

Königswinkel 10 32825 Blomberg, Germany Phone: +49 (0) 52 35 / 95 00-0 Fax: +49 (0) 52 35 / 95 00-10 office@phoenix-testlab.de www.phoenix-testlab.de

Test Report

Report Number:

F231783E2

Equipment under Test (EUT):

VISCM4

Applicant:

Wöhler Technik GmbH

Manufacturer:

Wöhler Technik GmbH

References

- [1] ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15, Radio Frequency Devices
- [3] 558074 D01 15.247 Meas Guidance v05r02 (April 2019), GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
- [4] RSS-247, Issue 3 (2023-08) Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- [5] RSS-Gen, Issue 5 Amendment 2 (2021-02) General Requirements for Compliance of Radio Apparatus

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test. The complete test results are presented in the following. "Passed" indicates that the equipment under test conforms with the relevant limits of the testing standard without taking any measurement uncertainty into account as stated in [1]. However, the measurement uncertainty is calculated and shown in this test report.

Tested and written by:	
	Signature
Reviewed and approved by:	
	Signature

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

Contents:

Page

1		Identification	5
	1.1	Applicant	5
	1.2	2 Manufacturer	5
	1.3	Test Laboratory	5
	1.4	EUT (Equipment under Test)	6
	1.5	Technical Data of Equipment	7
	1.6	Dates	9
2		Operational States	9
	2.1	Description of function of the EUT together with its host	9
3		Additional information 1	0
4		Overview1	0
5		Results1	1
	5.1	Test setups 1	1
	5.2	2 Duty cycle	9
	5.3	DTS fundamental emission output power 2	1
	5.4	DTS band-edge emission measurements2	3
	5.5	Radiated emissions 2	6
	5.6	AC power-line conducted emissions	4
6		Measurement Uncertainties	6
7		Test Equipment used for Tests	7
8		Test site Verification	8
9		Report History	8
10)	List of Annexes	9

1 Identification

1.1 Applicant

Name:	Wöhler Technik GmbH
Address:	Wöhler-Platz 1, 33181 Bad Wünnenberg
Country:	Germany
Name for contact purposes:	Mr. Thomas WULF
Phone:	+49 2953-73-100
eMail address:	t.wulf@woehler.de
Applicant represented during the test by the following person:	Mr. Thomas WULF

1.2 Manufacturer

Name:	Wöhler Technik GmbH
Address:	Wöhler-Platz 1, 33181 Bad Wünnenberg
Country:	Germany
Name for contact purposes:	Mr. Thomas WULF
Phone:	+49 2953-73-100
eMail address:	t.wulf@woehler.de
Applicant represented during the test by the following person:	Mr. Thomas WULF

1.3 Test Laboratory

The tests were carried out by:

PHOENIX TESTLAB GmbH Königswinkel 10 32825 Blomberg Germany

accredited by Deutsche *Akkreditierungsstelle GmbH (DAkkS)* according to DIN EN ISO/IEC 17025:2018. The accreditation is only valid for the scope of accreditation listed in the annex of the certificate D-PL-17186-01-00. FCC Test Firm Designation Number DE0004, FCC Test Firm Registration Number 469623, CAB Identifier DE0003 and ISED# 3469A.

1.4 EUT (Equipment under Test)

Test object: *	Radio module VISCM4
Model name: *	VISCM4
Model number: *	NA
Order number: *	NA
FCC ID: *	2ANWR-VISCM4
IC certification number: *	23256-VISCM4
PMN: *	VISCM4
HVIN: *	VISCM4
HMN: *	Wöhler VIS 7 HD Video-Inspection System
FVIN: *	NA

Host information:

Test object: *	Inspection camera for exhaust (et al.) pipes	
Model name: *	Wöhler VIS 7 HD Video-Inspection System	
Model number: *	NA	
Order number: *	NA	
FCC ID:	2ANWR-VIS7HD	
IC certification number:	-	
PMN: *	-	
HVIN: *	-	
FVIN: *	-	

	EUT number		
	1	2	3
Serial number: *	-	-	-
Host serial number: *	5136	-	-
Host PCB identifier: *	VIS700-MB-B	-	-
Host Hardware version: *	v2.0	-	-
Host software version: *	v4.1.3	-	-

* Declared by the applicant

One EUT was used for all tests.

Note:

PHOENIX TESTLAB GmbH does not take samples. The samples used for tests are provided exclusively by the applicant.

1.5 Technical Data of Equipment

General EUT data			
Power supply EUT: *	ower supply EUT: * DC battery powered; AC with AC/DC converter		
Supply voltage EUT battery powered: *	Unom= 3.7 VDC	U _{min} = 3 V _{DC}	U _{max} = 4.2 V _{DC}
Supply voltage EUT AC/DC converter powered: *	U _{nom} = 5 V _{DC}	U_{min} = 4.75 V_{DC}	U_{max} = 5.25 V_{DC}
Temperature range: *	0°C to +40°C		
Lowest / highest internal clock frequency: *	8.9 kHz / 2462 MHz		

Ports / Connectors				
Identification	Connector	Length	Shielding	
Identification	EUT	Ancillary	during test	(Yes / No)
USB-C for power supply	USB 3.1 type C	USB 3.1 type C @ AC power adaptor	1.5 m	Yes
USB-A for data transfer	USB-A	USB-A	-	-

IEEE 802.11 frequencies			
20 M	Hz	40 MHz	
Channel 1	2412 MHz	-	-
Channel 2	2417 MHz	-	-
Channel 3	2422 MHz	Channel 3	2422 MHz
Channel 4	2427 MHz	Channel 4	2427 MHz
Channel 5	2432 MHz	Channel 5	2432 MHz
Channel 6	2437 MHz	Channel 6	2437 MHz
Channel 7	2442 MHz	Channel 7	2442 MHz
Channel 8	2447 MHz	Channel 8	2447 MHz
Channel 9	2452 MHz	Channel 9	2452 MHz
Channel 10	2457 MHz	-	-
Channel 11	2462 MHz	-	-

IEEE 802.11 radio mode				
Fulfils radio specification: *1	IEEE 802.11 b IEEE 802.11 g IEEE 802.11 n (2 IEEE 802.11 n (4	20 MHz) 40 MHz)		
Radio chip: *1	Raspberry Pi RM	/10		
Antenna type: *1	Wi-Fi PCB anter	nna		
Antenna name: *1	W2.4-5P-U / Inve	entek Syster	ns	
Antenna gain: *1	2.6 dBi			
Antenna connector: *1	-			
	IEEE 802.11b	DSSS (1 M DSSS (2 M DSSS (5.5/	lbps lbps /11 Mbps	DBPSK) DQPSK) CCK)
	IEEE 802.11g	OFDM (6/9 OFDM (12 OFDM (24/ OFDM (48/	Mbps / 18 Mbps /36 Mbps /54 Mbps	BPSK) QPSK) 16-QAM) 64-QAM)
Type of modulation: *1	IEEE 802.11n 20 MHz (SISO 1x1:1)	MCS0 MCS1/2 MCS3/4 MCS5/6/7	OFDM (7 Mbps OFDM (14 – 22 Mb OFDM (28 – 43 Mb OFDM (58 - 72 Mbp	BPSK) ps QPSK) ps 16-QAM) ps 64-QAM)
	IEEE 802.11n 40 MHz (SISO 1x1:1)	MCS0 MCS1/2 MCS3/4 MCS5/6/7	OFDM (15 Mbps OFDM (30 / 45 Mbp OFDM (60 – 90 Mb OFDM (120 - 150M	BPSK) os QPSK) ps 16-QAM) lbps 64-QAM)
	IEEE 802.11b		2412 – 2462 MHz	
Operating fraguency range: *1	IEEE 802.11g		2412 – 2462 MHz	
Operating frequency range.	IEEE 802.11n 20) MHz	2412 – 2462 MHz	
	IEEE 802.11n 40) MHz	2422 – 2452 MHz	
	IEEE 802.11b		11 (5 MHz channel	spacing)
Number of channels: *1	IEEE 802.11g		11 (5 MHz channel	spacing)
	IEEE 802.11n 20) MHz	11 (5 MHz channel	spacing)
	IEEE 802.11n 40) MHz	9 (5 MHz channel s	spacing)

*1 declared by the applicant

1.5.1 Ancillary Equipment / Equipment used for testing

Equipment used for testing		
3-Port USB 3.0 HUB with Gigabit Ethernet Converter*1	Anker, model: A7514; S/N:22XWGQQY	
Laptop*1	Fujitsu Lifebook; S/N: DSDX066555	

*1 Provided by the applicant

1.6 Dates

Date of receipt of test sample:	21.08.2024
Start of test:	14.10.2024
End of test:	13.11.2024

2 Operational States

2.1 Description of function of the EUT together with its host

The radio module Radio module VISCM4 together with its host Wöhler VIS 7 HD Video-Inspection System (FCC ID: 2ANWR-VIS7HD) is an inspection device with a WLAN interface which is used together with other systems for inspecting pipes. It can operate as a WLAN Access point or a WLAN client to transmit measurement results to an ancillary laptop, smartphone or tablet.

2.1.1 Operation modes

Operation mode #	Radio technology	Frequency [MHz]	Channel	Modulation / mode	Data rate	RX / TX	Power setting
1	IEEE 802.11	2437	6	g-mode	6 Mbps	Packetized TX	"tx power 15"
2	IEEE 802.11	2412	1	HT20-mode	MCS0	Packetized TX	"tx power 15"
3	IEEE 802.11	2412	1	b-mode	1 Mbps	Packetized TX	"tx power 15"
4	IEEE 802.11	2422	3	HT40-mode	MCS0	Packetized TX	"tx power 10"
5	IEEE 802.11	2452	9	HT40-mode	MCS0	Packetized TX	"tx power 10"

The worst case modes were taken from the reports "R13337971-E2" and "UL-RPT-RP1333797-1416A V4.0" issued by UL International (UK) Ltd, provided by the applicant.

3 Additional information

The applicant is integrating the already certified radio module into its host Wöhler VIS 7 HD Video-Inspection System (FCC ID:1ANWR-VIS7HD) with a new antenna, and a reduction of power settings to comply with the FCC rules. Therefore, the retesting of the radiated spurious emissions has been requested to apply for a class 2 permissive change.

The test report includes only worst-case test results for radiated emissions as ordered by the applicant.

During the tests, the module was not appropriately labelled with the correct FCC and IC IDs.

4 Overview

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS-247 [4] RSS-Gen [5]	Tested EUT	Status
Maximum peak conducted output power	2400.0 - 2483.5	15.247 (b) (3), (4)	5.4 (d) [4]	-*	-
Maximum conducted output power	2400.0 - 2483.5	15.247 (b) (3), (4)	5.4 (d) [4]	1	Verified
DTS Bandwidth / 99% Bandwidth	2400.0 - 2483.5	15.247 (a) (2)	5.2 (a) [4]	-*	-
Peak Power Spectral Density	2400.0 - 2483.5	15.247 (e)	5.2 (b) [4]	-*	-
Average Power Spectral Density	2400.0 - 2483.5	15.247 (e)	5.2 (b) [4]	-*	-
Band edge compliance	2400.0 - 2483.5	15.247 (d) 15.205 (a) 15.209 (a)	5.5 [4]	1	Passed
Maximum unwanted emissions	0.009 – 26,500* ²	15.247 (d) 15.205 (a) 15.209 (a)	8.9 [5]	1	Passed*1
Antenna Requirement	-	15.203 15.247 (b)	6.8 [5] 5.4 (f) (ii) [4]	-	-
Conducted emissions on supply line	0.15 – 30	15.207 (a)	8.8 [5]	1	Passed

* Not tested because not ordered by the applicant.

*1 Only the worst-case emissions from the original module report were tested.

*2: As declared by the applicant the highest operating frequency is 2.462 GHz.

Therefore, the radiated emission measurement must be carried out up to 10th of the highest operating frequency, in this case 26.5 GHz.

5 Results

5.1 Test setups

5.1.1 Radiated: 9 kHz to 30 MHz

5.1.1.1 Preliminary measurement 9 kHz to 30 MHz

In the first stage a preliminary measurement is performed in a semi-anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

The frequency range 9 kHz to 30 MHz is monitored with an EMI receiver while the system and its cables are manipulated to find out the configuration with the maximum emission levels if applicable. The EMI receiver is set to MAX hold mode. The EUT and the measuring antenna are rotated around their vertical axis to find the maximum emission levels.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Procedure preliminary measurement:

Pre-scans are performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz. The following procedure is used:

- Monitor the frequency range with the measuring antenna facing the EUT and an EUT / turntable azimuth of 0 °.
- 2) Manipulate the system cables to produce the maximum levels of emissions.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.

- 4) Measure the frequencies of the highest detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency values.
- 5) If the EUT is portable or ceiling mounted, repeat steps 1 to 4 with other orientations (x,y,z) of the EUT.
- 6) Rotate the measuring antenna and repeat steps 1 to 5.

5.1.1.2 Final measurement 9 kHz to 30 MHz

In the second stage a final measurement is performed on an open area test site with no conducting ground plane at a measuring distance of 3 m, 10 m, or 30 m. If the standard requires larger measuring distances for a given frequency, the results are extrapolated according to section 15.31 (f) (2) [2]. The final measurement is performed with an EMI receiver set to Quasi-Peak detector, except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an Average detector is used according section 15.209 (d) [2].

At the frequencies, which were detected during the preliminary measurements, the final measurement is performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum level value is found.

Frequency range	Resolution bandwidth	Measuring time
9 kHz to 150 kHz	200 Hz	1 s
150 kHz to 30 MHz	9 kHz	1 s

The resolution bandwidth of the EMI receiver is set to the following values:

Procedure final measurement:

The following procedure is used:

- 1) Monitor the selected frequencies from the preliminary measurement with the measuring antenna facing the EUT and an EUT azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals.
- 3) Rotate the measuring antenna and repeat steps 1 to 2 until the maximum value is found and note it.
- 4) If the EUT is portable or ceiling mounted, repeat steps 1 to 3 with other orientations (x,y,z) of the EUT.

5.1.2 Radiated: 30 MHz to 1 GHz

5.1.2.1 Preliminary and final measurement 30 MHz to 1 GHz

The preliminary and final measurements are performed in a semi-anechoic chamber with a metal ground plane at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 ° to 360 °, the measuring antenna is set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI receiver is set to the following values:

Test	Frequency range	Step-size	Resolution bandwidth	Measuring time	Detector
Preliminary measurement	30 MHz to 1 GHz	30 kHz	120 kHz	-	Peak Average
Frequency peak search	± 120 kHz	10 kHz	120 kHz	1 s	Peak
Final measurement	30 MHz to 1 GHz	-	120 kHz	1 s	QuasiPeak

Procedure preliminary measurement:

The following procedure is used:

- 1) Set the measuring antenna to 1 m height.
- 2) Monitor the frequency range at horizontal polarization of the measuring antenna and an EUT / turntable azimuth of 0 °.
- 3) Rotate the EUT by 360° to maximize the detected signals.
- 4) Repeat steps 2 to 3 with the vertical polarization of the measuring antenna.
- 5) Increase the height of the measuring antenna for 0.5 m and repeat steps 2 to 4 until the final height of 4 m is reached.
- 6) The highest values for each frequency are saved by the software, including the measuring antenna height and polarization and the turntable azimuth for that value.

Procedure final measurement:

The following procedure is used:

- 1) Select the highest frequency peaks (lowest margin to the limit) for the final measurement.
- 2) The software determines the exact peak frequencies by doing a partial scan with reduced step size of the pre-scan of the selected peaks.
- 3) If the EUT is portable or ceiling mounted, find the worst-case EUT orientation (x,y,z) for the final test.
- 4) The worst-case measuring antenna height is found via varying the height by +/- 0.5 m from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The worst-case turntable position is found via varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement while monitoring the emission level.
- 6) The final measurement is performed at the worst-case measuring antenna height and the worst-case turntable azimuth.
- 7) Steps 2 to 6 are repeated for each frequency peak selected in step 1.

5.1.3 Radiated: 1 GHz to 40 GHz

5.1.3.1 Preliminary and final measurement 1 GHz to 40 GHz

The preliminary and final measurements are performed in a fully anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting turn device at the height of 1.5 m. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 $^{\circ}$ to 360 $^{\circ}$ and the measuring antenna is set to horizontal and vertical polarization to find the maximum level of emissions. After these steps, the measurement is repeated after reorientating the EUT in 30 $^{\circ}$ steps.

Test	Frequency range	Step-size	Resolution bandwidth	Measuring time	Detector
Preliminary measurement	1 GHz - 40 GHz	250 kHz	1 MHz	-	Peak Average
Final measurement	1 GHz - 40 GHz	-	1 MHz	100 ms	Peak Average

The resolution bandwidth of the EMI receiver is set to the following values:

Procedure preliminary measurement:

The following procedure is used:

- 1) Monitor the frequency range at horizontal polarisation of the measuring antenna and an EUT / turntable azimuth of 0 °.
- 2) Rotate the EUT by 360° to maximize the detected signals.
- 3) Repeat steps 1 to 2 with the vertical polarisation of the measuring antenna.
- 4) Repeat steps 1 to 3 with the EUT reorientated by an angle of 30° (60°, 90°, 120° and 150°), according to 6.6.5.4 in [1].
- 5) The highest values for each frequency are saved by the software, including the measuring antenna polarization, the turntable azimuth and the turn device elevation for that value.

Procedure final measurement:

The following procedure is used:

- 1) Set the turntable and the turn device to the position which leads to the highest emission for the first frequency identified in the preliminary measurements.
- 2) Set the measurement antenna to the polarisation which leads to the highest emission for the first frequency identified in the preliminary measurements.
- 3) Set the spectrum analyser to EMI mode with Peak and Average detector activated.
- 4) The worst-case turntable position is found via varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The final measurement is performed at the worst-case turntable azimuth.
- 6) Repeat steps 1 to 5 for each frequency detected during the preliminary measurements.

5.1.4 Conducted: Antenna port

Test setup (conducted)				
Used	Antenna connector	Comment		
\boxtimes	Temporary antenna connector	As provided by the applicant		
	Normal antenna connector	-		

5.1.5 Conducted: AC power line

The test is carried out in a shielded chamber. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices are placed directly on the ground plane. In case of DC powered equipment, which is not exclusively powered by a battery, it is connected to the LISN via a suitable AC/DC adaptor. The setup of the equipment under test is in accordance with [1].

The frequency range 150 kHz to 30 MHz is measured with an EMI receiver set to MAX hold mode with Peak and Average detectors and a resolution bandwidth of 9 kHz. A scan is carried out on the phase and neutral line of the AC mains network. If emissions less than 10 dB below the appropriable limit are detected, these emissions are measured with an Average and Quasi-Peak detector on all lines.

Frequency range	Resolution bandwidth	Measuring time
150 kHz to 30 MHz	9 kHz	5 s

5.2 Duty cycle

5.2.1 Test setup (Duty cycle)

	Test setup (Duty cycle)					
Used	Setup	See sub-clause	Comment			
	Radiated: 1 GHz to 40 GHz	-	-			
\boxtimes	Conducted: Antenna port	5.1.4	-			

5.2.2 Test method (Duty cycle)

Test method (Duty cycle)					
Used	Sub-Clause [1]	Name of method	Applicability	Comment	
	11.6. a)	Diode detector	No limitation	-	
\boxtimes	11.6. b)	Zero span	No limitation	-	

5.2.3 Test results (Duty cycle)

Ambient temperature:	20°C
Relative humidity:	36.3%

Date:	12.11.2024
Tested by:	M. EPPINGER

Example plot (operation mode 1):

MultiView	Receiver	× Spe	ctrum 😽	×					•
Ref Level 112 Att Input	:.00 dBµV 10 dB ● SW 1 AC PS	● RB\ T 2.5 ms ● VBV On Not	V 20 MHz V 20 MHz ch Off	SGL				Frequency	2.4120000 GHz
1 Zero Span									O1Rm Clrw
110 dBµ∨									D3[1] -0.25 dB
									2.08750 ms
100 dBµ∨									M1[1]90.39 dBµV
64.1									127.50 μs
Pan demy when when	manipulant	my proving many	an a	an and a second processing the second	mangenering	when many and a second second	manphimenoun	many marine	D2D3
								1	Ĩ↑ Í
80 dBµV									
70 dBμV									
60 dBµV									
ED dBuly									
50 ubµv									
40 dBµV									U I
30 dBµV									
20 dBµV									
CE 2 412 CHz				100	l ntc				250.0.uc/
2 Markor Table				100.	i pis				200.0 µs/
		X-Value		V-Value		Function		Fund	ion Result
M1	1	127.5 us	9	0.39 dBuV		rancion			aon result
D2 M1	ĩ	2.0625 ms	-	0.37 dB					
D3 M1	1	<u>2.0875 ms</u>		-0.25 dB					

Operation Mode #	Sweep time [ms]	Meas points >100?	Duty cycle %	DCCF [dB]
1	3	\boxtimes	98.2	-
2	2.5	\boxtimes	98.3	-
3	15	\boxtimes	99.7	-
4	2.5	\boxtimes	95.2	0.43
5	2.5	\boxtimes	93.6	0.61

The DCCF (duty cycle correction factor) is calculated by:

$$DCCF_{Power} = 10 * log_{10} \left(\frac{1}{Duty \ cycle}\right)$$

 $DCCF_{Fieldstrength} = 20 * log_{10} \left(\frac{1}{Duty cycle}\right)$

No DCCF is applied for operation mode 1 - 3 because the duty cycle is greater than 98%. For average measurements a correction factor of 0.43 dB is used for all tests in test operation mode 4. For average measurements a correction factor of 0.61 dB is used for all tests in test operation mode 5.

Test equipment (please refer to chapter 7 for details) 22

5.3 DTS fundamental emission output power

5.3.1 Test setup (DTS fundamental emission output power)

	Test setup (DTS fundamental emission output power)					
Used	Setup	See sub-clause	Comment			
	Radiated: 1 GHz to 40 GHz	-	-			
\boxtimes	Conducted: Antenna port	5.1.5	-			

5.3.2 Test method (DTS fundamental emission output power)

	Test method (Maximum conducted (average) output power)						
Used	Sub-Clause [1]	Name of method	Applicability	Comment			
	11.9.2.2.2	Method AVGSA-1	D ≥ 98%	-			
	11.9.2.2.3	Method AVGSA-1A (alternative)	D ≥ 98%	-			
\boxtimes	11.9.2.2.4	Method AVGSA-2	Constant D (±2%)	-			
	11.9.2.2.5	Method AVGSA-2A (alternative)	Constant D (±2%)	-			
	11.9.2.2.6	Method AVGSA-3A	-	-			
	11.9.2.2.7	Method AVGSA-3A (alternative)	-	-			
	11.9.2.3.1	Method AVGPM	Constant D (±2%)	-			
	11.9.2.3.2	Method AVGPM-G	-	-			

5.3.3 Test results (DTS fundamental emission output power)

Ambient temperature:	20°C	Date:	13.11.2024
Relative humidity:	37.7%	Tested by:	M. EPPINGER

5.3.3.1 Maximum conducted average output power:

Operation	Reading	Cable attenuation.	Result	Limit
mode	[dBm]	[dB]	[dBm]	[dBm]
1	3.96	1.84	5.80	30

Remark: The OBW was taken from the module report "R13337971-E2" and "UL-RPT-RP1333797-1416A V4.0" issued by UL International (UK) Ltd, provided by the applicant.

Test result: Passed

Test equipment (please refer to chapter 7 for details) 22

5.4 DTS band-edge emission measurements

5.4.1 Test setup (Band edge - restricted bands)

	Test setup (Band edge – restricted bands)						
Used	Setup	See sub-clause	Comment				
\boxtimes	Radiated: 1 GHz to 40 GHz	5.1.3	-				
	Conducted: Antenna port	-	-				

5.4.2 Test method (Band edge – restricted bands)

	Test method (Band edge – restricted bands)						
Used	Sub-Clause [1]	Name of method	Applicability	Comment			
\boxtimes	11.12.1	Standard method	No limitations				
	11.12.3.1	Marker-delta method		See 6.10.6 [3] 2 MHz from band			
	11.12.3.2	Integration method		2 MHz from band			

5.4.3 Test results (Band edge – restricted bands)

Ambient temperature:	23°C
Relative humidity:	38.6%

Date:	11.11.2024
Tested by:	M. EPPINGER

Plot lower band edge (operation mode 4):

Plot upper band edge (operation mode 5):

Lower band edge (operation mode 4):

Frequency	Result (Pk)	Result (Avg)	Limit	Margin	Polarization	Elevation	Azimuth
[MHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	1 Olalization	[deg]	[deg]
2,381.500	51.63	-	74.00	22.37	V	111	321
2,385.750	52.66	-	74.00	21.34	V	24	286
2,386.500	-	37.20	54.00	16.80	V	123	311
2,388.250	51.77	-	74.00	22.23	Н	-12	2
2,390.000	53.45	-	74.00	20.55	V	135	319
2,390.000	-	38.91	54.00	15.09	V	117	322

Upper band edge (operation mode 5):

Frequency	Result (Pk)	Result (Avg)	Limit	Margin	Delerization	Elevation	Azimuth
[MHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	Polanzation	[deg]	[deg]
2,483.500	51.03	-	74.00	22.97	Н	-6	3
2,483.500	-	35.47	54.00	18.53	Н	-9	2
2,484.250	51.59	-	74.00	22.41	Н	3	8
2,486.250	50.55	-	74.00	23.45	Н	15	11
2,486.250	-	34.63	54.00	19.37	Н	6	11
2,487.250	50.63	-	74.00	23.37	Н	-9	2
2,491.500	49.69	-	74.00	24.31	Н	6	2

Test result: Passed

Test equipment (please refer to chapter 7 for details) 3, 5 - 11

5.5 Radiated emissions

5.5.1 Test setup (Maximum unwanted emissions)

	Test setup (Maximum unwanted emissions)								
Used	Setup	See sub-clause	Comment						
\boxtimes	Radiated: 9 kHz to 30 MHz / 30 MHz to 1 GHz / 1 GHz to 40 GHz	5.1.1	-						
	Conducted: Antenna port	-	-						

5.5.2 Test method (Maximum unwanted emissions)

Test method (radiated) see sub-clause 4.1.1 as described herein

5.5.3 Test results (Maximum unwanted emissions)

5.5.3.1 Test results preliminary measurement 9 kHz to 30 MHz

Ambient temperature:	22.4 °C			Date:	15.10.2024
Relative humidity:	37.0 %			Tested by:	M. EPPINGER
Position of EUT:	For tests for of 80 cm.	or f betv he dist	- veen 9 kHz to 30 MHz, ance between EUT and	the EUT was se I antenna was 3	et-up on a table with a height 3 m.
Cable guide:	For detail i annex A in	nformat the tes	ion of test set-up and th t report.	ne cable guide r	efer to the pictures in the
Test record:	The meası CFR 15.31 15.209(a)	urement (f)(2) r€	value was already corr garding to the measure	rected by 40 dB ement distance	/decade as described in 47 as requested in 47 CFR
Remark:	All 3 orthog	gonal pl	anes were tested sepa	rately	
Calculations:					
Result @ norm. dist. [dB	uV/m] =	Read	ing [dBμV] + AF [dB/m]	+ Distance cor	r. fact. [dB]
Result @ norm. dist. [dB	uA/m] =	Resu	lt @ norm. dist. [dBµV/ı	m] – 20 x log10 (377 Ω)
Margin [dB] =		Limit	[dB(µV µA)/m] - Result	[dB(µV µA)/m]	

Worst case plot:

Spurious emissions from 9 kHz to 30 MHz (operation mode 2):

Remark: No emissions close than 20 dB to the limit, so no final measurement will be carried out.

Test result: Passed

Test equipment (please refer to chapter 7 for details) 5 - 11, 15

5.5.3.2 Test results (30 MHz – 1 GHz)

Ambient temperature:	22.4 °C		Date:	15.10.2024
Relative humidity:	37.0 %		Tested by:	M. EPPINGER
Position of EUT:	For tests for f betw of 80 cm. The dista	een 30 MHz to 1 GHz, ance between EUT and	the EUT was set-u antenna was 3 m.	ip on a table with a height
Cable guide:	For detail informati annex A in the test	on of test set-up and th report.	ne cable guide refe	r to the pictures in the
Test record:	Plots for each frequence	uency range are submi	tted below.	
Remark:	All 3 orthogonal pla	anes were tested separ	ately	
Calculations:				
Result [dBµV/m] =	Reading [dBµV] +	Correction [dB/m]		
Correction [dB/m] =	AF [dB/m] + Cable	attenuation [dB] + opti	onal preamp gain [dB]
Margin [dB] =	Limit [dBµV/m] - Re	esult [dBμV/m]		

The measured points and the limit line in the following diagram refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with "\$" are the measured results of the standard subsequent measurement in a semi-anechoic chamber.

Worst case plot:

Spurious emissions from 30 MHz to 1 GHz (operation mode 2 – Position 2):

Result tables:

Frequency	Result (QP)	Limit	Margin	Correction	Pol.	Azimuth	Height
[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dB/m]	(H/V)	[deg]	[m]
40.000	37.05	40.00	2.95	20.34	V	187	1.00
57.460	25.26	40.00	14.74	12.04	V	116	1.75
63.850	34.64	40.00	5.36	13.80	V	97	1.77
85.750	24.90	40.00	15.10	16.82	V	246	1.60
120.010	33.95	43.50	9.55	17.50	Н	246	1.00
499.990	36.13	46.00	9.87	24.19	V	156	1.00

(Operation mode 2 – Pos 1):

(Operation mode 2 – Pos 2):

Frequency	Result (QP)	Limit	Margin	Correction	Pol.	Azimuth	Height
[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dB/m]	(H/V)	[deg]	[m]
38.530	35.10	40.00	4.90	21.29	Н	5	1.16
39.550	33.96	40.00	6.04	20.63	Н	84	1.19
57.040	38.56	40.00	1.44	11.99	Н	366	2.05
63.370	33.78	40.00	6.22	13.34	Н	217	1.17
85.150	29.58	40.00	10.42	16.73	V	74	2.02
120.010	37.76	43.50	5.74	17.50	V	91	2.95
124.990	34.78	43.50	8.72	17.12	V	104	1.90
245.500	36.20	46.00	9.80	17.00	V	87	1.08
499.990	35.15	46.00	10.85	24.19	Н	61	1.00

(Operation mode 2 – Pos 3):

Frequency	Result (QP)	Limit	Margin	Correction	Pol.	Azimuth	Height
[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dB/m]	(H/V)	[deg]	[m]
39.370	35.56	40.00	4.44	20.75	Н	19	1.00
57.460	37.51	40.00	2.49	12.04	Н	366	2.27
62.980	35.38	40.00	4.62	12.99	Н	169	1.49
94.240	33.13	43.50	10.37	17.05	V	96	2.89
120.010	37.29	43.50	6.21	17.50	V	91	3.01
244.690	33.81	46.00	12.19	17.00	V	228	1.19

Test result: Passed

Test equipment (please refer to chapter 7 for details) 5 – 13

5.5.3.3 Test results (radiated 1 GHz to 40 GHz)

Ambient temperature:	22.9 °C		Date:	14.10.2024
Relative humidity:	33 %		Tested by:	M. EPPINGER
Position of EUT:	For tests for f betw positioner device w was 3 m.	een 1 GHz and the 10 th vith a height of 150 cm.	harmonic, the EU The distance betw	IT was set-up on a veen EUT and antenna
Cable guide:	For detail informati annex A in the test	ion of test set-up and th report.	ie cable guide refe	r to the pictures in the
Test record:	Plots for each frequence	uency range are submit	tted below.	
Remark:	-			
Calculation:				
Max Peak [dBµV/m] =	Reading [dBµV] + C	orrection [dB/m]		
Average [dBµV/m] =	Reading [dBµV] + C	orrection [dB/m]		
Correction [dB/m] =	AF [dB/m] + Cable a (if applicable – only f	attenuation [dB] + option for Average values, that	nal preamp gain [d t are fundamental	B]+DCCF* [dB] related)
Margin [dB] =	Limit [dBµV/m] – Ma	ax Peak Average [dBµ	V/m]	

The curves in the diagram only represent the maximum measured value for each frequency point of all preliminary measurements, which were carried out with various EUT and antenna positions.

The top measured curve represents the peak measurement. The measured points marked with " \blacklozenge " are frequency points for the final peak detector measurement. These values are indicated in the following table. The bottom measured curve represents the average measurement. The measured points marked with " \blacklozenge " are frequency points for the final average detector measurement.

Worst case plots:

Spurious emissions from 4 GHz to 18 GHz (operation mode 3):

Spurious emissions from 18 GHz to 26.5 GHz (operation mode 2):

Result tables:

Frequency	MaxPeak	Average	Limit	Margin	Pol	Azimuth	Elevation	Corr.
[MHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB]	[H/V]	[deg]	[deg]	[dB/m]
1141.250	52.36	-	74.00	21.64	V	351	12	26.10
1540.250	-	34.30	54.00	19.70	V	335	162	29.63
1694.000	-	33.40	54.00	20.60	V	11	147	30.66
1848.000	-	39.42	54.00	14.58	V	317	135	31.24
1925.000	-	38.01	54.00	15.99	V	294	117	31.61
2411.000	101.78	-			V	327	63	34.49
2411.000	-	98.71	Fundamental	*	V	327	63	34.49
2411.250	-	99.05			V	325	69	34.49
3850.000	56.22	-	74.00	17.78	Н	347	105	38.98
3850.000	-	43.26	54.00	10.74	Н	337	90	38.98
4620.000	49.70	-	74.00	24.30	V	263	150	8.44
14698.750	54.39	-	74.00	19.61	V	92	60	27.24
15790.250	55.71	-	74.00	18.29	Н	158	30	28.18
16286.000	56.13	-	74.00	17.87	V	378	150	29.23
16734.250	57.67		74.00	16.33	Н	25	150	29.54
17833.500	57.15	-	74.00	16.85	V	323	120	30.47
18423.750	40.41	-	74.00	33.59	V	155	30	11.02
21465.500	45.29	-	74.00	28.71	Н	255	150	11.43
21669.250	43.64	-	74.00	30.36	Н	290	0	11.47
24705.500	45.09	-	74.00	28.91	V	289	150	11.26
25176.250	45.87	-	74.00	28.13	Н	115	150	11.51
26164.750	45.60	-	74.00	28.40	Н	106	60	11.87

Remark: The emission around 2.4 GHz is from the wanted fundamental signal and therefore not considered for the final evaluation.

Test result: Passed

Test equipment (please refer to chapter 7 for details) 1 - 11

5.6 AC power-line conducted emissions

5.6.1 Test setup (Conducted emissions on power supply lines)

	Test setup (Conducted emissions on power supply lines)							
Used	Used Setup See sub-clause Comment							
\boxtimes	Conducted: AC power line	5.1.5	-					
	Not applicable, because	-	-					

5.6.2 Test method (Conducted emissions on power supply lines)

	Test setup (Conducted emissions on power supply lines)									
Used	Used Clause [3] Name of method Sub-clause Comment									
\boxtimes	6.2.3.2	Tabletop equipment testing	5.1.5	-						
	6.2.3.3	Floor-standing equipment testing	-	-						

The AC power adaptor provided by the applicant was used for the tests: EDAC POWER ELECTRONICS CO., LTD; Model: EA1024BR-050 The power adaptor itself was supplied by $120V_{AC}$ 60Hz.

5.6.3 Test results (Conducted emissions on power supply lines)

Ambient temperature:	22.0 °C	Date:	30.10.2024
Relative humidity:	54 %	Tested by:	M. EPPINGER

The curves in the diagrams below only represent for each frequency point the maximum measured value of all preliminary measurements which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasi-peak measured points are marked by \blacklozenge and the average measured points by \blacklozenge .

Frequency	QuasiPeak	Average	Limit	Margin	Line	PE	Corr.
[MHz]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[gb]			[gB]
0.150000	55.19		66.00	10.81	Ν	GND	9.8
0.150900		38.37	55.95	17.58	Ν	GND	9.8
0.171600	46.67		64.88	18.21	L1	GND	9.8
4.138800		22.53	46.00	23.47	L1	GND	10.3
5.151300	36.30		60.00	23.70	L1	GND	10.3
5.389800		26.57	50.00	23.43	L1	GND	10.3
5.585100		26.02	50.00	23.98	L1	GND	10.3
5.661600	36.29		60.00	23.71	Ν	GND	10.4
9.313800		24.39	50.00	25.61	Ν	GND	10.6
16.599300	40.25		60.00	19.75	Ν	GND	10.9
17.146500		32.63	50.00	17.37	Ν	GND	10.9
17.230200	40.47		60.00	19.53	Ν	GND	10.9

Test result: Passed

Test equipment (please refer to chapter 7 for details) 16 – 21

6 Measurement Uncertainties

Conducted measurements					
Measurement method	Standard used for calculating measurement uncertainty	Expanded measurement uncertainty (95 %) U _{lab}			
Frequency error	ETSI TR 100 028	4.5×10 ⁻⁸			
Bandwidth measurements	-	9.0×10 ⁻⁸			
Conducted emissions using a spectrum analyzer					
< 3.6 GHz	ETSI TR 100 028	2.3 dB			
3.6 – 8 GHz	ETSI TR 100 028	2.8 dB			
8 – 22 GHz	ETSI TR 100 028	3.2 dB			
22 – 40 GHz	ETSI TR 100 028	3.6 dB			
Power measurements					
Power meter	ETSI TR 100 028	0.9 dB			
		·			
Conducted emissions from 150 kHz to 30 MHz with LISN	CISPR 16-4-2	2.8 dB			

Radiated measurements				
Frequency error				
(Semi-) Anechoic chamber	ETSI TR 100 028	4.5×10 ⁻⁸		
OATS	ETSI TR 100 028	4.5×10 ⁻⁸		
Test fixture	ETSI TR 100 028	4.5×10 ⁻⁸		
Bandwidth measurements				
(Semi-) Anechoic chamber	-	9.0×10 ⁻⁸		
OATS	-	9.0×10 ⁻⁸		
Test fixture	-	9.1×10 ⁻⁸		
Radiated field strength M20				
CBL6112B @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	5.3 dB		
R&S HL050 @ 3 m				
1 – 6 GHz	CISPR 16-4-2	5.1 dB		
6 – 18 GHz	CISPR 16-4-2	5.4 dB		
Flann Standard Gain Horns 12 – 40 GHz	-	5.9 dB		
Radiated field strength M276				
R&S HL562E @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	4.8 dB		
R&S HL050 @ 3 m	-			
1 – 6 GHz	CISPR 16-4-2	5.1 dB		
6 – 18 GHz	CISPR 16-4-2	5.4 dB		
Flann Standard Gain Horns 12 – 40 GHz	-	5.9 dB		
OATS				
Field strength measurements below 30 MHz on OATS without ground plane	-	4.4 dB		

7 Test Equipment used for Tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal Due
1	Low Noise Amplifier 100 MHz - 18 GHz	LNA-30- 00101800-25- 10P	Narda-Miteq	2110917	482967	20.02.2024	02.2026
2	Low Noise Amplifier 18 GHz - 26.5 GHz	LNA-30- 18002650-20- 10P	Narda-Miteq	2110911	482969	19.02.2024	02.2026
3	LogPer. antenna	HL050	Rohde & Schwarz	100908	482977	22.09.2022	09.2025
4	Standard gain horn 18 GHz - 26 GHz	20240-20	Flann	266399	483026	Calibration not	necessary
5	EMC test software	Elektra V5.05	Rohde & Schwarz		483755	Calibration not	necessary
6	RF Switch Matrix	OSP220	Rohde & Schwarz	101391	482976	Calibration not	necessary
7	Turntable	TT3.0-3t	Maturo	825/2612/.01	483224	Calibration not	necessary
8	Antenna support	BAM 4.5-P-10kg	Maturo	222/2612.01	483225	Calibration not	necessary
9	Controller	NCD	Maturo	474/2612.01	483226	Calibration not necessary	
10	Semi Anechoic Chamber M276	SAC5-2	Albatross Projects	C62128-A540- A138-10-0006	483227	Calibration not necessary	
11	EMI Test receiver	ESW44	Rohde & Schwarz	101828	482979	21.02.2024	02.2026
12	Attenuator 6 dB	WA2-6	Weinschel	8254	410119	Calibration not	necessary
13	Ultralog Antenna	HL562E	Rohde & Schwarz	101079	482978	24.04.2024	04.2027
14	Signal & Spectrum Analyzer	FSW43	Rohde & Schwarz	100586 & 100926	481720	17.03.2023	03.2025
15	Loop antenna	HFH2-Z2	Rohde & Schwarz	100417	481912	21.02.2024	02.2026
16	LISN	NSLK8128	Schwarzbeck	8128155	480058	28.02.2024	02.2026
17	Power supply AC	AC6803A AC Quelle 2000VA	Keysight	JPVJ002509	482350	Calibration not necessary	
18	Software	EMC32 10.60.20	Rohde & Schwarz		483961	Calibration not necessary	
19	Shielded chamber M4	B83117-S1-X158	Siemens	190075	480088	Calibration not necessary	
20	EMI Receiver / Spectrum Analyser	ESIB 26	Rohde & Schwarz	100292	481182	22.02.2024	02.2026
21	Transient Filter Limiter	CFL 9206A	Teseq GmbH	38268	481982	28.03.2024	03.2026
22	EMI Receiver / Spectrum Analyser	ESW44	Rohde & Schwarz	101635	482467	27.02.2024	02.2026

8 Test site Verification

Test equipment	PM. No.	Frequency range	Type of validation	According to	Val. Date	Val Due
Shielded chamber M4	480088	9 kHz – 30 MHz	GND-Plane	ANSI C63.4-2014	08.11.2022	07.11.2025
Semi anechoic chamber M276	483227	30 – 1000 MHz	NSA	ANSI C63.4-2014 ANSI C63.4a-2017	01.03.2023	28.02.2026
Semi anechoic chamber M276	483227	1 -18 GHz	SVSWR	CISPR 16-1-4 + Cor1:2010 + A1:2012 +A2:2017	28.02.2023	27.02.2026

9 Report History

Report Number	Date	Comment
F231783E2	11.04.2025	Initial Test Report
-	-	-
-	-	-

10 List of Annexes

Annex A Test Setup Photos

Annex B	EUT External Photos

Annex C EUT Internal Photos

6 pages 8 pages

11 pages

----- end of test report -----