

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 3

TEST REPORT

For

Robotic Vacuum Cleaner

MODEL NUMBER: RRE0VSC

PROJECT NUMBER: 4791666005

REPORT NUMBER: 4791666005-1

FCC ID: 2AN2O-RRE0VSC02

IC: 23317-RRE0VSC02

HVIN: RRE0VSC-BLS1

ISSUE DATE: Mar. 10, 2025

Prepared for

Beijing Roborock Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China

Tel: +86 512-6808 6400 Fax: +86 512-6808 4099 Website: www.ul.com

Report No.: 4791666005-1 Page 2 of 152

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	03/10/2025	Initial Issue	

TABLE OF CONTENTS

1.	APPL	LICANT INFORMATION	4
2.	TEST	METHODOLOGY	6
3.	FACI	LITIES AND ACCREDITATION	6
4.	CALI	BRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQUI	PMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	9
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE WORSE CASE CONFIGURATIONS	11
	5.8.	TEST ENVIRONMENT	11
	5.9.	DESCRIPTION OF TEST SETUP	12
	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED	14
6.	MEAS	SUREMENT METHODS	15
7.	ANTE	ENNA PORT TEST RESULTS	16
	7.1.	ON TIME AND DUTY CYCLE	16
	7.2.	6 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	19
	7.3.	CONDUCTED OUTPUT POWER	33
	7.4.	POWER SPECTRAL DENSITY	35
	7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	43
8.	RADI	ATED TEST RESULTS	69
	8.1.	LIMITS AND PROCEDURE	69
	8.2.	TEST ENVIRONMENT	76
	8.3.	RESTRICTED BANDEDGE	76
	8.4.	SPURIOUS EMISSIONS	93
9.	AC P	OWER LINE CONDUCTED EMISSIONS	149
10.	ANTE	ENNA REQUIREMENTS	152
			Form-ULID-008536-9 V4.0

Page 4 of 152

1. APPLICANT INFORMATION

Applicant Information

Company Name: Beijing Roborock Technology Co., Ltd.

Address: Room 1001, Floor 10, Building 3, Yard 17, Anju Road,

Changping District, Beijing, P.R. China

Manufacturer Information

Company Name: Beijing Roborock Technology Co., Ltd.

Address: Room 1001, Floor 10, Building 3, Yard 17, Anju Road,

Changping District, Beijing, P.R. China

EUT Description

Product Name: Robotic Vacuum Cleaner

Model Name: RRE0VSC

Series Model Name: / Model Difference: /

Sample Number: 8130798
Data of Receipt Sample: Feb. 13, 2025

Test Date: Feb. 13, 2025~ Mar. 06, 2025

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC 47 CFR Part 15 Subpart C	PASS
ISED RSS-247 Issue 3	PASS
ISED RSS-GEN Issue 5	PASS

Page 5 of 152

	Summary of Test Results					
Clause	Test Items	Test Results				
1	6 dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (2) RSS-247 Clause 5.2 (a) RSS-Gen Clause 6.7	PASS			
2	Conducted Power	FCC 15.247 (b) (3) RSS-247 Clause 5.4 (d) RSS-Gen Clause 6.12	PASS			
3	Power Spectral Density	FCC 15.247 (e) RSS-247 Clause 5.2 (b)	PASS			
4	Conducted Band edge And Spurious emission	FCC 15.247 (d) RSS-247 Clause 5.5 RSS-GEN Clause 6.13	PASS			
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 6.13 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	PASS			
6	Conducted Emission Test for AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	PASS			
7	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	PASS			

Note:

The measurement result for the sample received is < Pass > according to < ANSI C63.10-2013, FCC 47 CFR Part 2, FCC 47 CFR Part 15C, ISED RSS-247, ISED RSS-Gen > when < Simple Acceptance > decision rule is applied.

Prepared By:	Reviewed By:
Tom Tang	Emily Waney
Tom Tang	Emily Wang
Authorized By:	
Kevin Shen	

Page 6 of 152

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, FCC 47 CFR Part 2, FCC 47 CFR Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 3 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056; CAB No.: CN0073) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China.

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 7 of 152

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.1 dB
DTS Bandwidth	1.9 %
Maximum Conducted Output Power	1.3 dB
Maximum Power Spectral Density Level	1.5 dB
Band-edge Compliance	1.9%
Unwanted Emissions in Non-restricted Freq Bands	9kHz-30MHz: ±0.90dB 30MHz-1GHz: ±1.5 dB 1GHz-12.75GHz: ±1.9dB 12.75GHz-26.5GHz: ±2.1dB
Radiation Emission test (include Fundamental emission) (9kHz-30MHz)	3.4dB
Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	3.4dB
Radiation Emission test (1GHz to 26GHz) (include Fundamental emission)	3.5dB (1GHz-18GHz)
Note: This uncertainty represents an expanded unc	3.9dB (18GHz-26.5GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 4791666005-1 Page 8 of 152

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	Robotic Vacuum Cleaner
Model No.:	RRE0VSC
Operating Frequency:	IEEE 802.11B/G/N(HT20): 2412MHz to 2462MHz IEEE 802.11N(HT40): 2422MHz to 2452MHz
Type of Modulation:	IEEE for 802.11B: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11G: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11N(HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)
Channels Step:	Channels with 5MHz step
Test Software of EUT:	ADB (manufacturer declare)
Antenna Type:	PCB Antenna
	2.29 dBi
Antenna Gain:	Note: This data is provided by customer and our lab isn't responsible for this data.

Report No.: 4791666005-1 Page 9 of 152

MAXIMUM OUTPUT POWER 5.2.

Number of Transmit Chains (NTX)	IEE Std. 802.11	Channel Number	Max AVG Conducted Power (dBm)
1	IEEE 802.11B	1-11[11]	15.28
1	IEEE 802.11G	1-11[11]	14.36
1	IEEE 802.11N HT20	1-11[11]	14.28
1	IEEE 802.11N HT40	3-9[7]	12.42

5.3. CHANNEL LIST

Channel List for 802.11B/G/N(20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452		

Channel List for 802.11N(40 MHz)							
Channel	Channel ' ' Channel ' ' ' ' Channel ' ' ' ' ' Channel ' ' ' ' ' Channel ' ' ' ' Channel ' ' ' ' ' Channel ' ' ' ' ' Channel ' ' ' Channel ' ' ' ' Channel ' ' ' ' Channel ' ' '				Frequency (MHz)		
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

Report No.: 4791666005-1 Page 10 of 152

TEST CHANNEL CONFIGURATION 5.4.

Test Mode	Test Channel (MHz)
	LCH: CH01 2412
IEEE 802.11B	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH01 2412
IEEE 802.11G	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH01 2412
IEEE 802.11N HT20	MCH: CH06 2437
	HCH: CH11 2462
	LCH: CH03 2422
IEEE 802.11N HT40	MCH: CH06 2437
	HCH: CH09 2452

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare		ADB					
	Transmit	Test Channel						
Modulation Mode	Antenna			ICB: 40MHz				
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11B	1	default	default	default				
802.11G	1	default	default	default	/			
802.11N HT20	1	default	default	default				
802.11N HT40	1	/ default default defau					default	

Page 11 of 152

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	PCB Antenna	2.29

Note: This data is provided by customer and our lab isn't responsible for this data.

Test Mode	Transmit and Receive Mode	Description		
IEEE 802.11B	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11G	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N HT20	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		
IEEE 802.11N HT40	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.		

5.7. THE WORSE CASE CONFIGURATIONS

For WIFI module, all the modes and data rates have been test, the worst-case data rates for every mode was recorded as below:

802.11B mode: 1 Mbps 802.11G mode: 6 Mbps 802.11N HT20 mode: MCS0 802.11N HT40 mode: MCS0

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity:	55 ~ 65%				
Atmospheric Pressure:	1025Pa				
Temperature:	TN	23 ~ 28°C			
	VL	N/A			
Voltage:	VN	AC 120V			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

Page 12 of 152

5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E580	/

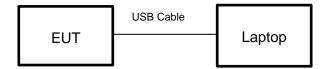
I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB	USB	100cm Length	/

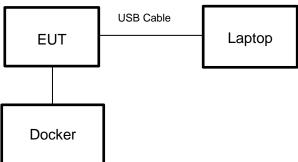
ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Empty Wash Fill Dock 1	roborock	EWFD40LRR	Rated Input: 120V~ 60Hz Rated Output: 20V= 1.5A
2	Empty Wash Fill Dock 2	roborock	orock EWFD40LRR Rated Input: 120V~ 60Hz Rated Output: 20V- 1.5A	

Note: The docker with two alternative main PCBs of power part will be collocated to the EUT, of them have been test, only the worse case is recorded in this test report.


Page 13 of 152

TEST SETUP


The EUT can work in an engineer mode with a software through a laptop.

SETUP DIAGRAM FOR TESTS

For Antenna Port Test and Radiated Test:

For Conducted Emission Test and Radiated Test:

Note: The EUT can transmit independently and be charged with a docker. The docker is just a charger, not an intentional transmitter.

Alarm Light

Report No.: 4791666005-1 Page 14 of 152

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions Test (Instrument)								
Used	Equipment	Manufacturer	Mod	del No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
$\overline{\checkmark}$	EMI Test Receiver	R&S	Е	SR3	126700	2023-11-25	2024-11-02	2025-11-01	
$\overline{\checkmark}$	Two-Line V-Network	R&S	ENV216		126701	2023-11-25	2024-11-02	2025-11-01	
	Conducted Emissions Test (Software)								
Used	Desc	ription		Man	ufacturer	Name	Version		
V	Software for Condu	cted Emissions	Test		R&S	EMC32	9.25.00		
	Radiated Emissions Test (Instrument)								
Used	Equipment	Manufacturer	Mod	del No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
V	EMI test receiver	R&S	Е	SR7	222993	2023-04-08	2024-03-23	2025-03-22	
\checkmark	EMI test receiver	R&S	ES	SR26	126703	2023-11-25	2024-11-02	2025-11-01	
$\overline{\checkmark}$	Spectrum Analyzer	R&S	FS'	V3044	222992	2023-04-08	2024-03-23	2025-03-22	
	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZ	ß 1513	155456	2021-06-03	2024-05-27	2027-05-26	
	Receiver Antenna (30MHz-1GHz)	Schwarzbeck	VUL	B 9168	171952	2021-07-05	2024-07-04	2027-07-03	
V	Receiver Antenna (1GHz-18GHz)	R&S	HI	F907	126705	2022-02-28	2025-02-17	2028-02-16	
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBH	IA9170	126706	2022-02-28	2025-02-17	2028-02-16	
V	Pre-amplification (To 18GHz)	Tonscned	TAP0	1018050	224539	2023-10-10	2024-10-10	2025-10-09	
V	Pre-amplification (To 18GHz)	R&S	SC	U-18D	134667	2023-11-25	2024-11-02	2025-11-01	
V	Pre-amplification (To 26.5GHz)	R&S	SC	U-26D	135391	2023-11-25	2024-11-02	2025-11-01	
V	Band Reject Filter	Wainwright	2375 2485	CGV12- 5-2400- 5-2510- 0SS	1	2023-12-18	2024-11-02	2025-11-01	
V	High Pass Filter	COM-MW		3-3-18G- 01	2	2023-12-18	2024-11-02	2025-11-01	
		Rad	iated	Emissio	ns Test (Soft	tware)			
Used	Desc	ription		Man	ufacturer	Name	Version		
\checkmark	Software for Radia	ated Emissions Te	est	To	nscend	JS32-RE	5.0.0.2		
		Α	ntenn	a Port Te	est (Instrume	ent)			
Used	Equipment	Manufacturer	Mod	del No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.	
V	Spectrum Analyzer	Keysight	N9	010B	155368	2023-04-08	2024-03-23	2025-03-22	
$\overline{\checkmark}$	Power Meter	MWT		00-RFCB	221694	2023-04-08	2024-03-23	2025-03-22	
V	Power Meter	Anritsu		24406A	12896	2023-04-08	2024-03-23	2025-03-22	
V	Attenuator	PASTERNACK			1624	/	2024-11-04	2025-11-03	
		-	Anteni	na Port 1	Test (Softwa	re)			
Used	Desc	ription		Man	ufacturer	Name	Version		
V	Software for Ar	ntenna Port Test		То	nscend	JS1120-3 Test System	V3.2.22		

Report No.: 4791666005-1 Page 15 of 152

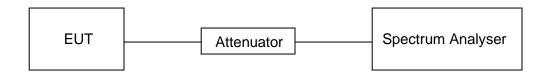
6. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6 dB Bandwidth and 99% Occupied Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.2.3 (11.9.2.3.1 Method AVGPM of ANSI C63.10)
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4 (11.10.2 Method PKPSD of ANSI C63.10)
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test for AC Power Port	ANSI C63.10-2013	6.2

Page 16 of 152

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST RESULTS TABLE

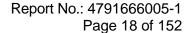
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final VBW (kHz)
11B	100	100	1	100%	0	0.01	0.01
11G	100	100	1	100%	0	0.01	0.01
802.11N HT20	100	100	1	100%	0	0.01	0.01
802.11N HT40	100	100	1	100%	0	0.01	0.01

Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle (Linear)

3) Where: T is On Time (transmit duration)

4) If the duty cycle is above 98%, the Final VBW is 10Hz.




TEST GRAPHS

Page 19 of 152

7.2. 6 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

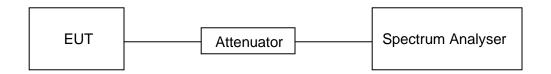
LIMITS

FCC Part15 (15.247), Subpart C						
Section Test Item Limit Frequency Range (MHz)						
FCC 47 CFR 15.247(a)(2) ISED RSS-247 5.2 (a)	6dB Bandwidth	>= 500kHz	2400-2483.5			
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only	2400-2483.5			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:


Connect the Lot to the	Confident the Lot to the spectrum analyser and use the following settings:		
Center Frequency	The centre frequency of the channel under test		
Detector	Peak		
IRRW	For 6 dB Bandwidth: 100 kHz For 99% Occupied Bandwidth: 1% to 5% of the occupied bandwidth		
IV/RW	For 6 dB Bandwidth: ≥3 × RBW For 99% Occupied Bandwidth: ≥3 × RBW		
Trace	Max hold		
Sweep	Auto couple		

- a) Use the 99% power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Report No.: 4791666005-1 Page 20 of 152

TEST SETUP

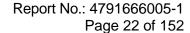


TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

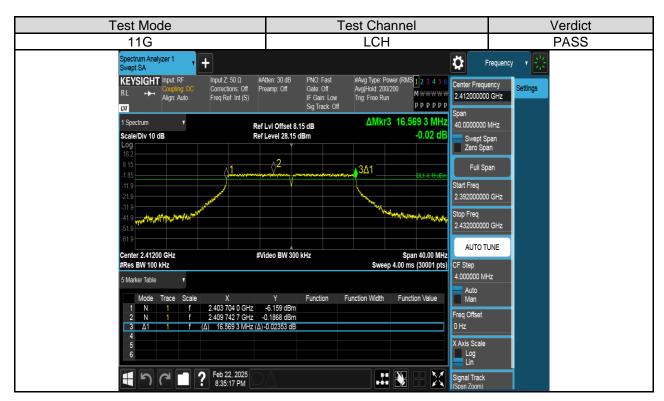
TEST RESULTS TABLE

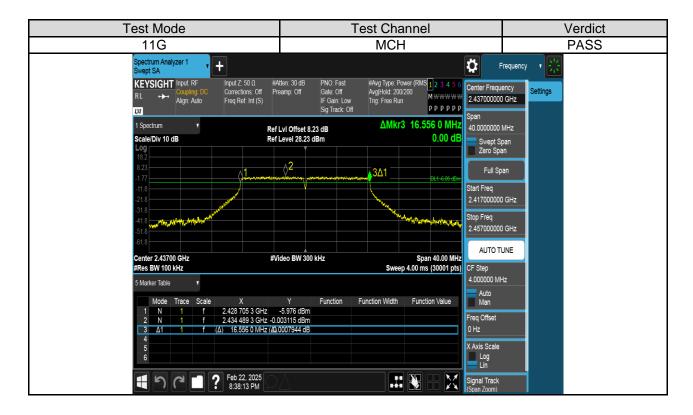
Test Mode	Test Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result
	LCH	9.0413	13.299	Pass
11B	MCH	8.5773	13.302	Pass
	HCH	9.0400	13.353	Pass
	LCH	16.5693	16.585	Pass
11G	MCH	16.5560	16.583	Pass
	HCH	16.5560	16.589	Pass
	LCH	17.7640	17.749	Pass
11N HT20	MCH	17.6640	17.745	Pass
	HCH	17.7533	17.750	Pass
	LCH	36.3813	36.170	Pass
11N HT40	MCH	36.3813	36.168	Pass
	НСН	36.3893	36.179	Pass

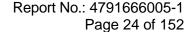


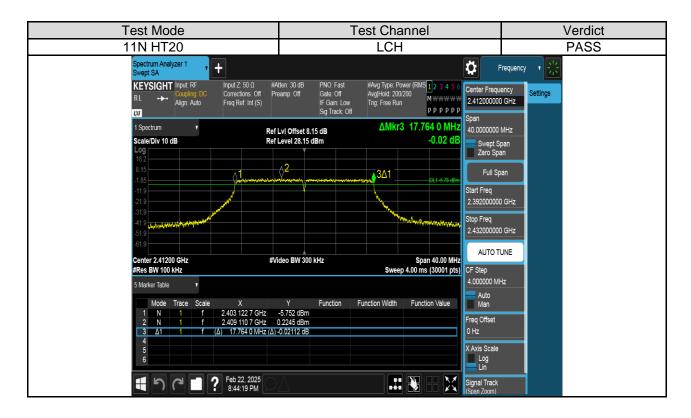
TEST GRAPHS

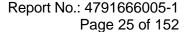
6dB Bandwdith



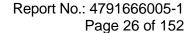


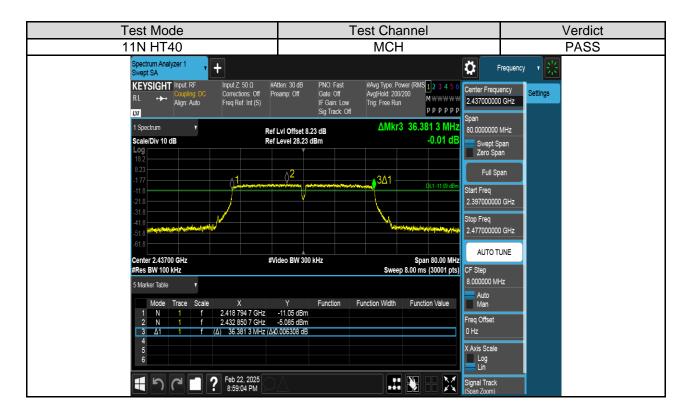


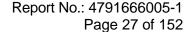


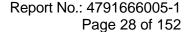




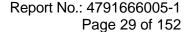


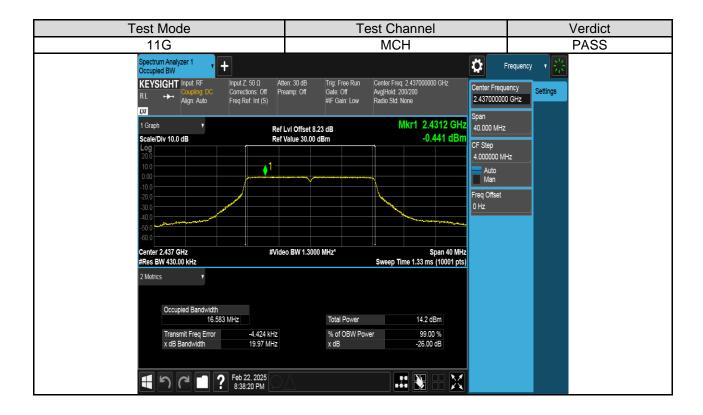


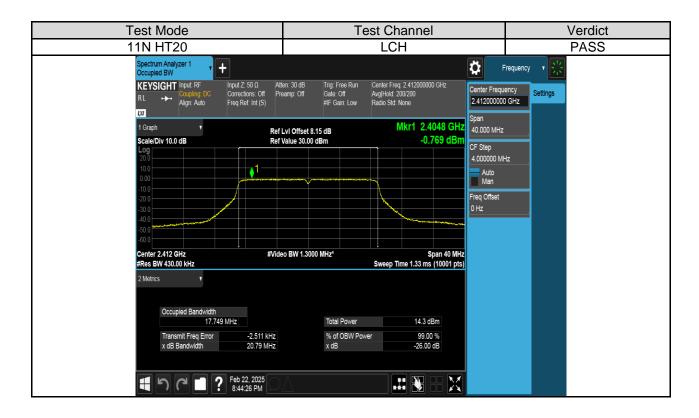


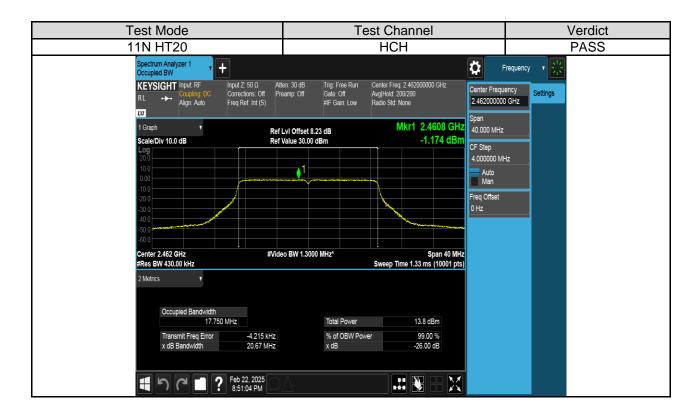


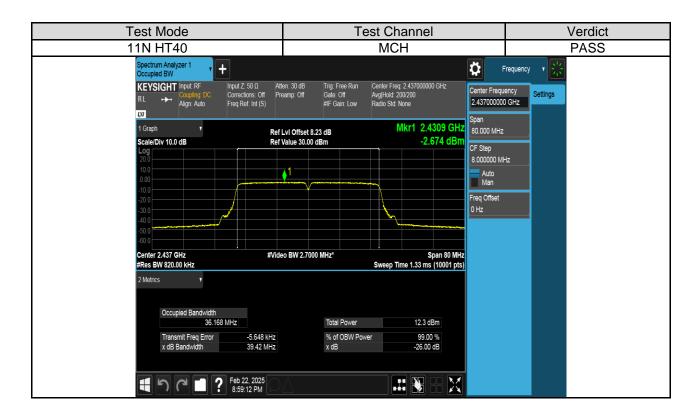
99% Bandwidth











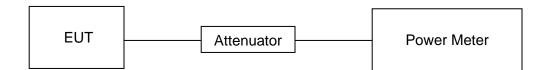
Page 33 of 152

7.3. CONDUCTED OUTPUT POWER

LIMITS

	FCC Part15 (15.247), Subpart C	
Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.247(b)(3) ISED RSS-247 5.4 (d) RSS-Gen Clause 6.12	Output Power	1 watt or 30dBm	2400-2483.5

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

AVG Detector used for AVG result.

TEST SETUP

Report No.: 4791666005-1 Page 34 of 152

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

TEST RESULTS TABLE

Test Mode	Test Channel	Measurement Output Power (AV)	10log(1/x) Factor	Maximum Conducted Output Power (AV)	LIMIT
		dBm	dBm	dBm	dBm
	LCH	15.28	0	15.28	30
11B	MCH	15.17	0	15.17	30
	HCH	14.84	0	14.84	30
	LCH	14.36	0	14.36	30
11G	MCH	14.27	0	14.27	30
	HCH	13.91	0	13.91	30
	LCH	14.28	0	14.28	30
11N HT20	MCH	14.18	0	14.18	30
	HCH	14.06	0	14.06	30
	LCH	12.42	0	12.42	30
11N HT40	MCH	12.35	0	12.35	30
	HCH	12.17	0	12.17	30

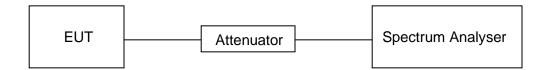
Page 35 of 152

7.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247), Subpart C			
Section Test Item Limit Frequency Range (MHz)			
FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

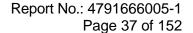

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

oottii igo.	
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP


Report No.: 4791666005-1 Page 36 of 152

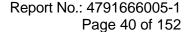
TEST ENVIRONMENT

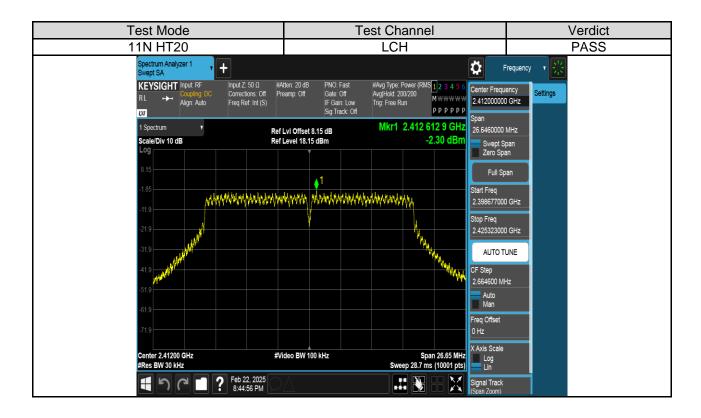
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

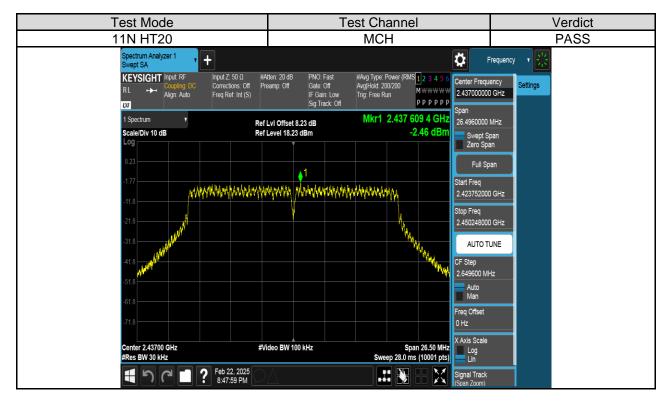
TEST RESULTS TABLE

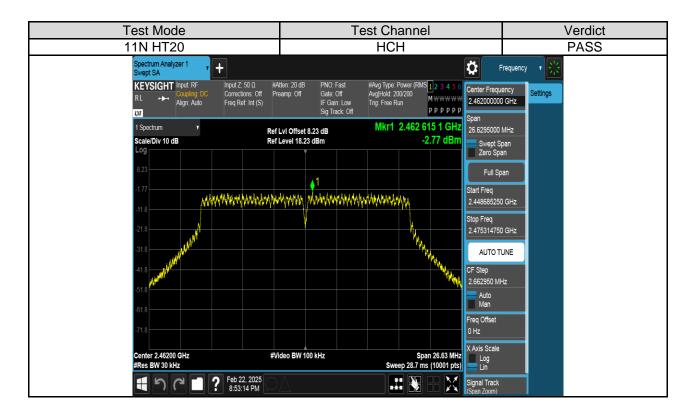
Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	0.93	Pass
11B	MCH	0.76	Pass
	HCH	0.48	Pass
	LCH	-2.85	Pass
11G	MCH	-3.00	Pass
	HCH	-3.25	Pass
	LCH	-2.30	Pass
11N HT20	MCH	-2.46	Pass
	HCH	-2.77	Pass
	LCH	-7.44	Pass
11N HT40	MCH	-7.60	Pass
	HCH	-7.78	Pass

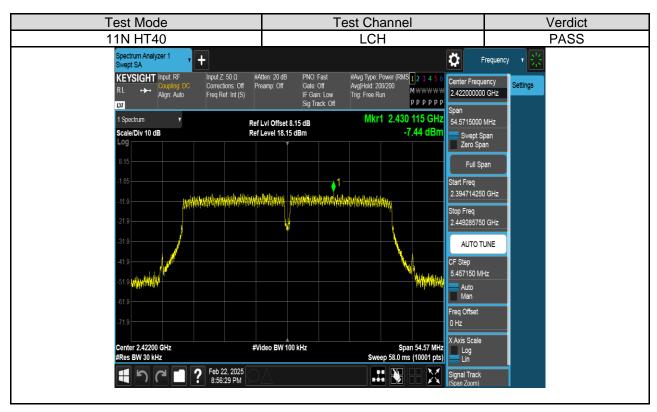

TEST GRAPHS

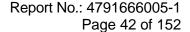


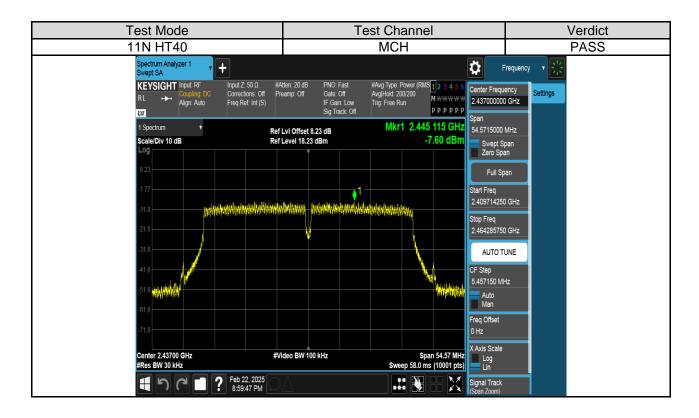












Page 43 of 152

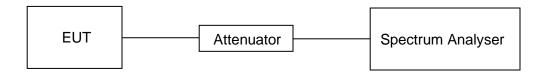
7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
FCC §15.247 (d) Conducted 30 dB below that in the 100 kHz bandwidth			
RSS-247 Clause 5.5 Bandedge and within the band that contains the highest			
RSS-GEN Clause 6.13	Spurious Emissions	level of the desired power	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

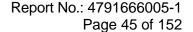
Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 x RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

Report No.: 4791666005-1 Page 44 of 152


TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V

PART 1: REFERENCE LEVEL MEASUREMENT


TEST RESULTS TABLE

Test Mode	Test Channel	Result[dBm]
11B	LCH	6.04
	MCH	5.94
	HCH	5.63
11G	LCH	0.09
	MCH	0.00
	HCH	-0.45
11N HT20	LCH	0.52
	MCH	0.39
	HCH	0.11
11N HT40	LCH	-4.87
	MCH	-4.99
	HCH	-5.28

TEST GRAPHS

