

# RADIO TEST REPORT FCC ID: 2APMJ-AIRBUDS5PROR

Product: TWS Bluetooth headset

Trade Mark: Blackview

Model No.: AirBuds 5 Pro Family Model: N/A Report No.: STR210615003002E Issue Date: 02 July. 2021

# **Prepared for**

Shenzhen DOKE Electronic Co., Ltd

13th Floor, Weidonglong Commercial Building B, Meilong Avenue, Longhua New District, Shenzhen, China

# Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn



# TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

| 1 | TE        | ST RESULT CERTIFICATION                                           | 3 |
|---|-----------|-------------------------------------------------------------------|---|
| 2 | SU        | MMARY OF TEST RESULTS                                             | 4 |
| 3 | FA        | CILITIES AND ACCREDITATIONS                                       | 5 |
|   | .1        | FACILITIES                                                        |   |
| - | .2<br>.3  | LABORATORY ACCREDITATIONS AND LISTINGS<br>MEASUREMENT UNCERTAINTY |   |
| 4 |           | NERAL DESCRIPTION OF EUT                                          |   |
| - |           |                                                                   |   |
| 5 |           | SCRIPTION OF TEST MODES                                           |   |
| 6 | SE        | <b>FUP OF EQUIPMENT UNDER TEST</b>                                | 9 |
| 6 | .1        | BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM                        | 9 |
| 6 | .2        | SUPPORT EQUIPMENT                                                 |   |
| 6 | .3        | EQUIPMENTS LIST FOR ALL TEST ITEMS                                |   |
| 7 | ТЕ        | ST REQUIREMENTS                                                   |   |
| 7 | .1        | CONDUCTED EMISSIONS TEST                                          |   |
| 7 | .2        | RADIATED SPURIOUS EMISSION                                        |   |
|   | .3        | NUMBER OF HOPPING CHANNEL                                         |   |
|   | .4        | HOPPING CHANNEL SEPARATION MEASUREMENT                            |   |
|   | .5        | AVERAGE TIME OF OCCUPANCY (DWELL TIME)                            |   |
|   | .6        | 20DB BANDWIDTH TEST                                               |   |
|   | .7        | PEAK OUTPUT POWER                                                 |   |
|   | .8        | CONDUCTED BAND EDGE MEASUREMENT.                                  |   |
|   | .9<br>.10 | SPURIOUS RF CONDUCTED EMISSION                                    |   |
|   |           | REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS             |   |
| 8 |           | ST RESULTS                                                        |   |
|   |           |                                                                   |   |
| - | .1        | DWELL TIME                                                        |   |
| - | .2        | MAXIMUM CONDUCTED OUTPUT POWER                                    |   |
| - | .3        | OCCUPIED CHANNEL BANDWIDTH                                        |   |
|   | .4<br>.5  | CARRIER FREQUENCIES SEPARATION<br>Number of Hopping Channel       |   |
|   | .5<br>.6  | NUMBER OF HOPPING CHANNEL                                         |   |
|   | .0<br>.7  | CONDUCTED RF SPURIOUS EMISSION                                    |   |
| 0 | • /       |                                                                   |   |

# NTEKJL测

## **1 TEST RESULT CERTIFICATION**

| Applicant's name:            | Shenzhen DOKE Electronic Co., Ltd                                                                       |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| Address:                     | 13th Floor, Weidonglong Commercial Building B, Meilong Avenue,<br>Longhua New District, Shenzhen, China |
| Manufacturer's Name:         | Shenzhen Antexin Technology Co.,Ltd                                                                     |
| Address:                     | 3/F, Building 34, Chentian Industrial Zone, Baoan District, Shenzhen, China                             |
| Product description          |                                                                                                         |
| Product name:                | TWS Bluetooth headset                                                                                   |
| Model and/or type reference: | AirBuds 5 Pro                                                                                           |
| Family Model:                | N/A                                                                                                     |

Certificate #4298.01

#### Measurement Procedure Used:

# APPLICABLE STANDARDS

| STANDARD/ TEST PROCEDURE                                                          | TEST RESULT |
|-----------------------------------------------------------------------------------|-------------|
| FCC 47 CFR Part 2, Subpart J<br>FCC 47 CFR Part 15, Subpart C<br>ANSI C63.10-2013 | Complied    |

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

| Date of Test         | : | 15 June. 2021 ~ 02 July. 2021 |
|----------------------|---|-------------------------------|
|                      |   | Krang. Hu                     |
| Testing Engineer     | : |                               |
|                      |   | (Mary Hu)                     |
|                      |   | Ades                          |
| Authorized Signatory | : | Gertion                       |
|                      |   | (Alex Li)                     |
|                      |   |                               |
|                      |   |                               |
|                      |   |                               |
|                      |   |                               |
|                      |   |                               |
|                      |   |                               |
|                      |   |                               |

# NTEK北测

#### SUMMARY OF TEST RESULTS 2

| FCC Part15 (15.247), Subpart C            |                                |      |  |  |  |
|-------------------------------------------|--------------------------------|------|--|--|--|
| Standard Section Test Item Verdict Remark |                                |      |  |  |  |
| 15.207                                    | Conducted Emission             | PASS |  |  |  |
| 15.209 (a)<br>15.205 (a)                  | Radiated Spurious Emission     | PASS |  |  |  |
| 15.247(a)(1)                              | Hopping Channel Separation     | PASS |  |  |  |
| 15.247(b)(1)                              | Peak Output Power              | PASS |  |  |  |
| 15.247(a)(iii)                            | Number of Hopping Frequency    | PASS |  |  |  |
| 15.247(a)(iii)                            | Dwell Time                     | PASS |  |  |  |
| 15.247(a)(1)                              | Bandwidth                      | PASS |  |  |  |
| 15.247 (d)                                | Band Edge Emission             | PASS |  |  |  |
| 15.247 (d)                                | Spurious RF Conducted Emission | PASS |  |  |  |
| 15.203                                    | Antenna Requirement            | PASS |  |  |  |

ACCREDI

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.



## **3 FACILITIES AND ACCREDITATIONS**

#### 3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

#### 3.2 LABORATORY ACCREDITATIONS AND LISTINGS

| Site Description |                                                                                                                       |
|------------------|-----------------------------------------------------------------------------------------------------------------------|
| CNAS-Lab.        | : The Certificate Registration Number is L5516.                                                                       |
| IC-Registration  | The Certificate Registration Number is 9270A.<br>CAB identifier:CN0074                                                |
| FCC- Accredited  | Test Firm Registration Number: 463705.<br>Designation Number: CN1184                                                  |
| A2LA-Lab.        | The Certificate Registration Number is 4298.01                                                                        |
| Name of Firm     | : Shenzhen NTEK Testing Technology Co., Ltd.                                                                          |
| Site Location    | : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China. |

#### 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | Conducted Emission Test             | ±2.80dB     |
| 2   | RF power, conducted                 | ±0.16dB     |
| 3   | Spurious emissions, conducted       | ±0.21dB     |
| 4   | All emissions, radiated(30MHz~1GHz) | ±2.64dB     |
| 5   | All emissions, radiated(1GHz~6GHz)  | ±2.40dB     |
| 6   | All emissions, radiated(>6GHz)      | ±2.52dB     |
| 7   | Temperature                         | ±0.5°C      |
| 8   | Humidity                            | ±2%         |

# <u>NTEK北测</u>

# 4 GENERAL DESCRIPTION OF EUT

| Product Feature and Specification |                                                                                                                                |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Equipment                         | TWS Bluetooth headset                                                                                                          |  |  |  |
| Trade Mark                        | Blackview                                                                                                                      |  |  |  |
| FCC ID                            | 2APMJ-AIRBUDS5PROR                                                                                                             |  |  |  |
| Model No.                         | AirBuds 5 Pro                                                                                                                  |  |  |  |
| Family Model                      | N/A                                                                                                                            |  |  |  |
| Model Difference                  | N/A                                                                                                                            |  |  |  |
| Operating Frequency               | 2402MHz~2480MHz                                                                                                                |  |  |  |
| Modulation                        | GFSK, π/4-DQPSK, 8-DPSK                                                                                                        |  |  |  |
| Number of Channels                | 79 Channels                                                                                                                    |  |  |  |
| Antenna Type                      | Monopole Antenna                                                                                                               |  |  |  |
| Antenna Gain                      | 0.5 dBi                                                                                                                        |  |  |  |
| Power supply                      | Charging Case:<br>DC 3.8V from battery or DC 5V from USB port<br>Earphone:<br>DC 3.8V from battery or DC 5V from Charging Case |  |  |  |
| Adapter                           | N/A                                                                                                                            |  |  |  |
| HW Version                        | V1.3                                                                                                                           |  |  |  |
| SW Version                        | V66.0                                                                                                                          |  |  |  |

ACCREDITED

Certificate #4298.01

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.



## **Revision History**

ACCREDITED

Certificate #4298.01

| ······································ |         |                         |               |
|----------------------------------------|---------|-------------------------|---------------|
| Report No.                             | Version | Description             | Issued Date   |
| STR210615003002E                       | Rev.01  | Initial issue of report | 02 July. 2021 |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |
|                                        |         |                         |               |



### **5 DESCRIPTION OF TEST MODES**

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for  $\pi$ /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

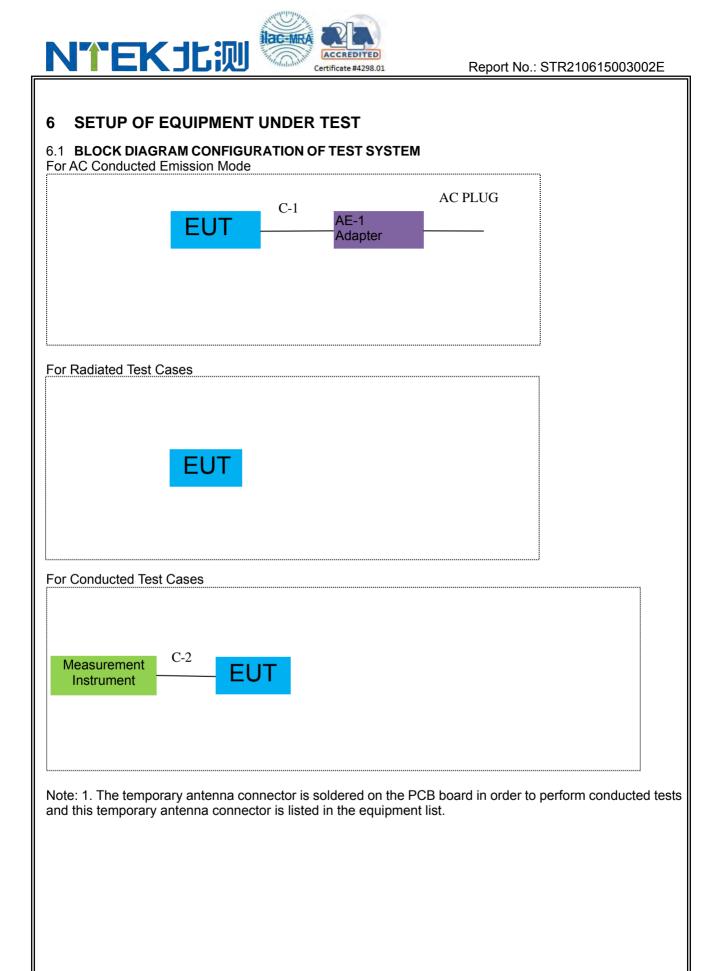
#### Carrier Frequency and Channel list:

| Channel | Frequency(MHz) |
|---------|----------------|
| 0       | 2402           |
| 1       | 2403           |
|         |                |
| 39      | 2441           |
| 40      | 2442           |
|         |                |
| 77      | 2479           |
| 78      | 2480           |

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

| For AC Conducted Emission |                  |  |  |  |
|---------------------------|------------------|--|--|--|
| Final Test Mode           | Description      |  |  |  |
| Mode 1                    | normal link mode |  |  |  |
|                           |                  |  |  |  |


Note: AC power line Conducted Emission was tested under maximum output power.

| For Radiated Test Cases |                  |  |
|-------------------------|------------------|--|
| Final Test Mode         | Description      |  |
| Mode 1                  | normal link mode |  |
| Mode 2                  | CH00(2402MHz)    |  |
| Mode 3                  | CH39(2441MHz)    |  |
| Mode 4                  | CH78(2480MHz)    |  |

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

| For Conducted Test Cases |               |  |  |
|--------------------------|---------------|--|--|
| Final Test Mode          | Description   |  |  |
| Mode 2                   | CH00(2402MHz) |  |  |
| Mode 3 CH39(2441MHz)     |               |  |  |
| Mode 4                   | CH78(2480MHz) |  |  |
| Mode 5                   | Hopping mode  |  |  |

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.





#### 6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Model/Type No. | Series No. | Note        |
|------|-----------|----------------|------------|-------------|
| AE-1 | Adapter   | N/A            | N/A        | Peripherals |
|      |           |                |            |             |
|      |           |                |            |             |
|      |           |                |            |             |
|      |           |                |            |             |

| Item | Cable Type | Shielded Type | Ferrite Core | Length |
|------|------------|---------------|--------------|--------|
| C-1  | DC Cable   | YES           | NO           | 0.3m   |
| C-2  | RF Cable   | YES           | NO           | 0.1m   |
|      |            |               |              |        |
|      |            |               |              |        |
|      |            |               |              |        |
|      |            |               |              |        |

#### Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

# **NTEK北**测



#### 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

#### Radiation& Conducted Test equipment

|                                             | estequipment                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kind of<br>Equipment                        | Manufacturer                                                                                                                                                                                                                                                                                                                                                                        | Type No.                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serial No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Last calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Calibrated<br>until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calibrati<br>on<br>period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Spectrum<br>Analyzer                        | Aglient                                                                                                                                                                                                                                                                                                                                                                             | E4407B                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MY45108040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2022.4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spectrum<br>Analyzer                        | Agilent                                                                                                                                                                                                                                                                                                                                                                             | N9020A                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MY49100060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2020.07.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.07.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spectrum<br>Analyzer                        | R&S                                                                                                                                                                                                                                                                                                                                                                                 | FSV40                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2020.07.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.07.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Receiver                               | R&S                                                                                                                                                                                                                                                                                                                                                                                 | ESPI7                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2021.4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2022.4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bilog Antenna                               | TESEQ                                                                                                                                                                                                                                                                                                                                                                               | CBL6111D                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2021.03.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2022.03.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50Ω Coaxial<br>Switch                       | Anritsu                                                                                                                                                                                                                                                                                                                                                                             | MP59B                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6200983705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2020.05.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2023.05.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Horn Antenna                                | EM                                                                                                                                                                                                                                                                                                                                                                                  | EM-AH-1018<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2011071402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.03.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2022.03.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Broadband<br>Horn Antenna                   | SCHWARZBE<br>CK                                                                                                                                                                                                                                                                                                                                                                     | BBHA 9170                                                                                                                                                                                                                                                                                                                                                                                                                                               | 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020.11.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Amplifier                                   | EMC                                                                                                                                                                                                                                                                                                                                                                                 | EMC051835<br>SE                                                                                                                                                                                                                                                                                                                                                                                                                                         | 980246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2020.07.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.07.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Active Loop<br>Antenna                      | SCHWARZBE<br>CK                                                                                                                                                                                                                                                                                                                                                                     | FMZB 1519<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                          | 055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020.11.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Power Meter                                 | DARE                                                                                                                                                                                                                                                                                                                                                                                | RPR3006W                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15I00041SN<br>084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2020.07.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.07.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Cable<br>(9KHz-30MHz)                  | N/A                                                                                                                                                                                                                                                                                                                                                                                 | R-01                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2019.08.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2022.08.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Cable<br>(30MHz-1GHz)                  | N/A                                                                                                                                                                                                                                                                                                                                                                                 | R-02                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2019.08.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2022.08.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| High Test<br>Cable(1G-40G<br>Hz)            | N/A                                                                                                                                                                                                                                                                                                                                                                                 | R-03                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020.05.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2023.05.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| High Test<br>Cable(1G-40G<br>Hz)            | N/A                                                                                                                                                                                                                                                                                                                                                                                 | R-04                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020.05.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2023.05.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Filter                                      | TRILTHIC                                                                                                                                                                                                                                                                                                                                                                            | 2400MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2020.07.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.07.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| temporary<br>antenna<br>connector<br>(Note) | NTS                                                                                                                                                                                                                                                                                                                                                                                 | R001                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                             | Kind of<br>EquipmentSpectrum<br>AnalyzerSpectrum<br>AnalyzerSpectrum<br>AnalyzerSpectrum<br>Constal<br>SwitchBilog Antenna50Ω Coaxial<br>SwitchHorn AntennaBroadband<br>Horn AntennaBroadband<br>Horn AntennaPower MeterTest Cable<br>(9KHz-30MHz)Test Cable<br>(30MHz-1GHz)High Test<br>Cable(1G-40G<br>Hz)High Test<br>Cable(1G-40G<br>Hz)Filtertemporary<br>antenna<br>connector | Kind of<br>EquipmentManufacturerSpectrum<br>AnalyzerAglientSpectrum<br>AnalyzerAgilentSpectrum<br>AnalyzerR&STest ReceiverR&SBilog AntennaTESEQ50Ω Coaxial<br>SwitchAnritsuHorn AntennaEMBroadband<br>Horn AntennaSCHWARZBE<br>CKAnalyifierEMCActive Loop<br>AntennaSCHWARZBE<br>CKPower MeterDARETest Cable<br>(30MHz-1GHz)N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AFilterTRILTHICtemporary<br>antenna<br>connectorNTS | Kind of<br>EquipmentManufacturerType No.Spectrum<br>AnalyzerAglientE4407BSpectrum<br>AnalyzerAgilentN9020ASpectrum<br>AnalyzerR&SFSV40Test ReceiverR&SESPI7Bilog AntennaTESEQCBL6111D50Ω Coaxial<br>SwitchAnritsuMP59BHorn AntennaEMEM-AH-1018<br>0Broadband<br>Horn AntennaSCHWARZBE<br>CKBBHA 9170AmplifierEMCEMC051835<br>SEActive Loop<br>AntennaSCHWARZBE<br>CKFMZB 1519<br>BPower MeterDARERPR3006WTest Cable<br>(9KHz-30MHz)N/AR-01Test Cable<br>(30MHz-1GHz)N/AR-03High Test<br>Cable(1G-40G<br>Hz)N/AR-03High Test<br>Cable(1G-40G<br>Hz)N/AR-04High Test<br>Cable(1G-40G<br>Hz)N/AR-04High Test<br>Cable(1G-40G<br>Hz)N/AR-04High Test<br>Cable(1G-40G<br>Hz)N/AR-04High Test<br>Cable(1G-40G<br>Hz)N/AR-04High Test<br>Cable(1G-40G<br>Hz)N/AR-04High Test<br>Cable(1G-40G<br>Hz)N/AR-04 | Kind of<br>EquipmentManufacturerType No.Serial No.Spectrum<br>AnalyzerAglientE4407BMY45108040Spectrum<br>AnalyzerAglientN9020AMY49100060Spectrum<br>AnalyzerR&SFSV40101417Test ReceiverR&SESPI7101318Bilog AntennaTESEQCBL6111D3121650Ω Coaxial<br>SwitchAnritsuMP59B6200983705Horn AntennaEMEM-AH-1018<br>02011071402Broadband<br>Horn AntennaSCHWARZBE<br>CKBBHA 9170803AmplifierEMCEMC051835<br>SE980246Active Loop<br>AntennaSCHWARZBE<br>CKFMZB 1519<br>B055Power MeterDARERPR3006W15100041SN<br>084Test Cable<br>(30MHz-1GHz)N/AR-01N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AR-03N/AHigh Test<br>Cable(1G-40G<br>Hz)N/AR-04N/AFilterTRILTHIC2400MHz29temporary<br>antenna<br>connectorNTSR001N/A | Kind of<br>EquipmentManufacturerType No.Serial No.Last<br>calibrationSpectrum<br>AnalyzerAglientE4407BMY451080402021.4.27Spectrum<br>AnalyzerAglientN9020AMY491000602020.07.13Spectrum<br>AnalyzerR&SFSV401014172020.07.13Spectrum<br>AnalyzerR&SESPI71013182021.4.27Bilog AntennaTESEQCBL6111D312162021.03.2950Q Coaxial<br>SwitchAnritsuMP59B62009837052020.05.11Horn AntennaEMEM-AH-1018<br>020110714022021.03.29Broadband<br>Horn AntennaCKBBHA 91708032020.11.20AmplifierEMCEMC051835<br>SE9802462020.07.13Active Loop<br>AntennaSCHWARZBE<br>CKFMZB 1519<br>B0552020.07.13Power MeterDARERPR3006W15100041SN<br>0842020.07.13Test Cable<br>(30MHz-1GHz)N/AR-01N/A2019.08.06High Test<br>Cable(1G-40G<br>Hz)N/AR-03N/A2020.05.11High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2020.05.11High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2020.05.11FilterTRILTHIC2400MHz292020.07.13Temporary<br>antenna<br>connectorNTSR001N/AN/A | Kind of<br>EquipmentManufacturerType No.Serial No.Last<br>calibrationCalibrated<br>untilSpectrum<br>AnalyzerAglientE4407BMY451080402021.4.272022.4.26Spectrum<br>AnalyzerAglientN9020AMY491000602020.07.132021.07.12Spectrum<br>AnalyzerR&SFSV401014172020.07.132021.07.12Test ReceiverR&SESPI71013182021.4.272022.4.26Bilog AntennaTESEQCBL6111D312162021.03.292022.03.2850Ω Coaxial<br>SwitchAnritsuMP59B62009837052020.05.112023.05.10Horn AntennaEMEM-AH-1018<br>020110714022021.03.292022.03.28Broadband<br>Horn AntennaEMCEMC051835<br>S9802462020.07.132021.07.12Active Loop<br>AntennaSCHWARZBE<br>CKFMZB 1519<br>B0552020.07.132021.07.12Power MeterDARERPR3006W15100041SN<br>0842020.07.132021.07.12Test Cable<br>(9KH2-30MHz)N/AR-01N/A2019.08.062022.08.05High Test<br>Cable(1G-40G<br>Hz)N/AR-03N/A2020.05.112023.05.10High Test<br>Cable(1G-40G<br>Hz)N/AR-03N/A2020.05.112023.05.10High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2020.05.112023.05.10High Test<br>Cable(1G-40G<br>Hz)N/AR-04N/A2020.05.112023.05.10High Tes |

ACCREDIT

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list



#### AC Conduction Test equipment Kind of Calibration Last Calibrated Manufacturer Type No. Serial No. Item Equipment calibration until period 1 **Test Receiver** R&S ESCI 101160 2020.07.13 2021.07.12 1 year 2 LISN R&S **ENV216** 101313 2020.07.13 2021.07.12 1 year SCHWARZBE 3 LISN **NNLK 8129** 2020.07.13 8129245 2021.07.12 1 year CK 50Ω Coaxial ANRITSU 4 MP59B 6200983704 2020.05.11 2023.05.10 3 year CORP Switch **Test Cable** 5 (9KHz-30MH N/A C01 N/A 2020.05.11 2023.05.10 3 year Z) Test Cable 6 (9KHz-30MH N/A C02 N/A 2020.05.11 2023.05.10 3 year Z) Test Cable C03 N/A 2020.05.11 2023.05.10 7 (9KHz-30MH N/A 3 year Z)

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

# NTEKJLIN CERTIFICATE #4298.01

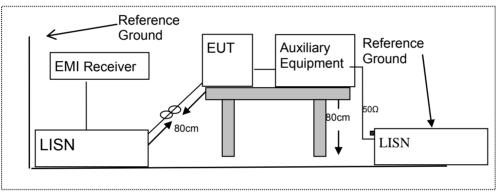
## 7 TEST REQUIREMENTS

### 7.1 CONDUCTED EMISSIONS TEST

#### 7.1.1 Applicable Standard

According to FCC Part 15.207(a)

#### 7.1.2 Conformance Limit


|                | Conducted Emission Limit |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHz) | Quasi-peak               | Average |  |
| 0.15-0.5       | 66-56*                   | 56-46*  |  |
| 0.5-5.0        | 56                       | 46      |  |
| 5.0-30.0       | 60                       | 50      |  |

Note: 1. \*Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 7.1.3 Test Configuration



#### 7.1.4 Test Procedure

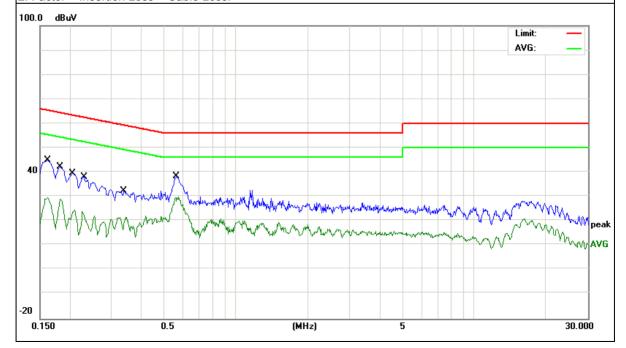
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### 7.1.5 Test Results

Pass




#### 7.1.6 Test Results

| EUT:           | TWS Bluetooth headset           | Model Name :       | AirBuds 5 Pro |
|----------------|---------------------------------|--------------------|---------------|
| Temperature:   | 21.5 ℃                          | Relative Humidity: | 55%           |
| Pressure:      | 1010hPa                         | Phase :            | L             |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1        |

| <b>_</b>  |               |                |              |        |        |        |
|-----------|---------------|----------------|--------------|--------|--------|--------|
| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Remark |
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark |
| 0.1620    | 35.26         | 9.56           | 44.82        | 65.36  | -20.54 | QP     |
| 0.1620    | 20.04         | 9.56           | 29.60        | 55.36  | -25.76 | AVG    |
| 0.1819    | 32.81         | 9.55           | 42.36        | 64.39  | -22.03 | QP     |
| 0.1819    | 19.36         | 9.55           | 28.91        | 54.39  | -25.48 | AVG    |
| 0.2059    | 30.11         | 9.55           | 39.66        | 63.37  | -23.71 | QP     |
| 0.2059    | 14.94         | 9.55           | 24.49        | 53.37  | -28.88 | AVG    |
| 0.2300    | 28.49         | 9.55           | 38.04        | 62.45  | -24.41 | QP     |
| 0.2300    | 14.26         | 9.55           | 23.81        | 52.45  | -28.64 | AVG    |
| 0.3379    | 22.76         | 9.54           | 32.30        | 59.25  | -26.95 | QP     |
| 0.3379    | 11.89         | 9.54           | 21.43        | 49.25  | -27.82 | AVG    |
| 0.5620    | 28.76         | 9.55           | 38.31        | 56.00  | -17.69 | QP     |
| 0.5620    | 20.26         | 9.55           | 29.81        | 46.00  | -16.19 | AVG    |

Remark:

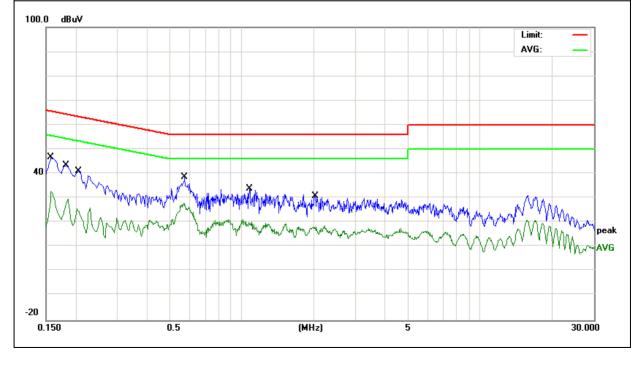
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.





| EUT:           | TWS Bluetooth headset           | Model Name :       | AirBuds 5 Pro |
|----------------|---------------------------------|--------------------|---------------|
| Temperature:   | 21.5℃                           | Relative Humidity: | 55%           |
| Pressure:      | 1010hPa                         | Phase :            | Ν             |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1        |

ACCREDITED


Certificate #4298.01

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Remark |
|-----------|---------------|----------------|--------------|--------|--------|--------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark |
| 0.1580    | 37.10         | 9.55           | 46.65        | 65.56  | -18.91 | QP     |
| 0.1580    | 23.23         | 9.55           | 32.78        | 55.56  | -22.78 | AVG    |
| 0.1819    | 33.89         | 9.54           | 43.43        | 64.39  | -20.96 | QP     |
| 0.1819    | 20.06         | 9.54           | 29.60        | 54.39  | -24.79 | AVG    |
| 0.2058    | 31.52         | 9.54           | 41.06        | 63.37  | -22.31 | QP     |
| 0.2058    | 16.54         | 9.54           | 26.08        | 53.37  | -27.29 | AVG    |
| 0.5738    | 29.00         | 9.54           | 38.54        | 56.00  | -17.46 | QP     |
| 0.5738    | 18.38         | 9.54           | 27.92        | 46.00  | -18.08 | AVG    |
| 1.0740    | 24.19         | 9.55           | 33.74        | 56.00  | -22.26 | QP     |
| 1.0740    | 11.61         | 9.55           | 21.16        | 46.00  | -24.84 | AVG    |
| 2.0299    | 21.37         | 9.57           | 30.94        | 56.00  | -25.06 | QP     |
| 2.0299    | 9.37          | 9.57           | 18.94        | 46.00  | -27.06 | AVG    |

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.





#### 7.2 RADIATED SPURIOUS EMISSION

#### 7.2.1 Applicable Standard

#### According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

#### 7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| MHz               | MHz                 | MHz           | GHz         |  |  |  |
|-------------------|---------------------|---------------|-------------|--|--|--|
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.15    |  |  |  |
| 0.495-0.505       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |  |  |  |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |  |  |  |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |  |  |  |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |  |  |  |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |  |  |  |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |  |  |  |
| 6.26775-6.26825   | 123-138             | 2200-2300     | 14.47-14.5  |  |  |  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |  |  |  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |  |  |  |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |  |  |  |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |  |  |  |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |  |  |  |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |  |  |  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | (2)         |  |  |  |
| 13.36-13.41       |                     |               |             |  |  |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Restricted<br>Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|------------------------------|-----------------------|-------------------------|----------------------|
| 0.009~0.490                  | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.490~1.705                  | 24000/F(KHz)          | 20 log (uV/m)           | 30                   |
| 1.705~30.0                   | 30                    | 29.5                    | 30                   |
| 30-88                        | 100                   | 40                      | 3                    |
| 88-216                       | 150                   | 43.5                    | 3                    |
| 216-960                      | 200                   | 46                      | 3                    |
| Above 960                    | 500                   | 54                      | 3                    |

Limits of Radiated Emission Measurement(Above 1000MHz)

| Frequency(MHz) | Class B (dBuV/m) (at 3M) |         |  |  |
|----------------|--------------------------|---------|--|--|
|                | PEAK                     | AVERAGE |  |  |
| Above 1000     | 74                       | 54      |  |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

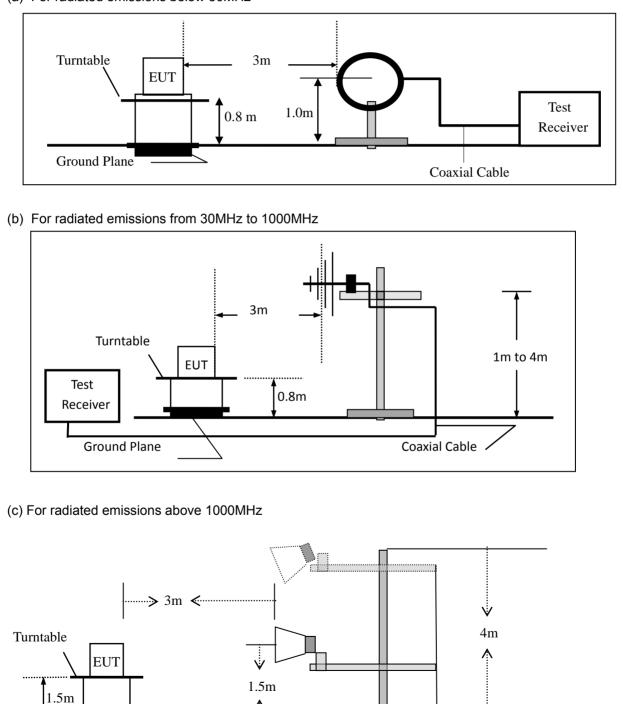
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);




Limit line=Specific limits(dBuV) + distance extrapolation factor.

#### 7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.2.4 Test Configuration

#### (a) For radiated emissions below 30MHz



A

Test Receiver

<u>Amplifie</u>



### 7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

| Spectrum Parameter                    | Setting                                           |
|---------------------------------------|---------------------------------------------------|
| Attenuation                           | Auto                                              |
| Start Frequency                       | 1000 MHz                                          |
| Stop Frequency                        | 10th carrier harmonic                             |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported



| During the radiated emission test, th | ne Spectrum Analyzer was set with the following configura | ations: |
|---------------------------------------|-----------------------------------------------------------|---------|
|                                       | ······································                    |         |

| Frequency Band (MHz) | Function      | Resolution bandwidth | Video Bandwidth |  |  |
|----------------------|---------------|----------------------|-----------------|--|--|
| 30 to 1000           | 30 to 1000 QP |                      | 300 kHz         |  |  |
| Above 1000           | Peak          | 1 MHz                | 1 MHz           |  |  |
| Above 1000           | Average       | 1 MHz                | 1 MHz           |  |  |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

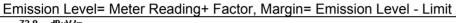
#### 7.2.6 Test Results

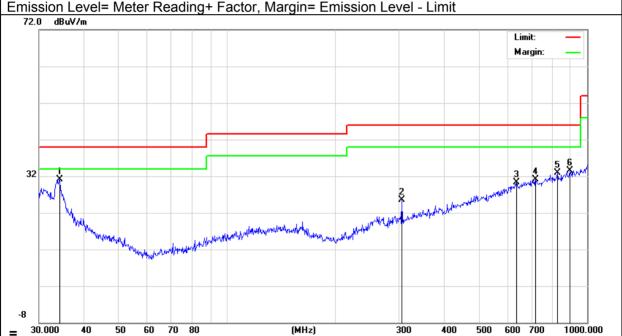
| S | purious | Emission | below | 30MHz | (9KHz to 30MH | z) |
|---|---------|----------|-------|-------|---------------|----|
|---|---------|----------|-------|-------|---------------|----|

| EUT:         | TWS Bluetooth headset Model No.: A |                    | AirBuds 5 Pro |
|--------------|------------------------------------|--------------------|---------------|
| Temperature: | <b>20</b> ℃                        | Relative Humidity: | 48%           |
| Test Mode:   | Mode2/Mode3/Mode4                  | Test By:           | Mary Hu       |

| Freq. | Ant.Pol. | Ant.Pol. Emission Level(dBuV/m) Limit 3m(dBuV/m) |    |    |    | Over | (dB) |
|-------|----------|--------------------------------------------------|----|----|----|------|------|
| (MHz) | H/V      | PK                                               | AV | PK | AV | PK   | AV   |
|       |          |                                                  |    |    |    |      |      |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.





Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

| EUT:           | TWS Bluetooth headset | Model Name :       | AirBuds 5 Pro   |
|----------------|-----------------------|--------------------|-----------------|
| Temperature:   | <b>25.4</b> ℃         | Relative Humidity: | 47%             |
| Pressure:      | 1010hPa               | Test Mode:         | 1Mbps GFSK CH00 |
| Test Voltage : | DC 3.8V               |                    |                 |

| Polar | Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Remark |
|-------|-----------|------------------|--------|-------------------|----------|--------|--------|
| (H/V) | (MHz)     | (dBuV) (dB)      |        | (dBuV/m)          | (dBuV/m) | (dB)   |        |
| V     | 34.2760   | 15.06            | 16.05  | 31.11             | 40.00    | -8.89  | QP     |
| V     | 305.6800  | 10.23            | 15.18  | 25.41             | 46.00    | -20.59 | QP     |
| V     | 636.1340  | 7.16             | 23.15  | 30.31             | 46.00    | -15.69 | QP     |
| V     | 719.1995  | 7.22             | 23.87  | 31.09             | 46.00    | -14.91 | QP     |
| V     | 827.4933  | 7.23             | 25.70  | 32.93             | 46.00    | -13.07 | QP     |
| V     | 893.8567  | 7.22             | 26.28  | 33.50             | 46.00    | -12.50 | QP     |

**Remark:** 







| Polar  | Frequency                                                                                                       | Meter<br>Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Emission<br>Level   | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin                           | Remar      |
|--------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|
| (H/V)  | (MHz)                                                                                                           | (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (dBuV/m)            | (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (dB)                             | Tternar    |
| Н      | 30.0000                                                                                                         | 4.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.98               | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -16.02                           | QP         |
| Н      | 447.9822                                                                                                        | 5.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.32               | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -20.68                           | QP         |
| Н      | 603.5392                                                                                                        | 7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.66               | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -16.34                           | QP         |
| Н      | 721.7259                                                                                                        | 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.38               | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -14.62                           | QP         |
| Н      | 866.0879                                                                                                        | 6.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.03               | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12.97                           | QP         |
| Н      | 952.0937                                                                                                        | 5.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.93               | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -13.07                           | QP         |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Margin:                          |            |
| 72.0 d | Bu¥/m                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit:                           | -          |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |            |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |            |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |            |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | <b></b> ]  |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |            |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 5 6        |
|        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                | 5 6<br>X X |
| 32     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 X                              | an march   |
| 32     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2 di madri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Week Martin Contraction          |            |
| 32     |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | when when the stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mut Antonia Manual Manual        |            |
| 32     | Marken har mark the Marken of the                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | helicities and the start of the | where and many many | Manufor And Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alert and a second second second |            |
| 32     | MM Nearly Marrie Mar | and an and a stand and a st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hehretween and the start and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | allow and maly all  | when when the start of the star | Barrier and Barrier              |            |
| 32     | My harden har marked har and har                                            | assasting and a state of the st | hehretweiserstructurg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | allow and maly all  | When we have a start of the sta | And Antonia Antonia              |            |



| Spurious Emission Above 1GHz (1GHz to 25GHz)                                         |               |                                                                |                    |                  |                   |         |          |        |      |    |            |
|--------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------|--------------------|------------------|-------------------|---------|----------|--------|------|----|------------|
| EUT:                                                                                 | TWS           | TWS Bluetooth headset         Model No.:         AirBuds 5 Pro |                    |                  |                   |         |          |        |      |    |            |
| Temperature                                                                          | e: 20 °       | С                                                              | Relative Humidity: |                  |                   | r: 48   | 48%      |        |      |    |            |
| Test Mode:                                                                           | Mod           | e2/Mode                                                        | 3/Mode4            | Test B           | SV:               | M       | ary F    | łu     |      |    |            |
| All the modulation modes have been tested, and the worst result was report as below: |               |                                                                |                    |                  |                   |         |          |        |      |    |            |
|                                                                                      |               |                                                                |                    |                  |                   |         |          |        |      |    |            |
| Frequency                                                                            | Read<br>Level | Cable<br>loss                                                  | Antenna<br>Factor  | Preamp<br>Factor | Emission<br>Level | Limit   | Limits N |        | Rema | rk | Comment    |
| (MHz)                                                                                | (dBµV)        | (dB)                                                           | dB/m               | (dB)             | (dBµV/m)          | (dBµV   | /m)      | (dB)   |      |    |            |
| Low Channel (2402 MHz)(GFSK)Above 1G                                                 |               |                                                                |                    |                  |                   |         |          |        |      |    |            |
| 4804.17                                                                              | 68.70         | 5.21                                                           | 35.59              | 44.30            | 65.20             | 74.0    | 0        | -8.80  | Pk   |    | Vertical   |
| 4804.17                                                                              | 43.24         | 5.21                                                           | 35.59              | 44.30            | 39.74             | 54.0    | 0        | -14.26 | AV   |    | Vertical   |
| 7206.04                                                                              | 61.84         | 6.48                                                           | 36.27              | 44.60            | 59.99             | 74.0    | 0        | -14.01 | Pk   |    | Vertical   |
| 7206.04                                                                              | 43.97         | 6.48                                                           | 36.27              | 44.60            | 42.12             | 54.0    | 0        | -11.88 | AV   |    | Vertical   |
| 4804.60                                                                              | 62.25         | 5.21                                                           | 35.55              | 44.30            | 58.71             | 74.0    | 0        | -15.29 | Pk   | H  | lorizontal |
| 4804.60                                                                              | 41.20         | 5.21                                                           | 35.55              | 44.30            | 37.66             | 54.0    | 0        | -16.34 | AV   | H  | lorizontal |
| 7206.19                                                                              | 59.12         | 6.48                                                           | 36.27              | 44.52            | 57.35             | 74.00   |          | -16.65 | Pk   | H  | lorizontal |
| 7206.19                                                                              | 40.63         | 6.48                                                           | 36.27              | 44.52            | 38.86             | 54.0    | 54.00 -1 |        | AV   | H  | lorizontal |
|                                                                                      |               | -                                                              | Mid Chanr          | nel (2441 N      | Hz)(GFSK)-        | -Above  | 1G       |        |      |    |            |
| 4882.81                                                                              | 63.86         | 5.21                                                           | 35.66              | 44.20            | 60.53             | 74.0    | 0        | -13.47 | Pk   |    | Vertical   |
| 4882.81                                                                              | 43.95         | 5.21                                                           | 35.66              | 44.20            | 40.62             | 54.0    | 0        | -13.38 | AV   |    | Vertical   |
| 7323.39                                                                              | 64.50         | 7.10                                                           | 36.50              | 44.43            | 63.67             | 74.0    | 0        | -10.33 | Pk   |    | Vertical   |
| 7323.39                                                                              | 42.01         | 7.10                                                           | 36.50              | 44.43            | 41.18             | 54.0    | 0        | -12.82 | AV   |    | Vertical   |
| 4882.49                                                                              | 60.47         | 5.21                                                           | 35.66              | 44.20            | 57.14             | 74.0    | 0        | -16.86 | Pk   | H  | lorizontal |
| 4882.49                                                                              | 43.92         | 5.21                                                           | 35.66              | 44.20            | 40.59             | 54.0    | 0        | -13.41 | AV   | H  | lorizontal |
| 7324.42                                                                              | 59.60         | 7.10                                                           | 36.50              | 44.43            | 58.77             | 74.0    | 0        | -15.23 | Pk   | H  | lorizontal |
| 7324.42                                                                              | 40.57         | 7.10                                                           | 36.50              | 44.43            | 39.74             | 54.0    | -        | -14.26 | AV   | H  | lorizontal |
|                                                                                      |               |                                                                | High Chanr         | nel (2480 M      | 1Hz)(GFSK)-       | - Above | 1G       |        |      |    |            |
| 4959.67                                                                              | 67.78         | 5.21                                                           | 35.52              | 44.21            | 64.30             | 74.0    | 0        | -9.70  | Pk   |    | Vertical   |
| 4959.67                                                                              | 43.90         | 5.21                                                           | 35.52              | 44.21            | 40.42             | 54.0    | 0        | -13.58 | AV   |    | Vertical   |
| 7439.34                                                                              | 62.23         | 7.10                                                           | 36.53              | 44.60            | 61.26             | 74.0    | 0        | -12.74 | Pk   |    | Vertical   |
| 7439.34                                                                              | 42.30         | 7.10                                                           | 36.53              | 44.60            | 41.33             | 54.0    | 0        | -12.67 | AV   |    | Vertical   |
| 4960.86                                                                              | 61.10         | 5.21                                                           | 35.52              | 44.21            | 57.62             | 74.0    | 0        | -16.38 | Pk   | H  | lorizontal |
| 4960.86                                                                              | 42.36         | 5.21                                                           | 35.52              | 44.21            | 38.88             | 54.0    | 0        | -15.12 | AV   | H  | lorizontal |
| 7440.01                                                                              | 59.18         | 7.10                                                           | 36.53              | 44.60            | 58.21             | 74.0    | 0        | -15.79 | Pk   | H  | lorizontal |
| 7440.01                                                                              | 43.97         | 7.10                                                           | 36.53              | 44.60            | 43.00             | 54.0    | 0        | -11.00 | AV   | H  | lorizontal |

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.



| Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz                 |                  |               |                   |                  |                   |     |               |        |          |            |
|--------------------------------------------------------------------------------------|------------------|---------------|-------------------|------------------|-------------------|-----|---------------|--------|----------|------------|
| EUT:                                                                                 | TWS Blue         | tooth he      | adset             | Mode             | l No.:            |     | AirBuds 5 Pro |        |          |            |
| Temperature                                                                          | : <b>20</b> °C   | ve Humidity   | /:                | 48%              |                   |     |               |        |          |            |
| Test Mode:                                                                           | Mode2/ Mo        | ode4          |                   | Test E           | By:               |     | Mary          | Hu     |          |            |
| All the modulation modes have been tested, and the worst result was report as below: |                  |               |                   |                  |                   |     |               |        |          |            |
| Frequency                                                                            | Meter<br>Reading | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level | Lir | nits          | Margin | Detector | Comment    |
| (MHz)                                                                                | (dBµV)           | (dB)          | dB/m              | (dB)             | (dBµV/m)          | (dB | JV/m)         | (dB)   | Туре     |            |
| 1Mbps(GFSK)- Non-hopping                                                             |                  |               |                   |                  |                   |     |               |        |          |            |
| 2310.00                                                                              | 52.93            | 2.97          | 27.80             | 43.80            | 39.90             | 7   | 74            | -34.10 | Pk       | Horizontal |
| 2310.00                                                                              | 40.28            | 2.97          | 27.80             | 43.80            | 27.25             | 5   | 54            | -26.75 | AV       | Horizontal |
| 2310.00                                                                              | 54.04            | 2.97          | 27.80             | 43.80            | 41.01             | 7   | 74            | -32.99 | Pk       | Vertical   |
| 2310.00                                                                              | 42.33            | 2.97          | 27.80             | 43.80            | 29.30             | 5   | 54            | -24.70 | AV       | Vertical   |
| 2390.00                                                                              | 53.09            | 3.14          | 27.21             | 43.80            | 39.64             | 7   | 74            | -34.36 | Pk       | Vertical   |
| 2390.00                                                                              | 42.00            | 3.14          | 27.21             | 43.80            | 28.55             | 5   | 54            | -25.45 | AV       | Vertical   |
| 2390.00                                                                              | 51.26            | 3.14          | 27.21             | 43.80            | 37.81             | 7   | 74            | -36.19 | Pk       | Horizontal |
| 2390.00                                                                              | 41.40            | 3.14          | 27.21             | 43.80            | 27.95             | 5   | 54            | -26.05 | AV       | Horizontal |
| 2483.50                                                                              | 51.43            | 3.58          | 27.70             | 44.00            | 38.71             | 7   | 74            | -35.29 | Pk       | Vertical   |
| 2483.50                                                                              | 42.75            | 3.58          | 27.70             | 44.00            | 30.03             | 5   | 54            | -23.97 | AV       | Vertical   |
| 2483.50                                                                              | 52.72            | 3.58          | 27.70             | 44.00            | 40.00             | 7   | 74            | -34.00 | Pk       | Horizontal |
| 2483.50                                                                              | 44.16            | 3.58          | 27.70             | 44.00            | 31.44             | 5   | 54            | -22.56 | AV       | Horizontal |
|                                                                                      |                  |               |                   | 1Mbps (GF        | SK)- hoppin       | g   |               |        |          |            |
| 2310.00                                                                              | 54.80            | 2.97          | 27.80             | 43.80            | 41.77             | 7   | 74            | -32.23 | Pk       | Horizontal |
| 2310.00                                                                              | 43.98            | 2.97          | 27.80             | 43.80            | 30.95             | 5   | 54            | -23.05 | AV       | Horizontal |
| 2310.00                                                                              | 53.37            | 2.97          | 27.80             | 43.80            | 40.34             | 7   | 74            | -33.66 | Pk       | Vertical   |
| 2310.00                                                                              | 44.33            | 2.97          | 27.80             | 43.80            | 31.30             | 5   | 54            | -22.70 | AV       | Vertical   |
| 2390.00                                                                              | 51.77            | 3.14          | 27.21             | 43.80            | 38.32             | 7   | 74            | -35.68 | Pk       | Vertical   |
| 2390.00                                                                              | 44.66            | 3.14          | 27.21             | 43.80            | 31.21             | 5   | 54            | -22.79 | AV       | Vertical   |
| 2390.00                                                                              | 51.57            | 3.14          | 27.21             | 43.80            | 38.12             | 7   | 74            | -35.88 | Pk       | Horizontal |
| 2390.00                                                                              | 40.84            | 3.14          | 27.21             | 43.80            | 27.39             | 5   | 54            | -26.61 | AV       | Horizontal |
| 2483.50                                                                              | 53.06            | 3.58          | 27.70             | 44.00            | 40.34             |     | 74            | -33.66 | Pk       | Vertical   |
| 2483.50                                                                              | 41.48            | 3.58          | 27.70             | 44.00            | 28.76             | 5   | 54            | -25.24 | AV       | Vertical   |
| 2483.50                                                                              | 54.21            | 3.58          | 27.70             | 44.00            | 41.49             | 7   | 74            | -32.51 | Pk       | Horizontal |
| 2483.50                                                                              | 43.36            | 3.58          | 27.70             | 44.00            | 30.64             | 5   | 54            | -23.36 | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



| Spurious Emission in Restricted Band 3260MHz-18000MHz |              |                       |               |                   |                  |                    |       |               |            |          |            |
|-------------------------------------------------------|--------------|-----------------------|---------------|-------------------|------------------|--------------------|-------|---------------|------------|----------|------------|
| EUT:                                                  |              | TWS Bluetooth headset |               |                   | Model            | Model No.:         |       | AirBuds 5 Pro |            |          |            |
| Temperature:                                          |              | <b>20</b> ℃           |               |                   | Relativ          | Relative Humidity: |       | 48%           |            |          |            |
| Test Mode:                                            |              | Mode2/ Mode4          |               |                   | Test B           | Test By: Mar       |       | Mary H        | ry Hu      |          |            |
| All the modu                                          | lation       | modes                 | s have b      | een testeo        | I, and the       | worst resu         | lt wa | s repo        | rt as belo | W:       |            |
| Frequency                                             | Frequency Re |                       | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level  | Li    | mits          | Margin     | Detector | Comment    |
| (MHz)                                                 | (dBµV)       |                       | (dB)          | dB/m              | (dB)             | (dBµV/m)           | (dB   | µV/m)         | (dB)       | Туре     |            |
| 3260                                                  | 6            | 2.12                  | 4.04          | 29.57             | 44.70            | 51.03              |       | 74            | -22.97     | Pk       | Vertical   |
| 3260                                                  | 4            | 8.06                  | 4.04          | 29.57             | 44.70            | 36.97              |       | 54            | -17.03     | AV       | Vertical   |
| 3260                                                  | 5            | 7.95                  | 4.04          | 29.57             | 44.70            | 46.86              |       | 74            | -27.14     | Pk       | Horizontal |
| 3260                                                  | 46.44        |                       | 4.04          | 29.57             | 44.70            | 35.35              |       | 54            | -18.65     | AV       | Horizontal |
| 3332                                                  | 62.37        |                       | 4.26          | 29.87             | 44.40            | 52.10              |       | 74            | -21.90     | Pk       | Vertical   |
| 3332                                                  | 4            | 5.53                  | 4.26          | 29.87             | 44.40            | 35.26              |       | 54            | -18.74     | AV       | Vertical   |
| 3332                                                  | 6            | 3.19                  | 4.26          | 29.87             | 44.40            | 52.92              |       | 74            | -21.08     | Pk       | Horizontal |
| 3332                                                  | 44           | 4.27                  | 4.26          | 29.87             | 44.40            | 34.00              |       | 54            | -20.00     | AV       | Horizontal |
| 17797                                                 | 5            | 0.54                  | 10.99         | 43.95             | 43.50            | 61.98              |       | 74            | -12.02     | Pk       | Vertical   |
| 17797                                                 | 3            | 6.93                  | 10.99         | 43.95             | 43.50            | 48.37              |       | 54            | -5.63      | AV       | Vertical   |
| 17788                                                 | 5            | 3.96                  | 11.81         | 43.69             | 44.60            | 64.86              |       | 74            | -9.14      | Pk       | Horizontal |
| 17788                                                 | 3            | 5.38                  | 11.81         | 43.69             | 44.60            | 46.28              |       | 54            | -7.72      | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



#### 7.3 NUMBER OF HOPPING CHANNEL

#### 7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

#### 7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

#### 7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

#### 7.3.6 Test Results

| EUT:         | TWS Bluetooth headset | Model No.:         | AirBuds 5 Pro |
|--------------|-----------------------|--------------------|---------------|
| Temperature: | <b>20</b> ℃           | Relative Humidity: | 48%           |
| Test Mode:   | Mode 5(1Mbps)         | Test By:           | Mary Hu       |

Test data reference attachment.

Note: All modes are predicted, and only the worst mode is recorded in the report.



#### 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

#### 7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

#### 7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.4.6 Test Results

| EUT:         | TWS Bluetooth headset | Model No.:         | AirBuds 5 Pro |
|--------------|-----------------------|--------------------|---------------|
| Temperature: | <b>20</b> °C          | Relative Humidity: | 48%           |
| Test Mode:   | Mode2/Mode3/Mode4     | Test By:           | Mary Hu       |



#### 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

#### 7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

#### 7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

#### 7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW  $\geq$  1MHz VBW  $\geq$  RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.



#### 7.5.6 Test Results

| EUT:         | TWS Bluetooth headset | Model No.:         | AirBuds 5 Pro |
|--------------|-----------------------|--------------------|---------------|
| Temperature: | <b>20</b> ℃           | Relative Humidity: | 48%           |
| Test Mode:   | Mode2/Mode3/Mode4     | Test By:           | Mary Hu       |

Test data reference attachment.

Note:

A Period Time = (channel number)\*0.4 DH1 Dwell time: Reading \* (1600/2)\*31.6/(channel number) DH3 Dwell time: Reading \* (1600/4)\*31.6/(channel number) DH5 Dwell time: Reading \* (1600/6)\*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time



#### 7.6 20DB BANDWIDTH TEST

#### 7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.6.2 Conformance Limit

No limit requirement.

#### 7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  1% of the 20 dB bandwidth VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.6.6 Test Results

| EUT:         | TWS Bluetooth headset | Model No.:         | AirBuds 5 Pro |
|--------------|-----------------------|--------------------|---------------|
| Temperature: | <b>20</b> ℃           | Relative Humidity: | 48%           |
| Test Mode:   | Mode2/Mode3/Mode4     | Test By:           | Mary Hu       |



#### 7.7 PEAK OUTPUT POWER

#### 7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

#### 7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

#### 7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  the 20 dB bandwidth of the emission being measured VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.7.6 Test Results

| EUT:         | TWS Bluetooth headset | Model No.:         | AirBuds 5 Pro |
|--------------|-----------------------|--------------------|---------------|
| Temperature: | <b>20</b> ℃           | Relative Humidity: | 48%           |
| Test Mode:   | Mode2/Mode3/Mode4     | Test By:           | Mary Hu       |



#### 7.8 CONDUCTED BAND EDGE MEASUREMENT

#### 7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

#### 7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

#### 7.8.6 Test Results

| EUT:         | TWS Bluetooth headset | Model No.:         | AirBuds 5 Pro |
|--------------|-----------------------|--------------------|---------------|
| Temperature: | 20 °C                 | Relative Humidity: | 48%           |
| Test Mode:   | Mode2 /Mode4/ Mode 5  | Test By:           | Mary Hu       |



#### 7.9 SPURIOUS RF CONDUCTED EMISSION

#### 7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

#### 7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum

amplitude level in 100 kHz.

#### 7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.



#### 7.10 ANTENNA APPLICATION

#### 7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 7.10.2 Result

The EUT antenna is permanent attached Monopole antenna (Gain: 0.5dBi). It comply with the standard requirement.

# **NTEK北测**

#### 7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

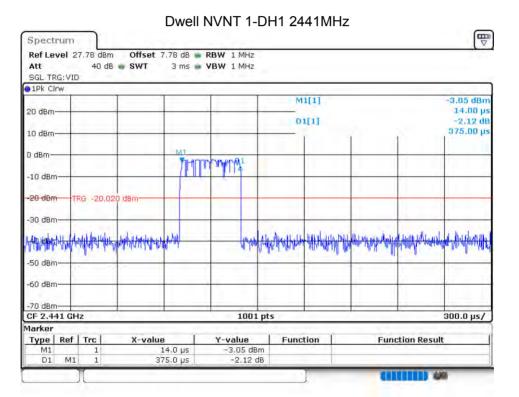
#### 7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

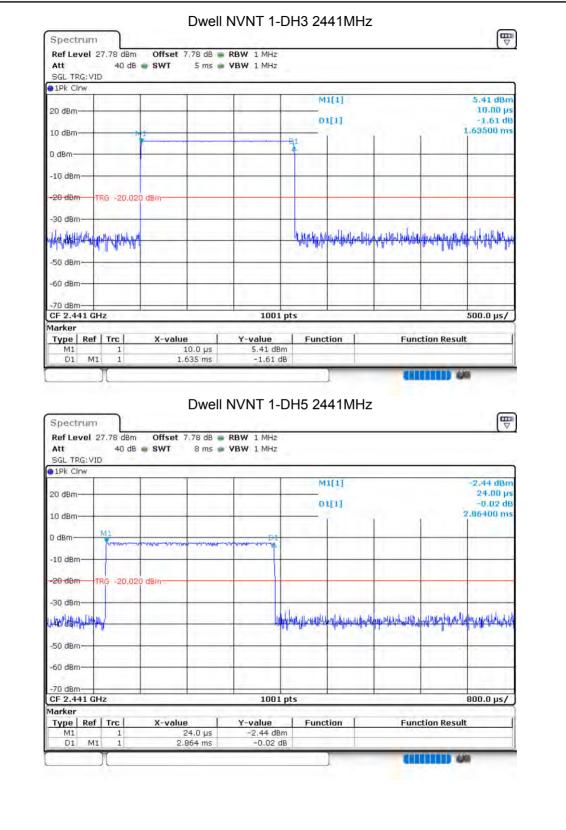
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

#### 7.11.3 EUT Pseudorandom Frequency Hopping Sequence

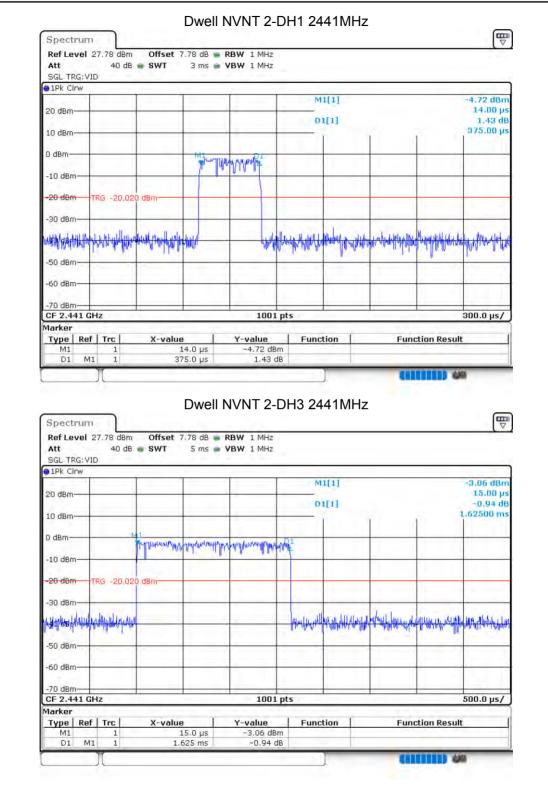
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.




### 8 TEST RESULTS

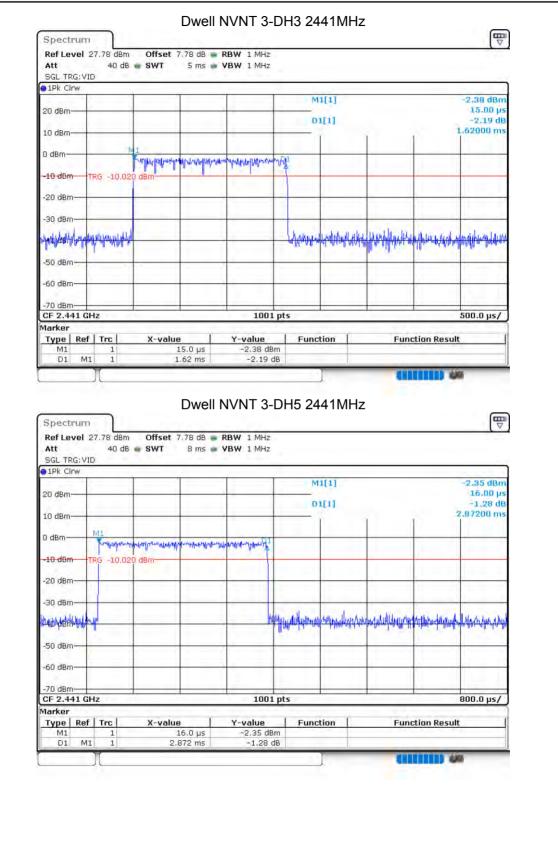
#### 8.1 **DWELL TIME**


| Mode  | Frequency                                                            | Pulse                                                                                                                                                                                                                                                                      | Total Dwell                                                                                                                   | Period                                                                                                                                                                     | Limit                                                                                                                                                                                                                       | Verdict                                                                                                                                                                                                                                                 |
|-------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (MHz)                                                                | Time (ms)                                                                                                                                                                                                                                                                  | Time (ms)                                                                                                                     | Time (ms)                                                                                                                                                                  | (ms)                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |
| 1-DH1 | 2441                                                                 | 0.375                                                                                                                                                                                                                                                                      | 120                                                                                                                           | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 1-DH3 | 2441                                                                 | 1.635                                                                                                                                                                                                                                                                      | 261.6                                                                                                                         | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 1-DH5 | 2441                                                                 | 2.864                                                                                                                                                                                                                                                                      | 305.493                                                                                                                       | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 2-DH1 | 2441                                                                 | 0.375                                                                                                                                                                                                                                                                      | 120                                                                                                                           | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 2-DH3 | 2441                                                                 | 1.625                                                                                                                                                                                                                                                                      | 260                                                                                                                           | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 2-DH5 | 2441                                                                 | 2.872                                                                                                                                                                                                                                                                      | 306.347                                                                                                                       | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 3-DH1 | 2441                                                                 | 0.375                                                                                                                                                                                                                                                                      | 120                                                                                                                           | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 3-DH3 | 2441                                                                 | 1.62                                                                                                                                                                                                                                                                       | 259.2                                                                                                                         | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
| 3-DH5 | 2441                                                                 | 2.872                                                                                                                                                                                                                                                                      | 306.347                                                                                                                       | 31600                                                                                                                                                                      | 400                                                                                                                                                                                                                         | Pass                                                                                                                                                                                                                                                    |
|       | 1-DH1<br>1-DH3<br>1-DH5<br>2-DH1<br>2-DH3<br>2-DH5<br>3-DH1<br>3-DH3 | (MHz)           1-DH1         2441           1-DH3         2441           1-DH5         2441           2-DH1         2441           2-DH3         2441           2-DH5         2441           3-DH1         2441           3-DH1         2441           3-DH3         2441 | (MHz)Time (ms)1-DH124410.3751-DH324411.6351-DH524412.8642-DH124410.3752-DH324411.6252-DH524412.8723-DH124410.3753-DH324411.62 | (MHz)Time (ms)Time (ms)1-DH124410.3751201-DH324411.635261.61-DH524412.864305.4932-DH124410.3751202-DH324411.6252602-DH524412.872306.3473-DH124410.3751203-DH324411.62259.2 | (MHz)Time (ms)Time (ms)Time (ms)1-DH124410.375120316001-DH324411.635261.6316001-DH524412.864305.493316002-DH124410.375120316002-DH324411.625260316002-DH524412.872306.347316003-DH124410.375120316003-DH124411.62259.231600 | (MHz)Time (ms)Time (ms)Time (ms)(ms)1-DH124410.375120316004001-DH324411.635261.6316004001-DH524412.864305.493316004002-DH124410.375120316004002-DH324411.625260316004002-DH524412.872306.347316004003-DH124410.375120316004003-DH324411.62259.231600400 |









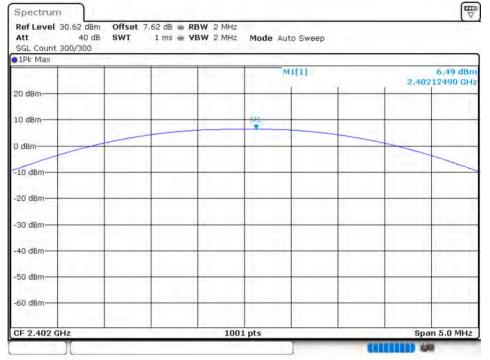





| Ref Level 27.78 dBm Offs<br>Att 40 dB e SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | et 7.78 dB 🝙 RBW 1 MF<br>8 ms 👜 VBW 1 MF |                                          |                              |                        |                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------|------------------------|------------------------------------------------|
| SGL TRG: VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                              |                        |                                                |
| 1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1                                      | M1[1                                     | 1                            |                        | -3.14 dBm                                      |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                          |                              |                        | 16.00 µs                                       |
| 10 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | 01[1                                     |                              |                        | -1.58 dB<br>2.87200 ms                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                          |                              |                        |                                                |
| D dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rana wanter manager and                  | 1                                        |                              |                        |                                                |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | *                                        |                              | _                      |                                                |
| -20 dBm TRG -20.020 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                          |                              |                        |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                          |                              |                        |                                                |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                              |                        | A Gamma                                        |
| M BIBBHIMPANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | Notwing Partities Pres                   | spally providence of the spa | human relations of the | Harrison and Martin                            |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                          |                              |                        |                                                |
| -30 ubm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                          |                              |                        | 11111111                                       |
| -60 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                          |                              | -                      |                                                |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                          |                              |                        |                                                |
| CF 2.441 GHz<br>Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                       | 01 pts                                   |                              |                        | 800.0 µs/                                      |
| M1 1<br>D1 M1 1<br>Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dwell NVNT 3                             |                                          | 1MHz                         |                        | ,<br>E                                         |
| D1 M1 1<br>Spectrum<br>Ref Level 27.78 dBm Offsi<br>Att 40 dB SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dwell NVNT :                             | 3-DH1 244                                | 1MHz                         | GIUIUD                 |                                                |
| D1 M1 1<br>Spectrum<br>Ref Level 27.78 dBm Offs<br>Att 40 dB SWT<br>SGL TRG:VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dwell NVNT :                             | 3-DH1 244<br>12<br>12                    |                              | CARCONOLD              |                                                |
| D1 M1 1<br>Spectrum<br>Ref Level 27.78 dBm Offs<br>Att 40 dB SWT<br>SGL TRG: VID<br>1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dwell NVNT :                             | 3-DH1 244                                |                              |                        | -3.02 dBm                                      |
| D1 M1 1<br>Spectrum<br>Ref Level 27.78 dBm Offso<br>Att 40 dB SWT<br>SGL TRG:VID<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dwell NVNT :                             | 3-DH1 244<br>12<br>12                    | I                            | CILLIND .              | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1 M1 1<br>Spectrum<br>Ref Level 27.78 dBm Offso<br>Att 40 dB SWT<br>SGL TRG:VID<br>1Pk Clrw<br>20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dwell NVNT :                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 ps                          |
| D1 M1 1  Spectrum  Ref Level 27.78 dBm Offsi Att 40 dB SWT SGL TRG: VID  1Pk Clrw  20 dBm  10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1 M1 1  Spectrum  Ref Level 27.78 dBm Offs  Att 40 dB SWT  SGL TRG:VID  1Pk Clrw  20 dBm  0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1 M1 1  Spectrum  Ref Level 27.78 dBm Offsi Att 40 dB SWT SGL TRG: VID  1Pk Clrw  20 dBm  10 dBm  -10 dBm  -10 dBm  -10 dBm  -10 dBm10,020 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1 M1 1  Spectrum  Ref Level 27.78 dBm Offs  Att 40 dB SWT  SGL TRG:VID  1Pk Clrw  20 dBm  0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1 M1 1  Spectrum  Ref Level 27.78 dBm Offsi Att 40 dB SWT SGL TRG: VID  1Pk Clrw  20 dBm  10 dBm  -10 dBm  -10 dBm  -10 dBm  -10 dBm10,020 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1         M1         1           Spectrum         Ref Level 27.78 dBm         Offsa           Att         40 dB         SWT           SGL TRG: VID         IPk Clrw           20 dBm         I0 dBm           10 dBm         ID           -10 dBm         TRG           -20 dBm         -10,020 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1         M1         1           Spectrum         Ref Level         27.78 dBm         Offs           Att         40 dB         SWT           SGL TRG: VID         IPK Clrw         IPK Clrw           20 dBm         0 dBm         0 dBm           10 dBm         TRG         -10,020 dBm           -20 dBm         -30 dBm         -10,020 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1         M1         1           Spectrum         Ref Level 27.78 dBm         Offsa           Att         40 dB         SWT           SGL TRG: VID         IPk Clrw           20 dBm         I0 dBm           10 dBm         ID           -10 dBm         TRG           -20 dBm         -10,020 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1         M1         1           Spectrum         Ref Level         27.78 dBm         Offs           Att         40 dB         SWT           SGL TRG: VID         IPK Clrw         IPK Clrw           20 dBm         0 dBm         0 dBm           10 dBm         TRG         -10,020 dBm           -20 dBm         -30 dBm         -10,020 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1         M1         1           Spectrum         Ref Level 27.78 dBm         Offsi           Att         40 dB         SWT           SGL TRG: VID         1Pk Clrw         20 dBm           10 dBm         0 dBm         0 dBm           -10 dBm         TRG         -10.020 dBm           -20 dBm         -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dwell NVNT (                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1         M1         1           Spectrum         Ref Level         27.78 dBm         Offs.           Att         40 dB         SWT           SGL TRG: VID         IPK CIrw         IPK CIrw           20 dBm         0 dBm         0 dBm           10 dBm         10 dBm         IPK G           -20 dBm         -10.020 dBm           -30 dBm         -60 dBm         -60 dBm           -70 dBm         -70 dBm         -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dwell NVNT :                             | 3-DH1 244                                | I                            |                        | -3.02 dBm<br>11.00 μs<br>-3,73 dB              |
| D1         M1         1           Spectrum         Ref Level 27.78 dBm         Offs.           Att         40 dB         SWT           SGL TRG:VID         Image: second secon | Dwell NVNT :                             | 3-DH1 244                                |                              | Ht Boild, webstraffe   | -3.02 dBm<br>11.00 µs<br>-3.73 dB<br>375.00 µs |
| D1         M1         1           Spectrum         Ref Level         27.78 dBm         Offs.           Att         40 dB         SWT           SGL TRG: VID         IPK CIrw         IPK CIrw           20 dBm         0 dBm         0 dBm           10 dBm         10 dBm         IPK G           -20 dBm         -10.020 dBm           -30 dBm         -60 dBm         -60 dBm           -70 dBm         -70 dBm         -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dwell NVNT :                             | B-DH1 244                                |                              | Function Res           | -3.02 dBm<br>11.00 µs<br>-3.73 dB<br>375.00 µs |








# **NTEK北**测

#### 8.2 MAXIMUM CONDUCTED OUTPUT POWER

| Condition | Mode  | Frequency (MHz) | Antenna | Power (dBm) | Limit (dBm) | Verdict |
|-----------|-------|-----------------|---------|-------------|-------------|---------|
| NVNT      | 1-DH5 | 2402            | Ant 1   | 6.49        | 30          | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | 6.21        | 30          | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | 7.09        | 30          | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | 6.37        | 20.97       | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | 6.18        | 20.97       | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | 7.11        | 20.97       | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | 6.39        | 20.97       | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | 6.21        | 20.97       | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | 7.08        | 20.97       | Pass    |

#### Power NVNT 1-DH5 2402MHz Ant1

















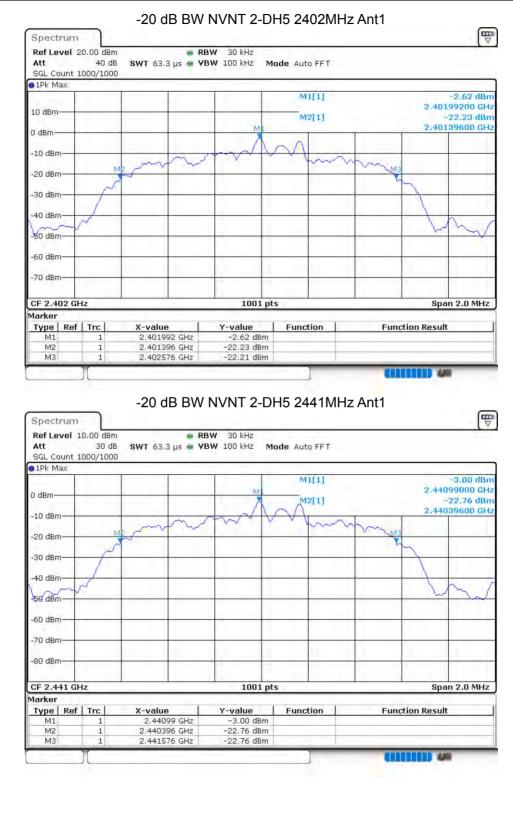




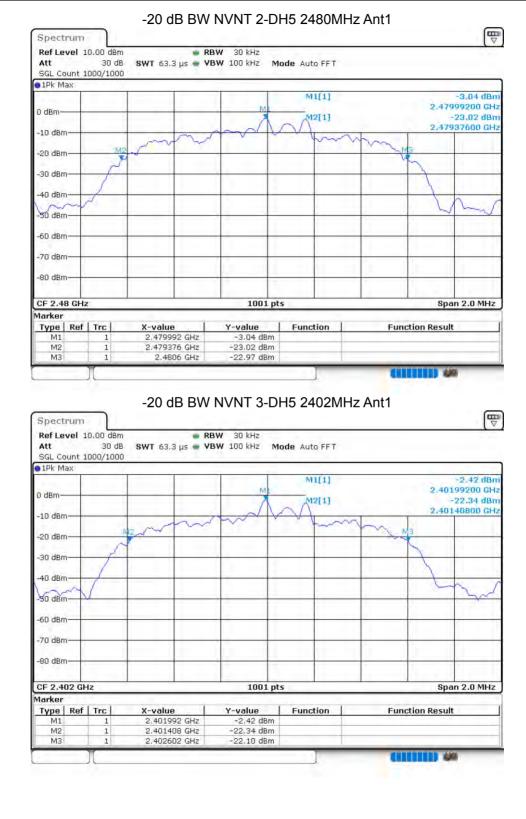
## NTEK北测

### 8.3 OCCUPIED CHANNEL BANDWIDTH

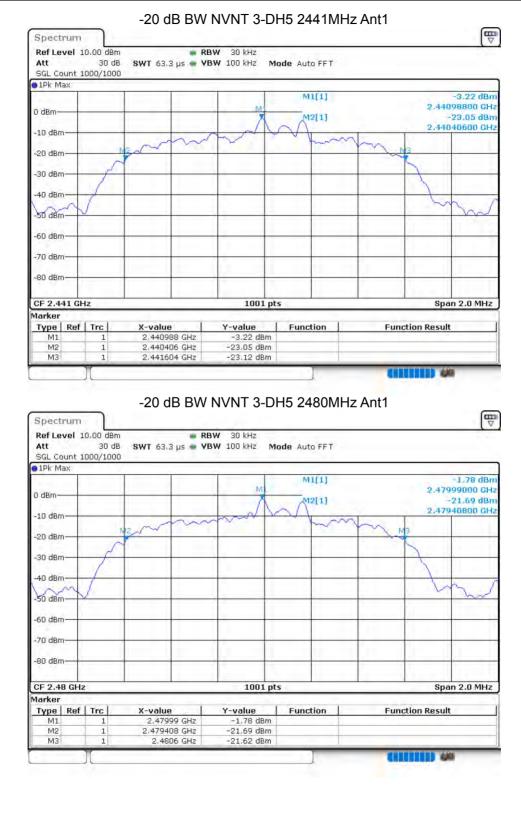
| Condition                            | Mode  | Frequency (MHz) | Antenna | -20 dB Bandwidth (MHz) | Verdict |
|--------------------------------------|-------|-----------------|---------|------------------------|---------|
|                                      | 1-DH5 | 2402            | Ant 1   | 0.946                  | Pass    |
| NVNT                                 | 1-DH5 | 2441            | Ant 1   | 1.038                  | Pass    |
| NVN1<br>NVNT<br>NVNT<br>NVNT<br>NVNT | 1-DH5 | 2480            | Ant 1   | 0.958                  | Pass    |
| NVNT                                 | 2-DH5 | 2402            | Ant 1   | 1.18                   | Pass    |
| NVNT                                 | 2-DH5 | 2441            | Ant 1   | 1.18                   | Pass    |
| NVNT                                 | 2-DH5 | 2480            | Ant 1   | 1.224                  | Pass    |
| NVNT                                 | 3-DH5 | 2402            | Ant 1   | 1.194                  | Pass    |
| NVNT<br>NVNT<br>NVNT                 | 3-DH5 | 2441            | Ant 1   | 1.198                  | Pass    |
| NVNT                                 | 3-DH5 | 2480            | Ant 1   | 1.192                  | Pass    |




#### -20 dB BW NVNT 1-DH5 2402MHz Ant1





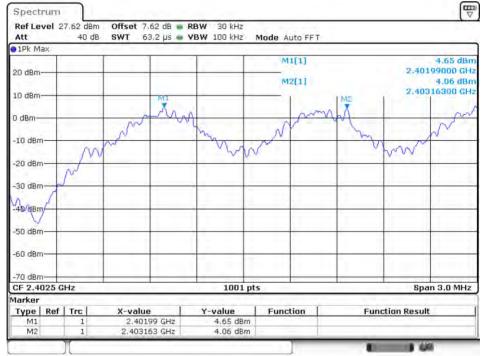





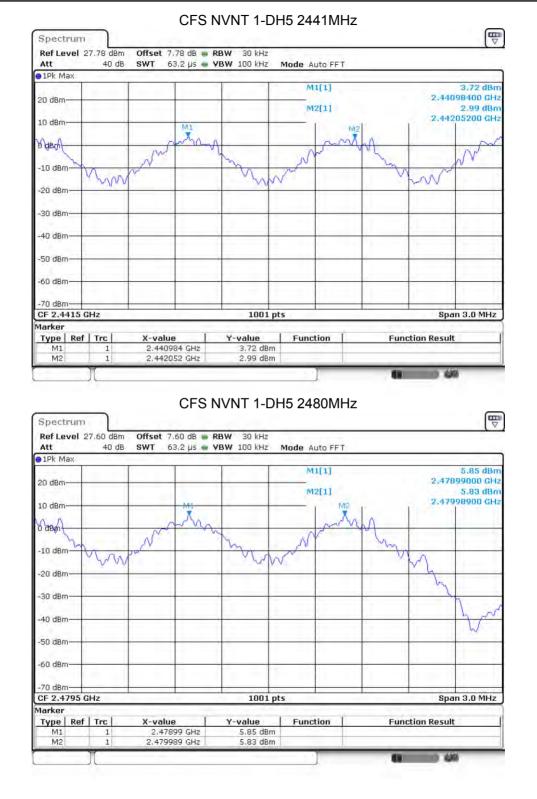




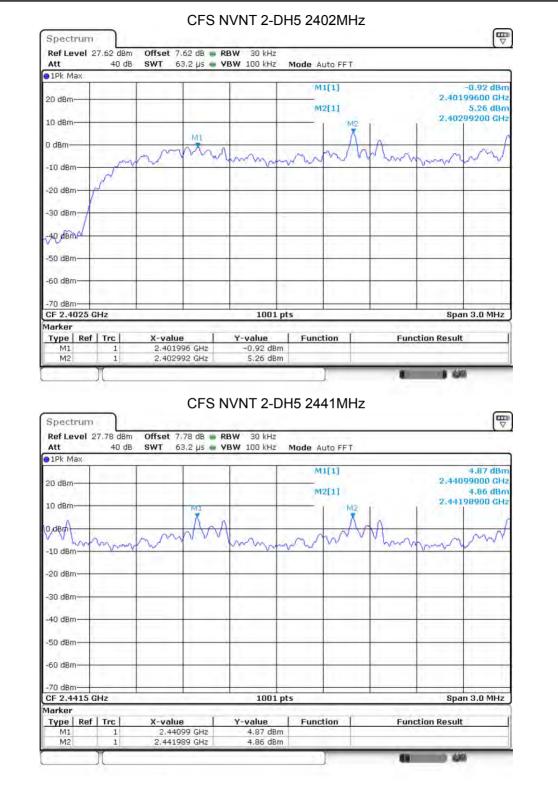






#### 8.4 CARRIER FREQUENCIES SEPARATION

| Condition | Mode  | Hopping Freq1 | Hopping Freq2 | HFS   | Limit | Verdict |
|-----------|-------|---------------|---------------|-------|-------|---------|
|           |       | (MHz)         | (MHz)         | (MHz) | (MHz) |         |
| NVNT      | 1-DH5 | 2401.99       | 2403.163      | 1.173 | 0.946 | Pass    |
| NVNT      | 1-DH5 | 2440.984      | 2442.052      | 1.068 | 1.038 | Pass    |
| NVNT      | 1-DH5 | 2478.99       | 2479.989      | 0.999 | 0.958 | Pass    |
| NVNT      | 2-DH5 | 2401.996      | 2402.992      | 0.996 | 0.787 | Pass    |
| NVNT      | 2-DH5 | 2440.99       | 2441.989      | 0.999 | 0.787 | Pass    |
| NVNT      | 2-DH5 | 2478.987      | 2479.989      | 1.002 | 0.816 | Pass    |
| NVNT      | 3-DH5 | 2401.99       | 2402.986      | 0.996 | 0.796 | Pass    |
| NVNT      | 3-DH5 | 2441.161      | 2441.989      | 0.828 | 0.799 | Pass    |
| NVNT      | 3-DH5 | 2479.161      | 2480.163      | 1.002 | 0.795 | Pass    |


#### CFS NVNT 1-DH5 2402MHz
















ACCREDITED

Certificate #4298.01

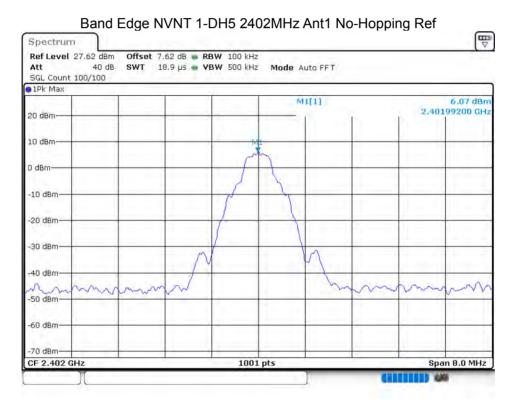






ilac-

#### 8.5 NUMBER OF HOPPING CHANNEL Condition Hopping Number Verdict Mode Limit NVNT 79 1-DH5 15 Pass Hopping No. NVNT 1-DH5 2402MHz Spectrum Ref Level 27.62 dBm Offset 7.62 dB 🝙 RBW 100 kHz Att 40 dB SGL Count 7000/7000 SWT 1 ms 🖷 VBW 300 kHz Mode Auto Sweep 1Pk Max M1[1] 5.71 dBn 20 dBm 2.4019205 GHz M2[1] 11.02/dBn 00765 GHz MidBm ARARAR AABAAAAA **WORDON** 4.66.66.6 **VITY** .0 dBm— 20 dBm 30 dBm 40 dBm -50 dBm -60 dBm -70 dBm-1001 pts Start 2.4 GHz Stop 2.4835 GHz Marker Type | Ref | Trc **Function Result** X-value 2.4019205 GHz Y-value 5.71 dBm Function M1 1 M2 2.4800765 GHz 11.02 dBm 1


ACCREDITED

Certificate #4298.01



#### 8.6 BAND EDGE

| Condition | Mode  | Frequency | Antenna | Hopping    | Max Value | Limit | Verdict |
|-----------|-------|-----------|---------|------------|-----------|-------|---------|
|           |       | (MHz)     |         | Mode       | (dBc)     | (dBc) |         |
| NVNT      | 1-DH5 | 2402      | Ant 1   | No-Hopping | -47.73    | -20   | Pass    |
| NVNT      | 1-DH5 | 2402      | Ant 1   | Hopping    | -46.68    | -20   | Pass    |
| NVNT      | 1-DH5 | 2480      | Ant 1   | No-Hopping | -49.28    | -20   | Pass    |
| NVNT      | 1-DH5 | 2480      | Ant 1   | Hopping    | -48.81    | -20   | Pass    |
| NVNT      | 2-DH5 | 2402      | Ant 1   | No-Hopping | -47.45    | -20   | Pass    |
| NVNT      | 2-DH5 | 2402      | Ant 1   | Hopping    | -47.6     | -20   | Pass    |
| NVNT      | 2-DH5 | 2480      | Ant 1   | No-Hopping | -50.4     | -20   | Pass    |
| NVNT      | 2-DH5 | 2480      | Ant 1   | Hopping    | -49.02    | -20   | Pass    |
| NVNT      | 3-DH5 | 2402      | Ant 1   | No-Hopping | -47.96    | -20   | Pass    |
| NVNT      | 3-DH5 | 2402      | Ant 1   | Hopping    | -47.53    | -20   | Pass    |
| NVNT      | 3-DH5 | 2480      | Ant 1   | No-Hopping | -48.38    | -20   | Pass    |
| NVNT      | 3-DH5 | 2480      | Ant 1   | Hopping    | -49.53    | -20   | Pass    |





| Ref Level<br>Att<br>SGL Count                                                                                                                               | 40 dB                                           |                              |                                          | RBW 100 kH:<br>VBW 500 kH:                       |                  | Auto FFT.       |                    |             |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|------------------------------------------|--------------------------------------------------|------------------|-----------------|--------------------|-------------|-----------------|
| ●1Pk Max                                                                                                                                                    |                                                 |                              |                                          | i i                                              |                  | 1011            |                    |             | 6.00            |
| 20 dBm                                                                                                                                                      |                                                 |                              |                                          |                                                  | IM               | 1[1]            |                    | 2.401       | 6.09 (<br>95000 |
| 10 dBm                                                                                                                                                      |                                                 |                              | 1000                                     |                                                  | M                | 2[1]            |                    |             | 45.46           |
|                                                                                                                                                             |                                                 |                              |                                          |                                                  |                  | 1               |                    | 2.400       | 00000           |
| 0 dBm                                                                                                                                                       |                                                 |                              |                                          | -                                                |                  |                 |                    |             |                 |
| -10 dBm                                                                                                                                                     | the second                                      |                              |                                          |                                                  | _                |                 | _                  |             |                 |
| -20 dBm                                                                                                                                                     | 01 -13,927                                      | dBm-                         |                                          |                                                  |                  |                 |                    |             |                 |
|                                                                                                                                                             |                                                 |                              |                                          | -                                                |                  |                 |                    |             |                 |
| -30 dBm                                                                                                                                                     |                                                 | 1                            | 1                                        | 140                                              |                  | 1               |                    | 1.000       |                 |
| -40 dBm                                                                                                                                                     |                                                 | 1.04                         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | M4                                               | 0.0000           | 1               | 2.2.0              | MS          | Ma              |
| -50 dBm                                                                                                                                                     | myler service with                              | minulumed                    | When Provident and                       | Man Ann anterior and                             | ntringlos dutors | Multiment Annue | would be the would | www.mmylutm | munit           |
|                                                                                                                                                             |                                                 |                              |                                          | ·                                                |                  | 1               |                    |             |                 |
| -60 dBm                                                                                                                                                     |                                                 |                              |                                          | 1                                                |                  |                 |                    | 1           |                 |
| -70 dBm-                                                                                                                                                    | 6 OL-                                           |                              |                                          |                                                  |                  |                 | _                  | ~           | . 405           |
| Start 2.30<br>Marker                                                                                                                                        | o GHZ                                           |                              |                                          | 1001                                             | pts              |                 |                    | Stop 1      | 2.406 G         |
| Type   Re                                                                                                                                                   |                                                 | X-value                      |                                          | Y-value                                          | Func             | tion            | Fund               | tion Result |                 |
| M1<br>M2                                                                                                                                                    | 1                                               |                              | 95 GHz<br>.4 GHz                         | 6.09 dB<br>-45.46 dB                             |                  |                 |                    |             |                 |
| M2<br>M3                                                                                                                                                    | 1                                               |                              | 39 GHz                                   | -45.46 dB                                        |                  |                 |                    |             |                 |
| 100                                                                                                                                                         | 1                                               | £.,                          |                                          |                                                  |                  |                 |                    |             |                 |
| M4<br>Bi<br>Spectrum<br>Ref Level<br>Att                                                                                                                    | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | -41.66 dB<br>VNT 1-D<br>BW 100 kHz<br>BW 300 kHz | H5 240           | 1.5.52          | nt1 Hop            | oping R     | ef              |
| M4<br>Bi<br>Spectrun<br>Ref Level<br>Att<br>SGL Count                                                                                                       | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240           | 1.5.52          | nt1 Hop            | oping R     | ef              |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                  | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240<br>Mode A | 1.5.52          | nt1 Hop            |             | 6.77            |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count                                                                                                             | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-                                                                                       | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77            |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                  | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                            | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-                                                                                       | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                            | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | ef              |
| M4<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-                                                                | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                  | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                                    | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-                                                                | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                                    | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>10 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                   | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'<br>62 dB • R          | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>10 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                   | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm          | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77 (          |
| M4<br>Spectrun<br>Ref Level<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                  | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77            |
| M4<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>ID dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm            | 1<br>and Edg<br>27.62 dBm<br>40 dB              | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240<br>Mode A | uto FFT         | nt1 Hop            |             | 6.77            |
| M4<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm          | 1<br>and Edg<br>27.62 dBm<br>40 dB<br>8000/8000 | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240           | uto FFT         | nt1 Hop            | 2,405       | 6.77            |
| M4<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm | 1<br>and Edg<br>27.62 dBm<br>40 dB<br>8000/8000 | 2.34<br>ge(Hopp<br>offset 7. | 71 GHz<br>Ding) N'                       | VNT 1-D                                          | H5 240           | uto FFT         | nt1 Hop            | 2,405       | 6.77            |



| Spectrum<br>Ref Level<br>Att<br>SGL Count                                                                                                               | 27.62 dBm<br>40 dB                    |               |                | RBW 100 kHz<br>VBW 300 kHz             | Mode 4        | uto FFT     |                        |                     |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|----------------|----------------------------------------|---------------|-------------|------------------------|---------------------|------------------|
| 1Pk Max                                                                                                                                                 |                                       |               |                | -                                      |               |             |                        |                     |                  |
| 20 dBm                                                                                                                                                  |                                       | 1             |                |                                        | M             | 1[1]        |                        | 2 40                | 6.07 c<br>495000 |
|                                                                                                                                                         |                                       |               |                |                                        | M             | 2[1]        |                        |                     | -43.72 0         |
| 10 dBm                                                                                                                                                  |                                       |               |                |                                        |               |             | 6                      | 2.40                | 000000           |
| 0 dBm                                                                                                                                                   |                                       |               |                |                                        | -             | -           | -                      | -                   |                  |
| -10 dBm                                                                                                                                                 | DI -13.228                            | dBm-          | -              | -                                      | _             | _           |                        |                     |                  |
| -20 dBm                                                                                                                                                 |                                       |               |                |                                        | _             | -           | -                      |                     |                  |
| -30 dBm                                                                                                                                                 |                                       |               |                |                                        | -             |             | -                      |                     |                  |
| -40 dBm                                                                                                                                                 | 2.2                                   |               | M4             | 1.1                                    |               | 1           | 1 1 1 1                | 142                 | Ma               |
| an manual and the                                                                                                                                       | annumber                              | automountains | mul rollin     | when many and                          | markenetike m | convertents | un productive property | In Tary Arrestation | mynet            |
| -50 dBm                                                                                                                                                 |                                       |               |                | · · · · · ·                            |               |             |                        |                     |                  |
| -60 dBm                                                                                                                                                 |                                       |               |                |                                        |               |             |                        |                     |                  |
| -70 dBm-                                                                                                                                                |                                       |               |                |                                        |               | _           | -                      |                     | 1                |
| Start 2.306<br>Marker                                                                                                                                   | GHz                                   | _             |                | 1001                                   | ots           | -           |                        | Stop                | 2.406 G          |
| Type   Ref                                                                                                                                              |                                       | X-value       |                | Y-value                                | Funct         | tion        | Fun                    | ction Resul         | t                |
| M1<br>M2                                                                                                                                                | 1                                     | 2.4049        | 5 GHz<br>4 GHz | 6.07 dBm<br>-43.72 dBm                 | <u></u>       |             |                        |                     |                  |
| MЗ                                                                                                                                                      | 1                                     | 2.38          | 7 GHz          | -44.40 dBm                             | n             | 1           |                        |                     |                  |
| M4                                                                                                                                                      | 1 -                                   | 2.34          | 1 GHz          | -39.92 dBm                             | 1             |             |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att                                                                                                                            | Band                                  | Offset 7.t    | 50 dB 💼 I      | -DH5 248<br>RBW 100 kHz<br>VBW 300 kHz | 13.7.         |             | lo-Hoppi               | ng Ref              |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count                                                                                                               | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | 13.7.         |             | lo-Hoppi               | ng Ref              | 109              |
| Spectrum<br>Ref Level<br>Att                                                                                                                            | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       |             | lo-Hoppi               |                     | 6,20 ¢           |
| Spectrum<br>Ref Level<br>Att<br>SGL Count                                                                                                               | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     | lo-Hoppi               |                     | 6,20 c<br>994410 |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-                                                                                       | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     | lo-Hoppi               |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>● 1Pk Max                                                                                                  | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     | Jo-Hoppi               |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-                                                                                       | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     | lo-Hoppi               |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-                                                                            | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-                                                                            | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                      | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                  | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                      | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                        | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-10 dBm-<br>-20 dBm-                                        | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                        | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-20 dBm-<br>-30 dBm-<br>-40 dBm-                | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-20 dBm-<br>-30 dBm-<br>-40 dBm-                | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm | Band<br>27.60 dBm<br>40 dB            | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        |                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm            | Band<br>27.60 dBm<br>40 dB<br>100/100 | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz                            | Mode Au       | uto FFT     |                        | 2.47                |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm   | Band<br>27.60 dBm<br>40 dB<br>100/100 | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz<br>VBW 300 kHz             | Mode Au       | uto FFT     |                        | 2.47                | 994410           |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm   | Band<br>27.60 dBm<br>40 dB<br>100/100 | Offset 7.t    | 50 dB 💼 I      | RBW 100 kHz<br>VBW 300 kHz             | Mode Au       | uto FFT     |                        | 2.47                | 994410           |



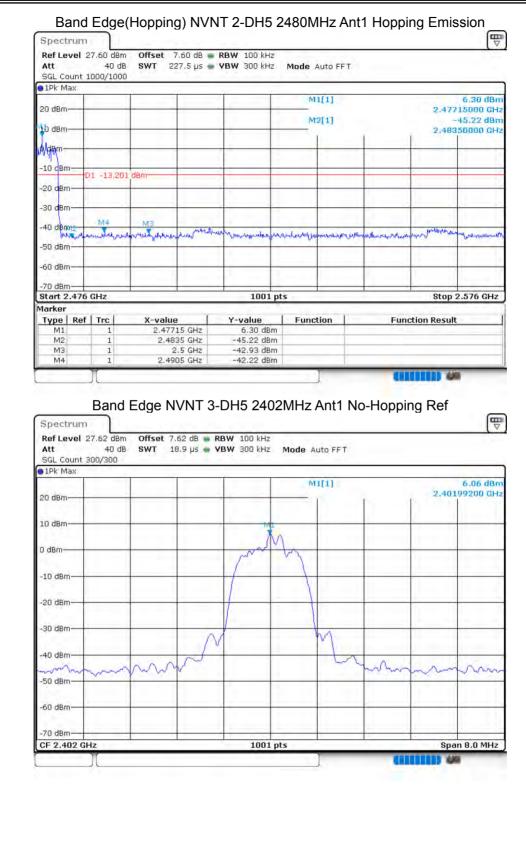
| ● 1Pk Max                                                                                                                                                                          | -                           | -                    |                   | 1                                                | M                 | 1[1]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -               | 6.34 dB            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|-------------------|--------------------------------------------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 20 dBm                                                                                                                                                                             |                             | -                    |                   | -                                                | _                 | 2[1]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 105000 G           |
| 10 dBm                                                                                                                                                                             | _                           |                      | -                 | -                                                |                   | 2[1]      | <i>c</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 50000 G            |
| 0 d8m                                                                                                                                                                              |                             |                      |                   |                                                  |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -               |                    |
| -10 dBm                                                                                                                                                                            |                             |                      | -                 | -                                                | -                 | -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                    |
| -20 dBm-                                                                                                                                                                           | -13,801                     | dBm-                 |                   |                                                  |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    |
| -30 dBm                                                                                                                                                                            |                             |                      | 1                 |                                                  |                   |           | [ <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 ;             |                    |
| 11                                                                                                                                                                                 |                             | 1/14                 | 1                 | 1                                                | 1.11              | 1.1.1     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |                    |
| -50 dBm                                                                                                                                                                            | pidenal milit               | phillipping          | monorman          | hownedwarm                                       | enthalithility of | mmunuther | follow and the contraction of the second s | lants body wash | muldiplan          |
|                                                                                                                                                                                    |                             | _                    | 1                 |                                                  | 1.1               | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    |
| -60 dBm                                                                                                                                                                            |                             |                      | 1                 | 1                                                |                   |           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | h                  |
| -70 dBm<br>Start 2.476 0                                                                                                                                                           | GHz                         | I                    | <u> </u>          | 1001                                             | pts               |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stop            | 2.576 GH           |
| Marker                                                                                                                                                                             |                             | W 2210               |                   |                                                  |                   | Han I     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0            |                    |
| Type Ref<br>M1                                                                                                                                                                     | 1                           |                      | 05 GHz            | Y-value<br>6.34 dB                               |                   | uon       | Func                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Result     |                    |
| M2<br>M3                                                                                                                                                                           | 1                           |                      | 35 GHz<br>2.5 GHz | -46.31 dB<br>-45.96 dB                           |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    |
|                                                                                                                                                                                    |                             |                      |                   |                                                  |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                    |
| Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80                                                                                                                                    | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | .60 dB 🐞 R        | -43.08 dB<br>VNT 1-D<br>BW 100 kHz<br>BW 300 kHz | H5 248            |           | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oping R         | ef<br>[            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att                                                                                                                                             | 1d Edg<br>7.60 dBm<br>40 dB | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A |           | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80                                                                                                                             | 1d Edg<br>7.60 dBm<br>40 dB | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | [                  |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>PIPk Max<br>20 dBm                                                                                                       | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm                                                                                                        | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>PIPk Max<br>20 dBm                                                                                                       | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm                                                                                                        | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                 | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm<br>10 dBm                                                                                              | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                 | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                      | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                  | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>IPK Max<br>20 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                              | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                  | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>I PIK Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                          | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | 1H5 248<br>Mode A | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>9 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm                                     | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          |                                                  | Mode A            | uto FFT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.476           | 6.75 dB            |
| Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>SGL Count 80<br>IPK Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm | 7.60 dBm<br>40 dB           | ge(Hopp<br>offset 7. | oing) N'          | VNT 1-D                                          | Mode A            | uto FFT   | Ant1 Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.476           | 6.75 de<br>99500 G |



| Att<br>SGL Count 1                                                                                                                                            | 40 dB<br>200/1200                     | SWT 22                           | 27.5 µs 🎃       | VBW 300 kHz                                                         | Mode /           | Auto FFT | -            |                   |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-----------------|---------------------------------------------------------------------|------------------|----------|--------------|-------------------|------------------------|
| ● 1Pk Max                                                                                                                                                     |                                       |                                  |                 | T T                                                                 | M                | 1[1]     |              | 0.00              | 6.70 dB                |
| 20 dBm                                                                                                                                                        |                                       |                                  |                 |                                                                     | M                | 2[1]     |              |                   | 995000 GI<br>-44.56 dB |
| 10 dBm                                                                                                                                                        |                                       |                                  |                 |                                                                     |                  |          | 1            | 2.48              | 350000 GI              |
| Did8m                                                                                                                                                         |                                       |                                  |                 |                                                                     |                  |          | 1.           | 1 i i             | 1                      |
| P10 dBm                                                                                                                                                       | 1 -13,250                             | dBm                              | -               | <u></u>                                                             |                  |          | -            | -                 |                        |
| -20 cBm                                                                                                                                                       |                                       |                                  |                 |                                                                     |                  |          |              |                   | 1                      |
| -30 aBm                                                                                                                                                       | M4                                    |                                  |                 |                                                                     |                  |          |              | -                 |                        |
| -40 dBmie                                                                                                                                                     |                                       | manne                            | anning marching | mangenanduryon                                                      | innertheret      | maning   | transfel the | without the since | in monthance           |
| -50 dBm                                                                                                                                                       |                                       |                                  |                 |                                                                     |                  |          | -            |                   |                        |
| -60 dBm                                                                                                                                                       |                                       |                                  |                 |                                                                     |                  |          | 1            |                   | 1                      |
| -70 dBm                                                                                                                                                       | GHz                                   |                                  |                 | 1001 p                                                              | its              |          |              | Ston              | 2.576 GH               |
| Marker                                                                                                                                                        |                                       |                                  |                 |                                                                     | 1.00             |          |              | 1.1.1.1.1.1.1.    |                        |
| Type Ref<br>M1                                                                                                                                                | 1                                     |                                  | 95 GHz          | Y-value<br>6.70 dBm                                                 |                  | tion     | Fu           | nction Resul      | t                      |
| M2                                                                                                                                                            | 1                                     | 2.483                            | 35 GHz          | -44.56 dBm                                                          | 5                |          |              |                   |                        |
| M3                                                                                                                                                            | 1                                     | 2                                | .5 GHz          | -43.93 dBm                                                          | -                |          |              |                   |                        |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att                                                                                                                    | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -43.93 dBm<br>-42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>VBW 300 kHz | 2MHz /           |          | No-Hopp      | ing Ref           | <b>م</b><br>ا          |
| M3<br>M4<br>Spectrum<br>Ref Level 2                                                                                                                           | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz                              | 2MHz /           |          | No-Hopp      | ing Ref           | <b>۵</b><br>(۵         |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max                                                                                       | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz                              | 2MHz /<br>Mode A |          | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 1                                                                                                     | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz                              | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              |                        |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max                                                                                       | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz                              | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm-                                                                            | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                         | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm                                                                             | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                         | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 1<br>• 1Pk Max<br>20 dBm                                                                              | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                       | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                       | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  |              | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                       | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                       | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-60 dBm | 1<br>1<br>Band<br>7.62 dBm<br>40 dB   | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /<br>Mode A | uto FFT  | No-Hopp      | 1.60              | 5,46 de                |
| M3<br>M4<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 11<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm            | 1<br>1<br>7.62 dBm<br>40 dB<br>00/100 | 2<br>2.41<br>Edge N<br>Offset 7. | VNT 2           | -42.07 dBm<br>-DH5 2402<br>RBW 100 kHz<br>YBW 300 kHz               | 2MHz /           | uto FFT  | No-Hopp      | 2.40              | 5,46 de                |



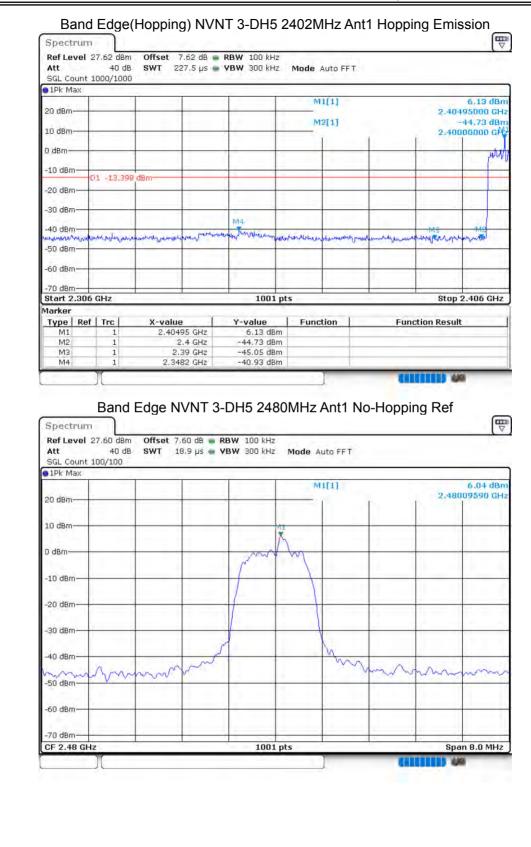
| SGL Count<br>1Pk Max                                                                                                                                                              | 100/100                                      |                                 | 1                                            |                                     |                       |                     |                 |                |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------|-----------------------|---------------------|-----------------|----------------|-----------|
| 20 dBm                                                                                                                                                                            | _                                            |                                 |                                              |                                     | M                     | 1[1]                |                 | 2.402          | 5,43 d    |
| 10 dBm                                                                                                                                                                            |                                              |                                 | 1                                            |                                     | M                     | 2[1]                |                 |                | 41.87 d   |
| 0 dBm                                                                                                                                                                             |                                              |                                 |                                              |                                     |                       |                     |                 |                |           |
| -10 dBm                                                                                                                                                                           |                                              |                                 | 1                                            |                                     |                       |                     |                 |                |           |
|                                                                                                                                                                                   | D1 -14,540                                   | dBm                             |                                              | -                                   | -                     |                     |                 |                |           |
| -20 dBm                                                                                                                                                                           |                                              |                                 |                                              | ·                                   |                       |                     |                 |                |           |
| -30 dBm                                                                                                                                                                           |                                              |                                 | M4                                           |                                     |                       | 1                   |                 | 1              | MB        |
| -40 dBm-                                                                                                                                                                          | wheed thematic wat                           | an in allast                    |                                              | multimanical                        | hand black by         | a. March March      | without manuals | M3             |           |
| -50 dBm                                                                                                                                                                           | and a whet                                   | and the survey                  |                                              |                                     | under a sed of t      | and a second second | Manual Action   | ound hy or ed. | - William |
| -60 dBm                                                                                                                                                                           |                                              |                                 |                                              |                                     |                       |                     | -               |                |           |
| -70 dBm                                                                                                                                                                           |                                              |                                 |                                              |                                     | -                     |                     |                 |                |           |
| Start 2.30<br>Marker                                                                                                                                                              | 6 GHz                                        |                                 | -                                            | 1001                                | pts                   | -                   |                 | Stop           | 2.406 GH  |
| Type   Re                                                                                                                                                                         |                                              | X-valu                          |                                              | Y-value                             | Func                  | tion                | Fund            | ction Result   |           |
| M1                                                                                                                                                                                | 1                                            |                                 | 215 GHz                                      | 5.43 dBr                            |                       |                     |                 |                |           |
| M2                                                                                                                                                                                | 1                                            |                                 | 2.4 GHZ                                      | -41.87 aBr                          | n                     |                     |                 |                |           |
| MЗ                                                                                                                                                                                | 1                                            | 2                               | 2.4 GHz<br>.39 GHz                           | -41.87 dBr<br>-46.01 dBr            | n                     |                     |                 |                |           |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count                                                                                                                             |                                              | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr            | n<br>H5 240           |                     | Ant1 Ho         | pping R        |           |
| M3<br>M4<br>B<br>Spectrur<br>Ref Level<br>Att                                                                                                                                     | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A |                     | Ant1 Ho         | pping R        | ef        |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count                                                                                                                             | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | (         |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-                                                                                                       | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                  | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-                                                                                                       | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>IPk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                  | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                                            | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                                  | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                                                    | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                                      | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-                                                                    | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                     | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                      | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                     | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>I SGL Count<br>O dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | n<br>H5 240<br>Mode A | uto FFT             | Ant1 Ho         |                | 6.79 dt   |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-50 dBm-                  | 1<br>1<br>27.62 dBm<br>40 dB<br>8000/8000    | 2<br>2.34<br>ge(Hop<br>Offset 7 | .39 GH2<br>426 GH2<br>ping) N<br>7.62 dB = R | -46.01 dBr<br>-41.99 dBr<br>/NT 2-D | Mode A                | uto FFT             | Ant1 Ho         | 2.405          | 6,79 d    |




| Att                                                                                                                                                      | 27.62 dBm<br>40 dB<br>1200/1200            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBW 100 kH<br>VBW 300 kH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Auto FFT.                 | _                             |                          |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|--------------------------|------------------|
|                                                                                                                                                          |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1[1]                      |                               | 0.5                      | 3.75             |
| 20 dBm                                                                                                                                                   |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2[1]                      |                               |                          | 395000<br>-44.79 |
| 10 dBm                                                                                                                                                   |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | ()                            | 2.40                     | 000000           |
| 0 dBm                                                                                                                                                    |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | -                             |                          |                  |
| -10 dBm                                                                                                                                                  | DI -13,212                                 | dBm             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | -                             |                          | 1                |
| -20 dBm                                                                                                                                                  |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | -                             | 1                        | -                |
| -30 dBm                                                                                                                                                  |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | -                             | -                        |                  |
| -40 dBm-                                                                                                                                                 | 1<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 | upanel prepare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                               | M3.                      | MS               |
| -50 dBm                                                                                                                                                  | Joseph Martin Contraction                  | Contraction and | and another states of the second states of the seco |                          | one and a second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rentitation of management | there we all the terms of the | and a stand of the stand | the manual       |
| -60 dBm                                                                                                                                                  |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · ·             |                               | 1                        |                  |
| -70 dBm                                                                                                                                                  |                                            | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                         | 1                             |                          | -                |
| Start 2.30                                                                                                                                               | 5 GHz                                      |                 | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1001                     | pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                               | Stop                     | 2.406            |
| Marker<br>Type   Rei                                                                                                                                     | f   Tre                                    | X-valu          | ie I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y-value                  | Funct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion                      | Fund                          | tion Resu                | It               |
| M1                                                                                                                                                       | 1                                          | 2.40            | 395 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.75 dB                  | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | run                           |                          |                  |
| M2<br>M3                                                                                                                                                 | 1                                          |                 | 2.4 GHz<br>.39 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -44.79 dB<br>-42.07 dB   | and the second se |                           |                               |                          |                  |
|                                                                                                                                                          |                                            |                 | 479 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -40.81 dB                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                         |                               |                          |                  |
| M4<br>Spectrum<br>Ref Level<br>Att                                                                                                                       |                                            | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | -Hoppir                       | ng Ref                   | 105              |
| Spectrum<br>Ref Level                                                                                                                                    | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | Hoppir                        | ng Ref                   | 100              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count                                                                                                                | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | -Hoppin                       |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count                                                                                                                | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | -Hoppir                       |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                     | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | D-Hoppin                      |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                               | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | -Hoppir                       |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-                                                                                          | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | e-Hoppin                      |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                               | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | p-Hoppin                      |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                         | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | p-Hoppin                      |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                     | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | -Hoppir                       |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-                                                         | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | p-Hoppin                      |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                           | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | p-Hoppin                      |                          | 6.72             |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-<br>-10 dBm-<br>-20 dBm-                                             | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   |                               |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                           | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   | p-Hoppin                      |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-40 dBm-                               | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   |                               |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-40 dBm-                               | Band<br>27.60 dBm<br>40 dB                 | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uto FFT                   |                               |                          |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>ID dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm      | Band<br>27.60 dBm<br>40 dB<br>100/100      | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uto FFT                   |                               | 2.47                     |                  |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>I SGL Count<br>I D dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm | Band<br>27.60 dBm<br>40 dB<br>100/100      | Edge N          | IVNT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -DH5 248                 | Mode Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uto FFT                   |                               | 2.47                     |                  |



| SGL Count<br>1Pk Max                                                                                                                                                                                                                                                   | 100/100                                      |                               |                                       | /                                                |                   |                  |                      |                |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------|--------------------------------------------------|-------------------|------------------|----------------------|----------------|---------------|
| 20 dBm                                                                                                                                                                                                                                                                 |                                              |                               |                                       |                                                  | M                 | 1[1]             |                      | 2.479          | 6.69 dB       |
| 10 dem-                                                                                                                                                                                                                                                                |                                              |                               | -                                     | 1                                                | M                 | 2[1]             |                      | -              | 46.88 dB      |
|                                                                                                                                                                                                                                                                        |                                              |                               |                                       |                                                  |                   |                  |                      | 2.400          | 30000 G       |
| 0 d8m                                                                                                                                                                                                                                                                  |                                              |                               |                                       |                                                  |                   | 1                | 1                    | 1              |               |
| -10 cBm-                                                                                                                                                                                                                                                               | D1 -13,280                                   | dBm                           |                                       | <u>a</u>                                         | -                 |                  | <del>}</del>         | <u>.</u>       | 1             |
| -20 dBm                                                                                                                                                                                                                                                                |                                              |                               |                                       | 1                                                |                   |                  | 1                    | 1              |               |
| -30 dBm                                                                                                                                                                                                                                                                |                                              |                               |                                       | -                                                |                   |                  |                      | -              |               |
| -40 dBm                                                                                                                                                                                                                                                                |                                              | Ma                            | 1 un/m kal. e                         |                                                  | -                 | 1.00             | -                    | Adurate - Lo   |               |
| -50 dBm-                                                                                                                                                                                                                                                               | uttpermilline market                         | www.theland                   | hand and the                          | and an all the age of a                          | robuchter         | eventuality www. | after multiplication | WARAN IN COMPU | Modernhard    |
| -60 dBm                                                                                                                                                                                                                                                                |                                              |                               |                                       |                                                  |                   |                  |                      |                |               |
| -70 dBm                                                                                                                                                                                                                                                                |                                              |                               |                                       | · · · · ·                                        |                   | 1                | 1                    | 1              | h             |
| Start 2.47                                                                                                                                                                                                                                                             | 6 GHz                                        |                               |                                       | 1001                                             | pts               |                  | 1                    | Stop           | 1<br>2.576 GH |
| Marker<br>Type   Re                                                                                                                                                                                                                                                    | f   Trc                                      | X-value                       |                                       | Y-value                                          | Fund              | tion 1           | Fund                 | tion Result    |               |
| M1                                                                                                                                                                                                                                                                     | 1 1                                          | 2.479                         | 95 GHz<br>35 GHz                      | 6.69 dB<br>-46.88 dB                             | m                 |                  | i ant                |                |               |
|                                                                                                                                                                                                                                                                        |                                              |                               | 1.5 GHz                               | -46.88 dB<br>-45.67 dB                           | m                 |                  |                      |                |               |
| M2<br>M3                                                                                                                                                                                                                                                               | 1                                            |                               |                                       |                                                  |                   |                  |                      |                |               |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                  |                                              | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | -43.69 dE<br>/NT 2-D<br>BW 100 kHz<br>BW 300 kHz | 0H5 248           |                  | Ant1 Hop             | oping R        | ef<br>[       |
| M3<br>M4<br>B<br>Spectrur<br>Ref Level<br>Att                                                                                                                                                                                                                          | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             | oping R        | [             |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                  | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A |                  | Ant1 Hop             |                |               |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-                                                                                                                                                                                          | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max                                                                                                                                                                                                     | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-                                                                                                                                                                                          | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm                                                                                                                                                                      | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                                                                                                                    | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm                                                                                                                                                                      | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                           | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm                                                                                                                                                                      | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                           | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>• 10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                                   | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-                                                                                                                                           | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>• 10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                                   | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3<br>M4           Spectrur           Ref Level           Att           SGL Count           • 1Pk Max           20 dBm           10 dBm           • 10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm | 1<br>1<br>and Edg<br>n<br>27.60 dBm<br>40 dB | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248<br>Mode A | uto FFT          | Ant1 Hop             |                | 6,80 dB       |
| M3         M4           Spectrur         Ref Level           Att         SGL Count           SGL Count         10 dBm           10 dBm         -           -10 dBm         -           -20 dBm         -           -30 dBm         -           -50 dBm         -       | 1<br>1<br>27.60 dBm<br>40 dB<br>8000/8000    | 2.48:<br>ge(Hopp<br>offset 7. | 39 GHz<br>Ding) N\<br>60 dB <b></b> R | /NT 2-D                                          | 0H5 248           | uto FFT          | Ant1 Hop             | 2.476          | 6,80 dB       |








| Att<br>SGL Count                                                                                                                                                          | 27.62 dBm<br>40 dB<br>100/100                |                                  |                             | RBW 100 kH<br>VBW 300 kH          |                   | Auto FFT |               |              |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------|-----------------------------------|-------------------|----------|---------------|--------------|----------|
| 1Pk Max                                                                                                                                                                   |                                              | -                                |                             | Ť.                                | M                 | 1[1]     |               |              | 4.90 d   |
| 20 dBm                                                                                                                                                                    |                                              | -                                | -                           | M2[1]                             |                   |          |               |              | 95000 (  |
| 10 dBm                                                                                                                                                                    |                                              |                                  | -                           | -                                 |                   | 1        | 6             |              | 1000001  |
| 0 dBm                                                                                                                                                                     |                                              |                                  |                             | -                                 |                   |          |               | -            |          |
| -10 dBm                                                                                                                                                                   |                                              |                                  |                             |                                   |                   | -        |               |              |          |
| -20 dBm-                                                                                                                                                                  | 01 -13,938                                   | dBm                              |                             |                                   |                   |          |               |              |          |
| -30 dBm                                                                                                                                                                   |                                              |                                  |                             |                                   |                   | 1        |               | 1            |          |
|                                                                                                                                                                           |                                              |                                  |                             | M4                                | 1                 | 1.5      | 1 1           | 1            |          |
| -40 dBm-                                                                                                                                                                  | hemplertune                                  | Jal harrow mon                   | and production              | which                             | Mondeneral        | hourshow | Mon phan what | WE We when   | A MARINA |
| -50 dBm                                                                                                                                                                   |                                              |                                  |                             |                                   |                   |          |               |              |          |
| -60 dBm                                                                                                                                                                   |                                              |                                  |                             |                                   |                   |          |               |              |          |
| -70 dBm                                                                                                                                                                   | 6.011                                        |                                  |                             | 1                                 |                   | -        |               | -            | 0.405.1  |
| Start 2.30<br>Marker                                                                                                                                                      | 6 GHz                                        |                                  | -                           | 1001                              | pts               |          | _             | Stop         | 2.406 GI |
| Type   Re                                                                                                                                                                 |                                              | X-value                          |                             | Y-value                           | Func              | tion     | Fun           | ction Result | t        |
|                                                                                                                                                                           | 1                                            |                                  | 95 GHz                      | 4.90 dB                           |                   |          |               |              |          |
| M1<br>M2                                                                                                                                                                  | 1                                            | 2                                | 2.4 GHz                     | -45.04 dB                         |                   |          |               |              |          |
| M2<br>M3                                                                                                                                                                  | 1                                            | 2.                               | 39 GHz                      | -46.06 dB                         | m                 |          |               |              |          |
| M2<br>M3<br>M4<br>B<br>Spectrur<br>Ref Level<br>Att                                                                                                                       |                                              | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N |                                   | m<br>m<br>0H5 240 |          | Ant1 Ho       | pping R      | ef (     |
| M2<br>M3<br>M4<br>B<br>Spectrur<br>Ref Level<br>Att                                                                                                                       | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | pping R      | (        |
| M2<br>M3<br>M4<br>B<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                               | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       |          | Ant1 Ho       | 1.00         |          |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count                                                                                                               | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>B<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                               | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                              | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>B<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-                                                                                    | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                              | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-                                                                  | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>0 dBm-                                                                    | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-<br>-10 dBm-                                                                  | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                               | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm                                                          | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                               | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm            | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                  | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm            | 1<br>1<br>and Edg<br>n<br>27.62 dBm<br>40 dB | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | m<br>Mode A       | uto FFT  | Ant1 Ho       | 1.00         | 6,60 d   |
| M2<br>M3<br>M4<br>Spectrur<br>Ref Level<br>Att<br>SGL Count<br>SGL Count<br>10 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm | 1<br>1<br>27.62 dBm<br>40 dB<br>8000/3000    | 2.<br>2,<br>ge(Hopp<br>Offset 7. | 39 GH2<br>35 GH2<br>Ding) N | -46.06 de<br>-41.90 de<br>VNT 3-D | Mode A            | uto FFT  | Ant1 Ho       | 2,405        | 6,60 d   |

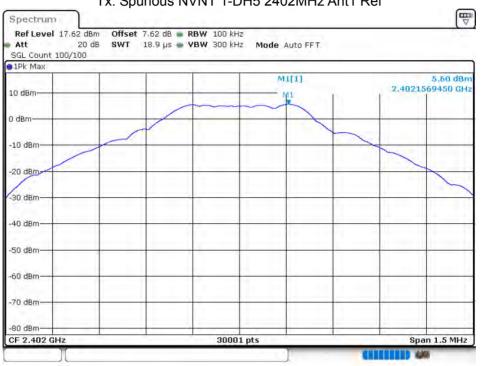






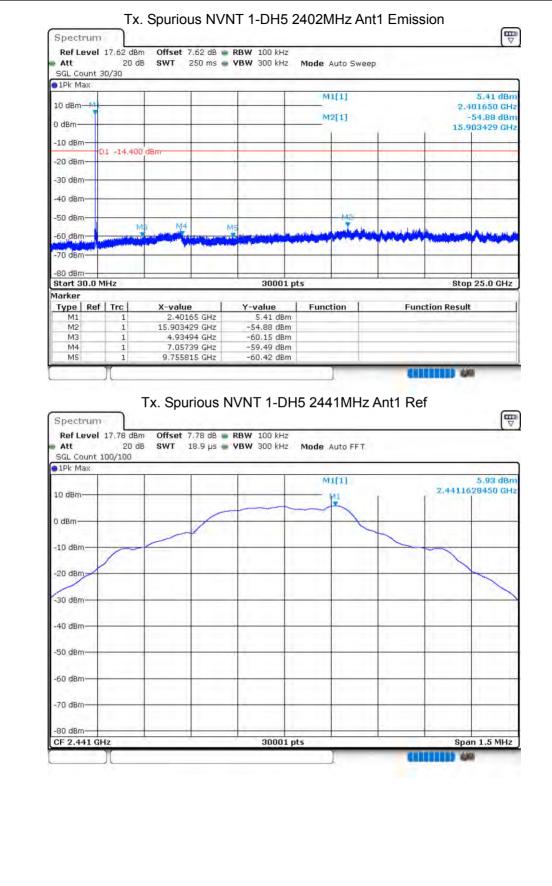
| 1Pk Max                                                                                                                                                                                                                                                                                       | - 1                  | -                            |                                       | i i                                                             | M                     | 1[1]          |                | -            | 6,45 dB              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|---------------------------------------|-----------------------------------------------------------------|-----------------------|---------------|----------------|--------------|----------------------|
| 20 dBm                                                                                                                                                                                                                                                                                        |                      |                              |                                       |                                                                 |                       | 2.4           |                |              | 05000 GI             |
| 10 08m-                                                                                                                                                                                                                                                                                       |                      |                              |                                       |                                                                 | M                     | 2[1]          |                |              | 46.36 dB<br>50000 GI |
| 0 d8m                                                                                                                                                                                                                                                                                         |                      |                              |                                       | -                                                               |                       |               |                |              |                      |
| -10 cBm                                                                                                                                                                                                                                                                                       |                      |                              |                                       |                                                                 |                       |               |                |              |                      |
| -20 dBm-                                                                                                                                                                                                                                                                                      | -13,960              | dBm                          |                                       |                                                                 |                       |               |                |              |                      |
| -30 dBm                                                                                                                                                                                                                                                                                       |                      |                              | 1                                     |                                                                 |                       |               | <u></u>        |              |                      |
| -40 dBm                                                                                                                                                                                                                                                                                       |                      | MAND                         |                                       |                                                                 |                       | 1.00          | 1.1            | 1.2          | 1.11                 |
| -50 dBm                                                                                                                                                                                                                                                                                       | aduated and          | Manual                       | annaphilitetimple                     | an magainstrange                                                | when the many here to | u-congular Ma | Markelenakarap | Manadaharala | M. S. Manual         |
| 7- 5-                                                                                                                                                                                                                                                                                         |                      |                              | :                                     |                                                                 |                       |               |                |              | 11                   |
| -60 dBm                                                                                                                                                                                                                                                                                       |                      |                              |                                       | 1                                                               |                       |               | J              | 1            |                      |
| -70 dBm<br>Start 2.476 G                                                                                                                                                                                                                                                                      | Hz                   |                              | -                                     | 1001                                                            | pts                   |               |                | Stop :       | 2.576 GH             |
| Marker                                                                                                                                                                                                                                                                                        | Tro                  | Vl                           |                                       | Y-u-lu-                                                         | I. Frank              | tion          |                | otion De     |                      |
| Type Ref<br>M1                                                                                                                                                                                                                                                                                | 1                    |                              | 05 GHz                                | Y-value<br>6.45 dBr                                             |                       | aon           | Fun            | ction Result |                      |
|                                                                                                                                                                                                                                                                                               | 1                    |                              | 35 GHz                                | -46.36 dBr                                                      |                       |               |                |              |                      |
| M2<br>M3                                                                                                                                                                                                                                                                                      | 1                    | 2                            | 2.5 GHz                               | -44.45 dBr                                                      | n                     |               |                |              |                      |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80                                                                                                                                                                                                                            | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -44.45 dBr<br>-42.34 dBr<br>VNT 3-D<br>BW 100 kHz<br>BW 300 kHz | n<br>H5 248           |               | Ant1 Ho        | pping R      | ef<br>[              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att                                                                                                                                                                                                                                            | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | n H5 248<br>Mode Af   | uto FFT       | Ant1 Ho        | pping R      | [                    |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80                                                                                                                                                                                                                            | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | n H5 248<br>Mode Af   |               | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm                                                                                                                                                                                                     | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | n H5 248<br>Mode Af   | uto FFT       | Ant1 Ho        |              |                      |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm                                                                                                                                                                                           | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | n H5 248<br>Mode Af   | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm                                                                                                                                                                                                     | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | n H5 248<br>Mode Af   | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm                                                                                                                                                                                           | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                                                                | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm                                                                                                                                                                                           | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm                                                                                                                                                                                | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm                                                                                                                                                          | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                                     | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm                                                                                                                                                          | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                                               | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3         M4           M4         Bar           Spectrum         Ref Level 27           Att         SGL Count 80           • 1Pk Max         20 dBm           • 1Pk Max         20 dBm           • 10 dBm         40 dBm           -30 dBm         -50 dBm           -60 dBm         -60 dBm | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        |              | 6.75 dB              |
| M3<br>M4<br>Bar<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm                                                                                                                                    | 1<br>1<br>nd Edg<br> | 2.49<br>Je(Hopp<br>Offset 7. | 78 GHz<br>Ding) N<br>60 dB <b>B</b> R | -42.34 dBr                                                      | Mode A                | uto FFT       | Ant1 Ho        | 2,476        | 6.75 dB              |



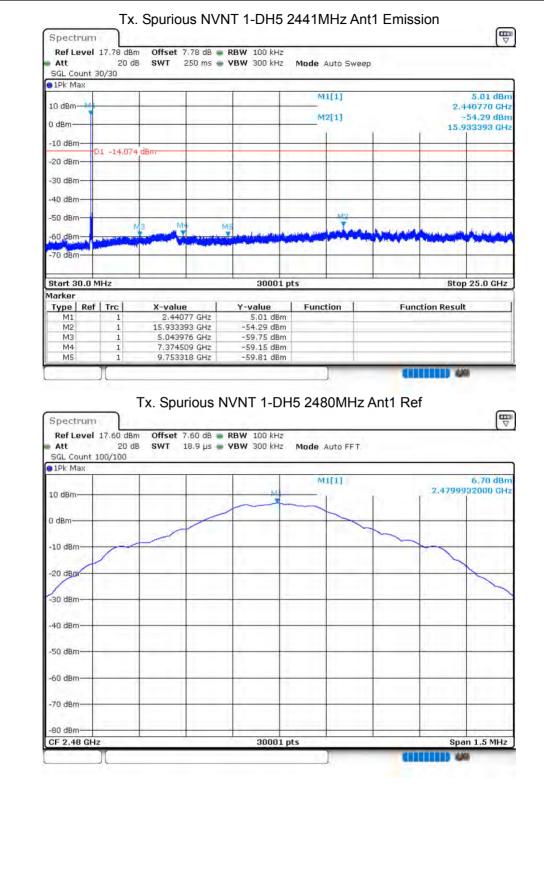

#### Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Emission ₽ Spectrum Ref Level 27.60 dBm Offset 7.60 dB . RBW 100 kHz 40 dB SWT 227.5 µs 💿 VBW 300 kHz Att Mode Auto FFT SGL Count 1000/1000 91Pk Max M1[1] 3.07 dBn 20 dBm-2.47805000 GHz -43.36 dBm 2.48350000 GHz M2[1] 10 dBm 0 dBm -10 cBm D1 -13,250 dBm -20 cBm -30 dBm -40 dBm And environment . Ale nevel. n water hands ain Han Alto M. Mush on h maria -50 dBm -60 dBm -70 dBm-Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker Type | Ref | Trc 2.47805 GHz Y-value 3.07 dBm Function **Function Result** M1 1 M2 2.4835 GHz -43.36 dBm 1 MЗ 1 2.5 GHz -45.10 dBm 2.4862 GHz M4 1 -42.79 dBm



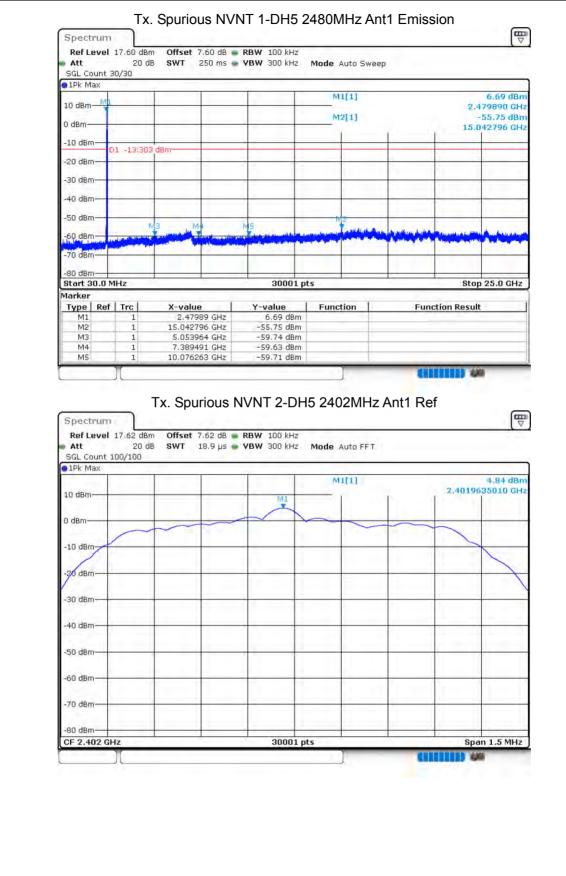
## **NTEK北**测


### 8.7 CONDUCTED RF SPURIOUS EMISSION

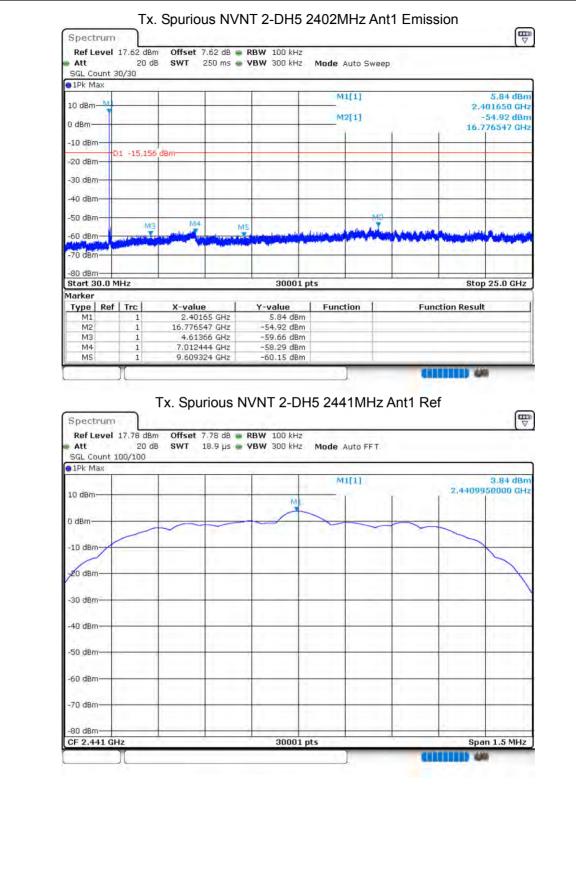
| Condition | Mode  | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|-------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | 1-DH5 | 2402            | Ant 1   | -60.47          | -20         | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | -60.21          | -20         | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | -62.45          | -20         | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | -59.75          | -20         | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | -59.21          | -20         | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | -53.55          | -20         | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | -60.87          | -20         | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | -59.35          | -20         | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | -58.95          | -20         | Pass    |



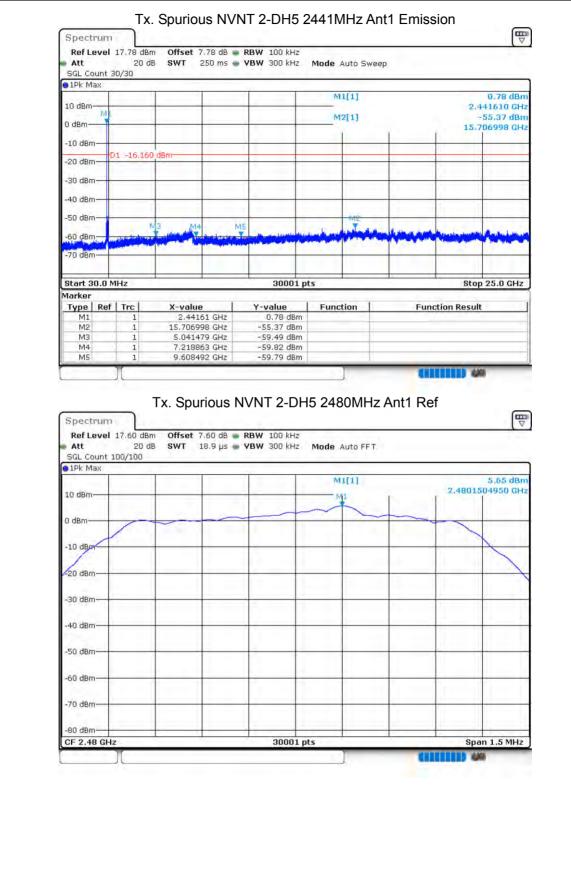

#### Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref



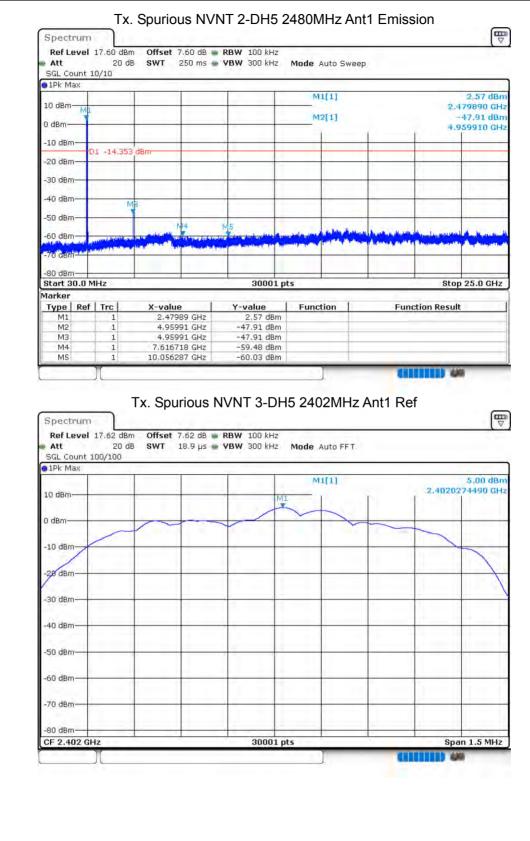


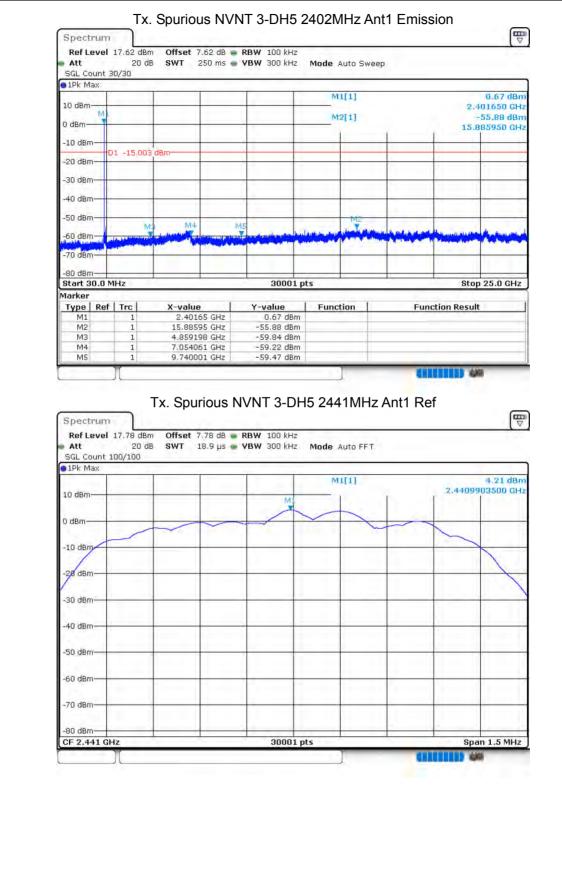


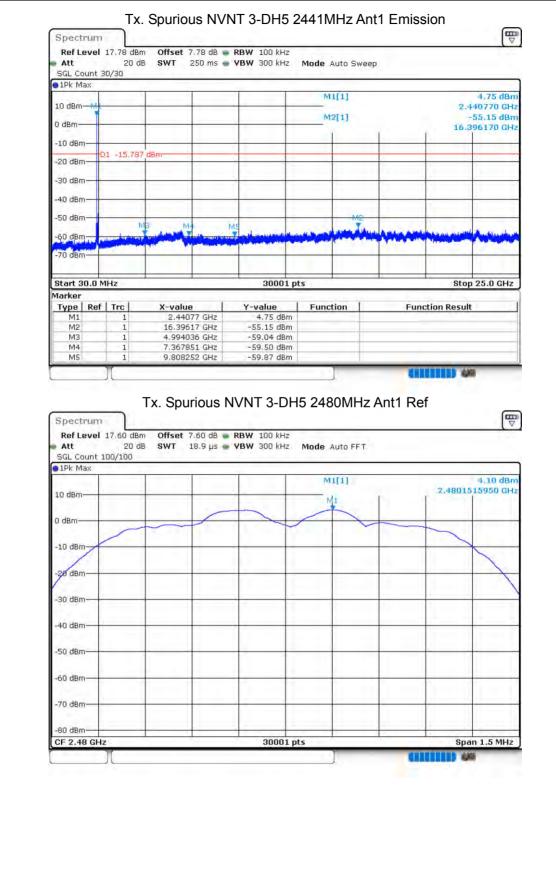


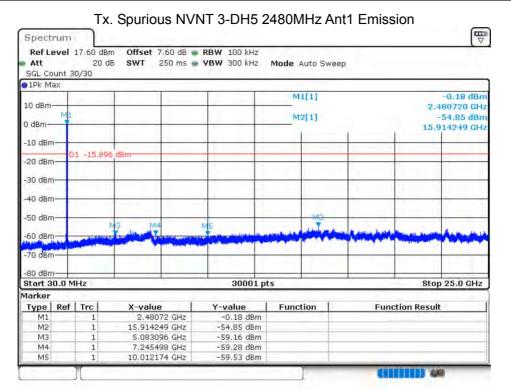

















END OF REPORT