

Report No. : FR921201-05A

FCC RADIO TEST REPORT

FCC ID	: A4RG1008
Equipment	: Wireless Earphone
Model Name	: G1008
Applicant	: Google LLC 1600 Amphitheatre Parkway, Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Mar. 04, 2019 and testing was started from Aug. 16, 2019 and completed on Dec. 10, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	. 3
Sur	nmary	of Test Result	.4
1	Gene	ral Description	. 5
	1.1	Product Feature of Equipment Under Test	. 5
	1.2	Product Specification of Equipment Under Test	. 5
	1.3	Modification of EUT	. 5
	1.4	Testing Location	. 6
	1.5	Applicable Standards	. 6
2	Test	Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	. 7
	2.2	Test Mode	. 8
	2.3	Connection Diagram of Test System	. 9
	2.4	Support Unit used in test configuration and system	. 9
	2.5	EUT Operation Test Setup	. 9
	2.6	Measurement Results Explanation Example	. 9
3	Test	Result	10
	3.1	Number of Channel Measurement	10
	3.2	Hopping Channel Separation Measurement	12
	3.3	Dwell Time Measurement	18
	3.4	20dB and 99% Bandwidth Measurement	20
	3.5	Output Power Measurement	31
	3.6	Conducted Band Edges Measurement	32
	3.7	Conducted Spurious Emission Measurement	39
	3.8	Radiated Band Edges and Spurious Emission Measurement	49
	3.9	Antenna Requirements	53
4	List c	of Measuring Equipment	54
5	Unce	rtainty of Evaluation	55
Арр	pendix	A. Conducted Test Results	
Арр	pendix	B. Radiated Spurious Emission	

Appendix C. Radiated Spurious Emission Plots

Appendix D. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR921201-05A	01	Initial issue of report	Dec. 17, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth Reporting only		-
3.5	15.247(b)(1)	Peak Output Power Pass		-
3.6	15.247(d)	Conducted Band Edges Pass		-
3.7	15.247(d)	Conducted Spurious Emission Pass		-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 6.97 dB at 714.820 MHz
-	15.207	AC Conducted Emission Not Required		
3.9	15.203 & 15.247(b)	Antenna Requirement Pass		-

Remark: Not required means after assessing, test items are not necessary to carry out.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Yvonne Cheng

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	Wireless Earphone		
Model Name	G1008		
FCC ID	A4RG1008		
EUT supports Radios application	Bluetooth BR/EDR/LE		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer.

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
	Bluetooth BR(1Mbps) : 11.83 dBm (0.0152 W)		
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 11.78 dBm (0.0151 W)		
	Bluetooth EDR (3Mbps) : 11.76 dBm (0.0150 W)		
	Bluetooth BR(1Mbps) : 0.857MHz		
99% Occupied Bandwidth	Bluetooth EDR (2Mbps) : 1.140MHz		
	Bluetooth EDR (3Mbps) : 1.114MHz		
Antenna Type / Gain	PCB Antenna type with gain -3.13 dBi		
	Bluetooth BR (1Mbps) : GFSK		
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK		
	Bluetooth EDR (3Mbps) : 8-DPSK		

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications _aboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. TH05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	PORTON INTERNATIONAL INC. EMC & Wireless Communications aboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH12-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

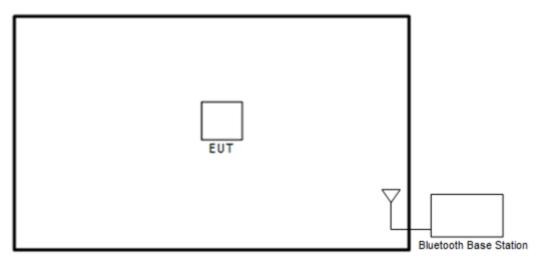
- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases						
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π /4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		Bluetooth BR 1Mbps GFSK				
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
		Mode 3: CH78_2480 MHz				
Remark: For	For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest					
RF	RF output power in the preliminary tests. The conducted spurious emissions and conducted					
ban	band edge measurement for other data rates were not worse than 1Mbps, and no other					
sign	significantly frequencies found in conducted spurious emission.					

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	n Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "CMD" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

EUT

Spectrum Analyzer

 TEL: 886-3-327-3456
 Page Number
 : 10 of 55


 FAX: 886-3-328-4978
 Issued Date
 : Dec. 17, 2019

 Report Template No.: BU5-FR15CBT Version 2.4
 Report Version
 : 01

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

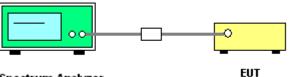
Number of Hopping Channel Plot on Channel 00 - 78

Date: 21.AUG.2019 11:41:13

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

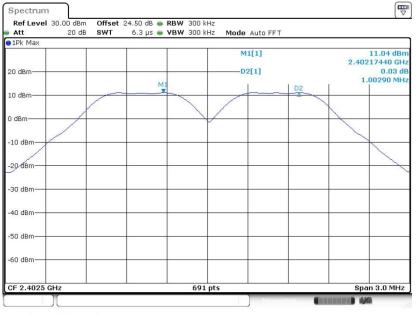
See list of measuring equipment of this test report.

3.2.3 Test Procedures

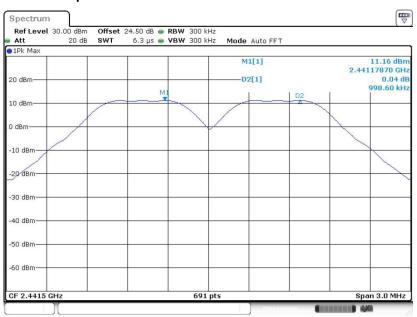
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

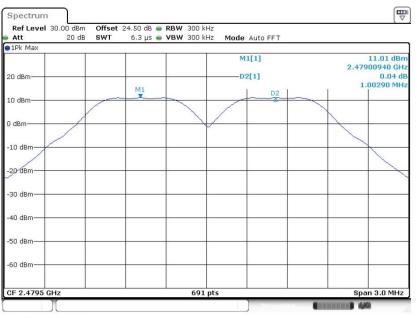
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

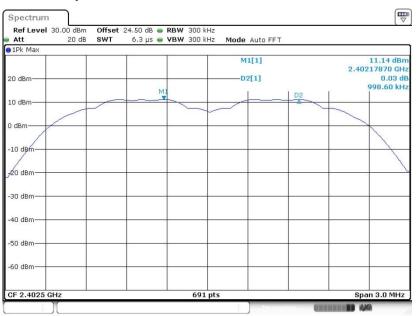

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 21.AUG.2019 11:35:17

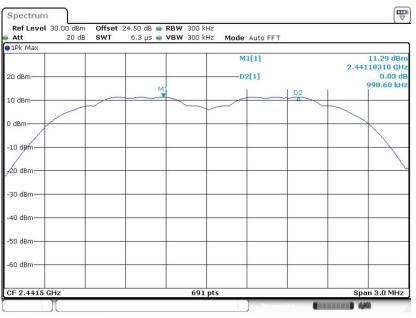
Channel Separation Plot on Channel 39 - 40

Date: 21.AUG.2019 11:43:34



Channel Separation Plot on Channel 77 - 78

Date: 21.AUG.2019 11:52:17


<2Mbps>

Channel Separation Plot on Channel 00 - 01

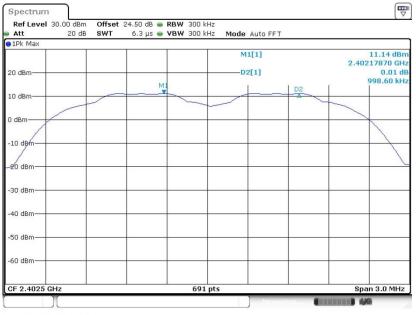
Date: 21.AUG.2019 13:51:36



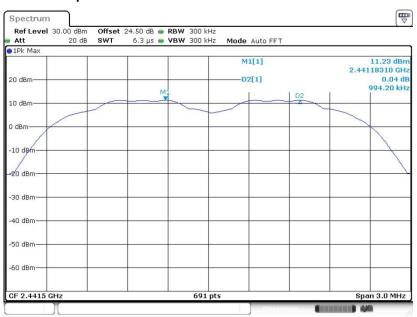
Channel Separation Plot on Channel 39 - 40

Date: 21.AUG.2019 13:43:14

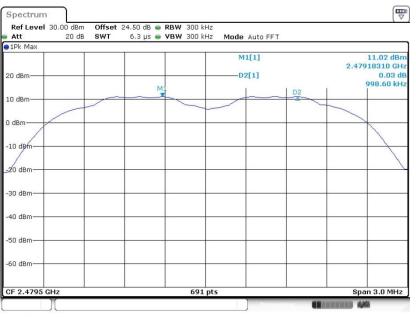
Channel Separation Plot on Channel 77 - 78



Date: 21.AUG.2019 11:57:45


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 21.AUG.2019 13:52:35

Channel Separation Plot on Channel 39 - 40

Date: 21.AUG.2019 14:02:32

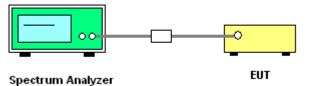
Channel Separation Plot on Channel 77 - 78

Date: 21.AUG.2019 14:08:50

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

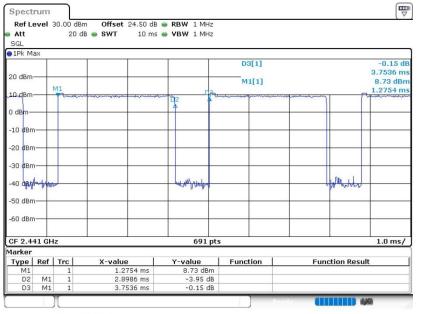
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 16.AUG.2019 13:45:36

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

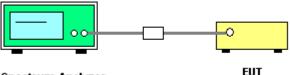
3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL : 886-3-327-3456	Page Number	: 19 of 55
FAX : 886-3-328-4978	Issued Date	: Dec. 17, 2019
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

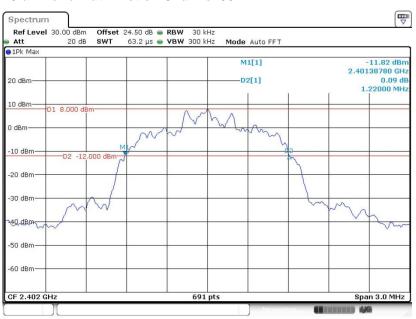
<1Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 21.AUG.2019 11:33:42

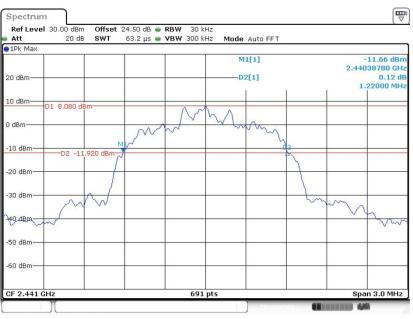
20 dB Bandwidth Plot on Channel 39

Date: 21.AUG.2019 14:13:03



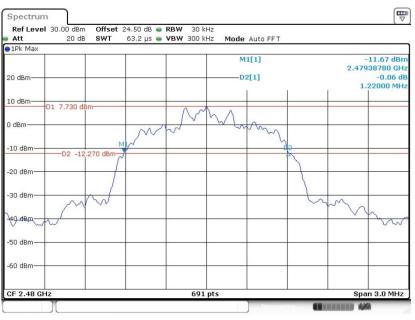
20 dB Bandwidth Plot on Channel 78

Date: 21.AUG.2019 14:15:04


<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 21.AUG.2019 13:44:50



20 dB Bandwidth Plot on Channel 39

Date: 21.AUG.2019 13:40:15

20 dB Bandwidth Plot on Channel 78

Date: 21.AUG.2019 11:59:34

<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 21.AUG.2019 13:54:02

20 dB Bandwidth Plot on Channel 39

Date: 21.AUG.2019 13:58:43

20 dB Bandwidth Plot on Channel 78

Date: 21.AUG.2019 14:05:01

TEL : 886-3-327-3456
FAX : 886-3-328-4978
Report Template No.: BU5-FR15CBT Version 2.4

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

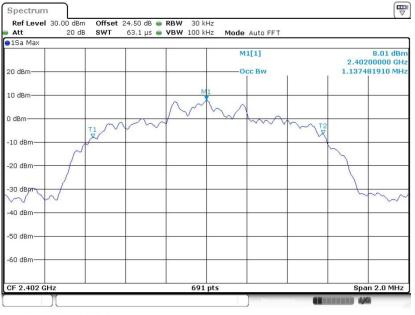
99% Occupied Bandwidth Plot on Channel 00

Date: 21.AUG.2019 11:37:16

TEL : 886-3-327-3456	Page Number	: 26 of 55
FAX : 886-3-328-4978	Issued Date	: Dec. 17, 2019
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

99% Occupied Bandwidth Plot on Channel 39

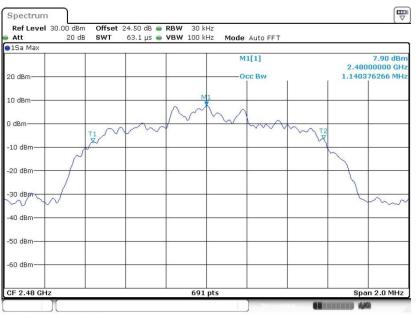
Date: 21.AUG.2019 11:45:48



Date: 21.AUG.2019 11:55:18

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

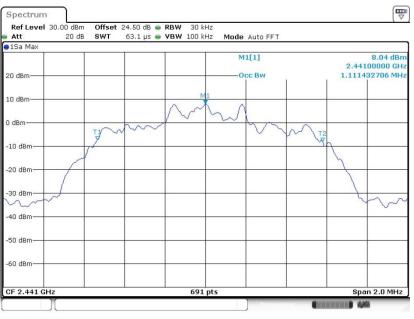

Date: 21.AUG.2019 13:45:47

99% Occupied Bandwidth Plot on Channel 39

Date: 21.AUG.2019 13:40:48

99% Occupied Bandwidth Plot on Channel 78

Date: 21.AUG.2019 13:37:26


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 21.AUG.2019 13:55:35

99% Occupied Bandwidth Plot on Channel 39

Date: 21.AUG.2019 13:59:25

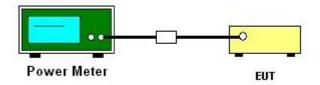
99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

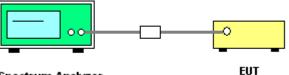
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

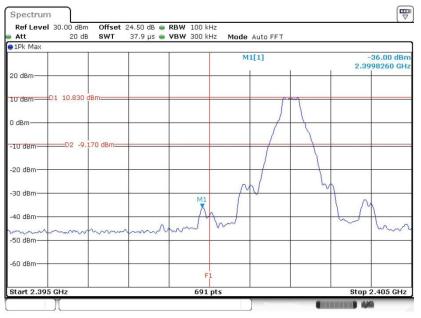

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

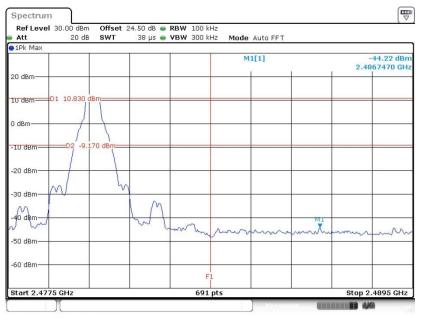
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

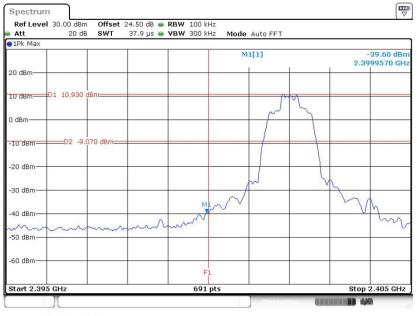
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

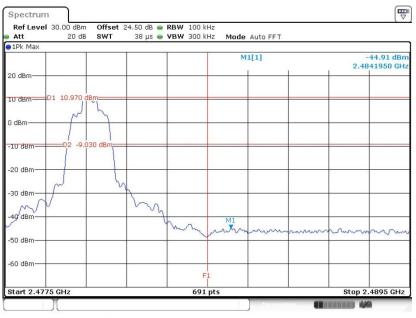
Low Band Edge Plot on Channel 00

Date: 21.AUG.2019 11:36:31

High Band Edge Plot on Channel 78



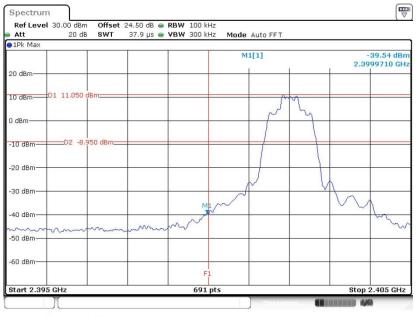
Date: 21.AUG.2019 11:54:34


<2Mbps>

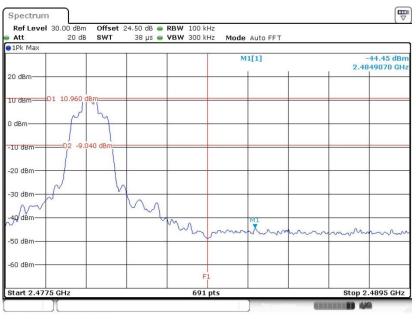
Low Band Edge Plot on Channel 00

Date: 21.AUG.2019 13:45:08

High Band Edge Plot on Channel 78



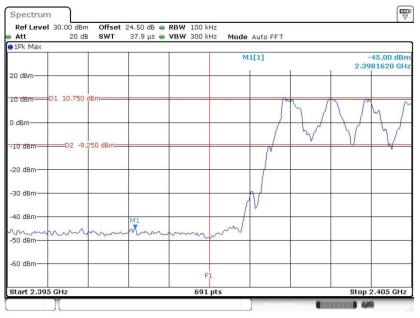
Date: 21.AUG.2019 13:36:52


<3Mbps>

Low Band Edge Plot on Channel 00

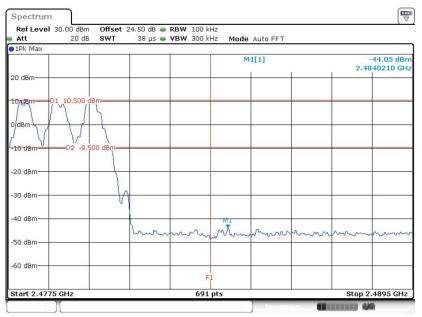
Date: 21.AUG.2019 13:54:59

High Band Edge Plot on Channel 78



Date: 21.AUG.2019 14:05:21

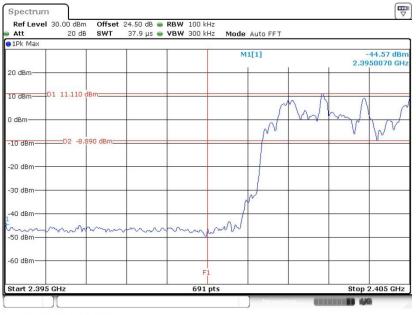
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 21.AUG.2019 11:31:02

Hopping Mode High Band Edge Plot



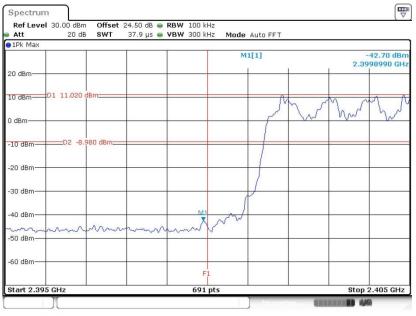
Date: 21.AUG.2019 11:41:30

<2Mbps>

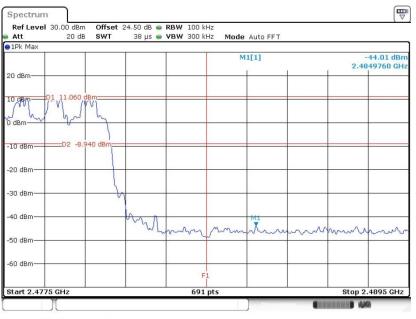
Hopping Mode Low Band Edge Plot

Date: 21.AUG.2019 13:47:52

Hopping Mode High Band Edge Plot



Date: 21.AUG.2019 13:49:22


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 21.AUG.2019 13:50:17

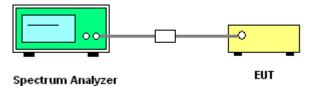
Hopping Mode High Band Edge Plot

Date: 21.AUG.2019 13:49:53

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

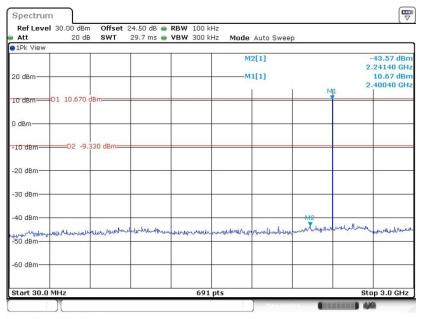

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

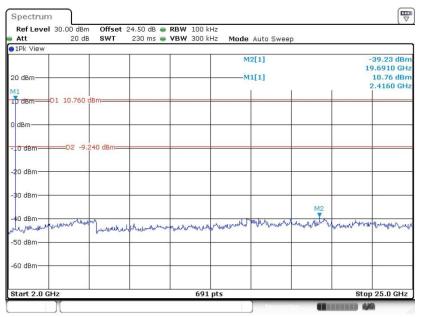
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup



TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 11:39:31

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 21.AUG.2019 11:40:00

Att	20 di	B SWT	29.7 ms 🖷	VBW 300 k	Hz Mode	Auto Swee	p		
1Pk View 20 dBm						2[1] 1[1]			-43.18 dBn 2.38750 GH 10.92 dBn 2.43910 GH
10 dBm	D1 10.920	dBm=====						M1	
D dBm									
-10 dBm	D2 -9.	.080 dBm==							
-20 dBm						-			
-30 dBm									
40 dBm							M		und .
50 dBm	hnunghnisher	Acaberrana	antrastindutedaria	monthement	Innhanaa	ennahnerholdenin	population and included	mund	arhuthicantighrow
60 dBm									
Start 30.0	MUS			601	pts				Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 11:50:41

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att 1Pk View	20 dB	SWT	230 ms 🖷	VBW 300 k	Hz Mode	Auto Sweep	0		
20 dBm						2[1] 1[1]		1	-39.07 dBn 8.0270 GH 10.59 dBn 2.4490 GH
	D1 10.590 (dBm							
) dBm——									
10 dBm	D2 -9,4	410 dBm=							1
20 dBm									
30 dBm									
	wellhhule	utherspectrum	moleculation	manufathre	grupowind	Munumul		y manunal ve	owtwwww
50 dBm									
60 dBm									
Start 2.0 G	Hz			691	nts			Stor	25.0 GHz

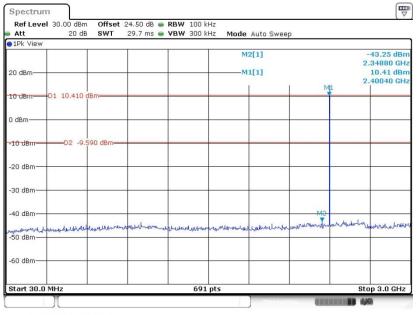
Date: 21.AUG.2019 11:51:09

10 dBm D1 10.720 dBm M1 0 dBm 0 dBm -10 dBm D2 -9.280 dBm -20 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm	Att	20 dB	SWT	29.7 ms 🥌	VBW 300 k	HZ MODE	Auto Swee	p		
10 dBm 01 10.720 dBm M1 0 dBm 0 0 0 -10 dBm -02 -9.280 dBm 0 -20 dBm -0 0 -30 dBm -0 0 -40 dBm -0 0 -30 dBm -0 0	20 dBm-									2.25860 G
-10 dBm20 dBm	10 dBm	:D1 10.720 d	IBm						M1	
-20 dBm	0 dBm									
-30 dBm	-10 dBm	D2 -9.2	80 dBm=							
40 dBm	-20 dBm									
alloren war have been allow the second war and the second and the	-30 dBm									
-50 dBm								M2		
-60 dBm	-50 dBm	Normalith	ruhunartunader	Haddhalloundbank	op Arabe Monenter	econolite watered	un number haven b	horizontalow	nellallitera	marthaliteration
	-60 dBm									
	-40 dBm	Hwandorsha	Wundenado	hudden Manar Maral	y Insternation	kanyth wahred	la minika Marand	1012	metrolitano	d-and yorkala

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 14:19:11

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	20 dB	SWT	230 ms 🖷	VBW 300	kHz Mode	Auto Swe	өр		
1Pk View									
					M	2[1]			-38.48 dBn L5.7970 GH
20 dBm					M	1[1]			10.29 dBr
M1						l.	ĩ	ř	2.4830 GH
10 dBm D1	10.290 dBm								
dBm									
10 dBm-	-D2 -9,710	dBm-							
	02 -5.710	abiii							
20 dBm	-							-	-
30 dBm									
					M	2			
40 dBm	mobilition	Abutur	hearth	Malphultuno	munment	multiller the	Amurter	Mummen	munuman
50 dBm			1 - 1						
60 dBm								-	
Start 2.0 GHz				691	lpts			Sto	p 25.0 GHz

Date: 21.AUG.2019 14:19:39

<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 13:46:36

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

1Pk View						
20 dBm				M2[1] M1[1]		-38.90 dBn 15.6300 GH 10.15 dBn 2.4160 GH
M1 19 dBmD1	10.150 dBm					2.4160 GH
0 dBm						
- <u>10 d8m</u>	-D2 -9,850 dBm-					
-20 dBm						
-30 dBm				Ma		
-50 dBm	within University	wonterretherner	monographick	will the worker	ulrian resultation	water
-60 dBm						

Date: 21.AUG.2019 13:47:06

1Pk View									
20 dBm						2[1] 1[1]		1000	-43.44 dBn 2.22850 GH 10.70 dBn 2.43910 GH
.0 dBm	D1 10.700 (dBm						M1	
) dBm									
10 dBm	D2 -9.3	300 dBm							
20 dBm									0
30 dBm									
40 dBm							M2		manuelrander
50 dBm	retratulor	workhand	pharmatike	white	multuren	werner working	mount	han men	munullawalla
60 dBm								-	

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 13:41:49

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Ref Level Att	20 dE		24.50 dB	VBW 300 k		Auto Swee	p		
1Pk View									
20 dBm						12[1]			-38.63 dBr 6.9760 GH 9.73 dBr
M1 19 dBm)1 9.730 d	Bm							2.4490 GH
D dBm									
10 dBm		.270 dBm-							
20 dBm									2
30 dBm		M2							
40 dBm hunder	herentul	hollinghantan	h Hunndymun	nnemun	www.wh	have been	humallhand	mangeline	manoutra
60 dBm									-
Start 2.0 GF	-			691					p 25.0 GHz

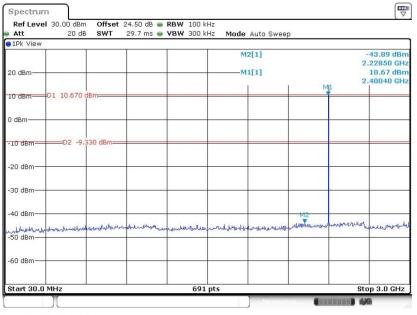
Date: 21.AUG.2019 13:42:20

1Pk View	20 di					Auto Swei	-F		
20 dBm						12[1] 11[1]	7	I M1	-43.60 dBr 2.33590 GH 10.93 dBr 2.47780 GH
U dBm	D1 10.930	dBm====					-	The second secon	
) dBm									
1U dBm	D2 -9.	.070 dBm==		-					
20 dBm						-			
30 dBm—									
40 dBm							M2		
oruhningh 50 dBm—	menutie	norther	monterendertelemetre	mentallyntain	would be all	and the construction of the	in the property in the second	malulul	had a definition of the former of
60 dBm			_					-	

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 14:23:19

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level 30.0		4.50 dB 👄 RBW				
Att 1Pk View	20 dB SWT	230 ms 👄 VBW	300 KHZ Mode	Auto Sweep		
20 dBm				2[1] 1[1]	:	-39.46 dBr 18.0270 GH 9.17 dBr
M1 1 dBm D1 9	.170 dBm					2.4830 GH
D dBm						
10 dBm	02 -10.830 dBm					
-20 dBm						0
-30 dBm				Mp		
40 dBm	warman warman who	Mulanteran	antonia	mount	mutunt	and here were and
50 dBm						
-60 dBm						
Start 2.0 GHz			691 pts		Sto	p 25.0 GHz

Date: 21.AUG.2019 14:23:47

<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 13:56:25

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Att 20 c		_	RBW 100 ki VBW 300 ki		Auto Swee	ρ		
1Pk View								
20 dBm					2[1] 1[1]		0	39.57 dBm 5.9430 GHz 8.75 dBm 2.4160 GHz
01 8.750	dBm							
) dBm								
	1.250 dBm							
20 dBm								
40 dBm	M2	Minter	workhow	Munimum	harman	www.www	whenter	Winnow
50 dBm								
-60 dBm								
Start 2.0 GHz			691	pts			Stop	25.0 GHz

Date: 21.AUG.2019 13:56:54

Att	20 dB	SWT	29.7 ms (VBW 300	KHZ MODE	e Auto Swee	ep		
● 1Pk View 20 dBm						41[1] 42[1]			11.08 dBn 2.43910 GH -37.87 dBn
10 dBm	D1 11.080 (dBm=====						M1	913.30 MH
) dBm									
-10 dBm	D2 -8.9	920 dBm							
-20 dBm—									
-30 dBm—		N	12						
40 dBm— روسالماليس 50 dBm—	monadatan	Konnelsenbore	l when we have	rownwater	rhorsslandener	mahistoria	durindur	rentemante	whentievenutur
-60 dBm—				<u> </u>					
Start 30.0	D MLI >				1 pts				Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 14:01:08

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	30.00 dBn 20 dB		24.50 dB	VBW 300 k		Auto Swee	p		
1Pk View									
					M	1[1]			10.28 dBn 2.4490 GH
20 dBm					M	2[1]			-39.41 dBr
41						1	l.	1	5.5970 GH
10 dBm	D1 10.280	dBm							
D dBm									
10 dBm	—-D2 -9.	720 dBm-							
20 dBm									-
30 dBm		_							
40 dBm					M2				
40 dBm	- to Mar white	which had any there	der use weeks	hyperscharter	Municipalitical	- Millou was	everywork	www.alla	Monthousen
50 dBm									
60 dBm									-
Start 2.0 G					pts				p 25.0 GHz

Date: 21.AUG.2019 14:01:38

Att	20 dB	SWT	29.7 ms (VBW 300	kHz Mod	e Auto Swei	эр		
1Pk View						M2[1]			-44.27 dBr 1.63960 GH
20 dBm	1 10.920 dB					M1[1]	Ĩ	M1	10.92 dBn 2.47780 GH
1U dBm	1 10.920 08								
0 dBm									
-10 dBm	D2 -9.08	10 dBm===							
-20 dBm	-								
-30 dBm				(
-40 dBm					M2		_		
50 dBm	wantunt	henthank	un marine	namentaling	venturheam	transition and the sector	when when	indeburo	nder webenader al de service
-60 dBm								-	
Start 30.0 M					1 pts				Stop 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 21.AUG.2019 14:27:34

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level 30.00 Att	dBm Offset 20 dB SWT	24.50 dB 👄	RBW 100 k VBW 300 k		Auto Swee	n		
1Pk View						÷		
20 dBm			-		2[1] 1[1]		1	39.44 dBn 5.5970 GH 9.71 dBn
M1 dBm D1 9.7	'10 dBm							2.4830 GH
dBm								
10 dBmD;	2 -10.290 dBm-							
20 dBm					-			
30 dBm	~			M2				
40 dBm	mundamen	al Mulumber	nutura	-	mohumb	murrower	hoursehow	wenter
50 dBm								
60 dBm								
Start 2.0 GHz			691	nte			Stor	25.0 GHz

Date: 21.AUG.2019 14:28:02

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

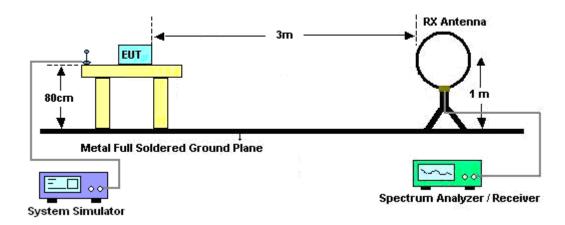
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

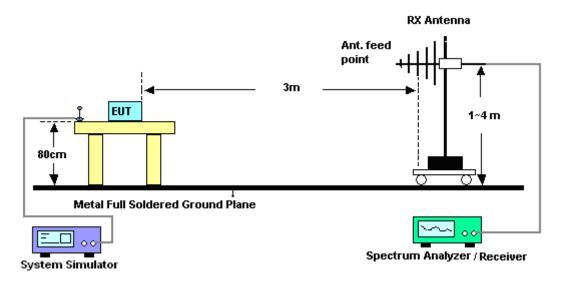
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

3.8.3 Test Procedures

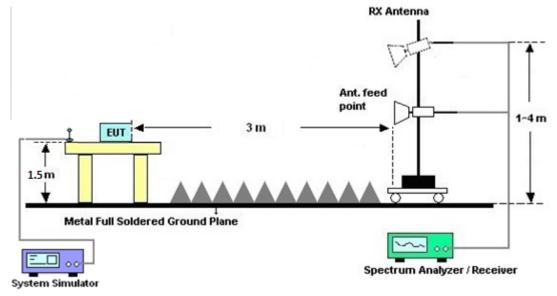

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.82dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

TEL : 886-3-327-3456	Page Number	: 51 of 55
FAX : 886-3-328-4978	Issued Date	: Dec. 17, 2019
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 Antenna Requirements

3.9.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.9.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.9.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2018	Aug. 16, 2019~ Aug. 21, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2018	Aug. 16, 2019~ Aug. 21, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	Aug. 16, 2019~ Aug. 21, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	Aug. 16, 2019~ Aug. 21, 2019	Mar. 26, 2020	Conducted (TH05-HY)
Hygrometer	Testo	DTM-303A	TP157075	N/A	Nov. 05, 2018	Aug. 16, 2019~ Aug. 21, 2019	Nov. 04, 2019	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Dec. 09, 2019~ Dec. 10, 2019	Jan. 06, 2020	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 12, 2019	Dec. 09, 2019~ Dec. 10, 2019	Oct. 11, 2020	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-020 37	1GHz ~ 18GHz	Oct. 28, 2019	Dec. 09, 2019~ Dec. 10, 2019	Oct. 27, 2020	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Nov. 14, 2019	Dec. 09, 2019~ Dec. 10, 2019	Nov. 13, 2020	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 251	18GHz ~ 40GHz	Dec. 06, 2019	Dec. 09, 2019~ Dec. 10, 2019	Dec. 06, 2020	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 25, 2019	Dec. 09, 2019~ Dec. 10, 2019	Mar. 24, 2020	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A023 75	1GHz~26.5GHz	May. 27, 2019	Dec. 09, 2019~ Dec. 10, 2019	May. 26, 2020	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	171000180 0054002	1GHz~18GHz	Aug. 06, 2019	Dec. 09, 2019~ Dec. 10, 2019	Aug. 05, 2020	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Dec. 09, 2019~ Dec. 10, 2019	Mar. 18, 2020	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP140349	N/A	Oct. 25, 2019	Dec. 09, 2019~ Dec. 10, 2019	Oct. 24, 2020	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN1	1.2 GHz Lowpass	Mar. 22, 2019	Dec. 09, 2019~ Dec. 10, 2019	Mar. 21, 2020	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3GHz High Pass	Jul. 15, 2019	Dec. 09, 2019~ Dec. 10, 2019	Jul. 14, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Feb. 26, 2019	Dec. 09, 2019~ Dec. 10, 2019	Feb. 25, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Feb. 26, 2019	Dec. 09, 2019~ Dec. 10, 2019	Feb. 25, 2020	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Dec. 09, 2019~ Dec. 10, 2019	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Dec. 09, 2019~ Dec. 10, 2019	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Dec. 09, 2019~ Dec. 10, 2019	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-00098 9	N/A	N/A	Dec. 09, 2019~ Dec. 10, 2019	N/A	Radiation (03CH12-HY)

: 54 of 55 : Dec. 17, 2019

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	E 1
of 95% (U = 2Uc(y))	5.1

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.6
of 95% (U = 2Uc(y))	5.0

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.0

Report Number : FR921201-05A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Luffy Lin/Richard Qiu	Temperature:	21~25	°C
Test Date:	2019/8/16~2019/8/21	Relative Humidity:	51~54	%

			20dB a	and 99	% Occup		<u>SULTS DATA</u> Ith and Hopping	Channel Separ	ration
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.944	0.857	1.003	0.6291	Pass
DH	1Mbps	1	39	2441	0.941	0.857	0.999	0.6271	Pass
DH	1Mbps	1	78	2480	0.938	0.854	1.003	0.6252	Pass
2DH	2Mbps	1	0	2402	1.220	1.137	0.999	0.8133	Pass
2DH	2Mbps	1	39	2441	1.220	1.137	0.999	0.8133	Pass
2DH	2Mbps	1	78	2480	1.220	1.140	0.999	0.8133	Pass
3DH	3Mbps	1	0	2402	1.211	1.111	0.999	0.8075	Pass
3DH	3Mbps	1	39	2441	1.211	1.111	0.994	0.8075	Pass
3DH	3Mbps	1	78	2480	1.216	1.114	0.999	0.8104	Pass

			<u>TES</u>	T RESULTS Dwell Time		
	Hopping	Hops Over	Package			
Mod.	Channel Number Rate	Occupancy Time(hops)	Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

					<u>T RESUL</u> eak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	11.66	20.97	Pass
DH1	39	1	11.83	20.97	Pass
	78	1	11.79	20.97	Pass
	0	1	11.64	20.97	Pass
2DH1	39	1	11.78	20.97	Pass
Γ Γ	78	1	11.72	20.97	Pass
	0	1	11.62	20.97	Pass
3DH1	39	1	11.76	20.97	Pass
Γ	78	1	11.75	20.97	Pass

				Ave	ST RESULTS DATA erage Power Table Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	11.40	5.22	
DH1	39	1	11.45	5.22	
	78	1	11.43	5.22	
	0	1	9.39	5.05	
2DH1	39	1	9.60	5.05	
	78	1	9.57	5.05	1
	0	1	9.46	5.05	1
3DH1	39	1	9.63	5.05	
	78	1	9.57	5.05	

		<u>TEST RE</u> Number of H	SULTS DA		
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail		
79	20	> 15	Pass	l.	

Appendix B. Radiated Spurious Emission

Test Engineer :	Jack Cheng, Lance Chiang, and Chuan Chu	Temperature :	22.5~24.7°C
lest Engineer .		Relative Humidity :	59.3~68.5%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2344.86	45.47	-28.53	74	44.41	27.62	6.54	33.1	147	238	Р	Н
		2344.86	20.65	-33.35	54	-	-	-	-	-	-	А	Н
	*	2402	95.48	-	-	94.54	27.5	6.61	33.17	147	238	Р	Н
		2402	70.66	-	-	-	-	-	-	-	-	Α	Н
вт													Н
СН00													Н
2402MHz		2317.665	45.44	-28.56	74	44.27	27.73	6.51	33.07	249	128	Р	V
		2317.665	20.62	-33.38	54	-	-	-	-	-	-	А	V
	*	2402	92.97	-	-	92.03	27.5	6.61	33.17	249	128	Р	V
		2402	68.15	-	-	-	-	-	-	-	-	А	V
													V
													V
		2386.02	45.71	-28.29	74	44.74	27.53	6.59	33.15	286	216	Р	Н
		2386.02	20.89	-33.11	54	-	-	-	-	-	-	Α	Н
	*	2441	98.51	-	-	97.67	27.42	6.64	33.22	286	216	Р	Н
		2441	73.69	-	-	-	-	-	-	-	-	А	Н
вт		2492.44	46.7	-27.3	74	45.97	27.32	6.69	33.28	286	216	Р	Н
CH 39		2492.44	21.88	-32.12	54	-	-	-	-	-	-	А	н
2441MHz		2331.42	45.54	-28.46	74	44.43	27.67	6.53	33.09	400	141	Р	V
±77,101112		2331.42	20.72	-33.28	54	-	-	-	-	-	-	Α	V
	*	2441	97.12	-	-	96.28	27.42	6.64	33.22	400	141	Р	V
		2441	72.3	-	-	-	-	-	-	-	-	А	V
		2492.93	44.95	-29.05	74	44.23	27.31	6.69	33.28	400	141	Р	V
		2492.93	20.13	-33.87	54	-	-	-	-	-	-	А	V

	*	2480	97.06	-	-	96.31	27.34	6.68	33.27	345	229	Р	Н
		2480	72.24	-	-	-	-	-	-	-	-	А	Н
		2483.8	46.11	-27.89	74	45.37	27.33	6.68	33.27	345	229	Ρ	Н
		2483.8	21.29	-32.71	54	-	-	-	-	-	-	А	н
DT													Н
BT													Н
CH 78 2480MHz	*	2480	94.39	-	-	93.64	27.34	6.68	33.27	342	156	Ρ	V
240010112		2480	69.57	-	-	-	-	-	-	-	-	А	V
		2483.52	45.49	-28.51	74	44.75	27.33	6.68	33.27	342	156	Ρ	V
		2483.52	20.67	-33.33	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurio Il results are P		ist Peak	and Avera	ge limit lin	е.						

2.4GHz 2400~2483.5MHz

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
2.	Hote	rioquonoy	20101	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	1 01.
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	(H/V)
		4804	41	-33	74	62.39	31.1	10.07	62.56	100	0	Ρ	Н
		4804	16.18	-37.82	54	-	-	-	-	-	-	А	Н
вт													Н
CH 00													Н
2402MHz		4804	39.54	-34.46	74	60.93	31.1	10.07	62.56	100	0	Р	V
24020012		4804	14.72	-39.28	54	-	-	-	-	-	-	А	V
													V
													V
		4882	41.29	-32.71	74	62.69	31.1	10.08	62.58	100	0	Р	Н
		4882	16.47	-37.53	54	-	-	-	-	-	-	А	Н
		7323	46.04	-27.96	74	60.7	36.39	12.51	63.56	100	0	Ρ	Н
BT		7323	21.22	-32.78	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		4882	37.58	-36.42	74	58.98	31.1	10.08	62.58	100	0	Ρ	V
2441101112		4882	12.76	-41.24	54	-	-	-	-	-	-	А	V
		7323	53.02	-20.98	74	67.68	36.39	12.51	63.56	100	0	Ρ	V
		7323	28.2	-25.8	54	-	-	-	-	-	-	А	V
		4960	43.13	-30.87	74	64.4	31.24	10.08	62.59	100	0	Ρ	Н
		4960	18.31	-35.69	54	-	-	-	-	-	-	А	Н
57		7440	46.11	-27.89	74	60.69	36.4	12.61	63.59	100	0	Ρ	Н
BT		7440	21.29	-32.71	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz		4960	40.12	-33.88	74	61.39	31.24	10.08	62.59	100	0	Ρ	V
240010112		4960	15.3	-38.7	54	-	-	-	-	-	-	А	V
		7440	50.41	-23.59	74	64.99	36.4	12.61	63.59	100	0	Ρ	V
		7440	25.59	-28.41	54	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averaç	ge limit lin	e.						

BT (Harmonic @ 3m)

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		31.94	24.38	-15.62	40	30.37	23.36	0.86	30.21	-	-	Р	Н
		127.97	18.72	-24.78	43.5	30.06	17.48	1.58	30.4	-	-	Р	Н
		562.53	30.67	-15.33	46	30.69	26.18	3.49	29.69	-	-	Р	Н
		714.82	39.03	-6.97	46	37.91	26.68	3.93	29.49	100	0	Ρ	Н
		886.51	38.11	-7.89	46	33.8	29.01	4.46	29.16	-	-	Ρ	Н
		970.9	37.69	-16.31	54	31.02	30.86	4.74	28.93	-	-	Ρ	Н
													Н
													н
													Н
													н
													Н
2.4GHz													Н
BT LF		31.94	29.23	-10.77	40	35.22	23.36	0.86	30.21	-	-	Ρ	V
LF		104.69	23.9	-19.6	43.5	36.44	16.37	1.51	30.42	-	-	Ρ	V
		219.15	22.59	-23.41	46	35.7	15.15	2.03	30.29	-	-	Ρ	V
		714.82	38.92	-7.08	46	37.8	26.68	3.93	29.49	100	0	Ρ	V
		885.54	37.49	-8.51	46	33.16	29.03	4.46	29.16	-	-	Ρ	V
		994.18	37.22	-16.78	54	31.07	30.2	4.82	28.87	-	-	Ρ	V
													V
													V
													V
													V
													V
	L										<u></u>		V

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

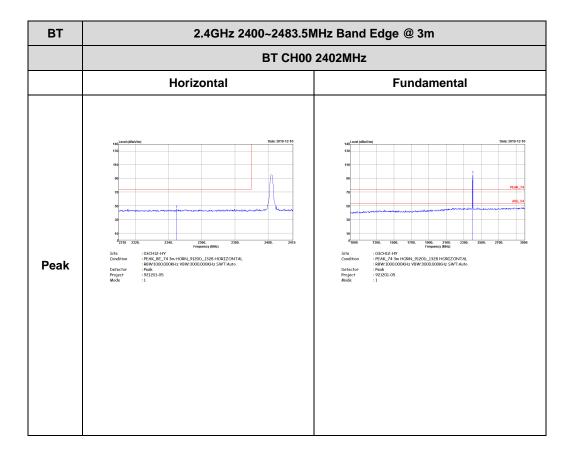
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

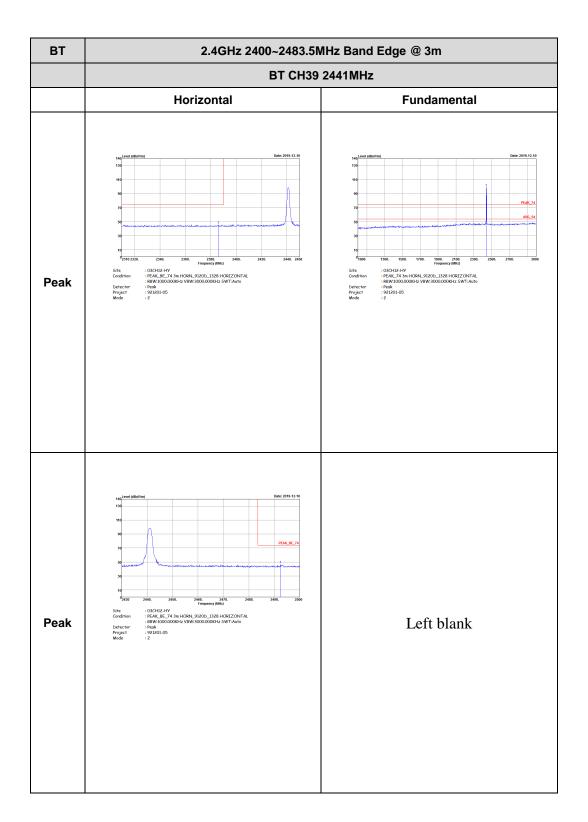
Appendix C. Radiated Spurious Emission Plots

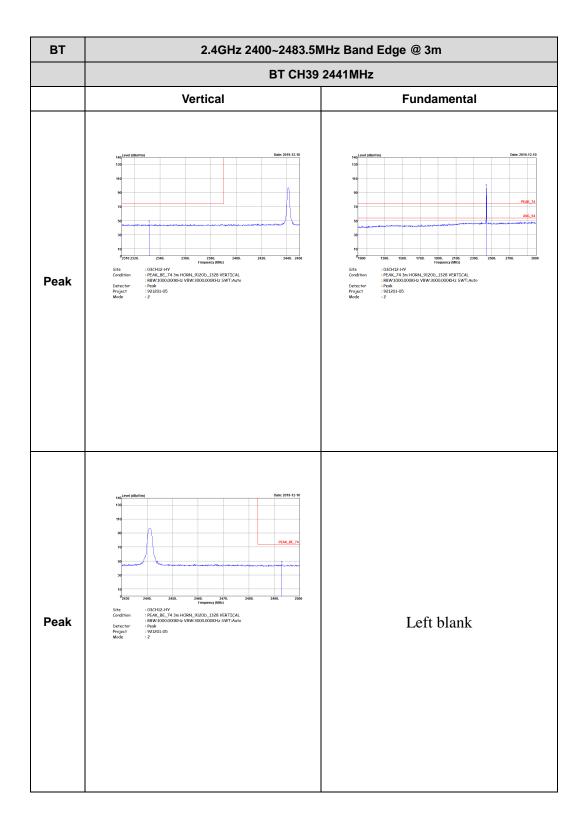
Test Engineer :	Jack Cheng, Lance Chiang, and Chuan Chu	Temperature :	22.5~24.7°C
rest Engineer .		Relative Humidity :	59.3~68.5%


Note symbol

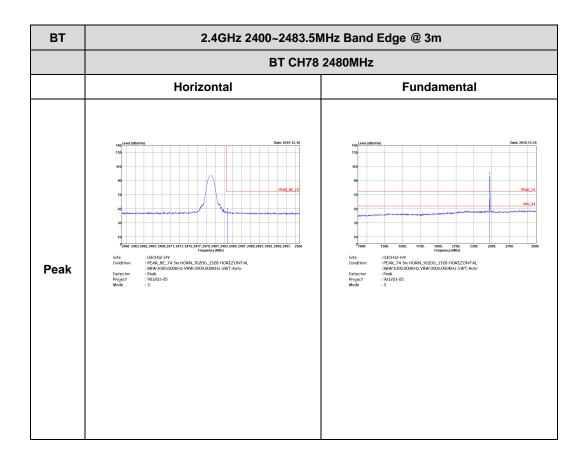
-L	Low channel location
-R	High channel location

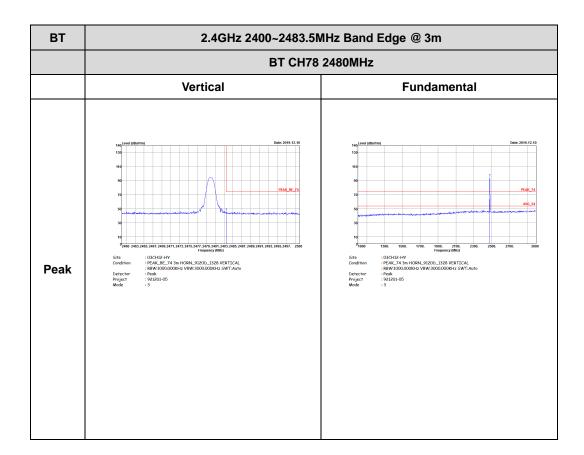
2.4GHz 2400~2483.5MHz

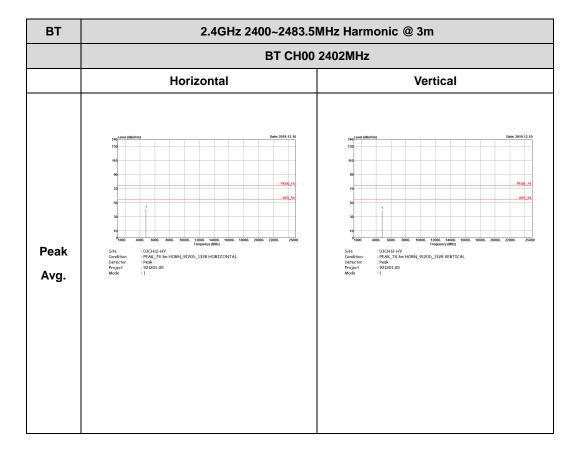

BT (Band Edge @ 3m)

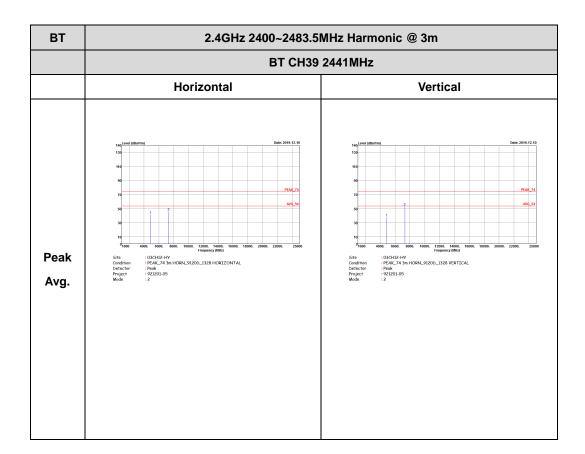


вт	2.4GHz 2400~2483.5M	IHz Band Edge @ 3m					
	BT CH00	2402MHz					
	Vertical	Fundamental					
Peak	Image: state stat	<pre>set of the set of</pre>					

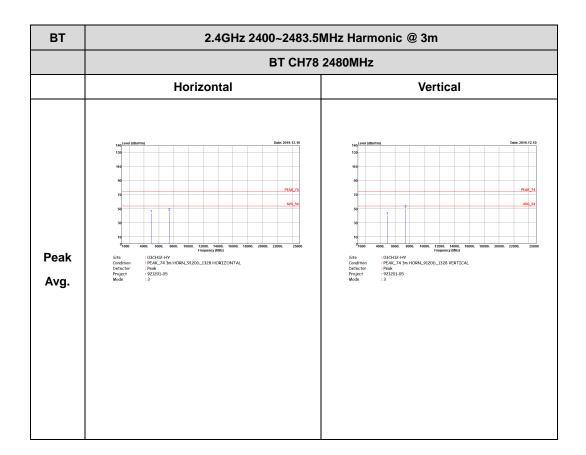


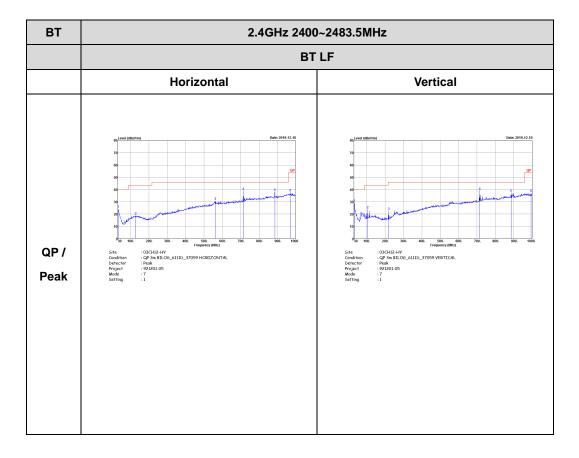






2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)



Emission below 1GHz

2.4GHz BT (LF)

Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.87 / 100 = 5.74 \%$
- 2. Worst case Duty cycle correction factor = $20*\log(\text{Duty cycle}) = -24.82 \text{ dB}$
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.87 ms x 20 channels = 57.4 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.87 ms x 2 = 5.74 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.74 \text{ ms}/100 \text{ms}) = -24.82 \text{ dB}$

------THE END-------