

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. : Applicant:	CQASZ20240701233E-02 Creek Wearable Technology Co., Ltd. 910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen		
Address of Applicant:			
Equipment Under Test (E			
Product:	Smart Watch		
Model No.:	CW Watch S5 Pro		
Test Model No.:	CW Watch S5 Pro		
Brand Name:	N/A		
FCC ID:	2BBYH-C1036		
Standards:	47 CFR Part 15, Subpart C		
Date of Receipt:	2024-7-1		
Date of Test:	2024-7-1 to 2024-7-25		
Date of Issue:	2024-8-9		
Test Result :	PASS*		

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou
	(Lewis Zhou)
Reviewed By:	Timo Lej'
	(Timo Lei)
Approved By:	ALex

(Alex Wang)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20240701233E-02	Rev.01	Initial report	2024-8-9

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	/	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15.247	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
4.10 Other Information Requested by the Customer	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 Conducted Peak Output Power	
5.4 20DB Occupied Bandwidth	
5.5 CARRIER FREQUENCIES SEPARATION	
5.6 Hopping Channel Number	
5.7 DWELL TIME	
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions	
5.10 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS 5.11.1 Radiated Emission below 1GHz	
5.11.1 Radiated Emission below 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	72
6.1 Radiated Emission	
6.2 Conducted Emission	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	74

4 General Information

4.1 Client Information

Applicant:	Creek Wearable Technology Co., Ltd.		
Address of Applicant:	910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen		
Manufacturer:	Creek Wearable Technology Co., Ltd.		
Address of Manufacturer:	910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen		
Factory:	Creek Wearable Technology Co., Ltd.		
Address of Factory:	910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen		

4.2 General Description of EUT

•			
Product Name:	Smart Watch		
Model No.:	CW Watch S5 Pro		
Test Model No.:	CW Watch S5 Pro		
Trade Mark:	N/A		
Software Version:	V1.0.0		
Hardware Version:	V1.1		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	V5.3		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Transfer Rate:	1Mbps/2Mbps/3Mbps		
Number of Channel:	79		
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Product Type:	☐ Mobile		
Test Software of EUT:	FCC_V2.24		
Antenna Type:	Metal mid-frame antenna		
Antenna Gain:	-2.06 dBi		
Power Supply:	Li-ion battery: DC 3.85V 300mAh, Charge by DC 5V for adapter		
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.		
Simultaneous TX is not supported.			

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:


Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software Se	ettings:			
Mode:	 Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 			
EUT Power level:	(Power level is built-in set parameters and cannot be changed and selected)			
Use test software to set the l transmitting of the EUT.	owest frequency, the middle frequency and	I the highest frequency keep		
Mode	Frequency(MHz)			
	СН0	2402		
DH1/DH3/DH5	CH39	2441		
	CH78	2480		
	СН0	2402		
2DH1/2DH3/2DH5	CH39	2441		
	CH78	2480		
	СН0	2402		
3DH1/3DH3/3DH5	СН39	2441		
	CH78	2480		

Run Software:

4.4 Test Environment

Operating Environment	Operating Environment:		
Temperature:	25 °C		
Humidity:	54% RH		
Atmospheric Pressure:	1009mbar		
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	Supplied
Adapter	MI	1	1	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU26	CQA-038	2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU40	CQA-075	2023/09/08	2024/09/07
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2023/09/08	2024/09/07
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2023/09/08	2024/09/07
Preamplifier	EMCI	EMC184055SE	CQA-089	2023/09/08	2024/09/07
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2023/09/08	2024/09/07
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2023/09/08	2024/09/07
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2023/09/08	2024/09/07
Antenna Connector	CQA	RFC-01	CQA-080	2023/09/08	2024/09/07
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2023/09/08	2024/09/07
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2023/09/08	2024/09/07
Power meter	R&S	NRVD	CQA-029	2023/09/08	2024/09/07
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2023/09/08	2024/09/07
EMI Test Receiver	R&S	ESR7	CQA-005	2023/09/08	2024/09/07
LISN	R&S	ENV216	CQA-003	2023/09/08	2024/09/07
Coaxial cable	CQA	N/A	CQA-C009	2023/09/08	2024/09/07
DC power	KEYSIGHT	E3631A	CQA-028	2023/09/08	2024/09/07

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
-----------------------	--

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

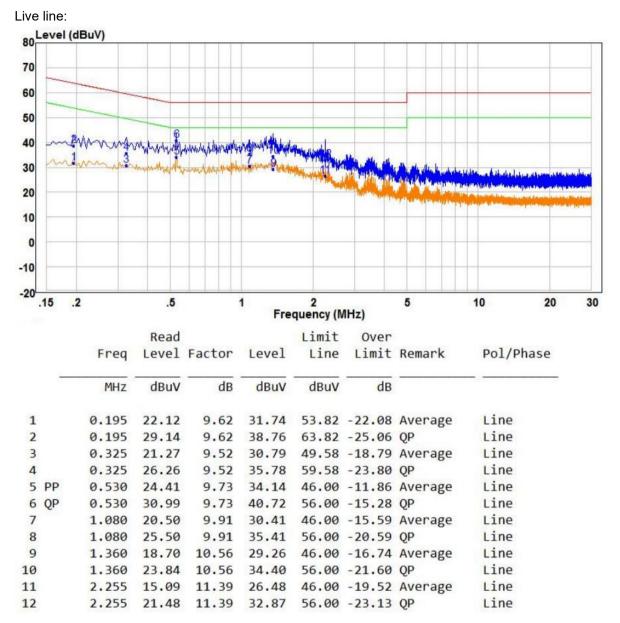
EUT Antenna:

The antenna is Metal mid-frame antenna.

The connection/connection type between the antenna to the EUT's antenna port is: unique coupling

This is either permanently attachment or a unique coupling that satisfies the requirement.

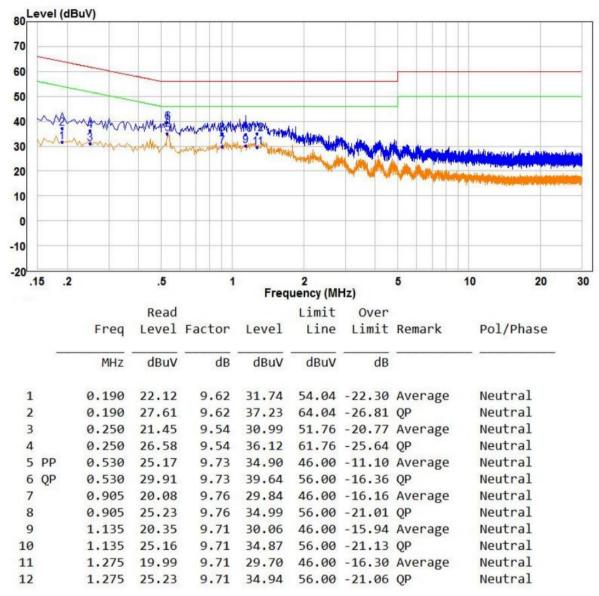
5.2 Conducted Emissions


 Conducted Linissio			
Test Requirement:	47 CFR Part 15C Section 15.2	207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:		Limit (c	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithn	n of the frequency.	
Test Setup:	 The mains terminal disturbation of the EUT was connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Lie exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal grade on the horizontal grade on the horizontal grade on the tabletop EUT was placed on the horizontal grade on the tell shall be 0.4 m for the EUT shall be 0.4 m for the EUT shall be 0.4 m for the EUT and associated excertises the EUT and all of the in ANSI C63.10: 2013 on control on the table of the formation of the form	b AC power source thro etwork) which provides bles of all other units of SN 2, which was bonde he way as the LISN 1 for set outlet strip was used ISN provided the rating ced upon a non-metalling of floor-standing ar round reference plane, th a vertical ground ref from the vertical ground ref from the vertical ground blane was bonded to the 1 was placed 0.8 m fro to a ground reference and reference plane. The s of the LISN 1 and the quipment was at least 0 im emission, the relative terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line f the EUT were d to the ground or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT we derence plane. The read d reference plane. The read d reference plane. The read d reference plane. The read d reference plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2 re positions of
Test Setup:	Shielding Room	AE USN2 + AC Ma Ground Reference Plane	Test Receiver

Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Remark:

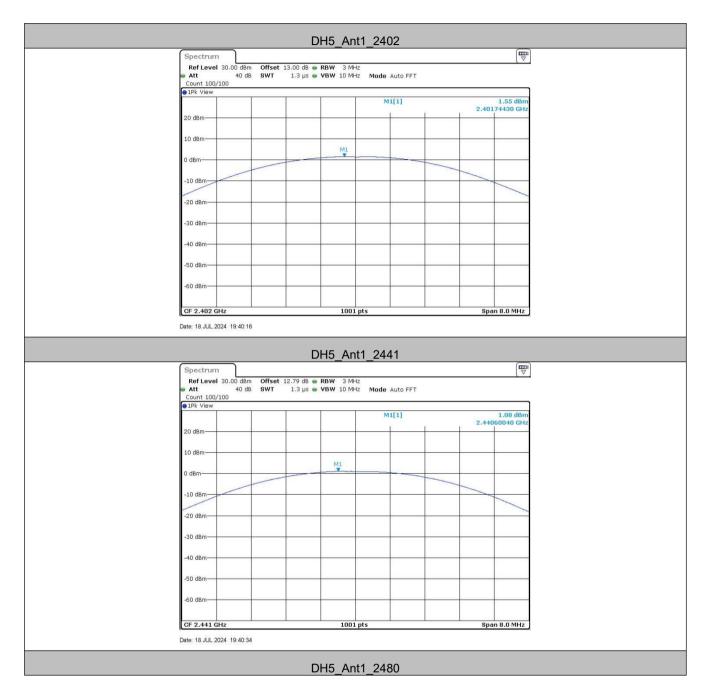
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

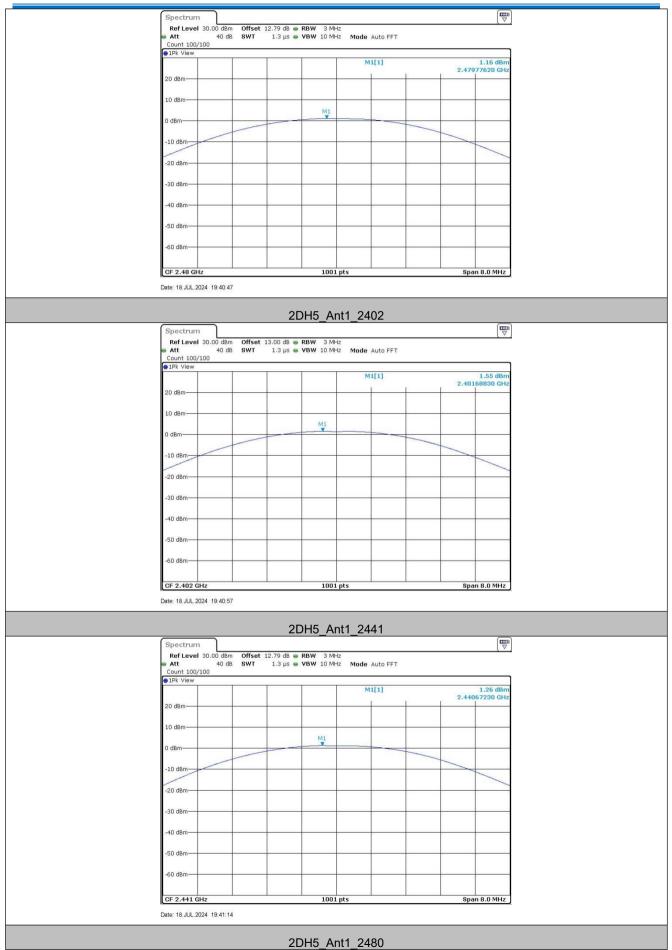
5.3 Conducted Peak Output Power

	•
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Setup for Power meter measurement method
	EUT Power Meter
	Setup for Spectrum analyser measurement method
	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
	Remark: Offset=Cable loss+ attenuation factor.
Limit:	21dBm
Exploratory Test Mode	
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

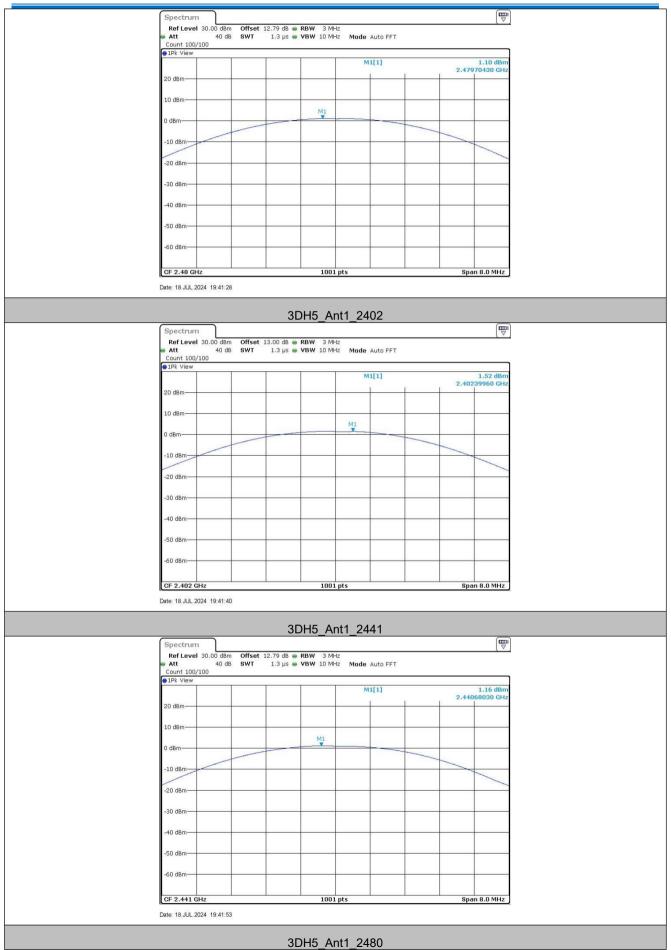


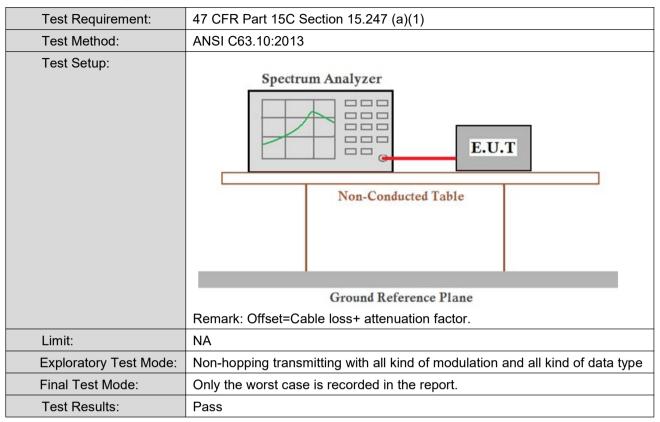
Measurement Data

Test Mode	Antenna	Freq (MHz)	Conducted Peak Powert [dBm]	Conducted Limit [dBm]	Verdict
		2402	1.55	≤21	PASS
DH5	Ant1	2441	1.08	≤21	PASS
		2480	1.16	≤21	PASS
		2402	1.55	≤21	PASS
2DH5	Ant1	2441	1.26	≤21	PASS
		2480	1.1	≤21	PASS
		2402	1.52	≤21	PASS
3DH5	Ant1	2441	1.16	≤21	PASS
		2480	1.12	≤21	PASS



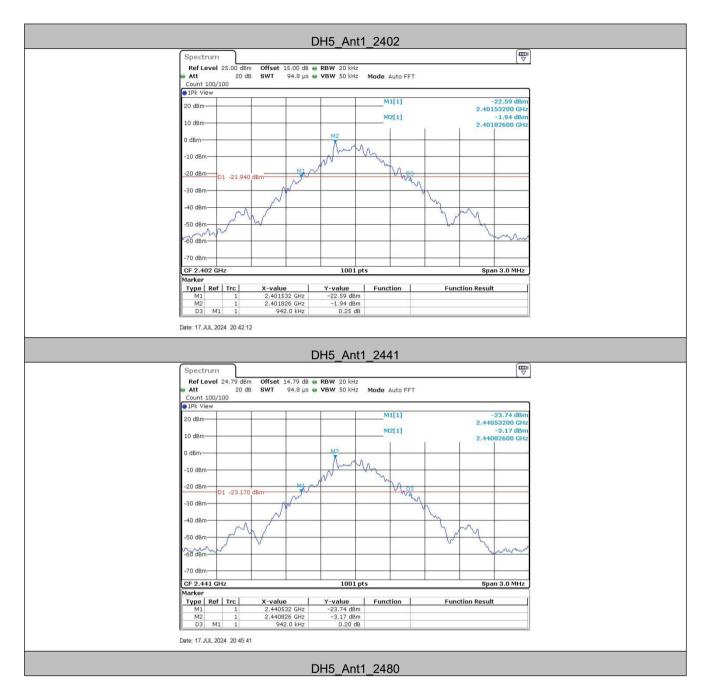
Test plot as follows:



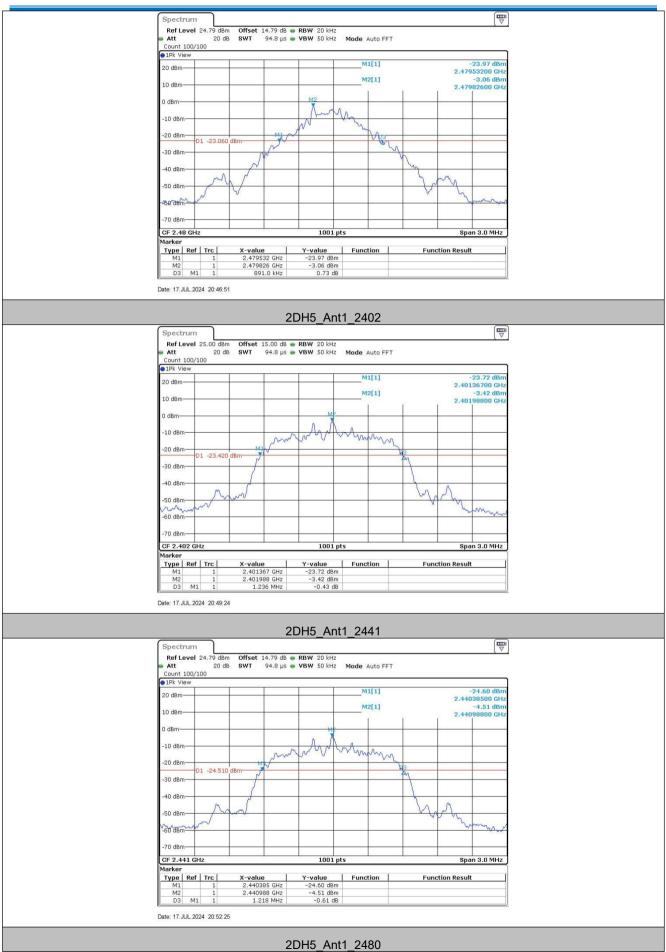


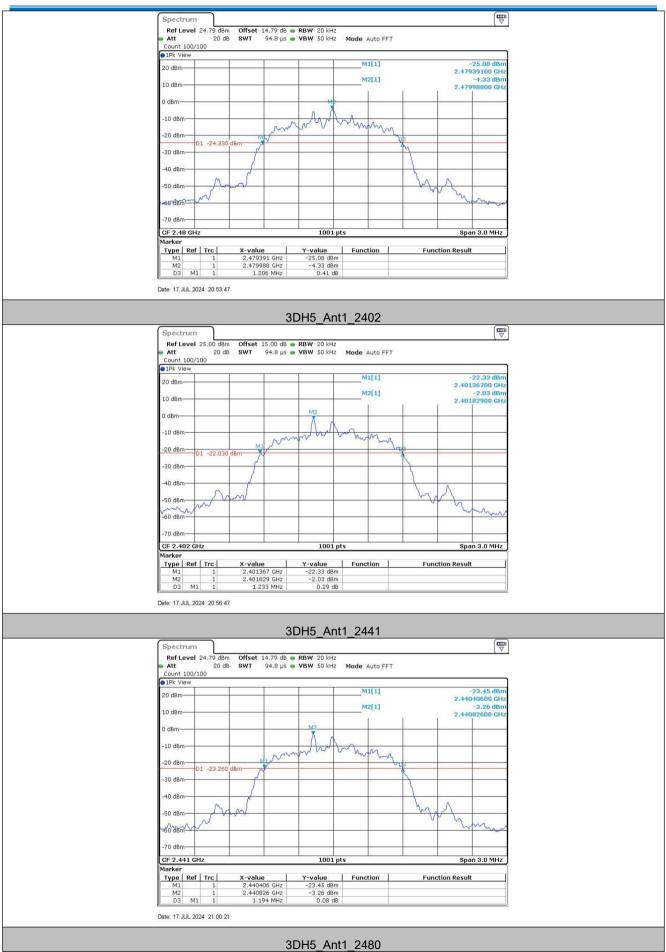
Ref Level 30.00 Att Count 100/100	0 dBm Offset 40 dB SWT		Mode Auto F	FT			
1Pk View							
			M1[1]		2.4803	1.12 dBm 81170 GHz	
20 dBm		 				<u> </u>	
10 dBm	-			-		22	
0 dBm		 	M1				
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
CF 2.48 GHz		1001 pt	s		Span	8.0 MHz	

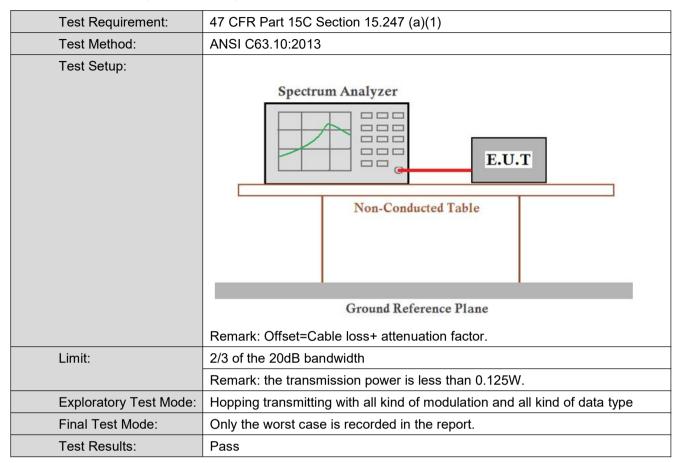
5.4 20dB Occupied Bandwidth



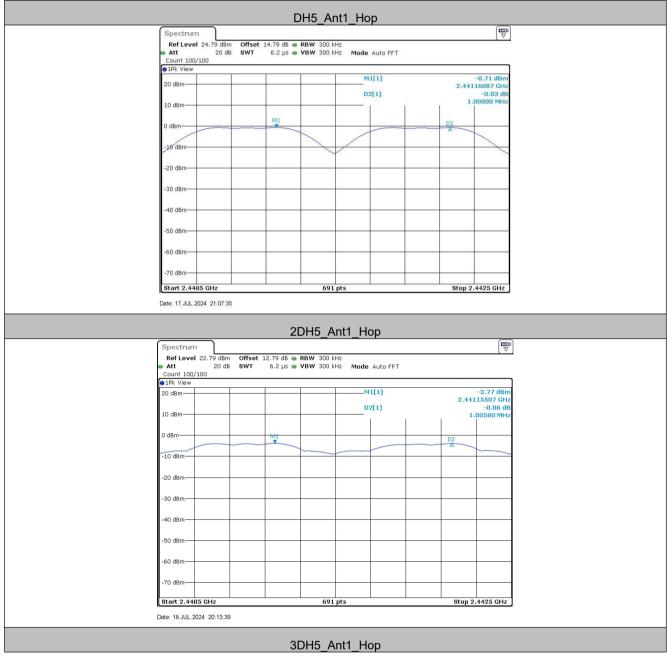
Measurement Data


TestMod e	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdic t
		2402	0.94	2401.53	2402.47		
DH5	Ant1	2441	0.94	2440.53	2441.47		
		2480	0.89	2479.53	2480.42		
		2402	1.24	2401.37	2402.60		
2DH5	Ant1	2441	1.22	2440.39	2441.60		
		2480	1.21	2479.39	2480.60		
		2402	1.23	2401.37	2402.60		
3DH5	Ant1	2441	1.19	2440.41	2441.60		
		2480	1.18	2479.42	2480.60		


Test plot as follows:



5.5 Carrier Frequencies Separation


Measurement Data

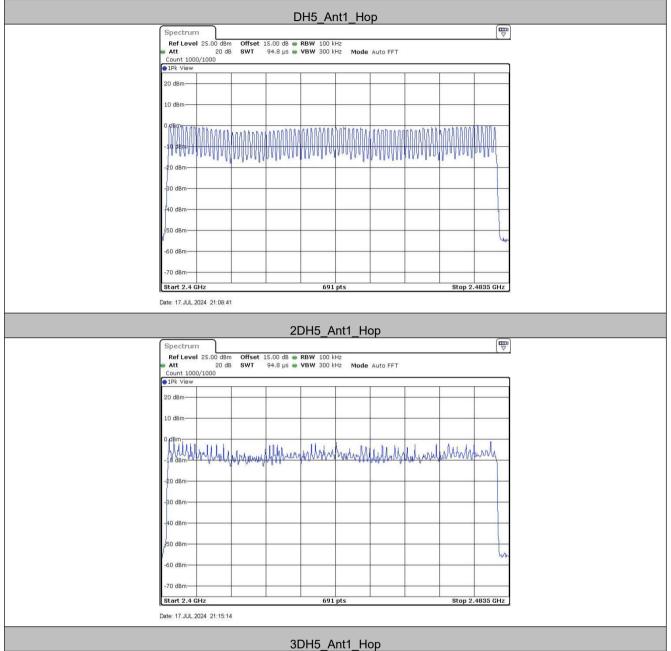
TestMode	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Нор	1	≥0.627	PASS
2DH5	Нор	1.006	≥0.827	PASS
3DH5	Нор	0.994	≥0.820	PASS

Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequencies Separation)
GFSK	0.94	≥0.627
π/4DQPSK	1.24	≥0.827
8DPSK	1.23	≥0.820

Test plot as follows:

Spectrum			
Att 20 dB Count 100/100	Offset 12.79 dB ● RB SWT 6.2 µs ● VB	W 300 kHz W 300 kHz Mode Auto FFT	
1Pk View			
20 dBm		M1[1] D2[1]	-3.77 dBm 2.44115507 GHz -0.05 dB 994.20 kHz
0 dBm	MI		D2
-10 dBm			
-20 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm Start 2.4405 GHz		691 pts	Stop 2.4425 GHz

5.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Test Setup:	ANSI C63.10:2013 Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.			
Limit:	At least 15 channels			
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Only the worst case is recorded in the report.			
Test Results:	Pass			

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

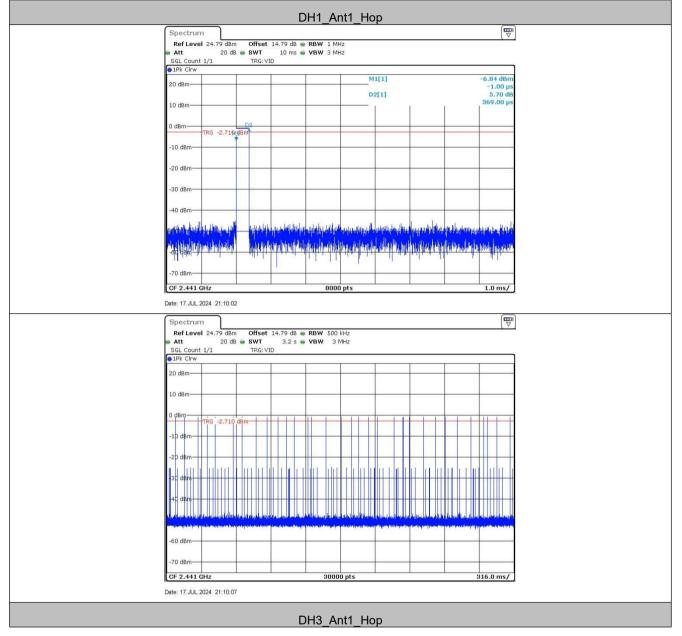
Test plot as follows:

Spectrum		
Att 20 dB SWT Count 1000/1000	15.00 dB	
●1Pk View		
20 dBm		
10 dBm		
Matter Mathematic	ummummumu	manufunturun
-20 dBm		
-30 dBm		
-40 dBm		
+50 dBm		
-60 dBm		
-70 dBm		
Start 2.4 GHz	691 pts	Stop 2.4835 GHz

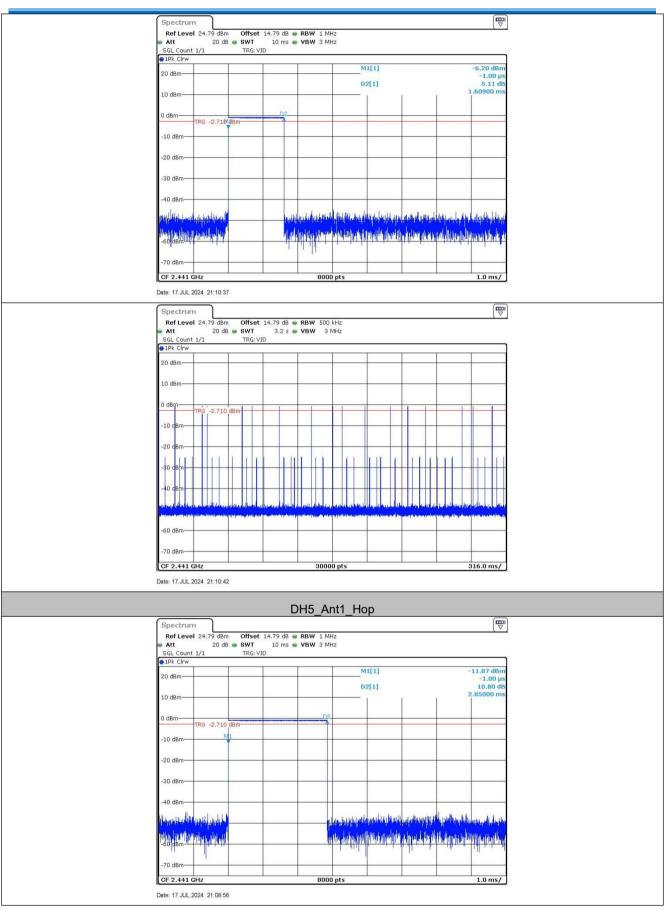
5.7 Dwell Time

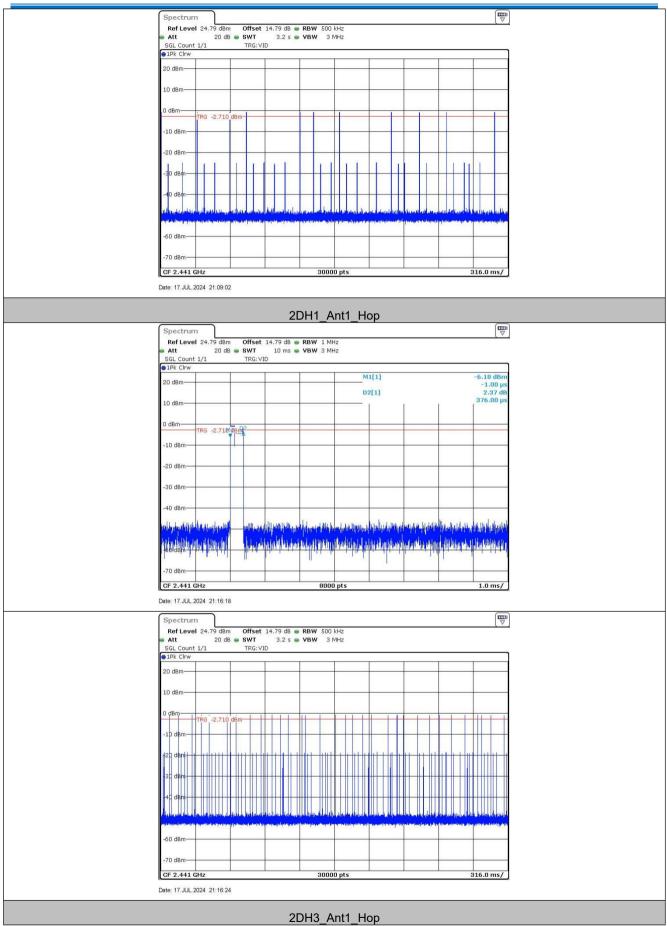
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
	Remark: Offset=Cable loss+ attenuation factor.				
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.				
Limit:	0.4 Second				
Test Results:	Pass				

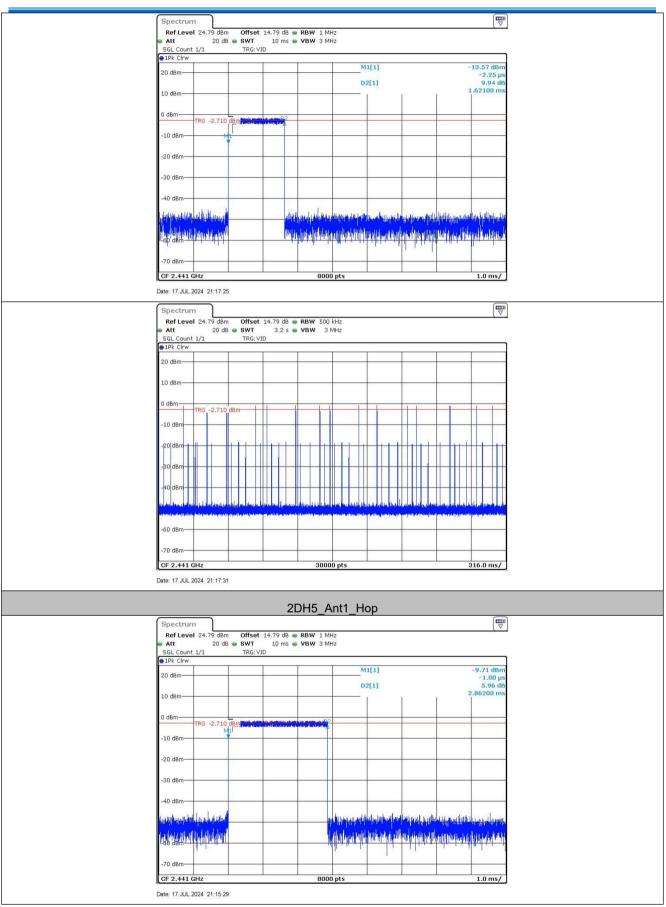
Measurement Data

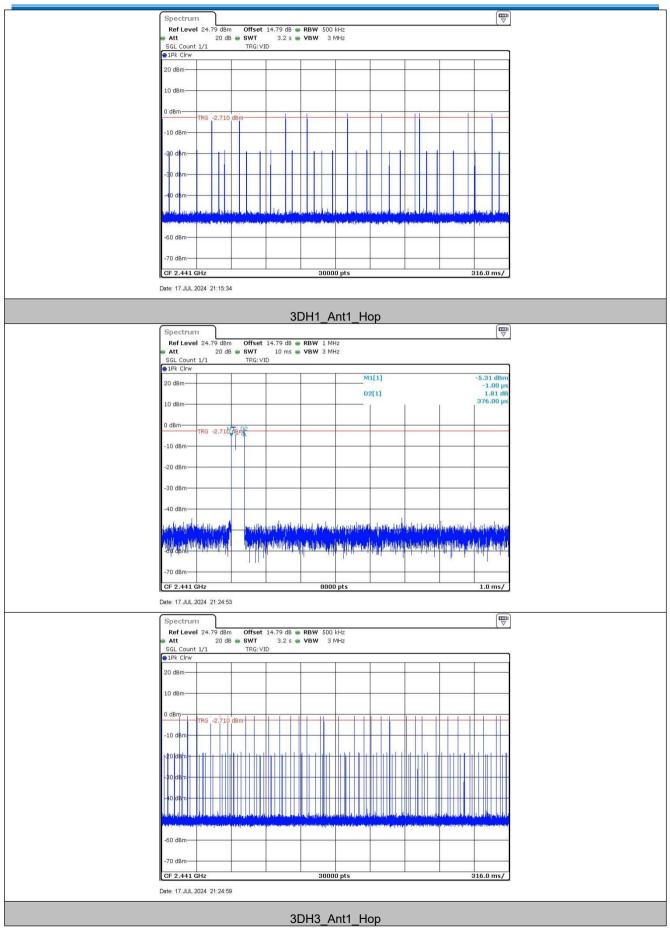

TestMode	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Нор	0.369	330	0.122	≤0.4	PASS
DH3	Нор	1.609	170	0.274	≤0.4	PASS
DH5	Нор	2.850	110	0.314	≤0.4	PASS
2DH1	Нор	0.376	330	0.124	≤0.4	PASS
2DH3	Нор	1.621	160	0.259	≤0.4	PASS
2DH5	Нор	2.862	110	0.315	≤0.4	PASS
3DH1	Нор	0.376	320	0.12	≤0.4	PASS
3DH3	Нор	1.619	160	0.259	≤0.4	PASS
3DH5	Нор	2.863	120	0.344	≤0.4	PASS

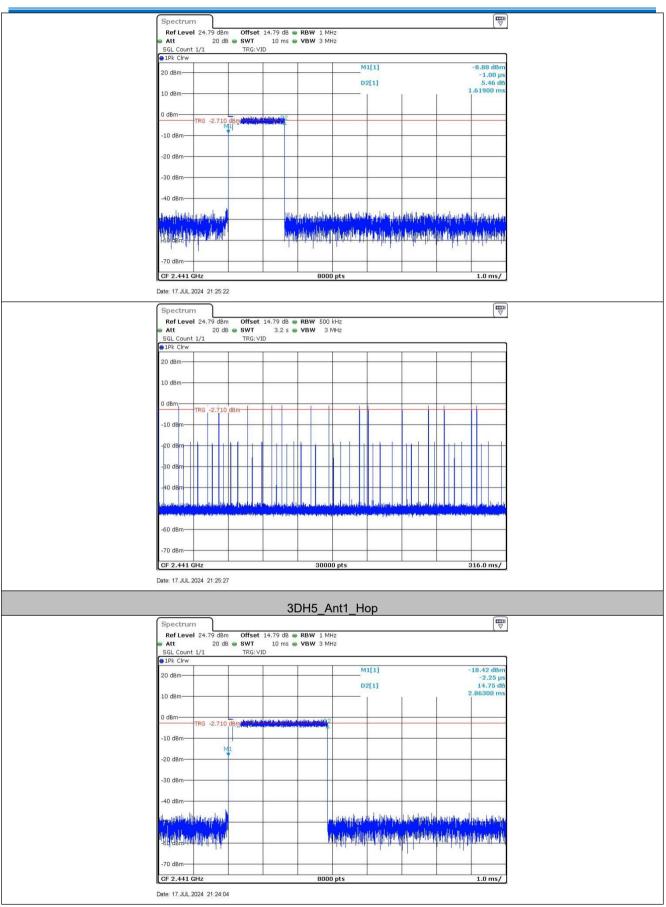
Remark:

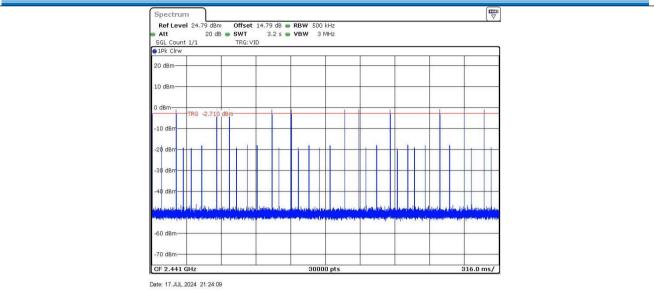

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s


Test plot as follows:





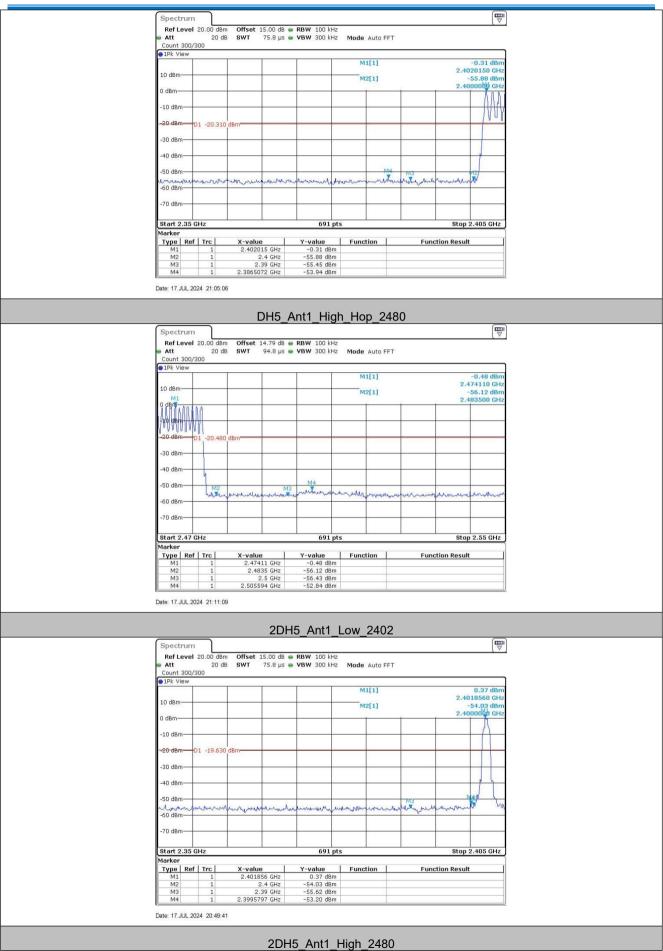




5.8 Band-edge for RF Conducted Emissions

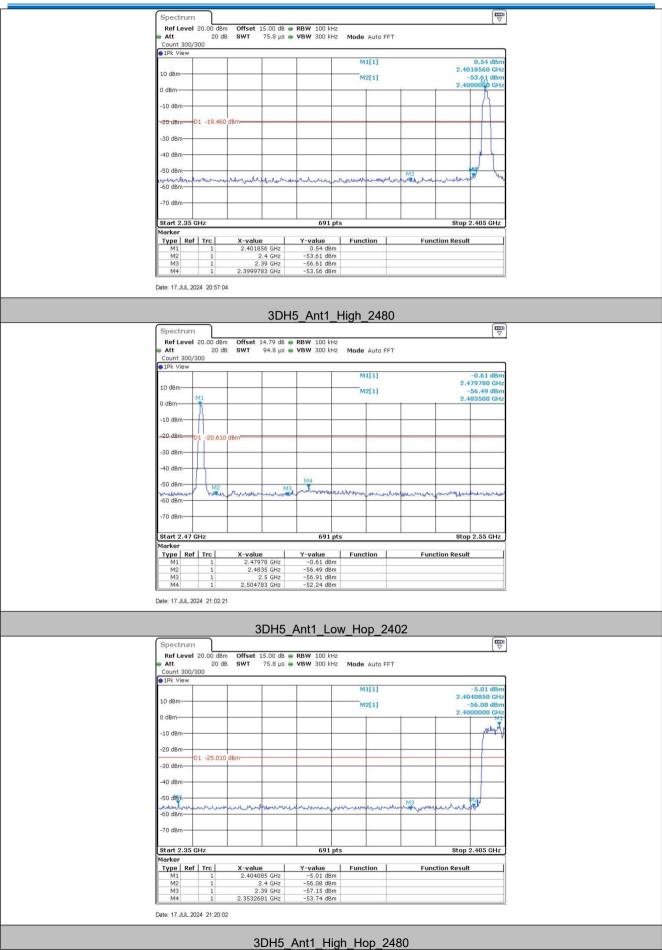
Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Only the worst case is recorded in the report.					
Test Results:	Pass					

Measurement Data


TestMode	ChName	Freq(MHz)	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
	Low		0.54	-52.1	≤-19.46	PASS
	High	2480	-0.57	-53.15	≤-20.57	PASS
DH5	Low	Hop_2402	-0.31	-53.94	≤-20.31	PASS
High		Hop_2480	-0.48	-52.84	≤-20.48	PASS
	Low	2402	0.37	-53.2	≤-19.63	PASS
	High	2480	-0.76	-52.48	≤-20.76	PASS
2DH5	Low	Hop_2402	0.32	-53.63	≤-19.68	PASS
	High	Hop_2480	-1.13	-52.01	≤-21.13	PASS
	Low	2402	0.54	-53.56	≤-19.46	PASS
	High	2480	-0.61	-52.24	≤-20.61	PASS
3DH5	Low	Hop_2402	-5.01	-53.74	≤-25.01	PASS
	High	Hop_2480	-2.81	-52.69	≤-22.81	PASS


Test plot as follows:

			DH5	_Ant1_I	_ow_2	402					
Spectr	um										
	vel 20.00 dBr			RBW 100 kHz						<u> </u>	
Att Count 3		B SWT 7	'5.8 μs 👄	VBW 300 kHz	Mode	Auto FFT					
IPk Vie											
					MI	[1]		0.10	0.54		
10 dBm-		+			M2	[1]		-	18560 52.90	dBm	
0 dBm-						Plane I		2.40	ooddd	GHz	
									I		
-10 dBm	+										
	D1 -19.460) dBm									
-30 dBm	-										
-40 dBm		+ +							1	1	
-50 dBm									AR	21	
-50 dBm	inmerender	my min	mourm	man man	mound	unnallen	M3 mon mar	moundal	X	M	
-60 dBm		with					. J				
-70 dBm	_										
Start 2	35 GHz			691 pt	ts			Stop 2	2.405	GHz	
Marker					1		100104-10				
Type	Ref Trc 1	2.401856	5 GHz	Y-value 0.54 dBm	Funct	ion	Func	tion Result			
M2	1	2.4	4 GHz	-52.90 dBm							
M3 M4	1	2.39	GHz GHz	-56.26 dBm -52.10 dBm							
	JL 2024 20:42:2		, unite	52.10 dbll							
Spectr	um vel 20.00 dBr	n Offset 14		_Ant1_H							
👄 Att	20 d			VBW 300 kHz		Auto FFT					
Count 3	00/300										
THK VIE					MI	[1]			-0.57		
10 dBm-								2.4	79780	GHz	
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	MI				M2	[1]			55.84 83500		
0 dBm—											
-10 dBm		+ +									
	11	1 dBaca									
and an	D1 -20.570	UBIN									
20 dBm -30 dBm									2		
-30 dBm											
-30 dBm -40 dBm				MA					2		
-30 dBm -40 dBm -50 dBm	M2		M3	M4	hand at						
-30 dBm -40 dBm		godsmun	M3 Shoken The	V	mound	wyuhihim	minan	himma	warner	ronke	
-30 dBm -40 dBm -50 dBm -60 dBm		potencia	M3 		mortiday	www.	munun	minin	warden	-only	
-30 dBm -40 dBm -50 dBm		hopping	M3 Mat		monter	wandhilitere	minnet	Mongae	wanners	nar	
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	re hatter	hodonicother	M3 Shelon The	wanderstrag		www.hun	huranali				
-30 dBm -40 dBm -50 dBm -60 dBm	re hatter	yo dynaso dan	M3 elulanyPha			www.	within		2.55		
-30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2 Marker Type	47 GHz	X-value	-shotentPha	691 pr	ts				2.55		
-30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2 . Marker	47 GHz	X-value 2.47976 2.4835	- statuni Pino 3 GHz	میں	ts Funct			Stop	2.55		
-30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2 Marker Type M 1 M1 M2	47 GHz Ref Trc 1 1 1	2.47978 2.4835 2.5	3 GHz 5 GHz 5 GHz	691 pl 691 pl -0.57 dBm -55.84 dBm -56.18 dBm	ts Funct			Stop	2.55		
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Stort 2. Marker Type [47 GHz	2.47978 2.4835	3 GHz 5 GHz 5 GHz	691 pt 691 pt -0.57 dBm -55.84 dBm	ts Funct			Stop	2.55		
-30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2. Marker Type Marker Type Marker Marker Marker Marker	47 GHz Ref Trc 1 1 1	2.47978 2.4835 2.5 2.508957	3 GHz 5 GHz 5 GHz	691 pl 691 pl -0.57 dBm -55.84 dBm -56.18 dBm	ts Funct			Stop	2.55		
-30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2 . Marker Type <u>Marker</u> <u>Type</u> <u>M1</u> <u>M2</u> <u>M3</u> M3	47 GHz	2.47978 2.4835 2.508957	3 GH2 5 GH2 5 GH2 7 GH2	691 pl 691 pl -0.57 dBm -55.84 dBm -56.18 dBm	ts	ion	Func	Stop	2.55		



Ref Level	20.00 dB	m Offset 14.79 dB	RBW 100 kHz			T T
e Att		B SWT 94.8 μs	👄 VBW 300 kHz	Mode Auto FF	т	
Count 300/	300					
●1Pk View						
				M1[1]		-2.81 dBm
10 dBm			_	MOLT		2.478050 GHz -55.87 dBm
(1998) - 1999(1999) (1999)				M2[1]		2.483500 GHz
0 dBm — M	-			1		2.403300 GHz
1 al lan al	aliz					
4.18 gennu	190A			-		
V	1					
-20 dBm-	D1 -22.81	0 dBm				
		The Control of Control				
-30 dBm	1			8		
-40 dBm-						
-40 ubin						
-50 dBm	1		14			
	M2	A ALLANNIA MER LA	13 langen more	manne Robert	and the part of the second	und manuadem
-60 dBm-						
-70 dBm						
Start 2.47	GHz		691 pt:	5		Stop 2.55 GHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1	1	2.47805 GHz	-2.81 dBm			
M2	1	2.4835 GHz	-55.87 dBm			
M3 M4	1	2.5 GHz	-57.33 dBm			
II M4	1	2.502696 GHz	-52.69 dBm			

5.9 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset=cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Pass