

FCC PART 15 SUBPART CTEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24061302001 FCC ID: 2AG7C-GO1T2-C6

Compiled by

(position+printed name+signature)..: File administrators Jinghua

Xiao

Supervised by

(position+printed name+signature)..: Test Engineer Lushan Kong

Approved by

(position+printed name+signature)..: Manager Eric Wang

Date of issue...... Jun.21, 2024

Representative Laboratory Name.: Shenzhen CTA Testing Technology Co., Ltd.

Community, Fuhai Street, Bao, an District, Shenzhen, China

ushan Kong

Applicant's name...... Hangzhou Meari Technology Co., Ltd.

Binjiang District, Hangzhou, Zhejiang, China

Test specification....::

Standard..... FCC Part 15.247

TRF Originator...... Shenzhen CTA Testing Technology Co., Ltd.

Master TRF...... Dated 2014-12

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: IP CAMERA

Trade Mark...... N/A

Manufacturer...... Hangzhou Meari Technology Co., Ltd.

Model/Type reference.....: W2

GO1,GO1T,GO1F,GO1 Kit1,GO1 Kit2,Snap 8S,Snap 8T,Snap

8F, Snap 18S, Snap 18T, Snap 18F

Modulation Type.....: GFSK

Operation Frequency.....: From 2402MHz to 2480MHz

Hardware Version SNAP18T-T22MB-MIS5-REV1 0

Software Version.....: N/A

Rating...... DC 3.6V&3.7V by Battery Recharged by DC 5.0V

Result..... PASS

Report No.: CTA24061302001 Page 2 of 44

TEST REPORT

Test Report No. :	CTA24061302001	Jun.21, 2024
	01A24001002001	Date of issue

Equipment under Test : IP CAMERA

Model /Type : W2

Listed model W2T,W2F,W2 Kit1,W2 Kit2,W1,W1T,W1F,W1 Kit1,W1 Kit2,

GO1,GO1T,GO1F,GO1 Kit1,GO1 Kit2,Snap 8S,Snap 8T,Snap

8F,Snap 18S,Snap 18T,Snap 18F

Applicant : Hangzhou Meari Technology Co., Ltd.

Address Room 604-605, Building 1, No.768 Jianghong Road, Changhe Street,

Binjiang District, Hangzhou, Zhejiang, China

Manufacturer : Hangzhou Meari Technology Co., Ltd.

Address 4F of Building 1 and 2-4F of Building 2, No. 91 Chutian Road, Xixing

Street, Binjiang District, Hangzhou, Zhejiang, China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. EUT operation mode	6
2.6. Block Diagram of Test Setup	7
2.7. EUT Exercise Software	7
2.8. Special Accessories	7
2.9. External I/O Cable	7
2.10. Related Submittal(s) / Grant (s)	7
2.11. Modifications	7
3. TEST ENVIRONMENT	8
3.1. Address of the test laboratory	8
3.2. Test Facility	
3.3. Environmental conditions	
3.4. Statement of the measurement uncertainty	8
3.5. Test Description	9
3.6. Equipments Used during the Test	10
4. TEST CONDITIONS AND RESULTS	11
4.1. AC Power Conducted Emission	11
4.2. Radiated Emission	14
4.3. On Time and Duty Cycle	25
4.4. Maximum Peak Output Power	26
4.5. Power Spectral Density	27
4.6. 99% and 6dB Bandwidth	28
4.7. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	29
4.8. Antenna Requirement	31
5. TEST SETUP PHOTOS OF THE EUT	32
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	35

Report No.: CTA24061302001 Page 4 of 44

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB 558074 D01 DTS Meas Guidance v05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

Report No.: CTA24061302001 Page 5 of 44

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	May.30, 2024
Testing commenced on	:	May.30, 2024
Testing concluded on	:	Jun.12, 2024

2.2. Product Description

Product Name	IP CAMERA
Trade Mark	N/A
Model/Type reference	W2
Listed Models	W2T,W2F,W2 Kit1,W2 Kit2,W1,W1T,W1F,W1 Kit1,W1 Kit2, GO1,GO1T,GO1F,GO1 Kit1,GO1 Kit2,Snap 8S,Snap 8T,Snap 8F,Snap 18S,Snap 18T,Snap 18F
Model Declaration	PCB board, structure and internal of these model(s) are the same, Only the model name different, So no additional models were tested.
Power supply:	DC 3.6V&3.7V by Battery Recharged by DC 5.0V
Sample ID	CTA24061302001-1#& CTA24061302001-2#
Bluetooth	
Operation frequency	2402-2480MHz
Channel Number	40 channels for Bluetooth (DTS)
Channel Spacing	2MHz for Bluetooth (DTS)
Modulation Type	GFSK for Bluetooth (DTS)
WIFI(2.4G Band)	
Frequency Range	2412MHz ~ 2462MHz
Channel Spacing	5MHz
Channel Number	11 Channel for 20MHz bandwidth(2412~2462MHz) 7 Channel for 40MHz bandwidth(2422~2452MHz)
Modulation Type	802.11b: DSSS; 802.11g/n: OFDM; 802.11ax: OFDMA
Antenna Description	Metal Antenna, 2.93dBi(Max.) for 2.4G Band

Report No.: CTA24061302001 Page 6 of 44

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V/ 50 Hz	0	120V/60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)	

DC 5.0V

2.4. Short description of the Equipment under Test (EUT)

This is a IP CAMERA.

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Mode of Operations	Frequency Range (MHz)	Data Rate (Mbps)		
	2402	1		
(BLE)	2440	1		
	2480	1		
For Conducted Emission				
Test Mode		TX Mode		
For Radiated Emission				
Test Mode		TX Mode		

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
			1
			-
18	2438	38	2478
19	2440	39	2480

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case(AC 120V/60Hz).

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be BT LE mode (MCH).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be BT LE mode(MCH).

Report No.: CTA24061302001 Page 7 of 44

2.6. Block Diagram of Test Setup

2.7. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (IPOP order) provided by application.

2.8. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN TIANYIN ELECTRONICS CO.,LTD.	Adapter	TPA-46B050100UU		IC
Zhuzhou Dachuan Electronic Technology Co.,Ltd.	Adapter	DCT07W050100US- C1		IC

2.9. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	Non-Shielded, 1.0m

2.10. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC**: **2AG7C-GO1T2-C6** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CTA24061302001 Page 8 of 44

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao,, an District, Shenzhen, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
On Time and Duty Cycle	1~18GHz	0.78 dB	(1)
Maximum Conducted Output Power	1~18GHz	0.57 dB	(1)
Power Spectral Density	1~18GHz	0.66 dB	(1)
99% and 6 dB Bandwidth	1~18GHz	1.20 dB	(1)
Conducted Spurious Emissions and Band Edges Test	1~18GHz	1.60 dB	(1)
Conducted at Restricted Band	1~18GHz	1.60 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 44 Report No.: CTA24061302001

3.5. Test Description

Applied Standard: FCC Part 15 Subpart C							
FCC Rules	Description of Test	Test Sample	Result	Remark			
1	On Time and Duty Cycle	CTA24061302001-1#	Compliant	Appendix A			
§15.247(b)	Maximum Conducted Output Power	CTA24061302001-1#	Compliant	Appendix A			
§15.247(e)	Power Spectral Density	CTA24061302001-1#	Compliant	Appendix A			
§15.247(a)(2)	6dB Bandwidth	CTA24061302001-1#	Compliant	Appendix A			
§2.1047	99% Occupied Bandwidth CTA24061302001-1# Compliant		Compliant	Appendix A			
§15.209, §15.247(d)	Conducted Spurious Emissions and Band Edges Test CTA24061302001-		Compliant	Appendix A			
§15.209, §15.247(d)	Radiated Spurious Emissions	CTA24061302001-1# CTA24061302001-2#	Compliant	Note 1			
§15.205	Emissions at Restricted Band	CTA24061302001-1#	Compliant	Appendix A			
§15.207(a)	AC Conducted Emissions	CTA24061302001-2#	Compliant	Note 1			
§15.203 §15.247(c)	Antenna Requirements	CTA24061302001-1#	Compliant	Note 1			
§15.247(i) §2.1091	RF Exposure		Compliant	Note 2			

Remark:

- The measurement uncertainty is not included in the test result.
- 3.
- NA = Not Applicable; NP = Not Performed

 Note 1 Test results inside test report;

 Note 2 Test results in other test report (MPE Report). 4.
- We tested all test mode and recorded worst case in report 5.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2023/07/13	2024/07/12
LISN	R&S	ESH2-Z5	893606/008	2023/07/13	2024/07/12
EMI Test Receiver	R&S	ESPI3	101841-cd	2023/07/14	2024/07/13
EMI Test Receiver	R&S	ESCI7	101102	2023/07/13	2024/07/12
Spectrum Analyzer	Agilent	N9020A	MY48010425	2023/08/28	2024/08/27
Spectrum Analyzer	R&S	FSV40	100019	2023/07/13	2024/07/12
Vector Signal generator	Agilent	N5181A	MY49060502	2023/07/13	2024/07/12
Signal generator	Agilent	N5182A	3610AO1069	2023/07/13	2024/07/12
Climate Chamber	ESPEC	EL-10KA	A20120523	2023/07/13	2024/07/12
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2023/07/13	2024/07/12
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2023/07/13	2024/07/12
Bilog Antenna	Schwarzbeck	VULB9163	000976	2023/07/13	2024/07/12
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2023/07/13	2024/07/12
Amplifier	Schwarzbeck	BBV 9743	#202	2023/07/14	2024/07/13
Amplifier	Schwarzbeck	BBV9179	9719-025	2023/07/14	2024/07/13
Amplifier	EMCI	EMC051845B	980355	2023/07/14	2024/07/13
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2023/07/13	2024/07/12
High-Pass Filter	HX Microwave CO., LTD	HXLBQ-DZA81	N/A	2023/08/30	2024/08/29
High-Pass Filter	HX Microwave CO., LTD	HXLBQ-DZA200	N/A	2023/08/30	2024/08/29
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2023/07/13	2024/07/12
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2023/07/13	2024/07/12
Data acquisition card	Agilent	U2531A	TW53323507	2023/07/13	2024/07/12
Power Sensor	Agilent	U2021XA	MY5365004	2023/07/13	2024/07/12
Test Control Unit	Tonscend	JS0806-1	178060067	2023/07/13	2024/07/12
Automated filter bank	Tonscend	JS0806-F	19F8060177	2023/07/13	2024/07/12
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	1	1
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	1	1
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	1	1
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	1	1
Note: 1 The Cal Inter	1				

Note: 1. The Cal.Interval was one year.

Report No.: CTA24061302001 Page 11 of 44

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received DC 5.0V power, the adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to §15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)			
r requericy range (initiz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

Report No.: CTA24061302001 Page 12 of 44

TEST RESULTS

Remark: We measured Conducted Emission at GFSK mode from 150 KHz to 30MHz in AC120V and the worst case was recorded.

Temperature	25 ℃	Humidity	60%
Test Engineer	Lushan Kong	Configurations	ВТ

		123		10.25
Te	st	G	ra	ph

Fina	Final Data List											
NO.	Frequency	QP Reading	AVG.	Factor	QP Result	AVG. Result	QP Limit	AVG.	QP Margin	AVG.	Line	Remark
1	0.222	31.96	16.85	10.14	42.10	26.99	62.74	52.74	20.64	25.75	N	PASS
2	0.4875	36.35	30.28	10.25	46.60	40.53	56.21	46.21	9.61	5.68	N	PASS
3	0.9735	32.15	24.80	10.20	42.35	35.00	56.00	46.00	13.65	11.00	N	PASS
4	1.59	35.34	22.64	10.24	45.58	32.88	56.00	46.00	10.42	13.12	N	PASS
5	2.0445	29.10	16.09	10.27	39.37	26.36	56.00	46.00	16.63	19.64	N	PASS
6	3.9435	28.63	13.43	10.37	39.00	23.80	56.00	46.00	17.00	22.20	N	PASS

Note:1. Result (dBμV) = Reading (dBμV) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Power supply:	AC 120V/60Hz	Polarization	N
Test Graph			
	100	(01)	
	90		
	70		
M	60		
Level[dBjtv]	50	and h	
	30	The state of the s	
	20	THE PARTY OF THE P	Marie Marie Control
	10 0 150k 1M		
	150k 1M	10M Frequency(Hz)	30M
	PK Limit — QP Limit — AV Limit QP Detector		

Final Data List												
NO.	Frequency	QP Reading	AVG.	Factor	QP Result	AVG. Result	QP Limit	AVG.	QP Margin	AVG.	Line	Remark
1	0.2625	31.08	18.13	10.12	41.20	28.25	61.35	51.35	20.15	23.10	N	PASS
2	0.4875	36.21	31.67	10.25	46.46	41.92	56.21	46.21	9.75	4.29	N	PASS
3	1.05	31.20	23.14	10.20	41.40	33.34	56.00	46.00	14.60	12.66	N	PASS
4	1.572	36.39	23.99	10.24	46.63	34.23	56.00	46.00	9.37	11.77	N	PASS
5	2.22	28.10	16.80	10.29	38.39	27.09	56.00	46.00	17.61	18.91	N	PASS
6	3.597	26.09	15.38	10.36	36.45	25.74	56.00	46.00	19.55	20.26	N	PASS

Note:1. Result (dBµV) = Reading (dBµV) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24061302001 Page 15 of 44

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 30MHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test F	requency	Test Receiver/Spectrum Setting	Detector
range			
9KHz-150K	(Hz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30	MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1G	Hz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
		Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz		Sweep time=Auto	Peak
		Average Value: RBW=1MHz/VBW=10Hz,	reak
		Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

Report No.: CTA24061302001 Page 16 of 44

RADIATION LIMIT

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the followingtable. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUTin three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at GFSK mode from 9KHz to 25GHz in AC120V and the worst case was recorded.

Temperature	25℃	Humidity	55%
Test Engineer	Lushan Kong	Configurations	BT

For 9 KHz~30MHz

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Report No.: CTA24061302001 Page 17 of 44

For 30MHz to 1000MHz

Adapter: TPA-46B050100UU

Sus	Suspected List													
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark			
1	46.49	29.02	-3.06	25.96	40.00	14.04	100	123	PK	Horizonta	PASS			
2	57.16	29.04	-3.54	25.50	40.00	14.50	100	123	PK	Horizonta	PASS			
3	106.63	28.16	-3.57	24.59	43.50	18.91	100	136	PK	Horizonta	PASS			
4	182.775	31.56	-6.09	25.47	43.50	18.03	100	294	PK	Horizonta	PASS			
5	810.85	27.66	7.54	35.20	46.00	10.80	100	209	PK	Horizonta	PASS			
6	911.73	27.61	8.29	35.90	46.00	10.10	100	205	PK	Horizonta	PASS			

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Sus	pected Li	st									
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Detector	Polarity	Remark
1	41.155	37.62	-4.05	33.57	40.00	6.43	100	150	PK	Vertical	PASS
2	44.065	37.34	-3.41	33.93	40.00	6.07	100	281	PK	Vertical	PASS
3	94.02	31.40	-5.48	25.92	43.50	17.58	100	111	PK	Vertical	PASS
4	183.745	32.67	-5.94	26.73	43.50	16.77	100	360	PK	Vertical	PASS
5	289.475	30.96	-2.17	28.79	46.00	17.21	100	160	PK	Vertical	PASS
6	793.875	27.30	7.10	34.40	46.00	11.60	100	238	PK	Vertical	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: CTA24061302001 Page 18 of 44

Adapter: DCT07W050100US-C1

Sus	pected Lis	st									
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Detector	Polarity	Remark
1	45.035	29.35	-3.32	26.03	40.00	13.97	100	354	PK	Horizonta	PASS
2	100.325	28.68	-4.58	24.10	43.50	19.40	100	229	PK	Horizonta	PASS
3	187.625	32.96	-5.57	27.39	43.50	16.11	100	105	PK	Horizonta	PASS
4	310.815	29.18	-1.94	27.24	46.00	18.76	100	91	PK	Horizonta	PASS
5	438.37	27.96	1.64	29.60	46.00	16.40	100	91	PK	Horizonta	PASS
6	814.73	27.90	7.31	35.21	46.00	10.79	100	121	PK	Horizonta	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

QP Detector

Sus	pected Lis	st									
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	42.125	35.57	-3.85	31.72	40.00	8.28	100	52	PK	Vertical	PASS
2	61.04	31.97	-4.87	27.10	40.00	12.90	100	190	PK	Vertical	PASS
3	97.415	30.80	-4.93	25.87	43.50	17.63	100	29	PK	Vertical	PASS
4	143.005	32.41	-7.98	24.43	43.50	19.07	100	259	PK	Vertical	PASS
5	189.08	32.12	-5.38	26.74	43.50	16.76	100	48	PK	Vertical	PASS
6	814.73	27.32	7.31	34.63	46.00	11.37	100	236	PK	Vertical	PASS

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

For Greater than 1GHz

ected Li	ist		:						2	
Frequenc y [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
8697.05	30.99	10.01	41.00	74	33.00	150	137	PK	Horizonta	PASS
11263.03	32.43	10.18	38.07	74	35.93	150	106	PK	Horizonta	PASS
15012.07	87.91	-0.55	38.81	74	35.19	150	91	PK	Horizonta	PASS
19348.00	82.16	-0.67	36.83	74	37.17	150	125	PK	Horizonta	PASS
21827.00	42.33	2.46	38.72	74	35.28	150	271	PK	Horizonta	PASS
22786.03	29.68	2.76	29.84	74	44.16	150	48	PK	Horizonta	PASS
8727.97	65.32	2.56	29.98	54	24.02	150	176	AV	Horizonta	PASS
11282.92	51.87	2.93	28.38	54	25.62	150	262	AV	Horizonta	PASS
15077.94	43.26	13.97	28.00	54	26.00	150	245	AV	Horizonta	PASS
19342.96	32.74	14.07	29.95	54	24.05	150	213	AV	Horizonta	PASS
21709.93	56.12	19.10	28.12	54	25.88	150	101	AV	Horizonta	PASS
22745.05	47.53	19.34	29.14	54	24.86	150	248	AV	Horizonta	PASS
	Frequenc y [MHz] 8697.05 11263.03 15012.07 19348.00 21827.00 22786.03 8727.97 11282.92 15077.94 19342.96 21709.93	y [MHz] [dBµV/m] 8697.05 30.99 11263.03 32.43 15012.07 87.91 19348.00 82.16 21827.00 42.33 22786.03 29.68 8727.97 65.32 11282.92 51.87 15077.94 43.26 19342.96 32.74 21709.93 56.12	Frequenc y [MHz] Reading [dBμV/m] Factor [dB] 8697.05 30.99 10.01 11263.03 32.43 10.18 15012.07 87.91 -0.55 19348.00 82.16 -0.67 21827.00 42.33 2.46 22786.03 29.68 2.76 8727.97 65.32 2.56 11282.92 51.87 2.93 15077.94 43.26 13.97 19342.96 32.74 14.07 21709.93 56.12 19.10	Frequenc y (MHz) Reading (Bμν/m) Factor (dB) Result (dBμν/m) 8697.05 30.99 10.01 41.00 11263.03 32.43 10.18 38.07 15012.07 87.91 -0.55 38.81 19348.00 82.16 -0.67 36.83 21827.00 42.33 2.46 38.72 22786.03 29.68 2.76 29.84 8727.97 65.32 2.56 29.98 11282.92 51.87 2.93 28.38 15077.94 43.26 13.97 28.00 19342.96 32.74 14.07 29.95 21709.93 56.12 19.10 28.12	Frequenc y [MHz] Reading [dBμV/m] Factor [dB] Result [dBμV/m] Limit [dBμV/m] 8697.05 30.99 10.01 41.00 74 11263.03 32.43 10.18 38.07 74 15012.07 87.91 -0.55 38.81 74 19348.00 82.16 -0.67 36.83 74 21827.00 42.33 2.46 38.72 74 22786.03 29.68 2.76 29.84 74 8727.97 65.32 2.56 29.98 54 11282.92 51.87 2.93 28.38 54 15077.94 43.26 13.97 28.00 54 19342.96 32.74 14.07 29.95 54 21709.93 56.12 19.10 28.12 54	Frequenc y [MHz] Reading [dBμV/m] Factor [dB] Result [dBμV/m] Limit [dBμV/m] Margin [dB] 8697.05 30.99 10.01 41.00 74 33.00 11263.03 32.43 10.18 38.07 74 35.93 15012.07 87.91 -0.55 38.81 74 35.19 19348.00 82.16 -0.67 36.83 74 37.17 21827.00 42.33 2.46 38.72 74 35.28 22786.03 29.68 2.76 29.84 74 44.16 8727.97 65.32 2.56 29.98 54 24.02 11282.92 51.87 2.93 28.38 54 25.62 15077.94 43.26 13.97 28.00 54 26.00 19342.96 32.74 14.07 29.95 54 24.05 21709.93 56.12 19.10 28.12 54 25.88	Frequenc y [MHz] Reading [dBµ√/m] Factor [dB] Result [dBµ√/m] Limit [dBµ√/m] Margin [dB] Height [cm] 8697.05 30.99 10.01 41.00 74 33.00 150 11263.03 32.43 10.18 38.07 74 35.93 150 15012.07 87.91 -0.55 38.81 74 35.19 150 19348.00 82.16 -0.67 36.83 74 37.17 150 21827.00 42.33 2.46 38.72 74 35.28 150 22786.03 29.68 2.76 29.84 74 44.16 150 8727.97 65.32 2.56 29.98 54 24.02 150 11282.92 51.87 2.93 28.38 54 25.62 150 15077.94 43.26 13.97 28.00 54 26.00 150 19342.96 32.74 14.07 29.95 54 24.05 150 21709.93<	Frequenc y (MHz) Reading (dBμV/m) Factor (dB) Result (dBμV/m) Limit (dBμV/m) Margin (dB) Height (cm) Angle (1) 8697.05 30.99 10.01 41.00 74 33.00 150 137 11263.03 32.43 10.18 38.07 74 35.93 150 106 15012.07 87.91 -0.55 38.81 74 35.19 150 91 19348.00 82.16 -0.67 36.83 74 37.17 150 125 21827.00 42.33 2.46 38.72 74 35.28 150 271 22786.03 29.68 2.76 29.84 74 44.16 150 48 8727.97 65.32 2.56 29.98 54 24.02 150 176 11282.92 51.87 2.93 28.38 54 25.62 150 262 15077.94 43.26 13.97 28.00 54 26.00 150 245	Frequenc y [MHz] Reading (dBμ√/m) Factor [dB] Result [dBμ√/m] Limit [dBμ√/m] Margin [dB] Height [cm] Angle [cm] Detector 8697.05 30.99 10.01 41.00 74 33.00 150 137 PK 11263.03 32.43 10.18 38.07 74 35.93 150 106 PK 15012.07 87.91 -0.55 38.81 74 35.19 150 91 PK 19348.00 82.16 -0.67 36.83 74 37.17 150 125 PK 21827.00 42.33 2.46 38.72 74 35.28 150 271 PK 22786.03 29.68 2.76 29.84 74 44.16 150 48 PK 8727.97 65.32 2.56 29.98 54 24.02 150 176 AV 15077.94 43.26 13.97 28.00 54 26.00 150 245 AV	Frequenc y [MHz] Reading [dBμV/m] Factor [dB] Result [dBμV/m] Limit [dBμV/m] Height [cm] Angle [°] Detector Polarity 8697.05 30.99 10.01 41.00 74 33.00 150 137 PK Horizonta 11263.03 32.43 10.18 38.07 74 35.93 150 106 PK Horizonta 15012.07 87.91 -0.55 38.81 74 35.19 150 91 PK Horizonta 19348.00 82.16 -0.67 36.83 74 37.17 150 125 PK Horizonta 21827.00 42.33 2.46 38.72 74 35.28 150 271 PK Horizonta 22786.03 29.68 2.76 29.84 74 44.16 150 48 PK Horizonta 8727.97 65.32 2.56 29.98 54 24.02 150 176 AV Horizonta 15077.94

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB).

Susp	pected Lis	st									
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	8697.03	31.02	10.13	41.15	74	32.85	150	150	PK	Vertical	PASS
2	11262.90	27.81	10.00	37.81	74	36.19	150	109	PK	Vertical	PASS
3	15012.92	38.79	-0.41	38.38	74	35.62	150	126	PK	Vertical	PASS
4	19348.64	38.72	-0.72	37.99	74	36.01	150	115	PK	Vertical	PASS
5	21827.49	36.32	2.57	38.89	74	35.11	150	264	PK	Vertical	PASS
6	22783.59	35.85	2.54	38.39	74	35.61	150	23	PK	Vertical	PASS
7	8727.72	27.67	2.88	30.55	54	23.45	150	198	AV	Vertical	PASS
8	11281.15	26.03	2.87	28.90	54	25.10	150	242	AV	Vertical	PASS
9	15075.70	14.77	13.95	28.72	54	25.28	150	259	AV	Vertical	PASS
10	19339.29	14.25	13.94	28.19	54	25.81	150	219	AV	Vertical	PASS
11	21708.91	10.39	19.01	29.40	54	24.60	150	103	AV	Vertical	PASS
12	22745.03	9.83	19.10	28.92	54	25.08	150	287	AV	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Test Graph

PK Detector

NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	8706.91	29.44	9.97	39.41	74	34.59	150	137	PK	Horizonta	PASS
2	9976.90	29.34	10.33	39.67	74	34.33	150	107	PK	Horizonta	PASS
3	15010.04	39.08	-0.57	38.51	74	35.49	150	112	PK	Horizonta	PASS
4	19321.91	39.01	-0.73	38.28	74	35.72	150	92	PK	Horizonta	PASS
5	21743.89	37.07	2.73	39.80	74	34.20	150	250	PK	Horizonta	PASS
6	22741.75	35.32	2.74	38.06	74	35.94	150	38	PK	Horizonta	PASS
7	8705.35	27.29	2.84	30.13	54	23.87	150	156	AV	Horizonta	PASS
8	11254.13	26.00	2.62	28.62	54	25.38	150	273	AV	Horizonta	PASS
9	15090.78	14.67	14.24	28.91	54	25.09	150	237	AV	Horizonta	PASS
10	19347.86	14.17	13.64	27.81	54	26.19	150	181	AV	Horizonta	PASS
11	21732.10	10.24	19.08	29.32	54	24.68	150	128	AV	Horizonta	PASS
12	22767.10	9.40	19.40	28.81	54	25.19	150	282	AV	Horizonta	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	8707.06	29.53	10.05	39.58	74	34.42	150	131	PK	Vertical	PASS
2	11237.04	27.76	10.45	38.21	74	35.79	150	134	PK	Vertical	PASS
3	14957.44	39.42	-0.67	38.75	74	35.25	150	107	PK	Vertical	PASS
4	19348.59	38.63	-0.76	37.87	74	36.13	150	105	PK	Vertical	PASS
5	21716.35	37.25	2.47	39.71	74	34.29	150	264	PK	Vertical	PASS
6	22765.55	36.20	2.51	38.71	74	35.29	150	32	PK	Vertical	PASS
7	8681.00	27.10	2.77	29.87	54	24.13	150	179	AV	Vertical	PASS
8	11208.25	26.44	2.53	28.97	54	25.03	150	286	AV	Vertical	PASS
9	14960.09	14.81	14.19	29.00	54	25.00	150	215	AV	Vertical	PASS
10	19355.89	14.07	13.66	27.74	54	26.26	150	213	AV	Vertical	PASS
11	21783.39	10.38	19.43	29.81	54	24.19	150	101	AV	Vertical	PASS
12	22839.13	9.71	19.42	29.13	54	24.87	150	250	AV	Vertical	PASS

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

Sus	pected Lis	st					40				
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµ√/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	8721.91	29.82	9.98	39.79	74	34.21	150	140	PK	Horizonta	PASS
2	14139.96	29.31	10.26	39.57	74	34.43	150	139	PK	Horizonta	PASS
3	15051.66	38.73	-0.45	38.27	74	35.73	150	98	PK	Horizonta	PASS
4	19350.94	38.28	-0.69	37.59	74	36.41	150	130	PK	Horizonta	PASS
5	19893.47	37.53	2.85	40.38	74	33.62	150	300	PK	Horizonta	PASS
6	22829.33	36.81	2.50	39.32	74	34.68	150	58	PK	Horizonta	PASS
7	8631.31	27.58	2.95	30.53	54	23.47	150	161	AV	Horizonta	PASS
8	11292.15	25.50	2.96	28.46	54	25.54	150	283	AV	Horizonta	PASS
9	14975.67	15.13	14.03	29.17	54	24.83	150	226	AV	Horizonta	PASS
10	19353.96	14.20	14.04	28.24	54	25.76	150	206	AV	Horizonta	PASS
11	21744.80	10.87	19.43	30.31	54	23.69	150	120	AV	Horizonta	PASS
12	22732.06	10.22	19.22	29.44	54	24.56	150	251	AV	Horizonta	PASS

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB).

Report No.: CTA24061302001 Page 24 of 44

NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	6819.94	31.61	10.42	42.03	74	31.97	150	139	PK	Vertical	PASS
2	8691.94	28.97	10.11	39.07	74	34.93	150	111	PK	Vertical	PASS
3	15152.99	39.68	-0.67	39.01	74	34.99	150	119	PK	Vertical	PASS
4	19355.44	38.50	-0.34	38.16	74	35.84	150	129	PK	Vertical	PASS
5	21915.48	37.04	2.45	39.49	74	34.51	150	271	PK	Vertical	PASS
6	22802.30	36.14	2.80	38.94	74	35.06	150	43	PK	Vertical	PASS
7	8705.45	27.08	2.74	29.82	54	24.18	150	176	AV	Vertical	PASS
8	11296.29	25.63	2.93	28.56	54	25.44	150	262	AV	Vertical	PASS
9	16428.53	15.36	14.26	29.62	54	24.38	150	242	AV	Vertical	PASS
10	19346.45	14.43	13.60	28.04	54	25.96	150	210	AV	Vertical	PASS
11	21793.13	11.07	19.19	30.26	54	23.74	150	103	AV	Vertical	PASS
12	22764.74	9.98	19.20	29.18	54	24.82	150	288	AV	Vertical	PASS

Note: 1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor(dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
 Margin value = Limit value- Emission level.
- 4. The other emission levels were very low against the limit.
- **5.** Measured used 2.4GHz band filter to aviod power amplifer overload.

NOTE: All the modes have been tested and recorded worst mode in the report (Adapter: TPA-46B050100UU).

Report No.: CTA24061302001 Page 25 of 44

4.3. On Time and Duty Cycle

LIMIT

None; for reporting purpose only.

TEST PROCEDURE

- 1. Set the center frequency of the spectrum analyzer to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.

TEST CONFIGURATION

TEST RESULTS

For reporting purpose only.

Please refer to Appendix A.1.

Report No.: CTA24061302001 Page 26 of 44

4.4. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 15.247Measurement Guidance v05r02 Section 8.3.1 Maximum peak conducted output power, 8.3.1.3 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix A.4.

Report No.: CTA24061302001 Page 27 of 44

4.5. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

- 1.Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2.Set the RBW =3 kHz.
- 3.Set the VBW =10 KHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5.Detector = peak.
- 6.Sweep time = auto couple.
- 7.Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9.Use the peak marker function to determine the maximum power level.
- 10.If measured value exceeds limit, reduce RBW(no less than 3 kHz)and repeat.
- 11. The resulting peak PSD level must be 8 dBm.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix A.5.

Report No.: CTA24061302001 Page 28 of 44

4.6. 99% and 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB 558074 D01 DTS Meas Guidance v05r02 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

For reporting purpose only.

Please refer to Appendix A.2.

Please refer to Appendix A.3.

Report No.: CTA24061302001 Page 29 of 44

4.7. Conducted Spurious Emissions and Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under paragraph (b)(3), the attenuation required shall be 30 dB instead of 20dB. Attenuation below the general field strength limits specified in §15.209(a) is not required.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2.Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360 $^{\circ}$ C to acquire the highest emissions from EUT.
- 3.And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4.Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Report No.: CTA24061302001 Page 30 of 44

TEST RESULTS

4.6.1 For Conducted at Restricted Band Measurement

For reporting purpose only.

Please refer to Appendix A.8.

4.6.2 For Conducted Bandedge Measurement

For reporting purpose only.

Please refer to Appendix A.6.

4.6.3 For Conducted Spurious Emissions Measurement

For reporting purpose only.

Please refer to Appendix A.7.

Report No.: CTA24061302001 Page 31 of 44

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is Metal Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 2.93dBi.

Reference to the Internal photos.

5. TEST SETUP PHOTOS OF THE EUT

Adapter: TPA-46B050100UU

Photo of Radiated Emissions Measurement

Fig. 2

Photo of Conducted Emission Measurement

Fig. 3

Adapter:DCT07W050100US-C1

Fig. 1

Fig. 2

Fig. 3

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Fig. 1

Fig. 2

Fig. 4

Report No.: CTA24061302001 Page 37 of 44

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 12

Report No.: CTA24061302001 Page 41 of 44

Fig. 14

Report No.: CTA24061302001 Page 42 of 44

Fig. 16

Report No.: CTA24061302001 Page 43 of 44

Fig. 17

Fig. 18

Report No.: CTA24061302001 Page 44 of 44

Fig.19

.....End of Report.....