

TEST REPORT

No. 24T04N002718-005-BLE

For

Ademco Inc

Quicksilver wireless tablet

Model Name: PROWLTOUCH/PROWLTOUCHC/VISTAHTCHWLC

With

Hardware Version: Q1982_MB_V2

Software Version: GMTS700_Wireless_01.03.424.00025

FCC ID: CFS8DLPROWLTOUCH

IC: 573F-PROWLTOUCH

Issued Date: 2024-11-28

Designation Number: CN1210

ISED Assigned Code: 23289

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001

Email: yewu@caict.ac.cn, website: www.cszit.com

©Copyright. All rights reserved by SAICT

REPORT HISTORY

Report Number	Revision	Description	Issue Date
24T04N002718-005-BLE	Rev.0	1st edition	2024-11-28

CONTENTS

1. ′	TEST LABORATORY	
1.1	1. Testing Location	4
1.2	2. TESTING ENVIRONMENT	4
1.3	3. PROJECT DATA	4
1.4	4. SIGNATURE	4
2.	CLIENT INFORMATION	
2.1	1. Applicant Information	5
2.2	2. MANUFACTURER INFORMATION	5
3.]	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1	1. About EUT	6
3.2	2. INTERNAL IDENTIFICATION OF EUT	6
3.3	3. INTERNAL IDENTIFICATION OF AE	6
3.4	4. GENERAL DESCRIPTION	6
4.	REFERENCE DOCUMENTS	7
4.1	1. DOCUMENTS SUPPLIED BY APPLICANT	7
4.2	2. Reference Documents for testing	7
5.	TEST RESULTS	
5.1	1. Summary of Test Results	
5.2	2. Statements	
5.3	3. TERMS USED IN THE RESULT TABLE	
5.4	4. LABORATORY ENVIRONMENT	9
6.	TEST FACILITIES UTILIZED	10
7.	MEASUREMENT UNCERTAINTY	
ANN	NEX A: DETAILED TEST RESULTS	12
А.	0 ANTENNA REQUIREMENT	12
	1 Test Configuration	
A.:	2 MAXIMUM PEAK OUTPUT POWER	
A.:	3 PEAK POWER SPECTRAL DENSITY	15
A.4	4 6DB BANDWIDTH	17
A.:	5 BAND EDGES COMPLIANCE	19
А.	6 TRANSMITTER SPURIOUS EMISSION - CONDUCTED	21
Α.	7 TRANSMITTER SPURIOUS EMISSION - RADIATED	27
Α.	8 AC Power line Conducted Emission	37
Α.	9 Occupied Bandwidth	43

1. Test Laboratory

1.1. Testing Location

Location:	Shenzhen Academy of Information and Communications Technology				
Address:	Building G, Shenzhen International Innovation Center, No.1006				
	Shennan Road, Futian District, Shenzhen, Guangdong Province				
Postal Code:	518026				
Telephone:	+86(0)755-33322000				
Fax:	+86(0)755-33322001				

1.2. Testing Environment

Normal Temperature:	15-35° ℃	
Relative Humidity:	20-75%	

1.3. Project data

Testing Start Date:	2019-09-04
Testing End Date:	2019-09-06

1.4. Signature

林佩丰

Lin Kanfeng (Prepared this test report)

The-

Zhang Bojun (Approved this test report)

An Ran (Reviewed this test report)

2. <u>Client Information</u>

2.1. Applicant Information

Company Name:	Ademco Inc
A data a a .	2 Corporate Center Drive Suite - 100 PO Box 9040 Melville, New York
Address:	11747, USA
Contact:	Christian Fouth
Email:	Christian.fouth@resideo.com
Tel.:	516-577-2000

2.2. Manufacturer Information

Company Name:	Huaqin Telecom Techonology Co., Ltd.
Address:	No.1 Building, No.9 Building, No. 399, Keyuan Road, Zhangjiang
Auuress.	Hi-tech Park, Shanghai, P.R. China
Contact:	Stephanie Yin
Email:	yinxuan@huaqin.com
Tel.:	+86 19974076309

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1	.Abo	ut E	UT

Note: Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	HK52400332	Q1982_MB_V2	GMTS700_Wireless_01.03.424.00025	2019-07-02
*EUT ID: is used to identify the test sample in the lab internally.				

3.3. Internal Identification of AE

AE ID*	Description	Mode	Manufacturer	
AE1	Battery	P-504478	Dongguan Amperex Technology Limited	
AE2	Charger	TPA-97050150U01	SHENZHEN TIANYIN ELECTRONICS CO., LTD	
*AE ID: is used to identify the test sample in the lab internally.				

3.4. General Description

The Equipment under Test (EUT) is a model of Quicksilver wireless tablet with integrated antenna and battery.

It consists of normal options: travel charger, USB cable and Phone.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

According to the customer's description, PROWLTOUCH/PROWLTOUCHC/VISTAHTCHWLC (24T04N002718) is a variant product of PROWLTOUCH/PROWLTOUCHC (I19N01349). All results were from the initial model.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. <u>Reference Documents for testing</u>

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part15	FCC CFR 47, Part 15, Subpart C:	2023		
	15.205 Restricted bands of operation;			
	15.209 Radiated emission limits, general requirements;			
	15.247 Operation within the bands 902-928MHz,			
	2400-2483.5 MHz, and 5725-5850 MHz			
ANSI C63.10	American National Standard of Procedures for Compliance	2013		
	Testing of Unlicensed Wireless Devices			
RSS-247	Spectrum Management and Telecommunications Radio	Issue 3		
	Standards Specification	August,		
	Digital Transmission Systems (DTSs), Frequency Hopping	2023		
	Systems (FHSs) and License-Exempt Local Area Network			
	(LE-LAN) Devices			
RSS-Gen	Spectrum Management and Telecommunications Radio	Issue 5 A2		
	Standards Specification	February,		
	General Requirements for Compliance of Radio Apparatus	2021		

5. Test Results

5.1. Summary of Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict	
0	Antenna Requirement	15.203	/	Р	
1	Maximum Peak Output Power	15.247 (b)	RSS-247 section 5.4	Р	
2	Peak Power Spectral Density	15.247 (e)	RSS-247 section 5.2	Р	
3	6dB Bandwidth	15.247 (a)	RSS-247 section 5.2	Р	
4	Band Edges Compliance	15.247 (d)	RSS-247 section 5.5	Р	
5	Transmitter Spurious	15.247 (d)	RSS-247 section 5.5/	Р	
	Emission - Conducted	15.247 (u)	RSS-Gen section 6.13	F	
6	Transmitter Spurious	15.247, 15.205, 15.209	RSS-247 section 5.5/	Р	
0	Emission - Radiated	15.247, 15.205, 15.209	RSS-Gen section 6.13	F	
7	AC Power line Conducted	15.107, 15.207	RSS-Gen section 8.8	Р	
	Emission	15.107, 15.207		r	
8	Occupied Bandwidth	/	RSS-Gen section 6.7	Р	

See **ANNEX A** for details.

5.2. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass	
NA	Not Available	
F	Fail	

Abbreviations

ADDIEVIALIONS		
AC	Alternating Current	
AFH	Adaptive Frequency Hopping	
BW	Band Width	
E.I.R.P.	equivalent isotropic radiated power	
ISM	ndustrial, Scientific and Medical	
R&TTE	Radio and Telecommunications Terminal Equipment	
RF	Radio Frequency	
Тх	Transmitter	

5.4. Laboratory Environment

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 20 %, Max. = 75 %	
Shielding effectiveness	0.014 MHz - 1 MHz, > 60 dB;	
Sheding ellectiveness	1 MHz - 1000 MHz, > 90 dB.	
Electrical insulation	> 2 MΩ	
Ground system resistance	<4 Ω	
Normalised site attenuation (NSA)	$< \pm 4$ dB, 3m/10m distance, from 30 to 1000 MHz	
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz	

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
	0.014 MHz - 1 MHz, > 60 dB;
Shielding effectiveness	1 MHz - 1000 MHz, > 90 dB.
Electrical insulation	> 2 MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Chielding offectiveness	0.014 MHz - 1MHz, > 60dB;
Shielding effectiveness	1 MHz - 1000 MHz, > 90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	<4 Ω
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3m distance

6. <u>Test Facilities Utilized</u>

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2020-01-16	1 year
2	Power Sensor	U2021XA	MY55430013	Agilent	2020-01-16	1 year
3	Data Acquisiton	U2531A	TW55443507	Agilent	/	/

Radiated emission test system

No.	Equipment	ment Model Serial Manufacturer	Serial	Manufacturor	Calibration	Calibration
NO.	Equipment		Manufacturer	Date	Period	
1	LISN	ESH2-Z5	100196	R&S	2020-01-03	1 year
2	Test Receiver	ESCI	100701	R&S	2020-08-06	1 year
3	Loop Antenna	HLA6120	35779	TESEQ	2022-05-01	3 year
4	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2020-02-17	3 year
5	Horn Antenna	3117	00066585	ETS-Lindgren	2022-03-04	3 year
6	Test Receiver	ESR7	101675	R&S	2020-07-18	1 year
7	Spectrum	FSP 40	P 40 100378	R&S	2019-12-13	1 voor
'	Analyzer	F3F 40	100376	Ras	2019-12-13	1 year
8	Chamber	FACT5-2.0	4166	ETS-Lindgren	2021-05-12	3 year
9	Antonno	QSH-SL-1	17013	Q-par	2020-01-15	2 voor
9	Antenna	8-26-S-20	17013	Q-pai	2020-01-15	3 year
10	Antonno	QSH-SL-2	17014	0	0000 04 44	2
10	Antenna	6-40-K-20	17014	Q-par	2020-01-11	3 year

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. <u>Measurement Uncertainty</u>

Test Name	Uncertainty		
1. RF Output Power - Conducted	±1.32dB		
2. Power Spectral Density - Conducted	±2.5	32dB	
3. Occupied channel bandwidth - Conducted	±6	6Hz	
	30MHz≪f≪1GHz	±1.41dB	
A Tronomitter Spurious Emission Conducted	1GHz≪f≪7GHz	±1.92dB	
4 Transmitter Spurious Emission - Conducted	7GHz≪f≪13GHz	±2.31dB	
	13GHz≪f≪26GHz	±2.61dB	
	9kHz≪f≪30MHz	±1.84dB	
5 Transmitter Spurious Emission Dedicted	30MHz≪f≪1GHz	±4.90dB	
5. Transmitter Spurious Emission - Radiated	1GHz≪f≪18GHz	±5.12dB	
	18GHz≪f≪40GHz	±4.66dB	
6. AC Power line Conducted Emission	150kHz≪f≪30MHz	±3.10dB	

ANNEX A: Detailed Test Results

A.0 Antenna requirement

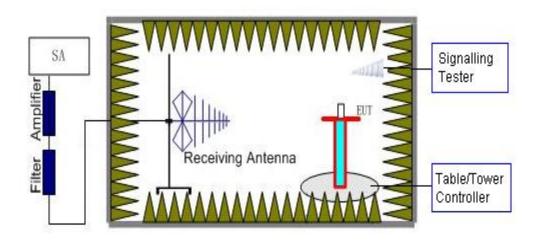
Measurement Limit:

Standard	Requirement			
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.			

Conclusion: The Directional gains of antenna used for transmitting is 0.15dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Test Configuration

A.1.1 Conducted Measurements


The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the spectrum analyzer to start measurement.
- 5). Record the values.

A.1.2 Radiated Measurements

Test setup: EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.

A.2 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)
FCC CRF Part 15.247(b) & RSS-247 section 5.4	< 30	< 36

Measurement Results:

LE-1M

Mode	Frequency (MHz)	Peak Conducted Output Power (dBm)	E.I.R.P (dBm)	Conclusion
	2402 (CH0)	2.17	2.32	Р
GFSK	2440 (CH19)	2.10	2.25	Р
	2480 (CH39)	2.05	2.20	Р

Conclusion: Pass

A.3 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(e) & RSS-247 section 5.2	< 8 dBm/3 kHz

Measurement Results:

LE-1M

Mode	Frequency (MHz)	Peak Power Spectral Density (dBm)		Conclusion
	2402 (CH0)	Fig.1	-14.31	Р
GFSK	2440 (CH19)	Fig.2	-14.59	Р
	2480 (CH39)	Fig.3	-15.32	Р

See below for test graphs. Conclusion: PASS

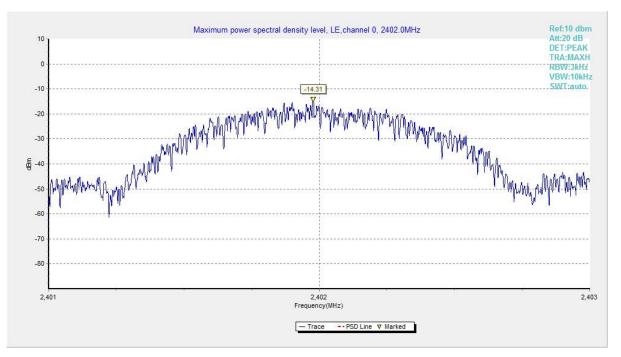


Fig.1 Power Spectral Density (Ch 0), 1M

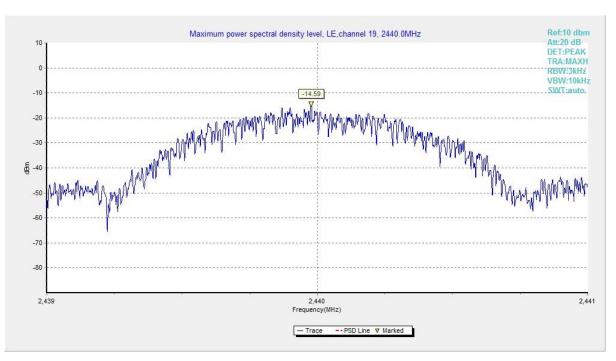


Fig.2 Power Spectral Density (Ch 19), 1M

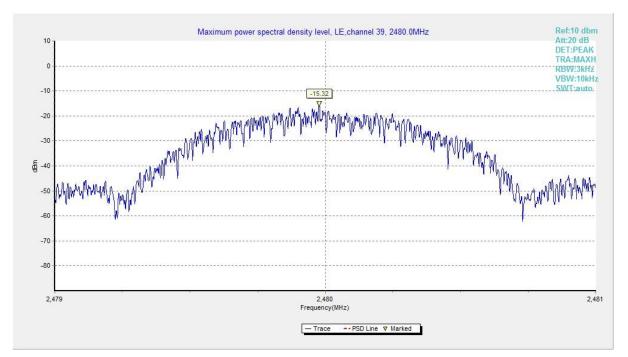


Fig.3 Power Spectral Density (Ch 39), 1M

A.4 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a) & RSS-247 section 5.2	≥ 500

Measurement Result:

LE-1M

Mode	Frequency (MHz)	Test Res	ults (kHz)	Conclusion
	2402 (CH0)	Fig.4	679.50	Р
GFSK	2440 (CH19)	Fig.5	675.00	Р
	2480 (CH39)	Fig.6	668.50	Р

See below for test graphs.

Conclusion: PASS

Fig.4 6dB Bandwidth (Ch 0), 1M

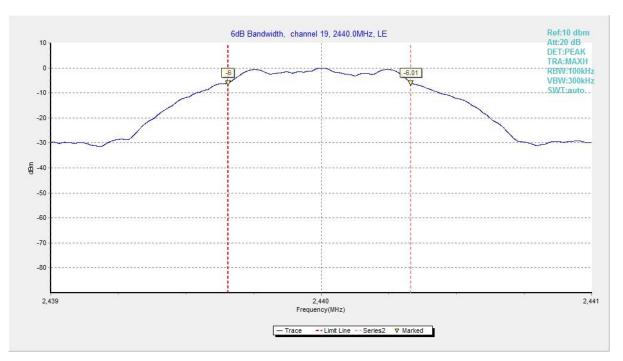


Fig.5 6dB Bandwidth (Ch 19), 1M

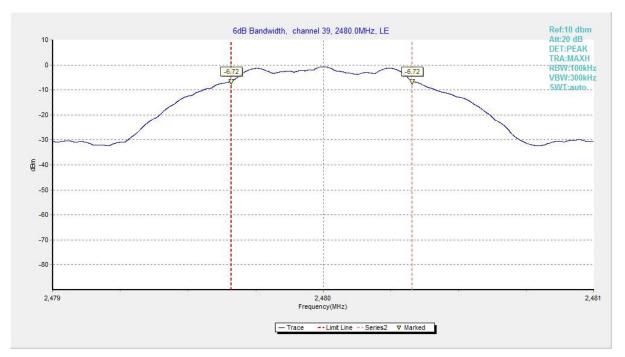


Fig.6 6dB Bandwidth (Ch 39), 1M

A.5 Band Edges Compliance

Measurement Limit:

Standard	Limit (dB)
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5	> 20

Measurement Result:

LE-1M

Mode	Frequency (MHz)	Test R	esults	Conclusion
OFOK	2402 (CH0)	Fig.7	55.91	Р
GFSK	2480 (CH39)	Fig.8	61.66	Р

See below for test graphs.

Conclusion: Pass

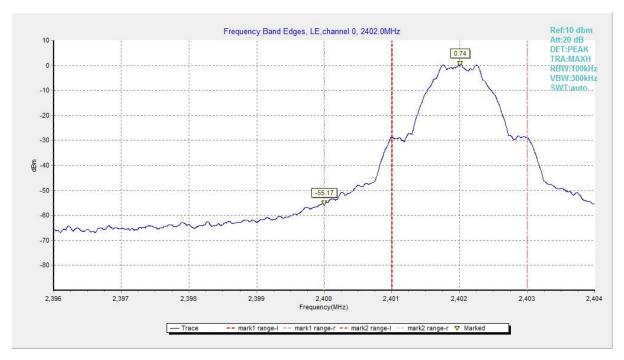


Fig.7 Band Edges (Ch 0), 1M

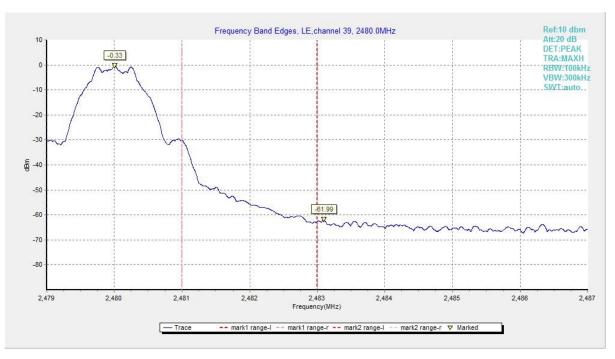


Fig.8 Band Edges (Ch 39), 1M

A.6 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5/	20dB below peak output power in
RSS-Gen section 6.13	100kHz bandwidth

Measurement Results:

LE-1M

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.9	Р
	0	1 GHz ~ 3 GHz	Fig.10	Р
		3 GHz ~ 10 GHz	Fig.11	Р
	19 39	2.440 GHz	Fig.12	Р
		1 GHz ~ 3 GHz	Fig.13	Р
GFSK		3 GHz ~ 10 GHz	Fig.14	Р
		2.480 GHz	Fig.15	Р
		1 GHz ~ 3 GHz	Fig.16	Р
		3 GHz ~ 10 GHz	Fig.17	Р
		30 MHz ~ 1 GHz	Fig.18	Р
	All channels	10 GHz ~ 26 GHz	Fig.19	Р

See below for test graphs. Conclusion: Pass

Fig.9 Conducted Spurious Emission (Ch0, Center Frequency), 1M

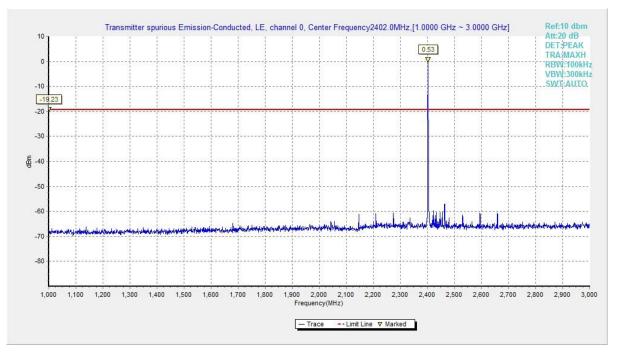


Fig.10 Conducted Spurious Emission (Ch0, 1 GHz - 3 GHz), 1M

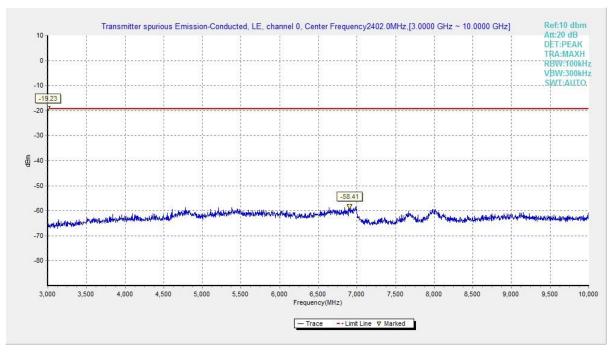


Fig.11 Conducted Spurious Emission (Ch0, 3 GHz - 10 GHz), 1M



Fig.12 Conducted Spurious Emission (Ch19, Center Frequency), 1M

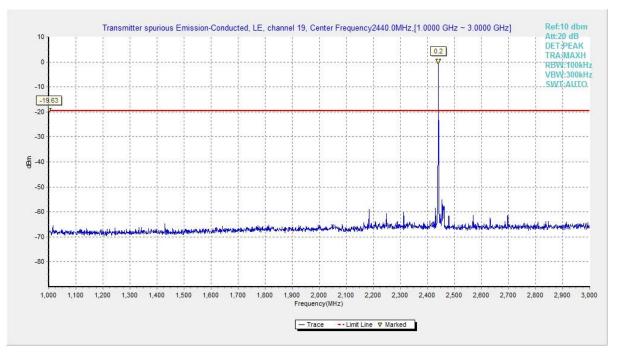
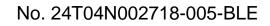



Fig.13 Conducted Spurious Emission (Ch19, 1 GHz - 3 GHz), 1M

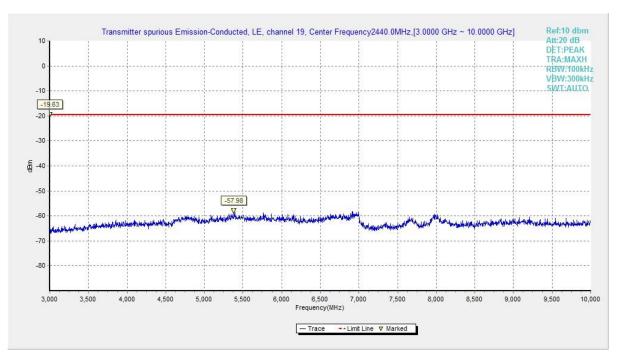


Fig.14 Conducted Spurious Emission (Ch19, 3 GHz - 10 GHz), 1M

Fig.15 Conducted Spurious Emission (Ch39, Center Frequency), 1M

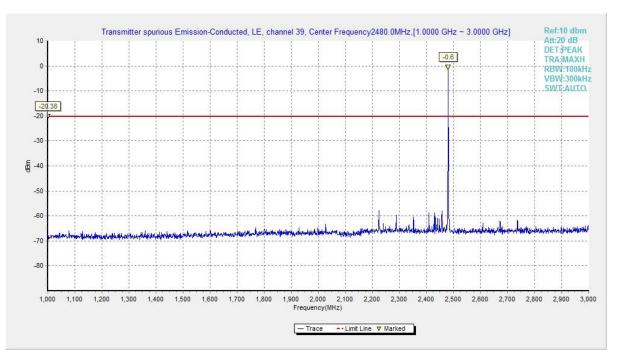


Fig.16 Conducted Spurious Emission (Ch39, 1 GHz - 3 GHz), 1M

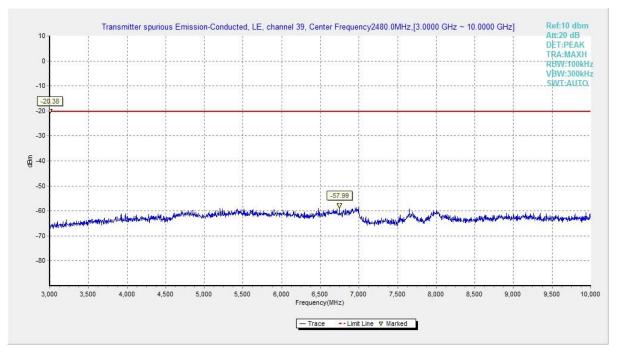


Fig.17 Conducted Spurious Emission (Ch39, 3 GHz - 10 GHz), 1M

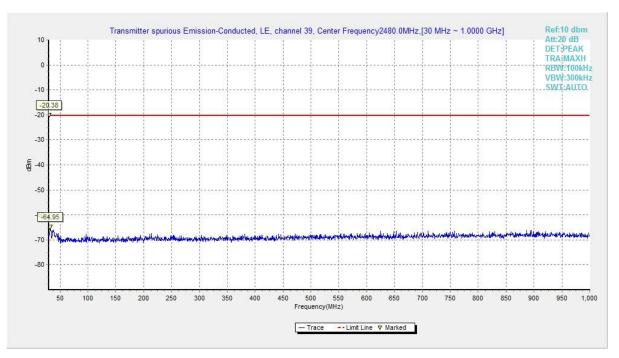


Fig.18 Conducted Spurious Emission (All channels, 30 MHz - 1 GHz), 1M

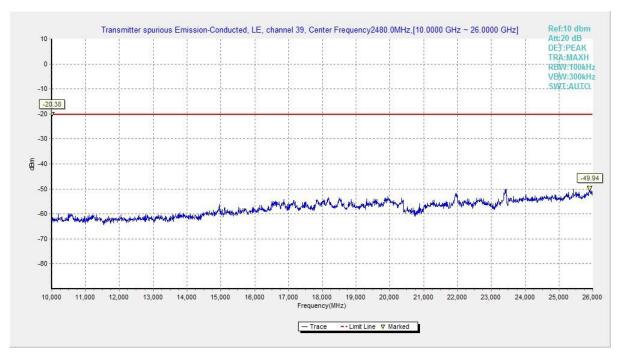


Fig.19 Conducted Spurious Emission (All channels, 10 GHz - 26 GHz), 1M

A.7 Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209 &	20dB below peek output power
RSS-247 section 5.5/RSS-Gen section 6.13	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength (µV/m)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

LE-1M

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~ 3 GHz	Fig.20	Р
	0	3 GHz ~ 18 GHz	Fig.21	Р
		9 kHz ~ 30 MHz	Fig.22	Р
		30 MHz ~ 1 GHz	Fig.23	Р
	19	1 GHz ~ 3 GHz	Fig.24	Р
GFSK		3 GHz ~ 18 GHz	Fig.25	Р
Rest		18 GHz ~ 26.5 GHz	Fig.26	Р
	39	1 GHz ~ 3 GHz	Fig.27	Р
	39	3 GHz ~ 18 GHz	Fig.28	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.29	Р
	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.30	Р

See below for test graphs. Conclusion: Pass

LE-1M GFSK CH0 (3-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)	
10599.500000	44.51	74.00	29.49	Н	5.6	
11719.000000	45.71	74.00	28.29	V	7.2	
13264.500000	45.74	74.00	28.26	V	8.5	
14469.500000	47.93	74.00	26.07	V	11.2	
16724.000000	50.42	74.00	23.58	V	14.7	
17542.000000	49.63	74.00	24.37	Н	14.7	

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
10599.500000	32.09	54.00	21.91	Н	5.6
11719.000000	32.93	54.00	21.07	V	7.2
13264.500000	33.15	54.00	20.85	V	8.5
14469.500000	34.99	54.00	19.01	V	11.2
16724.000000	36.97	54.00	17.03	V	14.7
17542.000000	36.84	54.00	17.16	Н	14.7

GFSK CH19 (3-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
10570.000000	44.23	74.00	29.77	V	5.8
11640.500000	44.96	74.00	29.04	Н	7.3
12677.500000	45.08	74.00	28.92	Н	8.1
14502.500000	47.84	74.00	26.16	V	11.5
16490.500000	48.88	74.00	25.12	V	14.3
17871.000000	50.00	74.00	24.00	V	15.7

Frequency	Average	Limit	Margin (dB)	Pol	Corr. (dB)
(MHz)	(dBuV/m)	(dBuV/m)	margin (ab)	101	00m (ab)
10570.000000	31.90	54.00	22.10	V	5.8
11640.500000	32.70	54.00	21.30	Н	7.3
12677.500000	32.85	54.00	21.15	Н	8.1
14502.500000	35.06	54.00	18.94	V	11.5
16490.500000	36.20	54.00	17.80	V	14.3
17871.000000	37.31	54.00	16.69	V	15.7

GFSK CH39 (3-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
10470.000000	44.20	74.00	29.80	V	5.7
11591.000000	45.29	74.00	28.71	Н	6.9
12629.000000	44.98	74.00	29.02	Н	8.0
14562.000000	47.20	74.00	26.80	Н	11.2
16598.000000	50.37	74.00	23.63	Н	14.5
17789.500000	50.26	74.00	23.74	Н	15.9

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
10470.000000	31.87	54.00	22.13	V	5.7
11591.000000	32.43	54.00	21.57	Н	6.9
12629.000000	32.80	54.00	21.20	Н	8.0
14562.000000	34.46	54.00	19.54	Н	11.2
16598.000000	36.57	54.00	17.43	Н	14.5
17789.500000	37.29	54.00	16.71	Н	15.9

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result = P_{Mea} + Cable Loss + Antenna Factor - Gain of the preamplifier

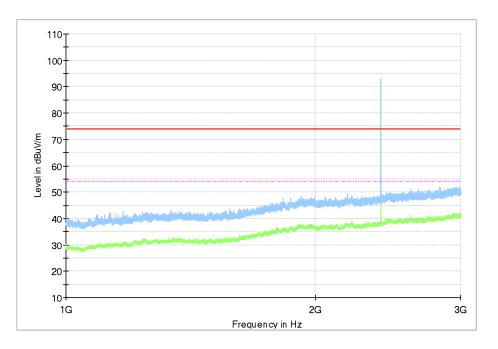


Fig.20 Radiated Spurious Emission (Ch0, 1 GHz - 3 GHz), 1M



Fig.21 Radiated Spurious Emission (Ch0, 3 GHz - 18 GHz), 1M

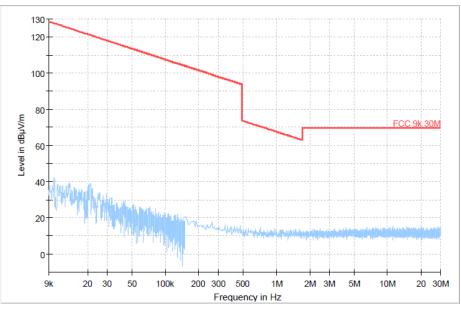


Fig.22 Radiated Spurious Emission (Ch19, 9 kHz - 30 MHz), 1M

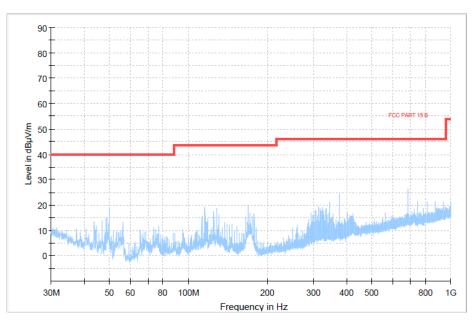


Fig.23 Radiated Spurious Emission (Ch19, 30 MHz - 1 GHz), 1M

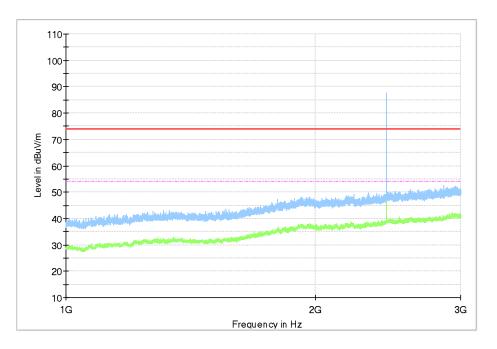


Fig.24 Radiated Spurious Emission (Ch19, 1 GHz - 3 GHz), 1M

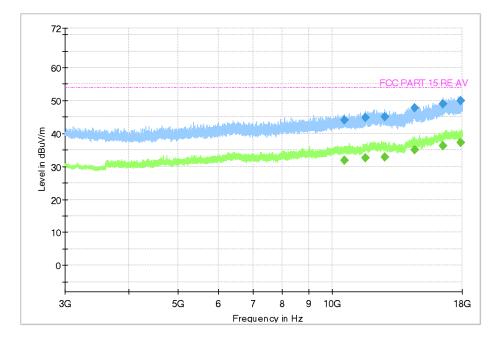


Fig.25 Radiated Spurious Emission (Ch19, 3 GHz - 18 GHz), 1M

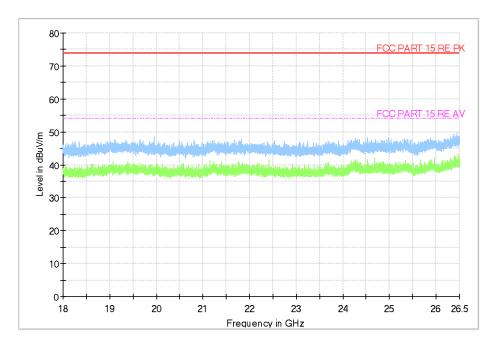


Fig.26 Radiated Spurious Emission (Ch19, 18 GHz - 26.5 GHz), 1M

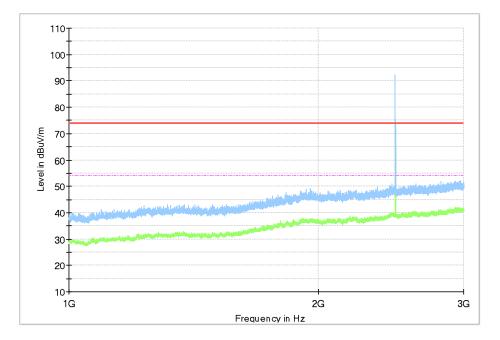


Fig.27 Radiated Spurious Emission (Ch39, 1 GHz - 3 GHz), 1M

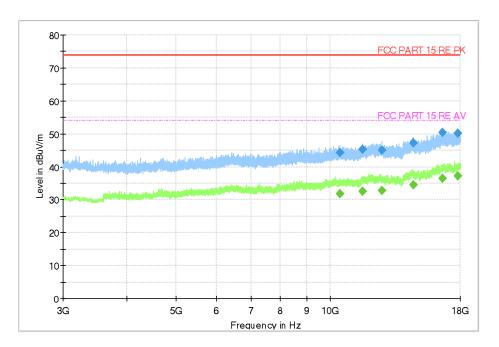


Fig.28 Radiated Spurious Emission (Ch39, 3 GHz - 18 GHz), 1M

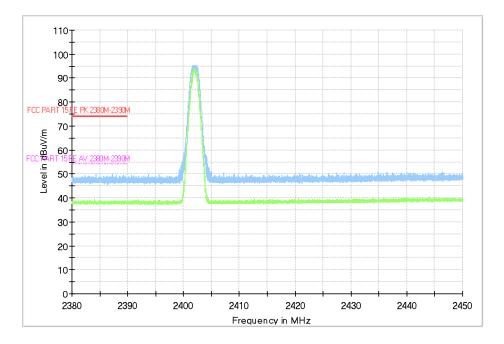


Fig.29 Radiated Band Edges (Ch0, 2380GHz - 2450GHz), 1M

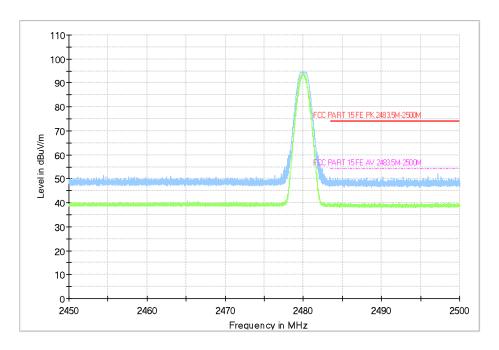


Fig.30 Radiated Band Edges (Ch39, 2450GHz - 2500GHz), 1M

A.8 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

LE-1M

0.5 MHz.

BLE (Quasi-peak Limit) - AE2

Frequency	Quasi-peak	Resul	Result (dBμV)			
range (MHz)	Limit (dBµV)	Traffic	ldle	Conclusion		
0.15 to 0.5	66 to 56					
0.5 to 5	56	Fig.31	Fig.32	Р		
5 to 30 60						
Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to						

BLE (Average Limit) - AE2

Frequency	Average-peak	Result (dBμV)		Conclusion	
range (MHz)	Limit (dBµV)	Traffic	Idle	Conclusion	
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.31	Fig.32	Р	
5 to 30	50				
Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to					
0.5 MHz.					

Test Condition:

Voltage (V)	Frequency (Hz)
240	60

Measurement Result and limit:

LE-1M

BLE (Quasi-peak Limit) - AE2

Frequency	Quasi-peak	Result	Canalusian			
range (MHz)	Limit (dBµV)	Traffic Idle		Conclusion		
0.15 to 0.5	66 to 56					
0.5 to 5	56	Fig.33	Fig.34	Р		
5 to 30	60					
Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to						
0.5 MHz.						

BLE (Average Limit) - AE2

Frequency	Average-peak	Result	Conclusion				
range (MHz)	Limit (dBµV)	Traffic Idle		Conclusion			
0.15 to 0.5	56 to 46						
0.5 to 5	46	Fig.33	Fig.34	Р			
5 to 30	50						
Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to							
0.5 MHz.							

Note: The measurement results include the L1 and N measurements.

See below for test graphs. Conclusion: Pass

Fig.31 AC Power line Conducted Emission (Traffic, AE3, 120V), 1M

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.185000	45.13	64.26	19.13	Ν	ON	9.6
0.480000	40.35	56.34	15.99	L1	ON	9.6
0.530000	40.25	56.00	15.75	N	ON	9.6
0.775000	40.77	56.00	15.23	L1	ON	9.6
1.000000	38.92	56.00	17.08	L1	ON	9.7
1.735000	32.75	56.00	23.25	Ν	ON	9.7

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)			
0.230000	28.22	52.45	24.23	Ν	ON	9.6
0.320000	28.57	49.71	21.14	L1	ON	9.6
0.545000	30.32	46.00	15.68	L1	ON	9.6
0.640000	28.53	46.00	17.47	L1	ON	9.6
0.865000	27.58	46.00	18.42	L1	ON	9.7
1.185000	23.17	46.00	22.83	L1	ON	9.7

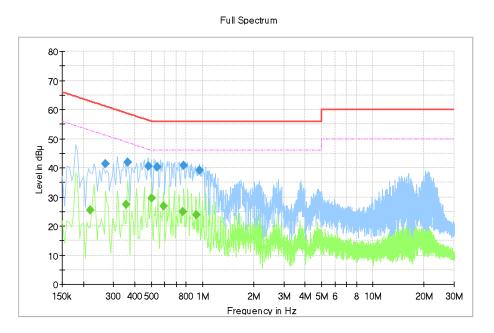


Fig.32 AC Power line Conducted Emission (Idle, AE3, 120V), 1M

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.270000	41.25	61.12	19.86	L1	ON	9.6
0.365000	42.03	58.61	16.58	L1	ON	9.6
0.480000	40.55	56.34	15.79	L1	ON	9.6
0.540000	40.34	56.00	15.66	Ν	ON	9.6
0.775000	40.90	56.00	15.10	L1	ON	9.6
0.960000	39.11	56.00	16.89	L1	ON	9.7

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)	Line	Titter	
0.220000	25.44	52.82	27.37	L1	ON	9.6
0.355000	27.27	48.85	21.57	L1	ON	9.6
0.500000	29.47	46.00	16.53	L1	ON	9.6
0.590000	26.92	46.00	19.08	L1	ON	9.6
0.765000	25.01	46.00	20.99	L1	ON	9.6
0.920000	23.82	46.00	22.18	Ν	ON	9.7

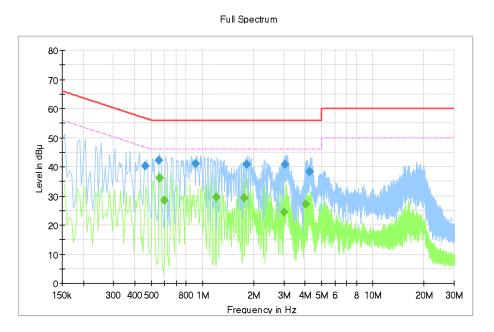


Fig.33 AC Power line Conducted Emission (Traffic, AE3, 240V), 1M

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.460000	40.26	56.69	16.43	Ν	ON	9.6
0.555000	42.20	56.00	13.80	Ν	ON	9.6
0.910000	41.23	56.00	14.77	L1	ON	9.7
1.820000	40.83	56.00	15.17	Ν	ON	9.7
3.035000	40.75	56.00	15.25	Ν	ON	9.7
4.245000	38.24	56.00	17.76	Ν	ON	9.7

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)	Line	T Inter	
0.560000	36.20	46.00	9.80	L1	ON	9.6
0.600000	28.60	46.00	17.40	Ν	ON	9.6
1.205000	29.65	46.00	16.35	Ν	ON	9.7
1.760000	29.40	46.00	16.60	Ν	ON	9.7
3.010000	24.29	46.00	21.71	Ν	ON	9.7
4.030000	27.05	46.00	18.95	Ν	ON	9.7

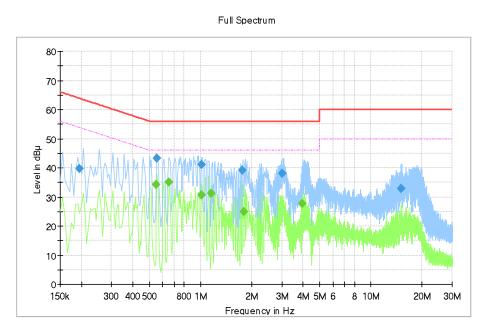


Fig.34 AC Power line Conducted Emission (Idle, AE3, 240V), 1M

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.195000	39.63	63.82	24.20	Ν	ON	9.6
0.555000	43.20	56.00	12.80	L1	ON	9.6
1.015000	41.12	56.00	14.88	L1	ON	9.7
1.755000	39.29	56.00	16.71	Ν	ON	9.7
3.000000	38.09	56.00	17.91	Ν	ON	9.7
14.980000	32.89	60.00	27.11	Ν	ON	9.8

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)	Line	T III.CI	
0.550000	34.37	46.00	11.63	L1	ON	9.6
0.650000	35.19	46.00	10.81	L1	ON	9.6
1.010000	30.57	46.00	15.43	Ν	ON	9.7
1.150000	31.30	46.00	14.70	Ν	ON	9.7
1.795000	24.80	46.00	21.20	Ν	ON	9.7
3.960000	27.70	46.00	18.30	Ν	ON	9.7

A.9 Occupied Bandwidth

Measurement Limit:

Standard	Limit (kHz)
RSS-Gen section 6.7	/

Measurement Result:

LE-1M

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402 (CH0)	Fig.35	1092.00	Р
GFSK	2440 (CH19)	Fig.36	1089.00	Р
	2480 (CH39)	Fig.37	1086.00	Р

See below for test graphs.

Conclusion: PASS

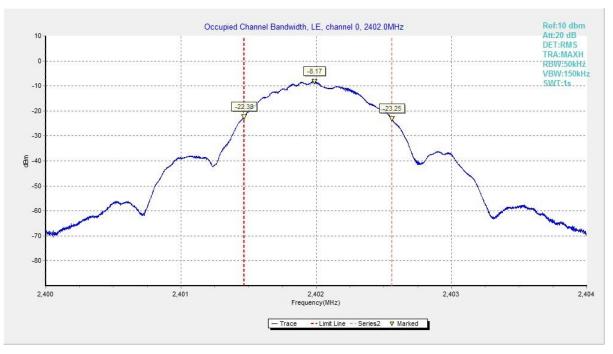
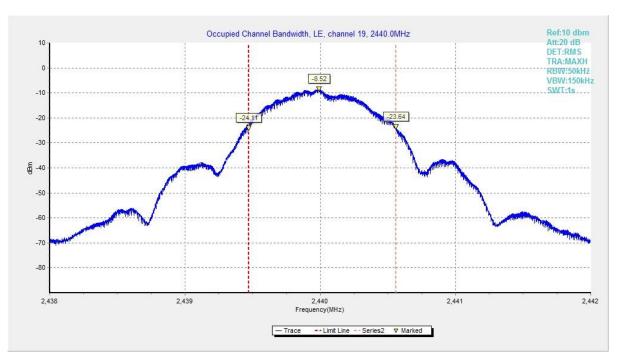



Fig.35 Occupied Bandwidth (Ch 0), 1M

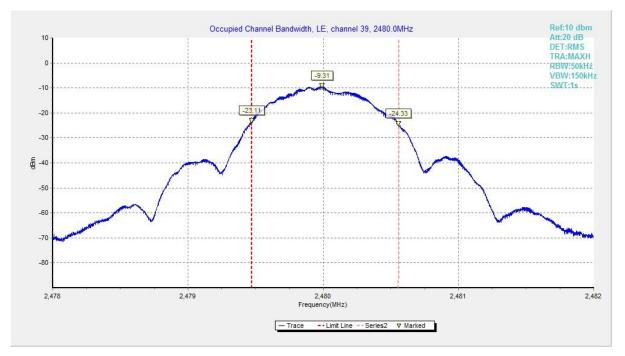


Fig.37 Occupied Bandwidth (Ch 39), 1M

END OF REPORT