FCC 47 CFR MPE REPORT

TCL Entertainment Solutions Limited

Wireless Subwoofer

Model Number: TS6110-SW

Additional Model: TDS6110-SW, Alto 6+ SW, ***6110-SW

FCC ID: 2ARUDTS6110SW

Prepared for:	TCL Entertainment Solutions Limited			
	7/F, building 22E, 22 science park east avenue, Hong Kong science park,			
	SHATIN, N.T., Hong Kong China			
Prepared By:	EST Technology Co., Ltd.			
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R2007093		
Date of Test:	Jun. 29~Jul. 28, 2020		
Date of Report:	Jul. 29, 2020		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode F	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)	Target	Antenna gain	
				power (dBm)	(dBi)	(Linear)
	2405	2.94	1.968	3±1	0	1
2.4G	2439	3.13	2.056	3±1	0	1
	2477	3.09	2.037	3±1	0	1

3. Calculated Result and Limit

		Ante	nna gain		Limited	
Mode	Target power (dBm)	(dBi)	(Linear)	Power Density (S) (mW /cm2)	of Power Density (S) (mW	Test Result
					/cm2)	
2.4G						
2.4G	4	0	1	0.0005	1	Compiles

End of Test Report