FCC SAR TEST REPORT

KOSTEC Co., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si, Gyeonggi-do, Korea Tel:031-222-4251, Fax:031-222-4252

Report No: KST-FCS-200001

1. Applicant

· Name : Midland Radio Corporation

Address: 5900 Parretta Drive Kansas City, MO 64120-2134

2. Test Item

Product Name: FRS

Model Name : T65B

Brand Name: X-TALKER

3. Manufacturer

Name : R12 EMS, PHILIPPINES, INC.

• Address : New Blk 1 Lot 4&5, Calamba Premier International Park, Barangay Batino, Calamba

City, Laguna, Philippines

4. Date of Test: 2020. 03. 26. ~ 2020. 03. 26.

FCC 47 CFR Parts 1 & 2

5. Test Method Used : KDB 447498 D01 v06

KDB 865664 D01 v01r04

KDB 643646 D01 v01r03

6. Test Result: Compliance

7. Note: Class II Permissive Change

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

Affirmation Tested by Name : Jung, Ho-Cheol (Signature) Technical Manager Name : Park, Gyeong-Hyeon (Signature)

2020. 03. 30.

KOSTEC Co., Ltd.

KST-FCS-SRS-Rev.0.4 Page: 1 / 51

Table of Contents

Statement of Compliance 1.1 Test Method List	3 3
2. Administration Data 2.1 Test Laboratory 2.2 Location 2.3 Applicant 2.4 Manufacturer 2.5 Application Details	
3. GENERAL INFORMATION 3.1 Description of DUT 3.2 Photographs of EUT 3.3 Accessories 3.4 Test Condition 3.5 Requirements for compliance testing defined by FCC	
4. Specific Absorption Rate (SAR) 4.1 Introduction 4.2 SAR Definition 4.3 SAR Measurement Procedure	13 13
5. SAR Measurement System. 5.1 E-field Probe. 5.2 Mounting Devices. 5.3 DASY5 Robots. 5.4 SAM Phantoms. 5.5 ELI Phantoms. 5.6 DAE4 - Data Acquisition Electronics. 5.7 Validation Dipoles. 5.8 Test Equipment List.	
6. Measurement Results 6.1 Tissue Simulating Liquids 6.2 System Verification 6.3 DUT Testing Position 6.4 SAR measurement procedure 6.5 SAR Exposure Limits 6.6 SAR test result	
7. Uncertainty Assessment	26
Appendix A : Plot of measured tissue.	27
Appendix B : Plot of system verification test	28
Appendix C : Plot of SAR test	29
Appendix D: DUT setup photos	32
Appendix F: System Certificate & calibration	33

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for DUT are as follows.

Body Worn Configuration

Mode	Freq.	Position	Measured 1 g SAR (W/Kg)	50 % Duty cycle (W/Kg)	Scaled 1 g SAR (W/Kg)	Note
FRS	462.562 5	Body-worn	0.403	0.202	0.291	

Head Configuration

Mode	Freq.	Position	Measured 1 g SAR (W/Kg)	50 % Duty cycle (W/Kg)	Scaled 1 g SAR (W/Kg)	Note
FRS	467.712 5	Face-up	0.260	0.130	0.163	

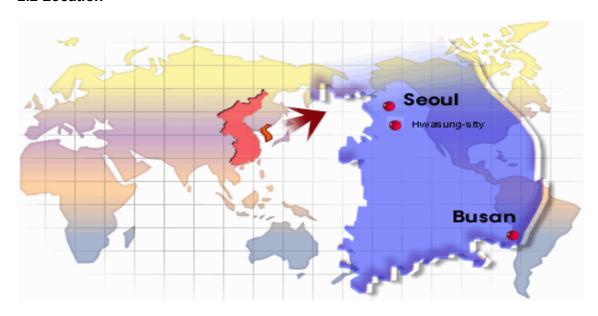
This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General population/Uncontrolled exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

1.1 Test Method List

447498 D01 General RF Exposure Guidance v06 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 643646 D01 SAR Test for PTT Radios v01r03

KST-FCS-SRS-Rev.0.4 Page: 3 / 51

2. Administration Data


2.1 Test Laboratory

KOSTEC Co., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

Telephone Number: 82-31-222-4251 Facsimile Number: 82-31-222-4252

2.2 Location

2.3 Applicant

Midland Radio Corporation 5900 Parretta Drive Kansas City,MO 64120-2134

2.4 Manufacturer

R12 EMS, PHILIPPINES, INC.

New Blk 1 Lot 4&5, Calamba Premier International Park, Barangay Batino, Calamba City, Laguna, Philippines

2.5 Application Details

Date of Receipt of application : 2020. 01. 21. Date of test : 2020. 03. 26. ~ 2020. 03. 26.

KST-FCS-SRS-Rev.0.4 Page: 4 / 51

Revision History of test report

Rev.	Revisions	Effect page	Reviewed	Date
-	Initial issue	All	Park, Gyeong Hyeon	2020. 03. 30.

KST-FCS-SRS-Rev.0.4 Page: 5 / 51

3. GENERAL INFORMATION

3.1 Description of DUT

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

DUT Type	Portable devices			
Device Category	General population/Uncontrolled exposure			
Brand Name	X-TALKER			
Model Name	T65B			
Modulation Type	FM			
Operating Frequency Range	462.550 0 MHz - 462.725 0 MHz, 467.562 5 MHz - 467.712 5 MHz			
Operating mode	Face Up and Body-worn			
Body-Worn accessories	Belt Clip			
Audio accessories	Ear-mic set			
Antenna Specification	Helical antenna, 0.50 dBi			
Power Source	Ni-MH battery pack / 3.6 VDC nominal / 700 mAh			
Max. Output power	0.551 W			
Max.SAR(1 g)	0.291 W/kg			
FCC ID	MMAT65A			
Remark	This report is prepared for FCC class II permissive change. This report is issued as a supplementary report to original report no. KES-SR-15T0024. The modification is concerned with following: 1) Q1A of TX power FET change to RFM04U6P 2) Q4, Q11 and Q14 of TX RF transistor change to KTC3770U-C. 3) IC3 of audio Amp. Change to 8002.			

KST-FCS-SRS-Rev.0.4 Page: 6 / 51

3.1.1 The DUT conducted power measurements

Channel No	Frequency [MHz]	Conducted output Power [dBm]	Conducted output Power [W]	Target power [dBm]	Max. tune-up tolerance limit [dBm]	Scaling Factor
1	462.5625	27.41	0.551	28.00	29.00	1.44
2	462.5875	27.33	0.541	28.00	29.00	1.47
3	462.6125	27.24	0.530	28.00	29.00	1.50
4	462.6375	27.34	0.542	28.00	29.00	1.47
5	462.6625	27.30	0.537	28.00	29.00	1.48
6	462.6875	27.37	0.546	28.00	29.00	1.46
7	462.7125	27.27	0.533	28.00	29.00	1.49
8	467.5625	23.98	0.250	24.00	25.00	1.26
9	467.5875	24.02	0.252	24.00	25.00	1.25
10	467.6125	23.98	0.250	24.00	25.00	1.26
11	467.6375	23.96	0.249	24.00	25.00	1.27
12	467.6625	23.98	0.250	24.00	25.00	1.26
13	467.6875	24.00	0.251	24.00	25.00	1.26
14	467.7125	24.03	0.253	24.00	25.00	1.25
15	462.5500	27.27	0.533	28.00	29.00	1.49
16	462.5750	27.29	0.536	28.00	29.00	1.48
17	462.6000	27.23	0.528	28.00	29.00	1.50
18	462.6250	27.23	0.528	28.00	29.00	1.50
19	462.6500	27.34	0.542	28.00	29.00	1.47
20	462.6750	27.26	0.532	28.00	29.00	1.49
21	462.7000	27.37	0.546	28.00	29.00	1.46
22	462.7250	27.22	0.527	28.00	29.00	1.51
23	462.5625	27.29	0.536	28.00	29.00	1.48
24	462.6125	27.25	0.531	28.00	29.00	1.50
25	462.6625	27.18	0.522	28.00	29.00	1.52
26	462.7125	27.26	0.532	28.00	29.00	1.49
27	462.5500	27.28	0.535	28.00	29.00	1.49
28	462.6000	27.22	0.527	28.00	29.00	1.51
29	462.6500	27.26	0.532	28.00	29.00	1.49
30	462.7000	27.24	0.530	28.00	29.00	1.50
31	462.5875	27.25	0.531	28.00	29.00	1.50
32	462.6375	27.14	0.518	28.00	29.00	1.53
33	462.6875	27.23	0.528	28.00	29.00	1.50
34	467.5625	23.98	0.250	24.00	25.00	1.26
35	467.6125	24.01	0.252	24.00	25.00	1.26
36	467.6625	23.98	0.250	24.00	25.00	1.26

Note:

1) Conducted output power; The maximum powers are marks in bold.

KST-FCS-SRS-Rev.0.4 Page: 7 / 51

²⁾ Scaling Factor = tune-up limit power (mW) / EUT RF power (mW)

³⁾ Tune-up tolerance is ± 1 dB.

3.2 Photographs of EUT

Rear

Тор

Bottom

Left

Right

3.3 Accessories

BLANK

3.4 Test Condition

3.4.1 Ambient Condition

• Ambient temperature : (20 - 21) °C • Relative Humidity : (53 ~ 57) % R.H.

3.4.2 Test Configuration

The EUT was tested in the face position with the front of the device 25 mm away from the flat phantom and the body position with the belt clip in contact with the flat phantom. The audio accessory was used for all body measurements.

For each of the tests conducted, the device was set to continuously transmit at a maximum output power on the channel specified in the test data. The SAR for analog mode was scaled to 50% duty cycle (as this is the maximum duty cycle of the device) per KDB 643646 D01 v01r03. All test reductions were reduced based on the reductions in KDB 643646 D01 v01r03.

3.5 Requirements for compliance testing defined by FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones.

For consumer products, the applicable limit is 1.6 W/kg for an uncontrolled environment and 8.0 W/kg for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1.

According to the KDB publications by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

KST-FCS-SRS-Rev.0.4 Page: 12 / 51

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (Dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

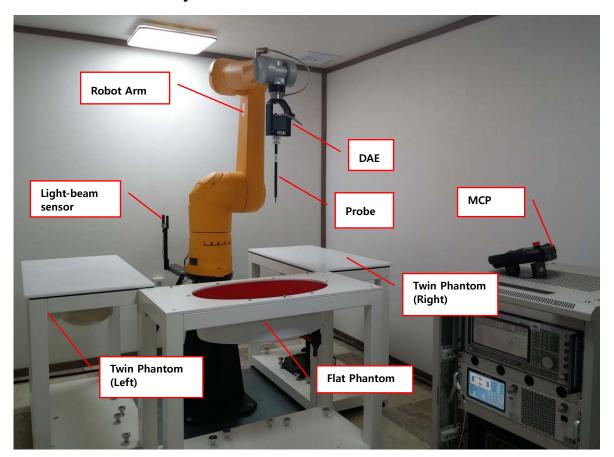
Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However, for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4.3 SAR Measurement Procedure

The DUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.


The DUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1 mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1 g and 10 g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³)

KST-FCS-SRS-Rev.0.4 Page: 13 / 51

5. SAR Measurement System

[DASY52 SAR System Description]

KST-FCS-SRS-Rev.0.4 Page: 14 / 51

DASY52 SAR is a cost-effective package for demonstration of compliance of mobile phones with specific absorption rate (SAR) limits. The fastest and most accurate scanner on the market, it is fully compatible with all worldwide standards for transmitters operating at the ear or near the body (<200 mm from the skin).


The system consists of the following components;

- 1) TX90XL Stäubli Robot and Controller CS8c incl. Cabinet
- 2) EOCx Electro Optical Converter (mounted on robot arm)
- 3) Robot Stand for TX90XL
- 4) Robot Arm Extension and Adaptors
- 5) Robot Remote Control
- 6) LB5 Light Beam Switch for Probe Tooling (incl. LB Adaptor)
- 7) Light Beam Mounting Plate
- 8) DASY5 Measurement Server
- 9) Desktop PC / 3.4 GHz (or higher) incl. Color-Monitor 23"
- 10) SAM Twin Phantom V5.0 incl. Support DASY5
- 11) MD4HHTV5 Mounting Device for Hand-Held Transmitters
- 12) DAEx Data Acquisition Electronics
- 13) EX3 SAR Probe
- 14) DP5 Dummy Probe for Training Purposes
- 15) Dipoles (not in picture)

Some of the components are described in details in the following sub-sections.

KST-FCS-SRS-Rev.0.4 Page: 15 / 51

5.1 E-field Probe

Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis)
_	± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g
_	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g.,
	very strong gradient fields); the only probe that enables compliance
	testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

5.2 Mounting Devices

MD4HHTV5 - Mounting Device for Hand-Held Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material: Polyoxymethylene (POM)

KST-FCS-SRS-Rev.0.4 Page: 16 / 51

5.3 DASY5 Robots

Our TX90 series of medium payload robots features an articulated arm with 6 degrees of freedom for optimum flexibility. A unique spherical work envelope allows maximum utilization of cell workspace. Additional benefits include floor, wall and ceiling mount options for easy robot integration. The robot arm's fully enclosed structure (rated IP65) makes it ideal for a wide range of applications, even in harsh environments.

Number of Axes	6
Nominal Load	5 kg
Maximum Load	12 kg
Reach	1450 mm
Repeatability	± 0.035 mm
Control Unit	CS8c
Programming Language	VAL3
Weight	116 kg

5.4 SAM Phantoms

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	
Wooden Support	SPEAG standard phantom table	

KST-FCS-SRS-Rev.0.4 Page: 17 / 51

5.5 ELI Phantoms



Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. ELI V6.0, released in August 2014, has the same shell geometry as ELI4 but offers increased longterm stability.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility Compatible with all SPEAG tissue simulating liquids (incl. DGBE ty	
Shell Thickness 2.0 ± 0.2 mm (bottom plate)	
Dimensions Major axis: 600 mm	
	Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

5.6 DAE4 - Data Acquisition Electronics

Signal amplifier, multiplexer, A/D converter, and control logic Serial optical link for communication with DASY4/5 embedded system (fully remote controlled)

Two-step probe touch detector for mechanical surface detection and emergency robot stop

Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,
	400mV)
Input Offset Voltage	< 5 μV (with auto zero)
Input Resistance	200 MOhm
Input Bias Current	< 50 fA
Battery Power	> 10 hours of operation (with two 9.6 V NiMH accus)
Dimensions (L x W x H)	60 x 60 x 68 mm
Calibration	ISO/IEC 17025 calibration service available.

KST-FCS-SRS-Rev.0.4 Page: 18 / 51

5.7 Validation Dipoles

Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with tissue simulating solutions

Calibration ISO/IEC 17025 <u>calibration service</u> available.	
Return Loss	> 20 dB at specified validation position
Power Capability	> 100 W (f < 1GHz); > 40 W (f > 1GHz)

KST-FCS-SRS-Rev.0.4 Page: 19 / 51

5.8 Test Equipment List

No.	Instrument	Manufacturer	Model	S/N	Due to cal date	Cal interval	used
1	Staubli robot	SPEAG	TX90XL	F10/5E6EA1/A/01 F10/5E6EA1/C/01	N/A	N/A	
2	DAE	SPEAG	DAE4	1240	2020.09.20	1 Year	
3	Twin SAM Phantom	SPEAG	QD 000 P40 CC	1600	N/A	N/A	
4	Twin SAM Phantom	SPEAG	QD 000 P40 CC	1601	N/A	N/A	
5	Flat Phantom	SPEAG	ELI V6.0	2002	N/A	N/A	
6	Mounting Device for Hand- Held Devices	SPEAG	MD4HHTV5	SD 000H01 MA	N/A	N/A	
7	SAR Probe	SPEAG	EX3 DV4	3664	2020.09.26	1 Year	
8	Reference Dipole	SPEAG	D450V3	1099	2021.09.24	2 Year	\boxtimes
9	Low pass filter	WAINWRIGMCS INSTRUMNENTS GMBH	WLJS1000-6EF	1	2021.01.20	1 Year	
10	Low pass filter	WAINWRIGMCS INSTRUMNENTS GMBH	WLJS2500-6EF	1	2021.01.22	1 Year	
11	High pass Filter	WAINWRIGMCS INSTRUMNENTS GMBH	WHJS3000-10EF	1	2021.01.22	1 Year	
12	Dual directional coupler	HEWLETT PACKARD	778D	17693	2021.01.21	1 Year	
13	Dual directional coupler	HEWLETT PACKARD	772D	2839A00924	2021.01.21	1 Year	
14	3.5 mm Cal. Kit	Agilent Technologies	85033D	3423A07123	N/A	N/A	\boxtimes
15	3 dB Attenuator	Weinschel Corp	23-3-34	BK2093	2020.12.17	1 Year	
16	Attenuator	Aeroflex / Weinschel	24-30-34	BX5630	2020.12.17	1 Year	
17	EPM Series Power meter	Agilent Technology	E4418B	MY41293610	2021.01.22	1 Year	
18	Power sensor	Agilent Technology	E9300A	MY41496666	2021.01.22	1 Year	
19	EPM Series Power meter	Agilent Technology	E4418B	GB39512547	2021.01.22	1 Year	\boxtimes
20	Power Sensor	Agilent Technology	E9300A	MY41496631	2021.01.22	1 Year	\boxtimes
21	RF Amplifier	Sung san Electronics Communications	SSA024	SSEC0001	2021.01.22	1 Year	\boxtimes
22	Signal Generator	Agilent Technology	E4428C	MY49070070	2021.01.20	1 Year	\boxtimes
23	Network Analyzer	Agilent	8753ES	US39170869	2020.09.04	1 Year	
24	85070E.Dielectric Probe kit	Agilent	85070 E	None	N/A	N/A	\boxtimes
25	Wideband Radio Communication Tester	ROHDE&SCHWARZ	CMW500	127302	2021.01.21	1 Year	
26	Radio Communication Analyzer	Anritsu	MT8821C	6261830568	2020.06.18	1 Year	

KST-FCS-SRS-Rev.0.4 Page: 20 / 51

6. Measurement Results

6.1 Tissue Simulating Liquids

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max± 5 %)

For head SAR testing, the liquid height from the ear reference point of the phantom to the liquid top surface is larger than 15 cm. for body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm.

6.1.1 Recipes for tissue simulating liquid.

Freq. (MHz)	Water	Salt (NaCl)	Sugar	HEC	Bactericide	Triton X- 100	DGBE	Total (%)
450	38.56	3.95	56.32	0.98	0.19	0.00	0.00	100

6.1.2 Simulated tissue liquid parameter confirmation

The head tissue dielectric parameters recommended by the KDB865664 D01 have been incorporated in the following table.

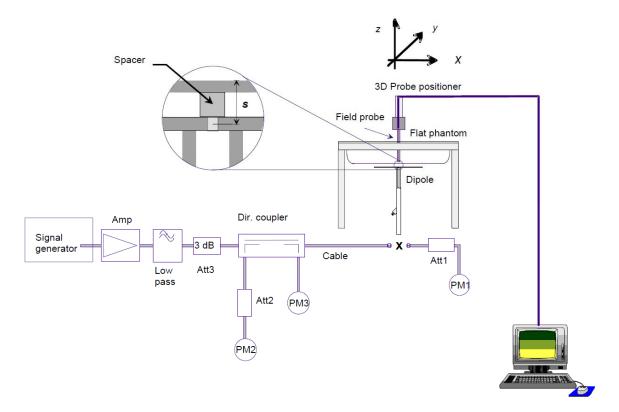
Target Frequency	н	lead
(MHz)	εr	σ (S/m)
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
915	41.5	0.98
1450	40.5	1.20
1610	40.3	1.29
1800 - 2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5800	35.3	5.27
	(εr = relative permittivity, $σ$ = conductivity an	nd ρ = 1000 kg/m3)

6.1.3 Measuring result for simulating liquid

	•	<u> </u>						
Liq	uid	Parameters	Target	Measured	Deviation	Limit	Date	Note
Freq. (MHz)	Temp. (°C)	raiailleteis	larget	Weasureu	(%)	(%)	Date	Note
450,000,0	20	Permitivity	43.5	43.10	0.93	±5		
450.000 0	20	Conductivity	0.87	0.87	0.38	±5		
462.562 5	20	Permitivity	43.5	42.83	1.54	±5	2020.03.26.	Head
402.502 5	20	Conductivity	0.87	0.88	1.15	±5	2020.03.26.	tissue
467.712 5	20	Permitivity	43.5	42.72	1.79	±5		
407.712.5	20	Conductivity	0.87	0.88	1.15	±5		

Note: Please see appendix for the plot of measured tissue.

KST-FCS-SRS-Rev.0.4 Page: 21 / 51


6.2 System Verification

6.2.1 Purpose of system performance check

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of ±5 %. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 100 mW RF dipole input power was used. The 1 g and 10 g spatial average SAR values normalized to 1 W dipole input power give reference data for comparisons and it's equal to 10 x (dipole forward power)

6.2.2 System setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom with the correct distance spacer. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the short side of the phantom. The equipment setup is shown below:

[System set-up for system verification]

KST-FCS-SRS-Rev.0.4 Page: 22 / 51

[Photo of dipole setup]

6.2.3 Verification Results

	Freq				Те	st Results					
Fr		Measured 1 g SAR Measured 10 g					Tar	Date	Tissue		
[M	IHz]	[W/kg]		SAR [W/kg]		1 g SAR	10 g SAR	1 g Dev.	10 g Dev.	Date	Type
		100 mW	1 W	100 mW	100 mW 1 W		[W/kg]	[%]	[%]		
4	50	0.448	4.48	0.315	0.315 3.15		3.00	0.44	5.00	2020. 03. 26.	Head

Note:

- 1. Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Above table shows the target SAR and measured SAR after normalized to 1W input power.
- 2. Please see appendix for the plot of system verification test.

KST-FCS-SRS-Rev.0.4 Page: 23 / 51

6.3 DUT Testing Position

Please see appendix for the DUT setup photos

6.4 SAR measurement procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

The measurement procedures are as follows:

- 1) For DUT, using engineering software and (or) radio communication tester to transmit RF power continuously in the middle channel.
- 2) Mesure output power through RF cable and power meter.
- 3) Place the DUT in the positions described in the appendix for the DUT setup photos.
- 4) set area scan, grid size and other setting on the ALSAS-10U software.
- 5) Taking data for the middle channel on each testing position.
- 6) Find out the largest SAR result on these testing positions of each band
- 7) measure SAR results for the lowest and highest channels in worst SAR testing position.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1 mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1 g and 10 g averages are derived from the zoom scan volume (interpolated resolution set at 1 mm³).

6.5 SAR Exposure Limits

	SAR Lim	nit(W/kg)
Type of Exposure	(General Population /Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	<u>1.6</u>	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

KST-FCS-SRS-Rev.0.4 Page: 24 / 51

6.6 SAR test result

HEAD Configuration

No	Mode	Freq.	СН	Test Position	Cond Pwr. (dBm)	Power Drift (dB)	Measured 1 g SAR (W/Kg)	50 % Duty cycle	Scaled 1 g SAR (W/Kg)	Scaling factor	Limit (W/Kg)	NOTE
1	FRS	462.5625	1	Face-up	27.41	-0.09	0.200	0.100	0.144	1.44	1.6	2 F am
2	FKS	467.7125	14	Face-up	24.03	-0.04	0.260	0.130	0.163 #1	1.25	1.6	2.5 cm

BODY Configuration

No	Mode	Freq.	СН	Test Position	Cond Pwr. (dBm)	Power Drift (dB)	Measured 1 g SAR (W/Kg)	50 % Duty cycle	Scaled 1 g SAR (W/Kg)	Scaling factor	Limit (W/Kg)	NOTE
1	FRS	462.5625	1	Body-worn	27.41	-0.14	0.403	0.202	0.291 #2	1.44	1.6	0 om
2	FRS	467.7125	14	Body-worn	24.03	0.17	0.242	0.121	0.151	1.25	1.6	0 cm

Note:

- 1. 50% duty cycle only applies to PTT devices.
- 2. Only one body-worn accessory(Belt-Clip) and one audio accessory are supplied with a EUT.
- 3. The EUT only supports Ni-MH battery pack.
- 4. # means the Plot's number.

Repeated SAR test Result

No	Mode	Freq.	СН	Test		Measured 1 g SAR (W/Kg)	Ratio	NOTE	
		·		Position	Original	1st Repeat			
Note	: Not Appl	icable.							

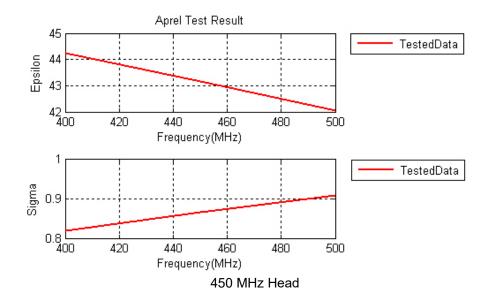
SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

KST-FCS-SRS-Rev.0.4 Page: 25 / 51

7. Uncertainty Assessment


Error Description	Uncert. Value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi)
Measurement System								
Probe Calibration	6.55	N	1	1	1	6.55	6.55	∞
Axial Isotropy	4.7	R	√3	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	9.6	R	√3	0.7	0.7	3.9	3.9	∞
Linearity	4.7	R	√3	1	1	2.7	2.7	∞
Modulation Response	2.4	R	√3	1	1	1.4	1.4	∞
System Detection Limits	1.0	R	√3	1	1	0.6	0.6	∞
Boundary Effects	2.0	R	√3	1	1	1.2	1.2	∞
Readout Electronics	0.3	N	1	1	1	0.3	0.3	∞
Response Time	0.8	R	√3	1	1	0.5	0.5	∞
Integration Time	2.6	R	√3	1	1	1.5	1.5	∞
RF Amient Noise	3.0	R	√3	1	1	1.7	1.7	∞
RF Amient Reflecions	3.0	R	√3	1	1	1.7	1.7	∞
Probe Positioner	0.8	R	√3	1	1	0.5	0.5	∞
Probe Positioing	6.7	R	√3	1	1	3.9	3.9	∞
Post-processing	4.0	R	√3	1	1	2.3	2.3	∞
Test Sample Related								
Device Holder	3.6	N	1	1	1	3.6	3.6	5.0
Test sample Positioning	2.9	N	1	1	1	2.9	2.9	145.0
Power Drift	5.0	R	√3	1	1	2.9	2.9	∞
Phantom and Setup								
Phantom Uncertainty	7.6	R	√3	1	1	4.4	4.4	∞
SAR correction	1.9	R	√3	1	0.84	1.1	0.9	∞
Liquid Conductivity (mea.)	5.0	R	√3	0.78	0.71	2.3	2.0	∞
Liquid Permittivity (mea.)	5.0	R	√3	0.26	0.26	0.8	0.8	∞
Temp. unc Conductivity	3.4	R	√3	0.78	0.71	1.5	1.4	∞
Temp. unc Permittivity	0.4	R	√3	0.23	0.26	0.1	0.1	∞
Combined Std. Uncertainty						12.1	12.0	
Expanded STD Uncertainty						24.3	24.1	

[Exposure Assessment Measurement Uncertainty]

KST-FCS-SRS-Rev.0.4 Page: 26 / 51

Appendix A: Plot of measured tissue.

Measuring result table for simulating liquid

450 MHz Head

Freq	Test_e	Test_s
0.400000	44.19	0.83
0.450000	43.10	0.87
0.4625625	42.83	0.88*
0.4677125	42.72	0.88*
0.500000	42.03	0.91

^{*}value interpolated

KST-FCS-SRS-Rev.0.4 Page: 27 / 51

Appendix B: Plot of system verification test.

Date/Time: 3/26/2020 11:10:38 AM

Test Laboratory: Kostec Co., Ltd.

System Perfomance Check 450 MHz

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D450 (450.0 MHz); Frequency: 450 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 450 MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 43.1$; $\rho = 1000$ kg/m³

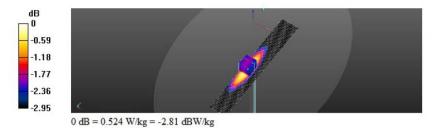
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3664; ConvF(10.86, 10.86, 10.86); Calibrated: 9/26/2019;
 - o Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1240; Calibrated: 9/20/2019
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/System Perfomance Check_450 MHz/Area Scan (31x201x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.523 W/kg


Configuration/System Perfomance Check_450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.23 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.645 W/kg

SAR(1 g) = 0.448 W/kg; SAR(10 g) = 0.315 W/kg

Maximum value of SAR (measured) = 0.524 W/kg

KST-FCS-SRS-Rev.0.4 Page: 28 / 51

$\label{eq:Appendix C} \textbf{Appendix C}: \textbf{Plot of SAR test.}$

Test Plot list

No	Mode	Freq.	СН	Test Position	Measured 1 g SAR (W/Kg)	50 % Duty cycle(W/Kg)	Scaled 1 g SAR (W/Kg)	NOTE
1	FRS	467.7125	14	Face-up	0.260	0.130	0.163	
2	FRS	462.5625	1	Body-worn	0.403	0.202	0.290	

KST-FCS-SRS-Rev.0.4 Page: 29 / 51

Date/Time: 3/26/2020 4:29:19 PM

Test Laboratory: Kostec Co., Ltd.

14ch 467.7125 MHz Front

DUT: Midland; Type: Proto; Serial: Proto Type

Communication System: UID 0, WALKIE TALKIE (0); Communication System Band: FRS; Frequency: 467.713 MHz; Communication System PAR: 0 dB; PMF: 1.12202e-005

Medium parameters used: f = 467.713 MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42.72$; $\rho = 1000$ kg/m³

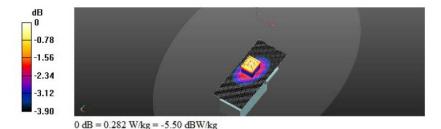
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3664; ConvF(10.86, 10.86, 10.86); Calibrated: 9/26/2019;
 Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1240; Calibrated: 9/20/2019
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/14ch_467.7125MHz Front/Area Scan (51x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.203 W/kg


Configuration/14ch_467.7125MHz Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.01 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.260 W/kg; SAR(10 g) = 0.210 W/kg

Maximum value of SAR (measured) = 0.282 W/kg

KST-FCS-SRS-Rev.0.4 Page: 30 / 51

Date/Time: 3/26/2020 1:51:17 PM

Test Laboratory: Kostec Co., Ltd.

1ch_462.5625 MHz Rear

DUT: Midland; Type: Proto; Serial: Proto Type

Communication System: UID 0, WALKIE TALKIE (0); Communication System Band: FRS; Frequency: 462.563 MHz; Communication System PAR: 0 dB; PMF: 1.12202e-005

Medium parameters used: f = 462.563 MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42.83$; $\rho = 1000$ kg/m³

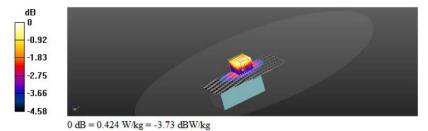
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3664; ConvF(10.86, 10.86, 10.86); Calibrated: 9/26/2019;
 - o Modulation Compensation:
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1240; Calibrated: 9/20/2019
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/1ch_462.5625MHz Rear/Area Scan (51x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.294 W/kg

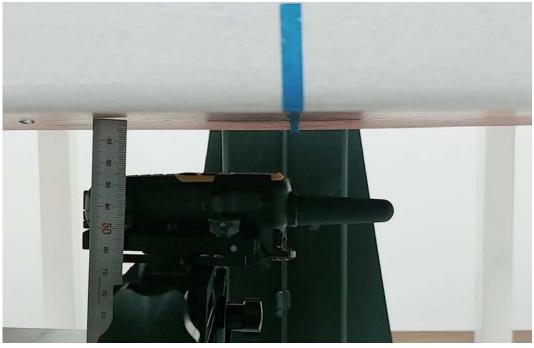

Configuration/1ch 462.5625MHz Rear/Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

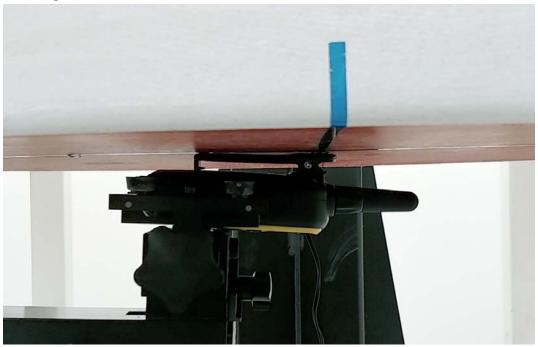
Reference Value = 15.89 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.427 W/kg

SAR(1 g) = 0.403 W/kg; SAR(10 g) = 0.326 W/kg

Maximum value of SAR (measured) = 0.424 W/kg


KST-FCS-SRS-Rev.0.4 Page: 31 / 51


Appendix D: DUT setup photos

Face held configration

[FRONT]

Body worn configuration

[REAR]

KST-FCS-SRS-Rev.0.4 Page: 32 / 51

Appendix E: System Certificate & calibration

E-1: Probe Calibration

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Kostec (Dymstec)

Certificate No: EX3-3664_Sep19

CALIBRATION CERTIFICATE

Objec

EX3DV4 - SN:3664

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

September 26, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20	
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20	
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20	
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20	
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19	
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20	
Network Analyzer E8358A SN: US41080477		31-Mar-14 (in house check Oct-18)	In house check: Oct-19	

Calibrated by:

Name
Function
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: September 28, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3664_Sep19

Page 1 of 10

KST-FCS-SRS-Rev.0.4 Page: 33 / 51

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". June 2013
- Techniques", June 2013
 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3664 Sep19 Page 2 of 10

KST-FCS-SRS-Rev.0.4 Page: 34 / 51

EX3DV4 - SN:3664 September 26, 2018

Probe EX3DV4

SN:3664

Manufactured: Calibrated: October 20, 2008 September 26, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3664_Sep18

Page 3 of 11

KST-FCS-SRS-Rev.0.4 Page: 35 / 51

EX3DV4 - SN:3664

September 26, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3664

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.62	0.49	0.50	± 10.1 %
DCP (mV) ^B	99.4	103.6	99.2	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	141.5	±1.9 %	± 4.7 %
		Υ	0.0	0.0	1.0		143.5		
		Z	0.0	0.0	1.0		135.1		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3664_Sep19

Page 3 of 10

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3664 September 26, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3664

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	115.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3664_Sep19

Page 4 of 10

EX3DV4- SN:3664

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3664

September 26, 2019

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	10.86	10.86	10.86	0.12	1.30	± 13.3 %
600	42.7	0.88	10.53	10.53	10.53	0.10	1.20	± 13.3 %
750	41.9	0.89	10.38	10.38	10.38	0.45	0.87	± 12.0 %
835	41.5	0.90	10.09	10.09	10.09	0.49	0.80	± 12.0 %
900	41.5	0.97	9.85	9.85	9.85	0.39	0.93	± 12.0 %
1810	40.0	1.40	8.58	8.58	8.58	0.31	0.87	± 12.0 %
1900	40.0	1.40	8.49	8.49	8.49	0.36	0.87	± 12.0 %
2450	39.2	1.80	7.76	7.76	7.76	0.25	0.99	± 12.0 %
2600	39.0	1.96	7.64	7.64	7.64	0.38	0.95	± 12.0 %
5200	36.0	4.66	5.50	5.50	5.50	0.40	1.80	± 13.1 %
5300	35.9	4.76	5.35	5.35	5.35	0.40	1.80	± 13.1 %
5500	35.6	4.96	5.21	5.21	5.21	0.40	1.80	± 13.1 %
5600	35.5	5.07	5.10	5.10	5.10	0.40	1.80	± 13.1 %
5800	35.3	5.27	5.05	5.05	5.05	0.40	1.80	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3664_Sep19

Page 5 of 10

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3664

September 26, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3664

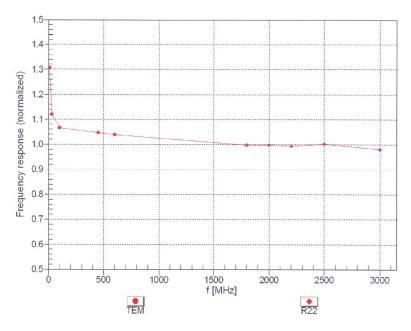
Calibration Parameter Determined in Body Tissue Simulating Media

	modit							
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	11.14	11.14	11.14	0.09	1.20	± 13.3 %
5200	49.0	5.30	4.87	4.87	4.87	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.73	4.73	4.73	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.47	4.47	4.47	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.28	4.28	4.28	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.21	4.21	4.21	0.50	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**Tat frequencies below 3 GHz, the validity of fissue parameters (a and \text{\sigma}) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and \text{\sigma}) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

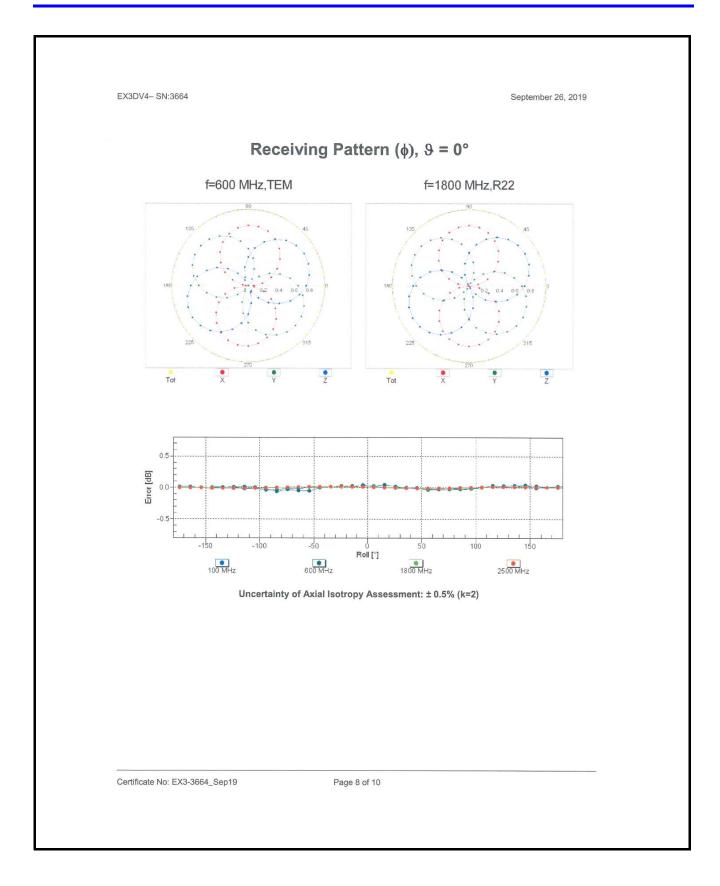

Certificate No: EX3-3664_Sep19

Page 6 of 10

EX3DV4- SN:3664

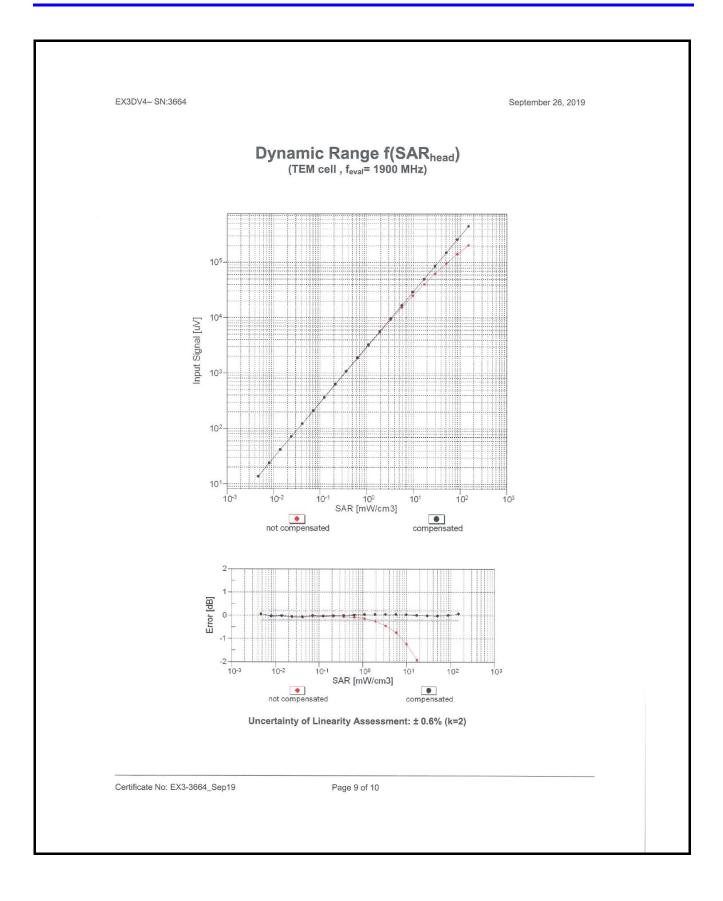
September 26, 2019

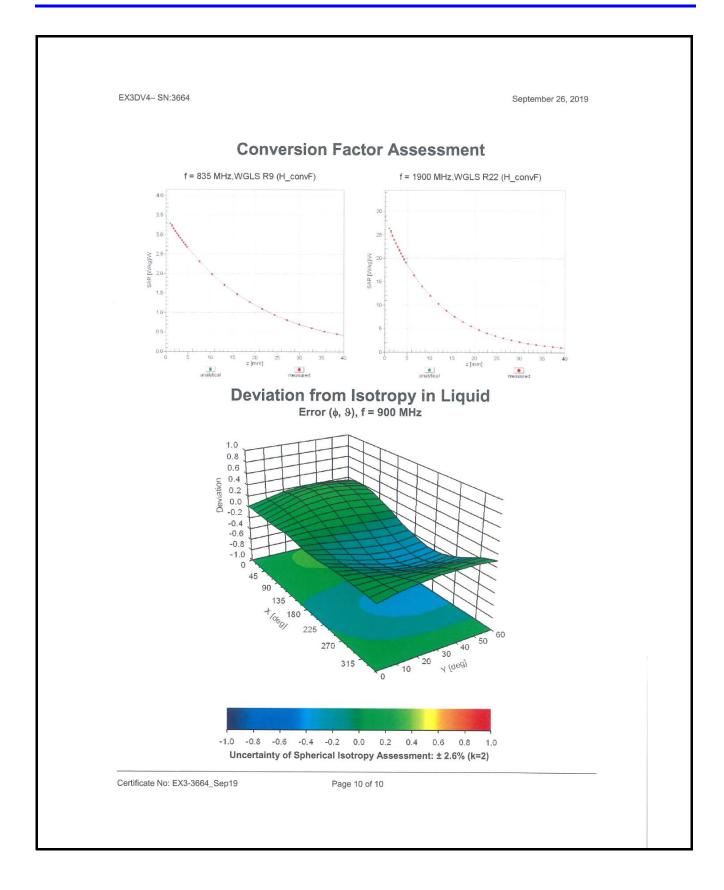
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3664_Sep19

Page 7 of 10


KST-FCS-SRS-Rev.0.4 Page: 40 / 51


KST-FCS-SRS-Rev.0.4 Page: 41 / 51

KST-FCS-SRS-Rev.0.4 Page: 42 / 51

KST-FCS-SRS-Rev.0.4 Page: 43 / 51

E-2: Dipole antenna Calibration (450 MHz)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: D450V3-1099 Sep19 Kostec (Dymstec) **CALIBRATION CERTIFICATE** D450V3 - SN:1099 Object QA CAL-15.v9 Calibration procedure(s) Calibration Procedure for SAR Validation Sources below 700 MHz Calibration date: September 24, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 03-Apr-19 (No. 217-02893) SN: 103245 Apr-20 Reference 20 dB Attenuator SN: 5277 (20x) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 Reference Probe EX3DV4 SN: 3877 31-Dec-18 (No. EX3-3877_Dec18) Dec-19 DAE4 27-Jun-19 (No. DAE4-654_Jun19) SN: 654 Jun-20 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB41293874 06-Apr-16 (in house check Jun-18) In house check: Jun-20 Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-18) In house check: Jun-20 SN: 000110210 Power sensor E4412A 06-Apr-16 (in house check Jun-18) In house check: Jun-20 RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-18) In house check: Jun-20 Network Analyzer Agilent E8358A SN: US41080477 In house check: Oct-19 31-Mar-14 (in house check Oct-18) Name Function Calibrated by: Michael Weber Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: September 24, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D450V3-1099_Sep19

KST-FCS-SRS-Rev.0.4 Page: 44 / 51

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1099_Sep19 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

AST System configuration, as far as not given on page 1.			
DASY Version	DASY5	V52.10.2	
Extrapolation	Advanced Extrapolation		
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm	
Distance Dipole Center - TSL	15 mm	with Spacer	
Zoom Scan Resolution	dx, dy , $dz = 5 mm$		
Frequency	450 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.4 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.50 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.747 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.00 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.0 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.55 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.764 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.05 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1099_Sep19

Page 3 of 8

KST-FCS-SRS-Rev.0.4 Page: 46 / 51

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	60.0 Ω - 0.5 jΩ
Return Loss	- 20.8 dB

Antenna Parameters with Body TSL

Impedano	ce, transformed to feed point	56.8 Ω - 4.6 jΩ
Return Lo	OSS	- 22.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.353 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D450V3-1099_Sep19

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1099

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 44.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

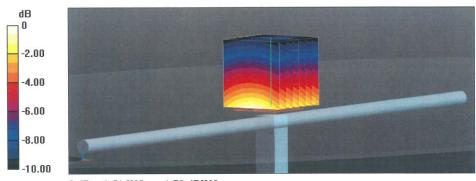
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN3877; ConvF(10.5, 10.5, 10.5) @ 450 MHz; Calibrated: 31.12.2018

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn654; Calibrated: 27.06.2019


Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

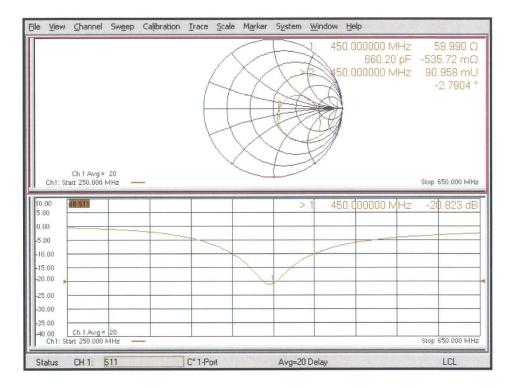
DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 38.46 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.747 W/kgMaximum value of SAR (measured) = 1.51 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg


Certificate No: D450V3-1099_Sep19

Page 5 of 8

KST-FCS-SRS-Rev.0.4 Page: 48 / 51

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1099_Sep19

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1099

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 56$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

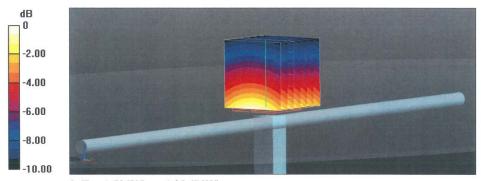
DASY52 Configuration:

• Probe: EX3DV4 - SN3877; ConvF(10.7, 10.7, 10.7) @ 450 MHz; Calibrated: 31.12.2018

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 27.06.2019

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003


DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

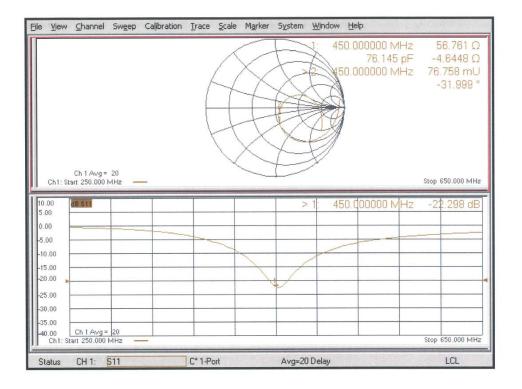
Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 41.66 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.764 W/kg

Maximum value of SAR (measured) = 1.53 W/kg

0 dB = 1.53 W/kg = 1.85 dBW/kg


Certificate No: D450V3-1099_Sep19

Page 7 of 8

KST-FCS-SRS-Rev.0.4 Page: 50 / 51

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1099_Sep19

Page 8 of 8