27.177	33.134	Factor (dB) N/A	-	Level (dBuV/m) 60.312	74.000	-13.688	PK
		2362.488 2362.488	(dBuV) 27.177 27.177	33.134 33.134	Factor (dB) N/A -18.0	-	Level (dBuV/m) 60.312 42.312	74.000 54.000	-13.688 -11.688	PK AV
1		2362.488 2362.488 2390.000	(dBuV) 27.177 27.177 25.298	33.134 33.134 33.080	Factor (dB) N/A -18.0 N/A	-	Level (dBuV/m) 60.312 42.312 58.378	74.000 54.000 74.000	-13.688 -11.688 -15.622	PK AV PK
		2362.488 2362.488	(dBuV) 27.177 27.177	33.134 33.134	Factor (dB) N/A -18.0	-	Level (dBuV/m) 60.312 42.312	74.000 54.000	-13.688 -11.688	PK AV

Note: Peak Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Sile	: AC1				Time: 20	20/03/07 - 13	3:15		
Limi	t: FCC_	Part15.209_R	E(3m)		Enginee	r: David Lv			
Prob	be: BBH	A9120D_1-18	GHz		Polarity:	Horizontal			
EUT	: AR630	SAFE and AS	S3X 6CH Re	ceiver	Power: E	By Battery			
Test	Mode:	Transmit at fre	quency 247	8MHz					
Level(dBuV/m)	80 70 60		Waynakaran	2	3		gere herende om sede og e lover i det	Libertungts-Stephstenset	Here of the get states into
-	30 2475	2477.5	2480 248		2487.5 Frequency(MHz)		92.5 2495	2497.5	2500
No		2477.5 Frequency (MHz)	2480 248 Reading Level (dBuV)	Factor (dB)		2490 24 Measure Level (dBuV/m)	92.5 2495 Limit (dBuV/m)	2497.5 Margin (dB)	2500
No 1	2475	Frequency	Reading Level	Factor	Frequency(MHz) Duty Cycle Factor	Measure Level	Limit	Margin	
	2475 Mark	Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Frequency(MHz) Duty Cycle Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Туре
1	2475 Mark	Frequency (MHz) 2478.025	Reading Level (dBuV) 63.881	Factor (dB) 33.044	Frequency(MHz) Duty Cycle Factor (dB) N/A	Measure Level (dBuV/m) 96.926	Limit (dBuV/m) N/A	Margin (dB) N/A	Type
1	2475 Mark	Frequency (MHz) 2478.025 2483.500	Reading Level (dBuV) 63.881 25.256	Factor (dB) 33.044 33.042	Frequency(MHz) Duty Cycle Factor (dB) N/A N/A	Measure Level (dBuV/m) 96.926 58.298	Limit (dBuV/m) N/A 74.000	Margin (dB) N/A -15.702	Type PK PK

Note: Peak Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Site	: AC1				Time: 2	020/03/07 - 1	3:19		
Limi	t: FCC_	Part15.209_I	RE(3m)		Engine	er: David Lv			
Prob	be: BBH	A9120D_1-1	8GHz		Polarity	: Vertical			
EUT	: AR630) SAFE and A	S3X 6CH R	eceiver	Power:	By Battery			
Test	Mode:	Transmit at fr	equency 24	78MHz					
Level(dBuV/m)	130 80 70 60 tayad 50 40 30 2475	2477.5	2480 24	2 providence de la constance d	3 5 2487.5 Frequency(MHz)		۸۰ <u>۰۰۰ (۱۹۰۰ ۱۹۹۹)</u> 492.5 2495	««۱۰»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»	ên (u) 2500
No	Mark	Frequency	Reading	Factor	Duty Cycle	Magazira	Limit	Margin	Туре
			Level		Factor	Measure Level		•	Type
		(MHz)	•	(dB)			(dBuV/m)	(dB)	Type
1	*		Level		Factor	Level		•	PK
1	*	(MHz)	Level (dBuV)	(dB)	Factor (dB)	Level (dBuV/m)	(dBuV/m)	(dB)	
	*	(MHz) 2477.687	Level (dBuV) 56.439	(dB) 33.045	Factor (dB) N/A	Level (dBuV/m) 89.484	(dBuV/m) N/A	(dB)	РК
	*	(MHz) 2477.687 2483.500	Level (dBuV) 56.439 24.646	(dB) 33.045 33.042	Factor (dB) N/A N/A	Level (dBuV/m) 89.484 57.688	(dBuV/m) N/A 74.000	(dB) N/A -16.312	PK PK

Note: Peak Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

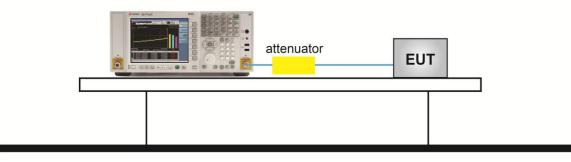
7.5. 20dB Spectrum Bandwidth Measurement

7.5.1.Test Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission in the

specific band.

7.5.2.Test Procedure used

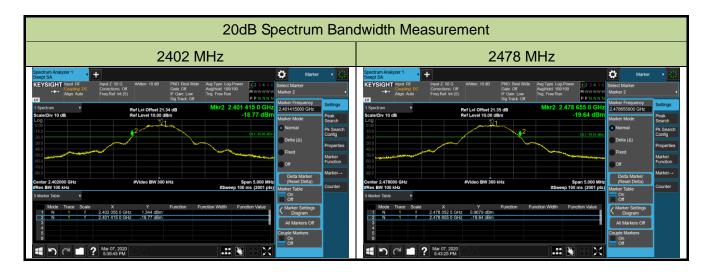

ANSI C63.10 Clause 6.9.2

7.5.3.Test Setting

- 1. Set the spectrum span range to overlap the nominal center frequency
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize and marker the highest level
- 8. Determine the display level (the highest level 20dB) and place two markers, one at the lowest frequency and the other at the highest frequency

7.5.4.Test Setup

Spectrum Analyzer



7.5.5.Test Result

Product	AR630 SAFE and AS3X 6CH Receiver	Temperature	24°C
Test Engineer	David Lv	Relative Humidity	59%
Test Site	TR3	Test Date	2020/03/07

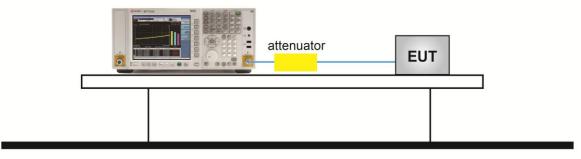
Frequency	Frequency Range	Frequency Range	Result
(MHz)	(MHz)	(MHz)	
2402	2402.055		Pass
2478		2478.655	Pass

7.6. 99% Bandwidth Measurement

7.6.1.Test Limit

N/A

7.6.2.Test Procedure used


ANSI C63.10 Section 6.9

7.6.3.Test Setting

- The analyzers' automatic bandwidth measurement capability was used to perform the 99% bandwidth measurement. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% to 5% of the OBW.
- 3. VBW \geq 3 × RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

7.6.4.Test Setup

Spectrum Analyzer



7.6.5.Test Result

Product	AR630 SAFE and AS3X 6CH Receiver	Temperature	24°C
Test Engineer	David Lv	Relative Humidity	59%
Test Site	TR3	Test Date	2020/03/07

Frequency (MHz)	99% Bandwidth (MHz)	
2402	1.0412	
2440	1.0597	
2478	1.0585	

8. CONCLUSION

The data collected relate only the item(s) tested and show that this device is compliance with Part

15C of the FCC Rules and ISED Rules.

Appendix A - Test Setup Photograph

Refer to "2002RSU019-UT" file.

Appendix B - EUT Photograph

Refer to "2002RSU019-UE" file.