

TEST REPORT

Product Name : PA-System

Model Number : JMC210BT

FCC ID : 2BN4V-JMC210BT

Prepared for : Ningbo Jumboaudio Industrial Co.,Ltd.

Address : Xiyunsi Industrial Zone, Xiepu Town, Zhenhai District,

Ningbo City, China

Prepared by : EMTEK (NINGBO) CO., LTD.

Address : No. 8, Building 8, Lane 216, Qingyi Road, Ningbo Hi-Tech

Zone, Ningbo, Zhejiang, China

Tel: +86-574-27907998 Fax: +86-574-27721538

Report Number : ENB2502170213W00301R

Date(s) of Tests : February 17, 2025 to March 13, 2025

Date of issue : March 19, 2025

Report No. ENB2502170213W00301R Page 1 of 56 Ver. 1.0

Table of Contents

1	TEST RESULT CERTIFICATION	3
2	EUT TECHNICAL DESCRIPTION	5
3	SUMMARY OF TEST RESULT	6
4	TEST METHODOLOGY	7
	GENERAL DESCRIPTION OF APPLIED STANDARDS	
	MEASUREMENT EQUIPMENT USED.	
	DESCRIPTION OF TEST MODES	
	TEST SOFTWARE	
5	FACILITIES AND ACCREDITATIONS	9
5.1	FACILITIES	9
5.2	LABORATORY ACCREDITATIONS AND LISTINGS	9
6	TEST SYSTEM UNCERTAINTY	. 10
7	SETUP OF EQUIPMENT UNDER TEST	.11
7.1	RADIO FREQUENCY TEST SETUP 1	. 11
7.2	RADIO FREQUENCY TEST SETUP 2	. 11
	CONDUCTED EMISSION TEST SETUP	
	SUPPORT EQUIPMENT	
	FREQUENCY HOPPING SYSTEM REQUIREMENTS	
	STANDARD APPLICABLE	
	EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	EQUAL HOPPING FREQUENCY USE	
	FREQUENCY HOPPING SYSTEM	
	TEST REQUIREMENTS	
	20DB BANDWIDTH	
	CARRIER FREQUENCY SEPARATION	
	NUMBER OF HOPPING FREQUENCIES	
9.4	MAXIMUM PEAK CONDUCTED OUTPUT POWER	29
	CONDUCTED SUPRIOUS EMISSION	
	RADIATED SPURIOUS EMISSION	
9.8	CONDUCTED EMISSION TEST	. 52
99	ANTENNA APPLICATION	55

1 TEST RESULT CERTIFICATION

Applicant : Ningbo Jumboaudio Industrial Co.,Ltd.

Address : Xiyunsi Industrial Zone, Xiepu Town, Zhenhai District, Ningbo City, China

Manufacturer : Ningbo Jumboaudio Industrial Co.,Ltd.

Address : Xiyunsi Industrial Zone, Xiepu Town, Zhenhai District, Ningbo City, China

EUT : PA-System

Model Name : JMC210BT

Trademark : VEVOR

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			

The above equipment was tested by EMTEK (NINGBO) CO., LTD.The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	February 17, 2025 to March 13, 2025
Prepared by :	Victor Chen
	Victor Chen /Engineer
Reviewer :	June Gao /Superviso
Approve & Authorized Signer :	Tony Wei/Manager

Modified History

Version	Report No.	Revision Date	Summary
/	ENB2502170213W00301R	/	Original report

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description		
Product Name	PA-System		
Model number	JMC210BT		
Sample number	ENB2502170213W003-1-1		
Device Type	Bluetooth V5.0		
Data Rate	1Mbps for GFSK modulation 2Mbps for pi/4-DQPSK modulation		
Modulation	GFSK pi/4-DQPSK		
Operating Frequency Range	2402-2480MHz		
Number of Channels	79 channels		
Max Transmit Power	3.18 dBm		
Antenna Type	All direction antenna		
Gain	1.7 dBi		
Test Voltage	AC 120V, 60Hz		
Temperature Range	-20℃ to +70℃		
Date of Received	February 17, 2025		

Note: for more details, please refer to the User's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC PartClause	Test Parameter	Verdict	Remark
15.247(a)(1)	20 dB Bandwidth	PASS	
15.247(a)(1)	Carrier Frequency Separation	PASS	
15.247(a)(1)	Number of Hopping Frequencies	PASS	
15.247(a)(1)	Average Time of Occupancy (Dwell Time)	PASS	
15.247(b)(1)	Maximum Peak Conducted Output Power	PASS	
15.247(c)	Conducted Spurious Emissions	PASS	
15.247(d) 15.209	Radiated Spurious Emissions	PASS	
15.207	Conducted Emission	PASS	
15.203	Antenna Application	PASS	
NOTE1:N/A (Not Applicable)		•	

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2BN4V-JMC210BT filing to comply with Section 15.247 of the FCC Part 15, Subpart C.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards:

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

Equ.No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
ENE-002	EMI Test Receiver	R&S	ESCI	101107	July 02, 2024	1 Year
ENE-003	L.I.S.N	R&S	ENV216	101193	July 02, 2024	1 Year
ENE-150	Conduction Test Room 2#	SKET	6.5*5*4m	1	Apr 17, 2023	3 Year

4.2.2 Radiated Emission Test Equipment

Equ.No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
ENE-185	EMI Test Receiver	R&S	ESR7	102480	April 25, 2024	1 Year
ENE-190	Antenna Multiple	Schwarzbeck	VULB 9163	01499	May 18, 2024	1 Year
ENE-195	Pre-Amplifier	JS Denki	PA09K03-40	JSPA21019	April 25, 2024	1 Year
ENE-204	Low Frequency Notch Filter RF Switching	JS Denki	JSDSW-F	JSDSW2211D 02	April 25, 2024	1 Year
ENE-251 6dB Attenuator Mini-Circuits		UNAT-6+	11542	July 02, 2024	1 Year	
ENE-171	EXA Signal Analyzer KEYSIGHT		N9010B	MY60242467	Oct. 28, 2024	1 Year
ENE-191	Horn Antenna	Schwarzbeck	BBHA 9120 D	02588	May 18, 2024	1 Year
ENE-198	Pre-Amplifier	JS Denki	PA0118-50	JSPA21022	April 25, 2024	1 Year
ENE-206 High Frequency Notch FilterRf JS Denki Switching		JSDSW-F	202083582	April 25, 2024	1 Year	
3-Meter ENE-144 Anechoic SKET Chamber 2#		9*6*6m	1	June 19, 2022	3 Year	

4.2.3 Radio Frequency Test Equipment

Equ. No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
ENE-256	EXA Signal Anaalyzer	Keysight	N9010B	MY62060219	July 02, 2024	1 Year
ENE-172	RF Control Unit	Tonscend	JS0806-2(V.6E)	21L8060521	March 03, 2025	1 Year

Report No. ENB2502170213W00301R

Page 7 of 56

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for Bluetooth GFSK modulation; 2Mbps for Bluetooth pi/4-DQPSK modulation) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for Bluetooth V5.0

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441		
1	2403	40	2442	76	2478
2	2404	41	2443	77	2479
				78	2480
Note: fc=2402MHz+(k-1)×1MHz k=1 to 79					

Test Frequency and Channel for Bluetooth V5.0

Lowest Frequency		Middle F	requency	Highest Frequency		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	39	2441	78	2480	

4.4 TEST SOFTWARE

Item	Software
Radiated Emission:	JSDEMC-EMI (V3.3)
Conducted Emission	JSDEMC-EMI (V3.3)

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Building 8, Lane 216, Qingyi Road, Ningbo Hi-Tech Zone, Ningbo, Zhejiang, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 32.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS

The Certificate Registration Number is L6666.

The Laboratory has been assessed and proved to be in compliance

with CNAS-CL01:2018 (identical to ISO/IEC 17025:2017)

Designation by FCC

Designation Number: CN1354

Test Firm Registration Number: 427606

Accredited by A2LA

The certificate is valid until May 31, 2025

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0114

Test Firm Registration Number: 9469A

Name of Firm : EMTEK (NINGBO) CO., LTD.

Site Location : No. 8, Building 8, Lane 216, Qingyi Road, Ningbo Hi-Tech Zone,

Ningbo, Zhejiang, China

Report No. ENB2502170213W00301R

Page 9 of 56

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

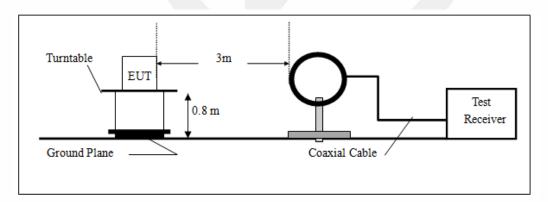
7.1 RADIO FREQUENCY TEST SETUP 1

The Bluetooth component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2014 and CAN/CSA-CEI/IEC CISPR 22.

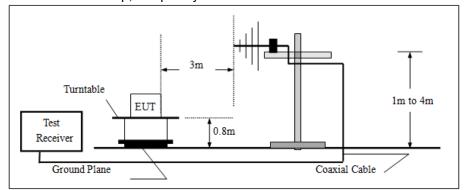
Below 30MHz:

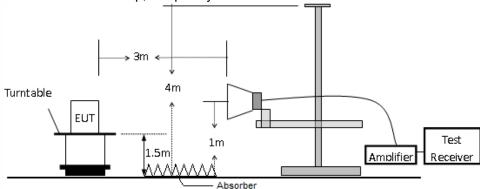

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground. For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT. 30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

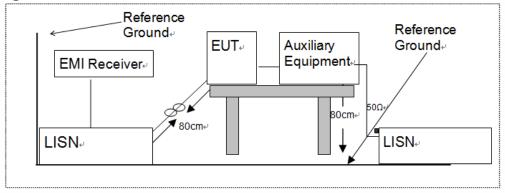
The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


(a) Radiated Emission Test Set-Up, Frequency Below 30MHz


Report No. ENB2502170213W00301R

(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (Game fitness board) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2014 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 SUPPORT EQUIPMENT

EUT Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite		
1	1	1	1		

Auxiliary Cable List and Details						
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite						
1	1	1	1			

Auxiliary Equipment List and Details						
Description Manufacturer Model Serial Number						
1	1	1	1			

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 FREQUENCY HOPPING SYSTEM REQUIREMENTS

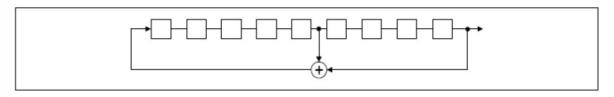
8.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

8.2 EUT Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels.


The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; thephase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divide into time slots where each slot corresponds to an RF hop frequency. Consecutive hopscorrespond to different RF hop frequencies. The normal hop is 1 600 hops/s.

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9

Length of pseudo-random sequence: 29-1 = 524 bits Longest sequence of zeros: 8 (non-inverted signal)

Report No. ENB2502170213W00301R

Linear Feedback Shift Register for Generation of the PRBS sequence

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8.3 Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode:

35, 27, 6, 44, 14, 61, 74, 32, 1, 11, 23, 2, 55, 65, 29, 3, 9, 52, 78, 58, 40, 25, 0, 7, 18, 26, 76, 60, 47, 50, 2, 5, 16, 37, 70, 63, 66, 54, 20, 13, 4, 8, 15, 21, 26, 10, 73, 77, 67, 69, 43, 24, 57, 39, 46, 72, 48, 33, 17, 31, 75, 19, 41, 62, 68, 28, 51, 66, 30, 56, 34, 59, 71, 22, 49, 64, 38, 45, 36, 42, 53

Each Frequency used equally on the average by each transmitter

8.4 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH- enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

9 TEST REQUIREMENTS

9.1 20DB BANDWIDTH

Applicable Standard

According to FCC Part 15.247(a)(1) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

No limit requirement.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

The EUT was operating in Bluetooth V5.0 and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 30 kHz.

Set the video bandwidth (VBW) =100kHz.

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

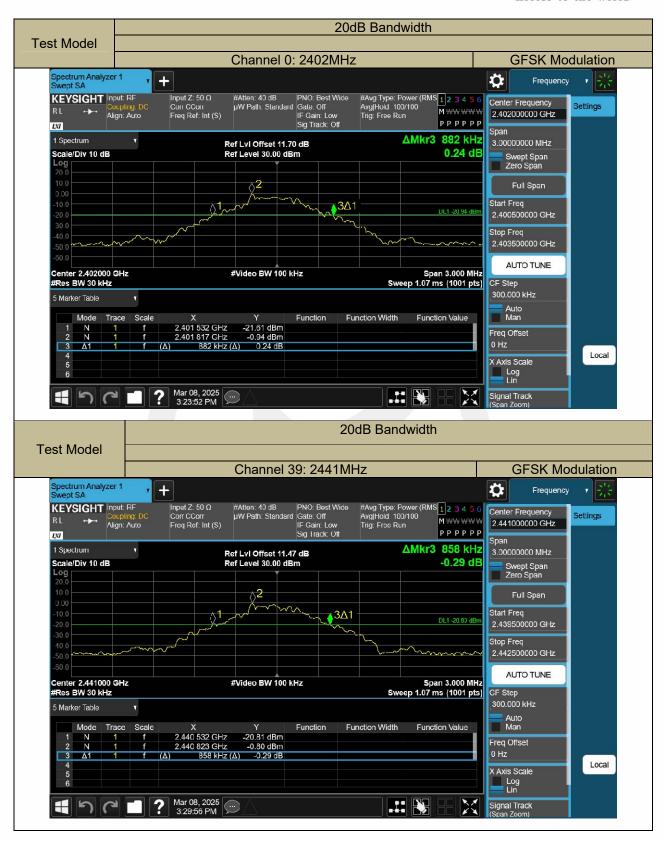
Set Sweep = auto couple.

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use themarker-delta function to measure 20 dB down one side of the emission. Reset the markerdeltafunction, and move the marker to the other side of the emission, until it is (asclose as possible to) even with the reference marker level. The marker-delta reading atthis point is the 20 dB bandwidth of the emission.

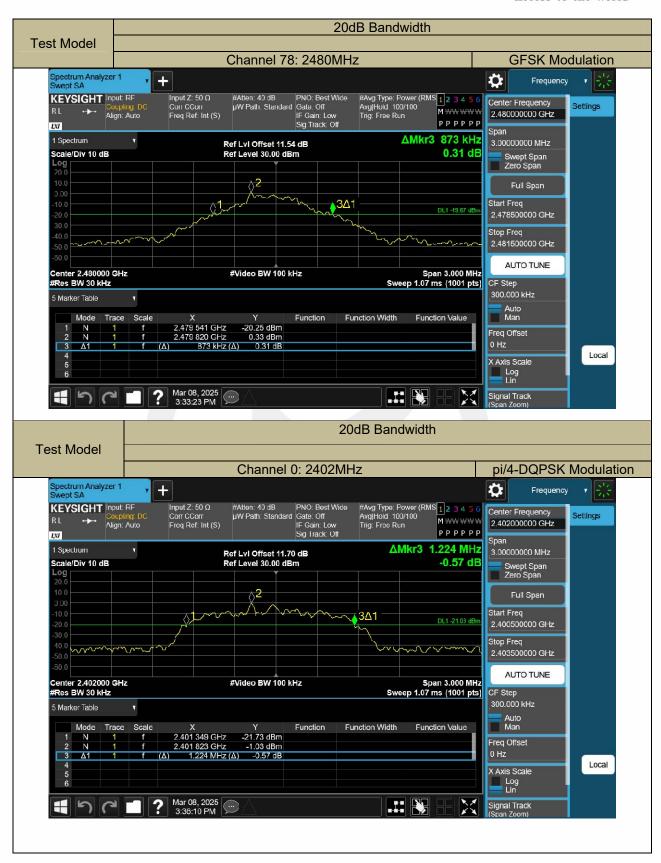
If this value varies with differentmodes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measure and record the results in the test report.

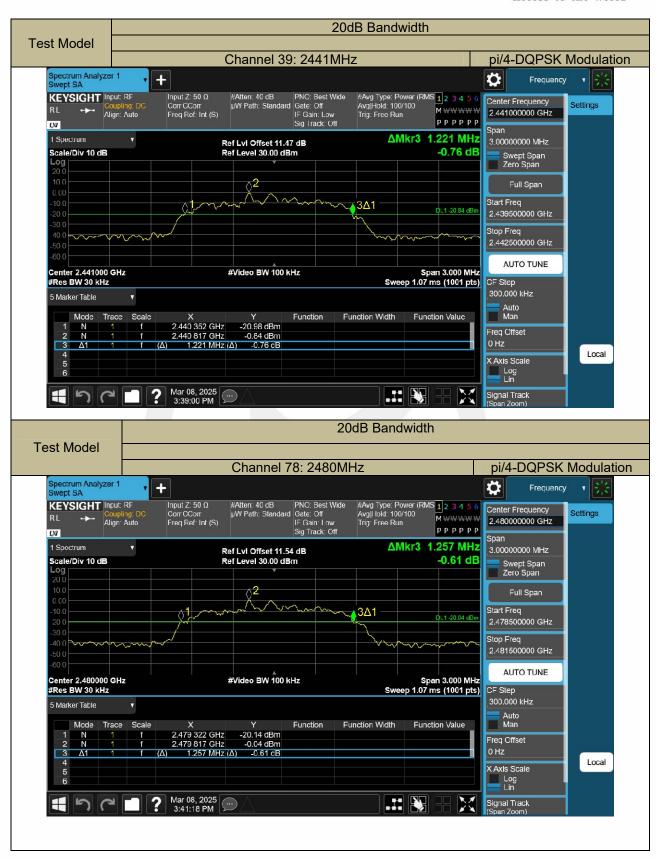
Test Results


Temperature:	23 ℃	Test Date:	March 08, 2025
Humidity:	40 %	Test By:	Victor Chen

Modulation Mode	Channel Number	Channel Frequency (MHz)	20dB Bandwidth (MHz)
	0	2402	0.882
GFSK	39	2441	0.858
	78	2480	0.873
	0	2402	1.224
pi/4-DQPSK	39	2441	1.221
	78	2480	1.257


Report No. ENB2502170213W00301R

Page 16 of 56



9.2 CARRIER FREQUENCY SEPARATION

Applicable Standard

According to FCC Part 15.247(a)(1) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth ofthe hopping channel, whichever is greater.

In case of an output power less than 125mW, the frequency hopping system may have channels separated by a minimum of 25kHz ortwo-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

■ According to FCC Part15.247(a)(1)

The EUT must have its hopping function enabled. Use the following spectrum analyzersettings: Set the RBW =100kHz. Set VBW =300kHz.

Set the span = wide enough to capture the peaks of two adjacent channels Set Sweep time = auto couple.

Set Detector = peak. Set Trace mode = max hold.

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

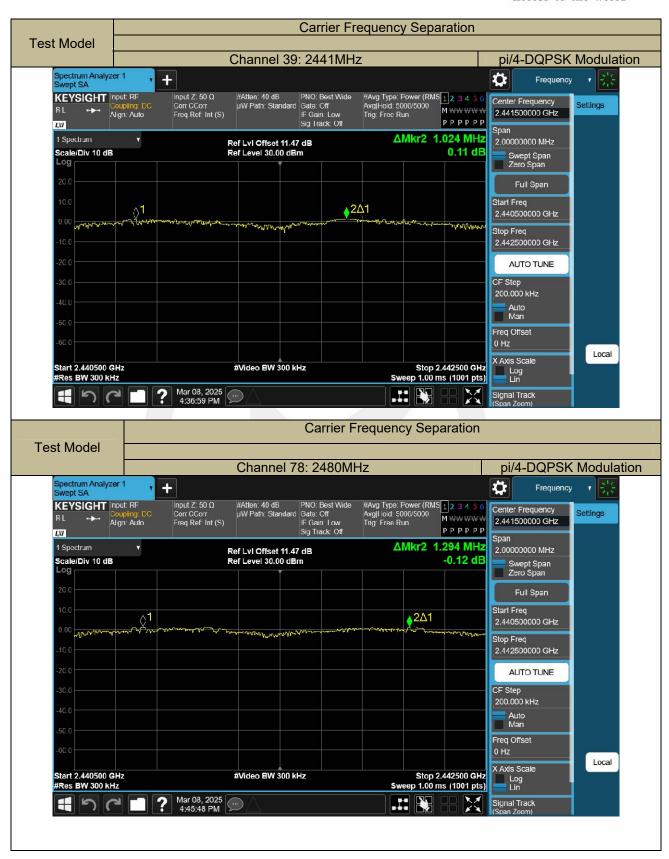
Test Results

Temperature: 23° Test Date: March 08, 2025 Humidity: 40 % Test By: Victor Chen

Modulation	Test	Channel Frequency	Measurement Bandwidth	Limit	Verdict
Mode	Mode	(MHz)	(MHz)	(MHz)	Verdict
	DH1	Нор	1.006	≥0.903	PASS
GFSK	DH3	Нор	0.984	≥0.954	PASS
	DH5	Нор	1.012	≥0.954	PASS
	2DH1	Нор	1.004	≥0.834	PASS
pi/4-DQPSK	2DH3	Нор	1.024	≥0.878	PASS
	2DH5	Нор	1.294	≥0.902	PASS

Note: Limit = 20dB bandwidth * 2/3, if it is greater than 25kHz and the output power is less than 125mW (21dBm).

Report No. ENB2502170213W00301R



9.3 NUMBER OF HOPPING FREQUENCIES

Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall use at least15 channels.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

■ According to FCC Part15.247(a)(1)(iii)

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100kHz

VBW ≥ RBW

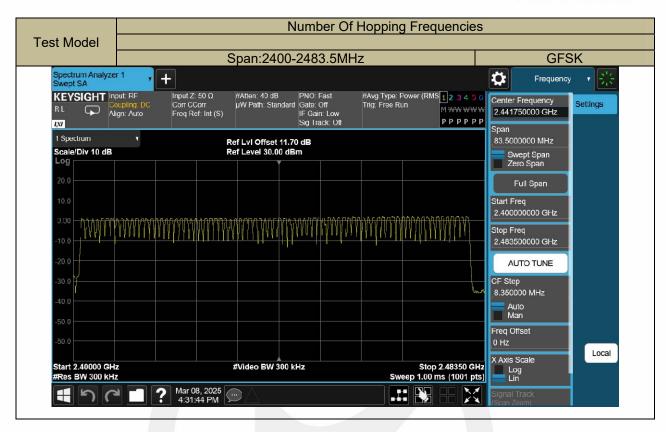
Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. It may prove necessary to break the span up to sections, inorder to clearly show all of the hopping frequencies.

Test Results


Temperature: 23 ℃ Test Date: March 08, 2025 Humidity: 40 % Test By: Victor Chen

Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel limit			
2402-2480 (GFSK)	79	>15			
Note: Note: Both BR & FDR mode has same result					

Report No. ENB2502170213W00301R

Page 24 of 56

9.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

For frequency hopping systems operating in the 2400-2483.5MHz band, the averagetime of occupancy on any channel shall not be greater than 0.4s within a period of 0.4smultiplied by the number of hopping channels employed.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

■ According to FCC Part15.247(a)(1)(iii)

The EUT must have its hopping function enabled. Use the following spectrum analyzersettings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.),

repeat this test for each variation. The limit is specified in one of the subparagraphsof this Section.

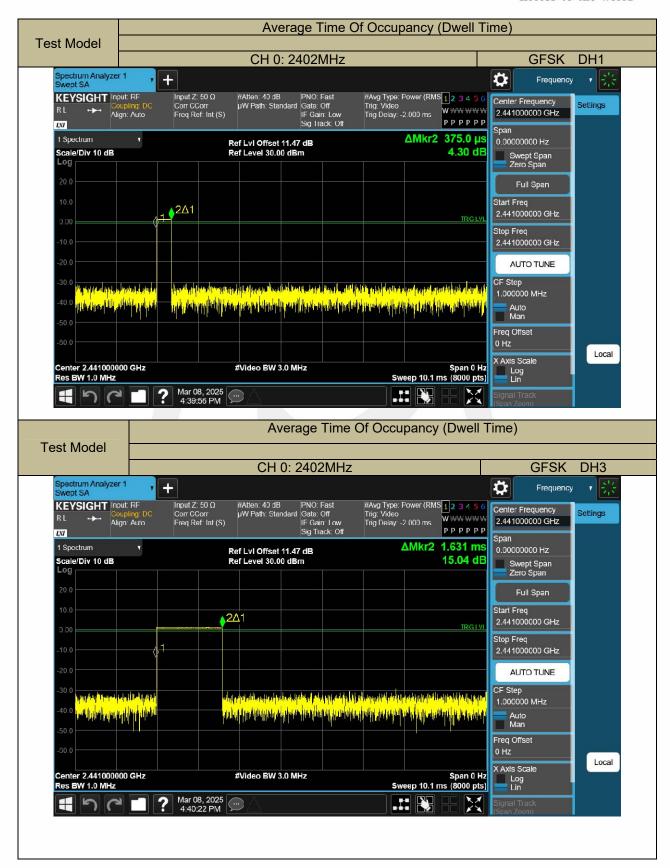
Test Results

Temperature: 23 $^{\circ}$ Test Date: March 08, 2025 Humidity: 40 $^{\circ}$ Test By: Victor Chen

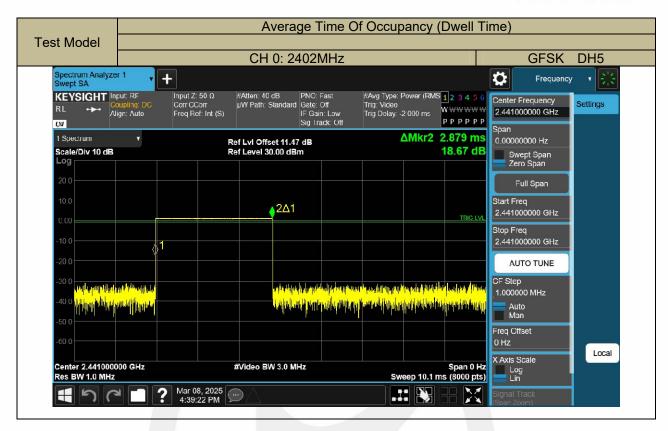
Modulation	Frequen	Packet	Pluse width	DwellTime	Limit	Verdict
Mode	cy	type	(ms)	(ms)	(ms)	verdict
	Нор	DH1	0.375	120	<400	PASS
GFSK	Нор	DH3	1.631	261	<400	PASS
	Нор	DH5	2.879	307	<400	PASS

Note1: DwellTime(DH1)=PW*(1600/2/79)*31.6

DwellTime(DH3)=PW*(1600/4/79)*31.6


DwellTime(DH5)=PW*(1600/6/79)*31.6

Note2: Bluetooth (GFSK, pi/4-DQPSK)mode have been tested, and the worst results has been recorded on the follow page.


 宁波市信測检測技术有限公司
 地址: 浙江省宁波市高新区清逸路216弄8幢8号
 网址: Http://www.emtek.com.cn
 邮箱: nb@emtek.com.cn

 EMTEK(Ningbo) Co., Ltd.
 Add: No. 8, Building 8, Lane 216, Qingyi Road, High-tech Zone, Ningbo, Zhejiang, China
 Http://www.emtek.com.cn
 E-mail: nb@emtek.com.cn

9.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC Part 15.247(b)(1) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

The max For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

■ According to FCC Part15.247(b)(1)

As an alternative to a peak power measurement, compliance with the limit can be based on a measurement of the maximum conducted output power.

Use the following spectrum analyzer settings:

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel(about 10MHz)

Set RBW > the 20 dB bandwidth of the emission being measured(about 3MHz)

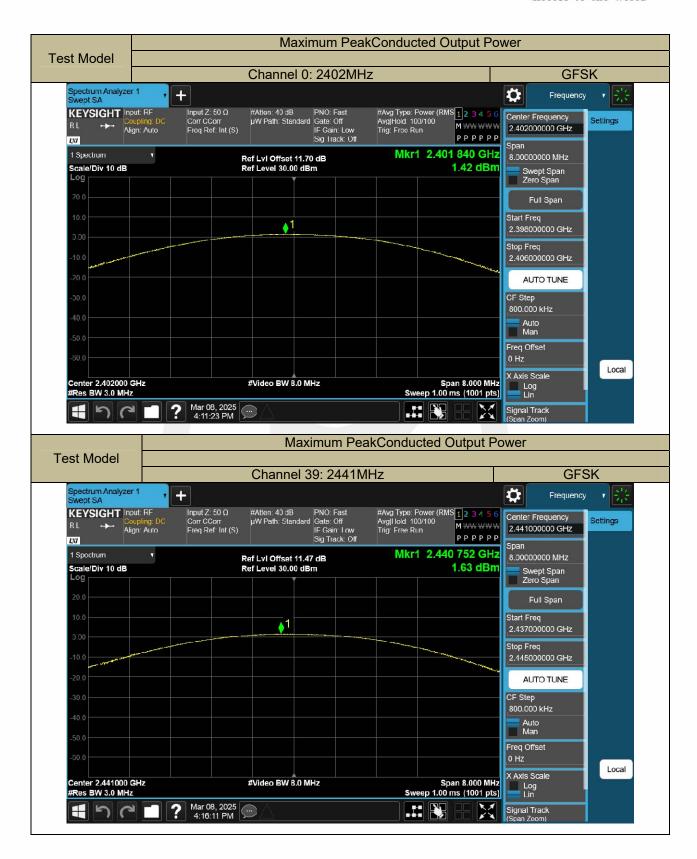
Set VBW ≥ RBW

Set Sweep = auto

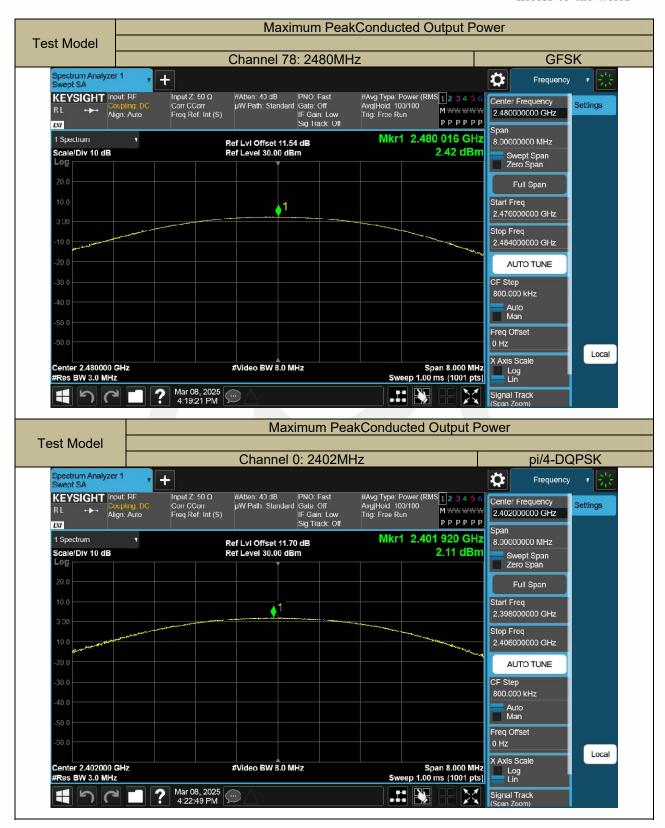
Set Detector function = peak

Set Trace = max hold

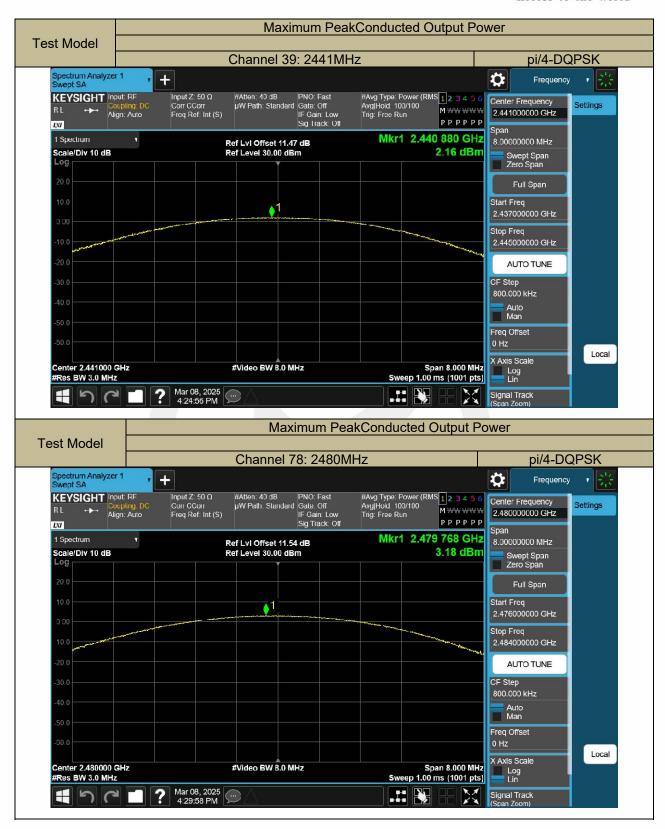
Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission to determine the peak amplitude level.


Test Results

Temperature: 23 $^{\circ}$ Test Date: March 08, 2025 Humidity: 40 $^{\circ}$ Test By: Victor Chen


Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	0	2402	1.42	21	PASS
GFSK	39	2441	1.63	21	PASS
	78	2480	2.42	21	PASS
ni/4 DOD	0	2402	2.12	21	PASS
pi/4-DQP SK	39	2441	2.16	21	PASS
SK	78	2480	3.18	21	PASS
Note:N/A	•				

Report No. ENB2502170213W00301R



9.6 CONDUCTED SUPRIOUS EMISSION

Applicable Standard

According to FCC Part 15.247(d) and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Configuration

Test according to clause 7.1 radio frequency test setup 1

Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

■ Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DSS channel center frequency.

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel.

Set the RBW = 100 kHz. Set the VBW \geq 3 x RBW.

Set Detector = peak. Set Sweep time = auto couple.

Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum Maximum conduceted level.

Note that the channel found to contain the maximum conduceted level can be used to establish the reference level.

■ Band-edge Compliance of RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation Set RBW ≥ 1% of the span=100kHzSet VBW ≥ RBW

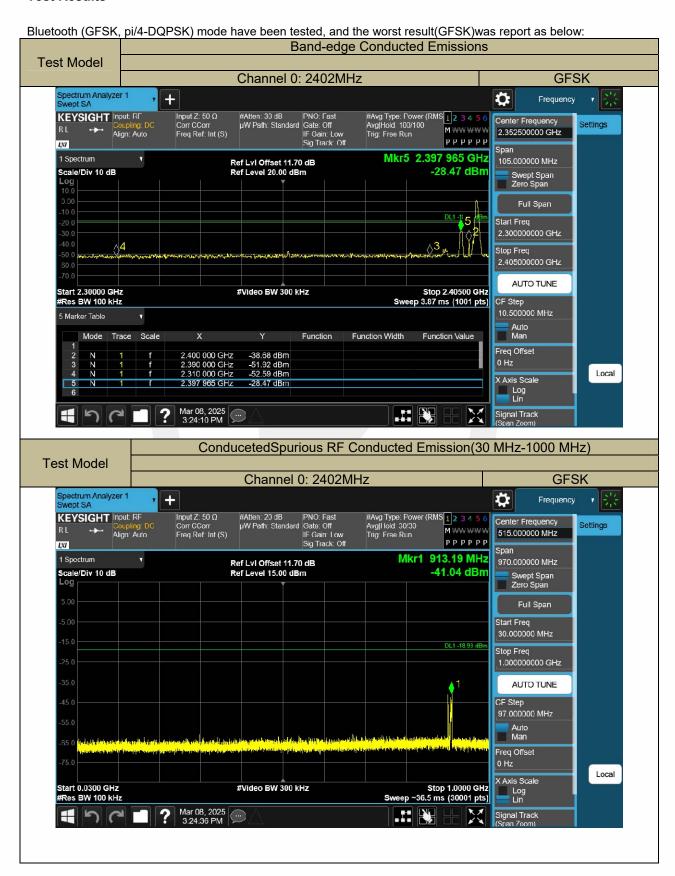
Set Sweep = autoSetDetector function = peakSetTrace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

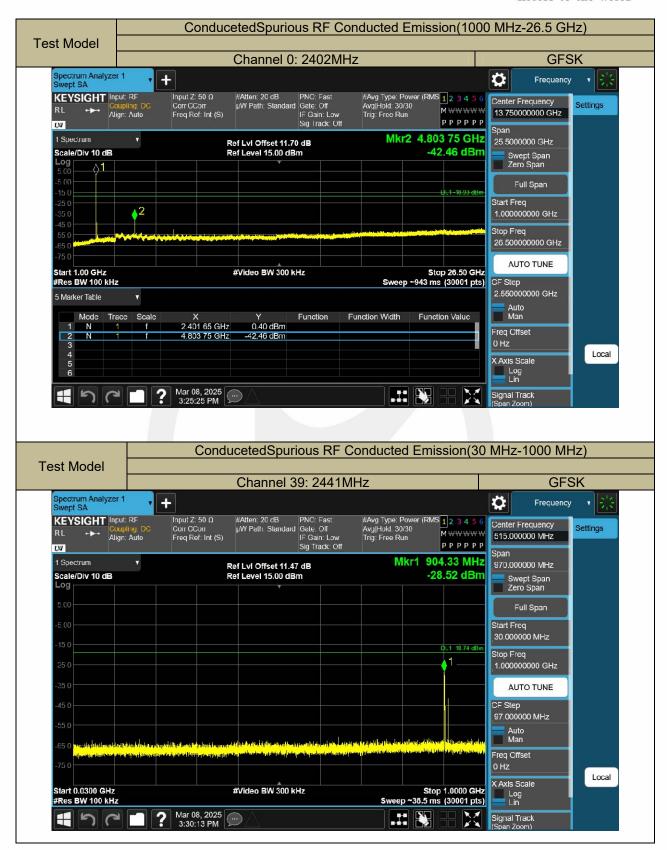
Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

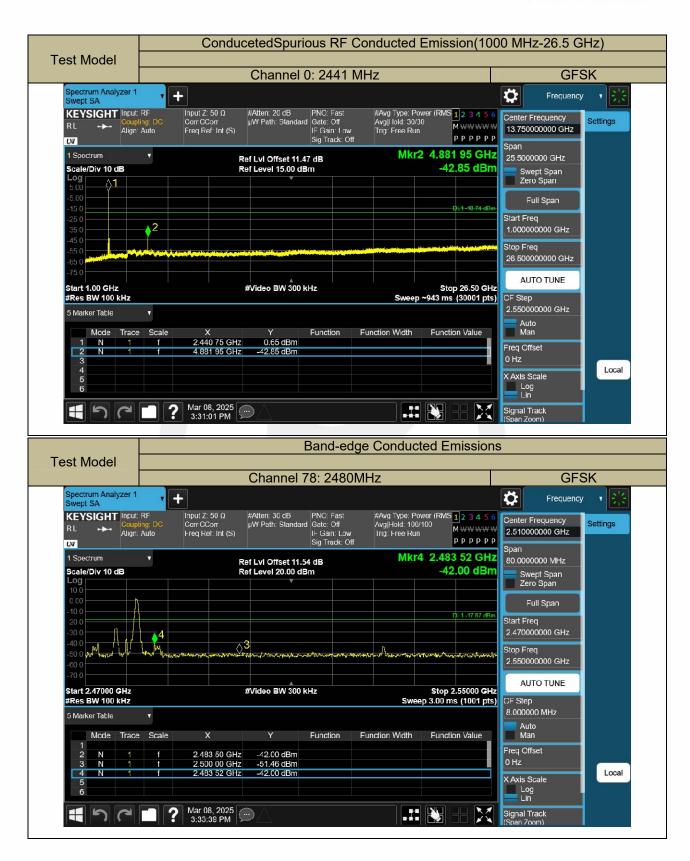
■ ConducetedSpurious RF Conducted Emission

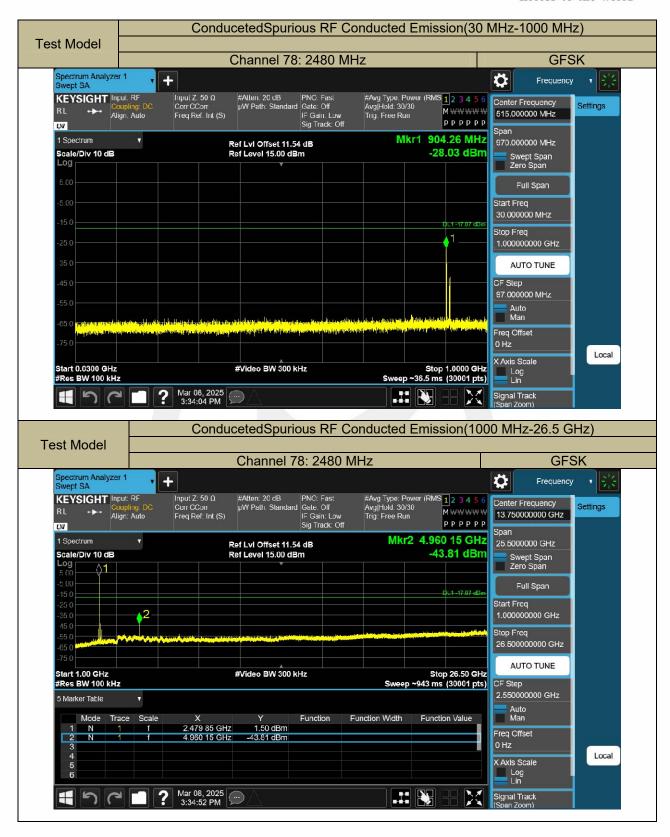
Use the following spectrum analyzer settings:

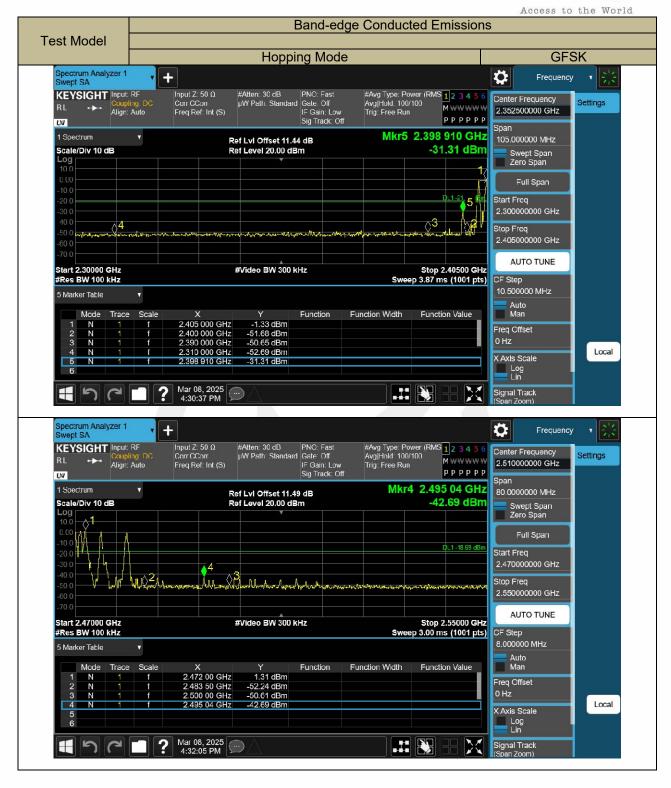

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.(30MHz to 25GHz).Set RBW = 100 kHzSetVBW≥ RBW

Set Sweep = autoSetDetector function = peakSetTrace = max hold


Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.


Test Results





9.7 RADIATED SPURIOUS EMISSION

Applicable Standard

According to FCC Part 15.247(d) and 15.209 and 558074 D01 15.247 Meas Guidance V05r02

Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

MHz MHz MHz GHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322	According to 1 CC 1 art 13	According to 1 CC Fatt 13.203, Nestricted bands								
10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	MHz	MHz	MHz	GHz						
2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	6.26775-6.26825	123-138	2200-2300	14.47-14.5						
8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.57675-12.57725 322-335.4 3600-4400 (2)	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
13.36-13.41	12.57675-12.57725	322-335.4	3600-4400	(2)						
	13.36-13.41									

According to FCC Part15.209,the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Test Configuration

Test according to clause 7.2 radio frequency test setup 2

Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz)

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2014 respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

Test Results

■ Spurious Emission below 30MHz(9KHz to 30MHz)

Temperature: 18 ℃ Test Date: March 11, 2025 Humidity: 63 % Test By: Victor Chen

Test mode: TX Mode

Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m	Limit 3m(dBuV/m)		er(dB)
(MHz)	H/V	PK `	ÁV	PK	AV	PK	AV
	/				y/		

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz(1GHz to 25GHz)

Bluetooth (GFSK, pi/4-DQPSK) mode have been tested, and the worst result(GFSK)was report as below:

Temperature: 18 $^{\circ}$ Test Date: March 11, 2025 Humidity: 63 $^{\circ}$ Test By: Victor Chen

Test mode: GFSK Frequency: Channel 0: 2402MHz

Freq.	Ant.Pol.	ol. Emission Level(dBuV/m)		Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK `	AV	PK	AV	PK	AV	
4803.500	V	46.45	32.34	74.00	54.00	-27.55	-21.66	
7205.500	V	49.09	40.21	74.00	54.00	-24.91	-17.51	
17955.000	V	55.23	42.58	74.00	54.00	-18.77	-11.42	
4804.000	Н	45.61	33.67	74.00	54.00	-28.39	-20.33	
14099.500	Н	53.48	38.70	74.00	54.00	-20.52	-15.30	
17966.000	Н	56.18	42.63	74.00	54.00	-17.82	-11.37	

Temperature: 18 $^{\circ}$ C Test Date: March 11, 2025 Humidity: 63 $^{\circ}$ C Test By: Victor Chen

Test mode: GFSK Frequency: Channel 39: 2441MHz

Freq.	Ant.Pol. Emission Level(dBuV/m)			Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK `	AV	PK	AV	PK	AV	
4881.500	V	46.20	32.62	74.00	54.00	-27.80	-21.38	
7322.500	V	49.57	35.78	74.00	54.00	-24.43	-18.22	
17909.500	V	55.32	40.12	74.00	54.00	-18.68	-13.88	
4881.500	Н	46.21	32.89	74.00	54.00	-27.79	-21.11	
7322.500	Н	50.32	35.12	74.00	54.00	-23.68	-18.88	
17914.500	Н	55.33	41.34	74.00	54.00	-18.67	-12.66	

Temperature: 18 $^{\circ}$ Test Date: March 11, 2025 Humidity: 63 $^{\circ}$ Test By: Victor Chen

Test mode: GFSK Frequency: Channel 78: 2480MHz

Freq.			Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK `	ÁV	PK	AV	PK	AV	
4960.000	V	46.36	33.00	74.00	54.00	-27.64	-21.00	
7440.400	V	48.15	35.12	74.00	54.00	-25.85	-18.88	
17975.500	V	55.09	42.57	74.00	54.00	-18.91	-11.43	
4960.000	Н	46.71	34.59	74.00	54.00	-27.29	-19.41	
7440.000	Н	51.22	39.36	74.00	54.00	-22.78	-14.74	
17896.000	Н	55.01	42.09	74.00	54.00	-18.99	-11.91	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz Bluetooth (GFSK, pi/4-DQPSK) mode have been tested, and the worst result(GFSK, Hopping) was report as below:

Temperature: 18 $^{\circ}$ Test Date: March 11, 2025 Humidity: 63 $^{\circ}$ Test By: Victor Chen

Test mode: GFSK Frequency: Channel 0: 2402MHz

Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2373.480	Н	57.94	74.00	-16.06	43.48	54.00	-10.52
2384.320	V	57.98	74.00	-16.02	43.18	54.00	-10.82

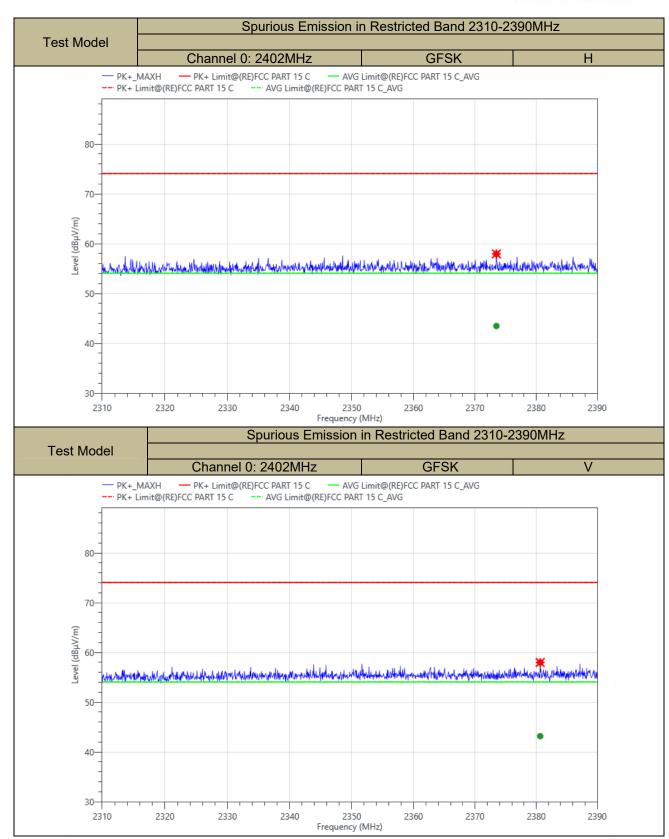
Temperature: 18 $^{\circ}$ Test Date: March 11, 2025 Humidity: 63 $^{\circ}$ Test By: Victor Chen

Test mode: GFSK Frequency: Channel 78: 2480MHz

Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2492.047	Н	58.01	74.00	-15.99	44.93	54.00	-9.07
2491.503	V	57.73	74.00	-16.27	43.17	54.00	-10.83

Temperature: 18 $^{\circ}$ Test Date: March 11, 2025 Humidity: 63 $^{\circ}$ Test By: Victor Chen Test mode: GFSK Frequency: Hopping

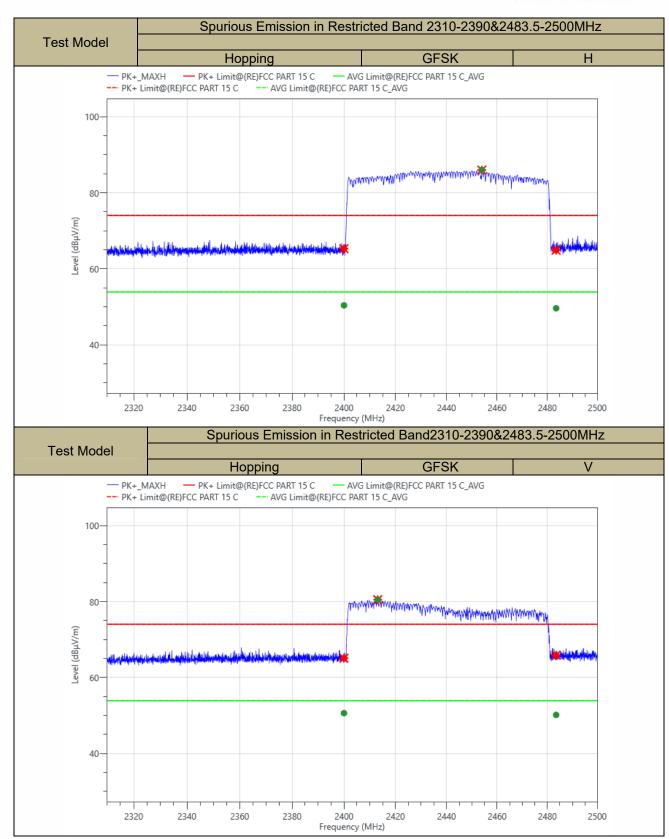
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2399.984	Н	65.30	74.00	-8.70	50.41	54.00	-3.59
2483.489	Н	64.92	74.00	-9.08	49.64	54.00	-4.36
2399.984	V	65.11	74.00	-8.89	50.64	54.00	-3.36
2483.489	V	65.89	74.00	-8.11	50.17	54.00	-3.83

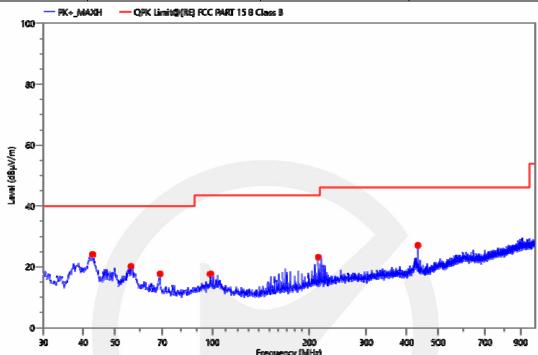

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

- (2) Emission Level= Reading Level+Correct Factor +Cable Loss.
- (3) Correct Factor= Ant_F + Cab_L Preamp
- (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

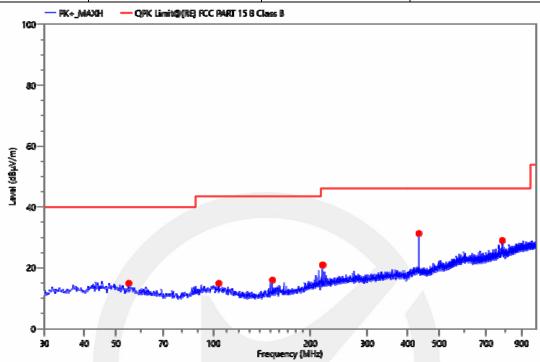

Report No. ENB2502170213W00301R

Page 42 of 56

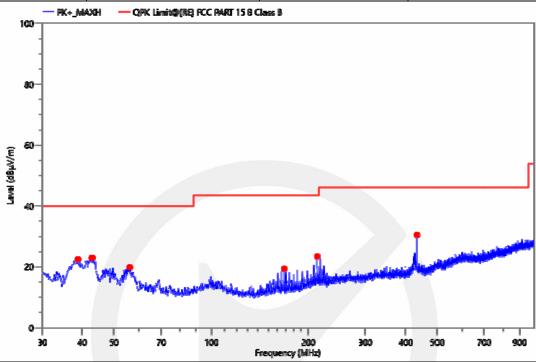




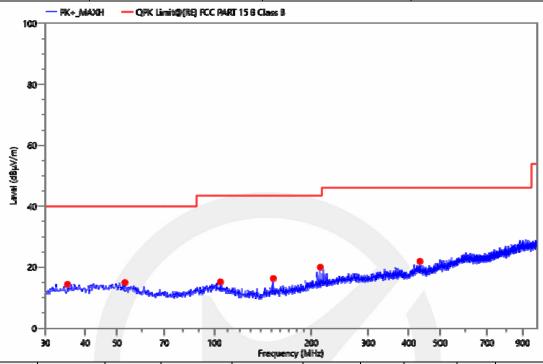
■ Spurious Emission below 1GHz(30MHz to 1GHz) Bluetooth (GFSK, pi/4-DQPSK)mode have been tested, and the worst result was report as below:


Project Information								
Mode:	TX2402	Voltage:	AC 120V/60Hz					
Environment:	Temp: 18 °C; Humi:63 %	Engineer:	Andy					

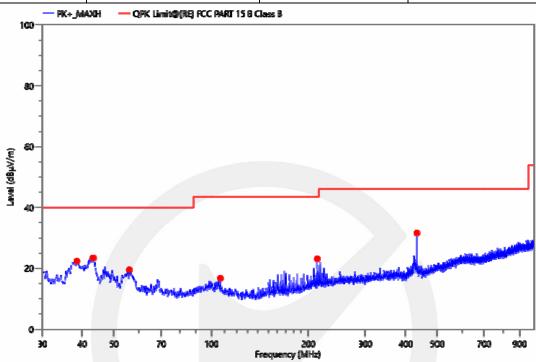
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Height (cm)	Pol.	Azimuth (deg)	Verdict
1	42.610	48.23	-24.17	24.06	40.00	15.94	QPK	100	V	207.4	PASS
2	56.093	45.10	-24.93	20.17	40.00	19.83	QPK	100	V	232.4	PASS
3	68.800	43.97	-26.26	17.71	40.00	22.29	QPK	100	V	155.6	PASS
4	98.676	42.04	-24.39	17.65	43.50	25.85	QPK	100	V	189.0	PASS
5	213.330	47.02	-23.86	23.16	43.50	20.34	QPK	100	V	171.1	PASS
6	433.035	45.63	-18.56	27.07	46.00	18.93	QPK	100	V	355.0	PASS


Project Information								
Mode:	TX2402	Voltage:	AC 120V/60Hz					
Environment:	Temp: 18 °C; Humi:63 %	Engineer:	Andy					

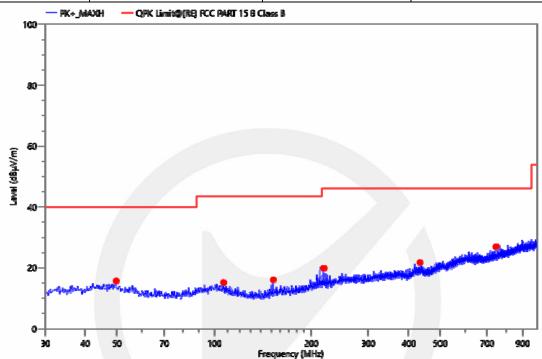
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Height (cm)	Pol.	Azimuth (deg)	Verdict
1	54.832	39.63	-24.69	14.94	40.00	25.06	QPK	100	Н	183.4	PASS
2	103.817	39.61	-24.67	14.94	43.50	28.56	QPK	100	Н	203.6	PASS
3	152.026	42.81	-26.83	15.98	43.50	27.52	QPK	100	Н	308.4	PASS
4	218.083	44.63	-23.7	20.93	46.00	25.07	QPK	100	Η	73.9	PASS
5	433.035	49.85	-18.56	31.29	46.00	14.71	QPK	100	Ι	216.7	PASS
6	781.944	42.23	-13.25	28.98	46.00	17.02	QPK	100	Н	221.5	PASS


Project Information									
Mode:	TX2441	Voltage:	AC 120V/60Hz						
Environment:	Temp: 18 °C; Humi:63 %	Engineer:	Andy						

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Height (cm)	Pol.	Azimuth (deg)	Verdict
1	38.730	47.07	-24.62	22.45	40.00	17.55	QPK	100	V	203.3	PASS
2	42.804	47.07	-24.13	22.94	40.00	17.06	QPK	100	V	179.5	PASS
3	55.996	44.73	-24.91	19.82	40.00	20.18	QPK	100	V	127.2	PASS
4	168.031	45.62	-26.27	19.35	43.50	24.15	QPK	100	V	334.9	PASS
5	213.330	47.27	-23.86	23.41	43.50	20.09	QPK	100	V	170.0	PASS
6	433.035	49.05	-18.56	30.49	46.00	15.51	QPK	100	V	237.9	PASS


Project Information									
Mode:	TX2441	Voltage:	AC 120V/60Hz						
Environment:	Temp: 18 °C; Humi:63 %	Engineer:	Andy						

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Height (cm)	Pol.	Azimuth (deg)	Verdict
1	35.141	38.70	-24.32	14.38	40.00	25.62	QPK	100	Н	264.9	PASS
2	52.892	39.30	-24.32	14.98	40.00	25.02	QPK	100	Н	142.3	PASS
3	104.302	39.91	-24.72	15.19	43.50	28.31	QPK	100	Н	200.6	PASS
4	152.026	43.14	-26.83	16.31	43.50	27.19	QPK	100	Н	68.5	PASS
5	213.233	43.84	-23.86	19.98	43.50	23.52	QPK	100	Н	18.5	PASS
6	433.035	40.48	-18.56	21.92	46.00	24.08	QPK	100	Н	329.8	PASS


	Project Information									
Mode:	TX2480	Voltage:	AC 120V/60Hz							
Environment:	Temp: 18 °C; Humi:63 %	Engineer:	Andy							

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Height (cm)	Pol.	Azimuth (deg)	Verdict
1	38.439	46.95	-24.6	22.35	40.00	17.65	QPK	100	V	15.3	PASS
2	43.095	47.48	-24.06	23.42	40.00	16.58	QPK	100	V	178.4	PASS
3	55.802	44.40	-24.87	19.53	40.00	20.47	QPK	100	V	160.0	PASS
4	106.533	41.70	-24.96	16.74	43.50	26.76	QPK	100	V	125.5	PASS
5	213.233	47.01	-23.86	23.15	43.50	20.35	QPK	100	V	170.1	PASS
6	433.035	50.18	-18.56	31.62	46.00	14.38	QPK	100	V	284.4	PASS

Project Information									
Mode:	TX2480	Voltage:	AC 120V/60Hz						
Environment:	Temp: 18 °C; Humi:63 %	Engineer:	Andy						

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Height (cm)	Pol.	Azimuth (deg)	Verdict
1	49.691	39.47	-23.77	15.70	40.00	24.30	QPK	100	Н	116.0	PASS
2	106.727	40.16	-24.98	15.18	43.50	28.32	QPK	100	Н	102.9	PASS
3	152.026	42.91	-26.83	16.08	43.50	27.42	QPK	100	Н	283.9	PASS
4	218.083	43.59	-23.7	19.89	46.00	26.11	QPK	100	Ι	39.8	PASS
5	433.035	40.32	-18.56	21.76	46.00	24.24	QPK	100	Н	358.6	PASS
6	745.278	40.68	-13.77	26.91	46.00	19.09	QPK	100	Η	212.5	PASS

9.8 CONDUCTED EMISSION TEST

Applicable Standard

According to FCC Part 15.207(a)

Conformance Limit

Conducted Emission Limit

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test according to clause 7.3 conducted emission test setup

Test Procedure

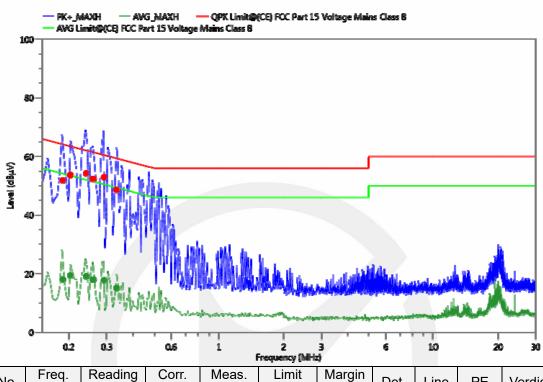
The EUT was placed on a table which is 0.1m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Repeat above procedures until all frequency measured were complete.

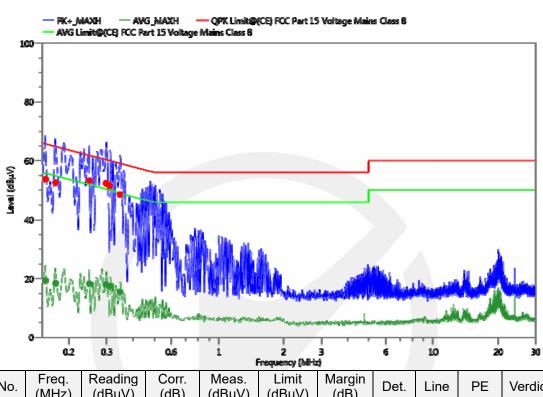
Test Results

Pass.


Bluetooth (GFSK, pi/4-DQPSK)mode have been tested, and the worst result was report as below:

Report No. ENB2502170213W00301R

Page 52 of 56


Project Information									
Mode: TX2402 Voltage: AC 120V/60Hz									
Environment:	Temp: 19 ℃; Humi:51 %	Engineer:	Kevin Wang						

No.	Freq.	Reading	Corr.	Meas.	Limit	Margin	Det.	Line	PE	Verdict
INO.	(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Det.	LII		verdict
1	0.187	41.55	10.31	51.86	64.17	12.31	QPK	L1	GND	PASS
2	0.187	7.67	10.31	17.98	54.17	36.19	AVG	/ L1	GND	PASS
3	0.203	43.32	10.35	53.67	63.49	9.82	QPK	L1	GND	PASS
4	0.203	9.04	10.35	19.39	53.49	34.10	AVG	L1	GND	PASS
5	0.241	43.89	10.34	54.23	62.06	7.83	QPK	L1	GND	PASS
6	0.241	8.75	10.34	19.09	52.06	32.97	AVG	L1	GND	PASS
7	0.259	41.99	10.34	52.33	61.46	9.13	QPK	L1	GND	PASS
8	0.259	7.63	10.34	17.97	51.46	33.49	AVG	L1	GND	PASS
9	0.291	42.58	10.33	52.91	60.50	7.59	QPK	L1	GND	PASS
10	0.291	7.40	10.33	17.73	50.50	32.77	AVG	L1	GND	PASS
11	0.333	38.11	10.48	48.59	59.38	10.79	QPK	L1	GND	PASS
12	0.333	4.61	10.48	15.09	49.38	34.29	AVG	L1	GND	PASS

Project Information					
Mode:	TX2402	Voltage:	AC 120V/60Hz		
Environment:	Temp: 19 ℃; Humi:51 %	Engineer:	Kevin Wang		

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV)	Limit (dBµV)	Margin (dB)	Det.	Line	PE	Verdict
1	0.155	43.41	10.23	53.64	65.73	12.09	QPK	N	GND	PASS
2	0.155	9.08	10.23	19.31	55.73	36.42	AVG	N	GND	PASS
3	0.173	42.18	10.27	52.45	64.82	12.37	QPK	N	GND	PASS
4	0.173	8.10	10.27	18.37	54.82	36.45	AVG	N	GND	PASS
5	0.250	42.73	10.36	53.09	61.76	8.67	QPK	Ν	GND	PASS
6	0.250	7.88	10.36	18.24	51.76	33.52	AVG	N	GND	PASS
7	0.297	41.89	10.37	52.26	60.33	8.07	QPK	N	GND	PASS
8	0.297	7.53	10.37	17.90	50.33	32.43	AVG	N	GND	PASS
9	0.310	40.89	10.37	51.26	59.97	8.71	QPK	N	GND	PASS
10	0.310	6.93	10.37	17.30	49.97	32.67	AVG	N	GND	PASS
11	0.346	38.30	10.35	48.65	59.06	10.41	QPK	N	GND	PASS
12	0.346	5.08	10.35	15.43	49.06	33.63	AVG	N	GND	PASS

9.9 ANTENNA APPLICATION

Antenna Requirement

Standard	Requirement		
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.		

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Result				
Pass.				
Note:	PCB Antenna: The PCI Antenna use a permaner Not using a standard ant The antenna has to be p	ntly attached antenn enna jack or electric	a which is not replaceab al connector for antenna	replacement
which in accord	lance to section 15.203,	please refer to the in	nternal photos.	
		*** End of Report	***	

声明 Statement

1. 本报告无授权批准人签字及"检验检测专用章"无效;

This report will be void without authorized signature or special seal for testing report.

2. 未经许可本报告不得部分复制;

This report shall not be copied partly without authorization.

3. 本报告的检测结果仅对送测样品有效,委托方对样品的代表性和资料的真实性负责;

The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.

4. 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内,仅作为客户委托、科研、教学或内部质量控制等目的使用;

The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.

5. 本检测报告以实测值进行符合性判定,未考虑不确定度所带来的风险,本实验室不承担相关责任, 特别约定、标准或规范中有明确规定的除外;

The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.

6. 对本检测报告若有异议,请于收到报告之日起 20 日内提出;

Objections shall be raised within 20 days from the date receiving the report.