



# **TEST REPORT**

Applicant Name : Address :

Report Number : FCC ID:

Therabody, Inc. 6100 Wilshire Blvd. Suite 200 Los Angeles, CA 90048-5107, **United States** SZNS220307-07616E-RF-00 2AU6T-RTKN

# Test Standard (s)

FCC PART 15.247

# **Sample Description**

| Product Type:          | RecoveryTherm Hot/Cold/Vibration Knee |
|------------------------|---------------------------------------|
| Model No.:             | RecoveryTherm Hot/Cold/Vibration Knee |
| Multiple Model(s) No.: | N/A                                   |
| Trade Mark:            | N/A                                   |
| Date Received:         | 2022/03/07                            |
| Report Date:           | 2022/05/17                            |

**Test Result:** 

Pass\*

\* In the configuration tested, the EUT complied with the standards above.

# **Prepared and Checked By:**

Bluese Dr

Black Ding **EMC Engineer** 

# **Approved By:**

R6port li

Robert Li **EMC Engineer** 

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '\*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

#### Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 14: 2021-11-09

Page 1 of 33

FCC-BLE

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                      |                                  | 4        |
|------------------------------------------|----------------------------------|----------|
|                                          | NT UNDER TEST (EUT)              |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          | N                                |          |
|                                          | N                                |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          | ILS                              |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          |                                  |          |
| FCC§15.247 (I), §1.1307 (B) (1) & §2.109 | 93 – RF EXPOSURE                 | 10       |
| APPLICABLE STANDARD                      |                                  | 10       |
| FCC §15.203 - ANTENNA REQUIRE            | MENT                             |          |
|                                          |                                  |          |
| ANTENNA CONNECTOR CONSTRUCTIO            | Ν                                | 11       |
| FCC §15.209, §15.205 & §15.247(D) - \$   | SPURIOUS EMISSIONS               | 12       |
| APPLICABLE STANDARD                      |                                  |          |
|                                          | ~                                |          |
|                                          | JALYZER SETUP                    |          |
|                                          |                                  |          |
|                                          |                                  |          |
| FCC §15.247(A) (2) – 6 DB EMISSION       | N BANDWIDTH & OCCUPIED BANDWIDTH | 19       |
| APPLICABLE STANDARD                      |                                  | 19       |
|                                          |                                  |          |
|                                          |                                  |          |
| •                                        | NDUCTED OUTPUT POWER             |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          | IDTH OF FREQUENCY BAND EDGE      |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          | L DENSITY                        |          |
|                                          |                                  |          |
|                                          |                                  |          |
|                                          |                                  |          |
| Version 14: 2021-11-09                   | Page 2 of 33                     | FCC- BLE |

| APPENDIX                                        | 23 |
|-------------------------------------------------|----|
| APPENDIX A: DTS BANDWIDTH                       | 23 |
| APPENDIX B: OCCUPIED CHANNEL BANDWIDTH          |    |
| APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER | 29 |
| APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY      |    |
| APPENDIX E: BAND EDGE MEASUREMENTS              |    |
| Appendix F: Duty Cycle                          |    |

# **GENERAL INFORMATION**

#### **Product Description for Equipment under Test (EUT)**

| Frequency Range                        | BLE 1M: 2402-2480MHz                                                                                                                   |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Maximum Conducted Peak<br>Output Power | BLE 1M: -0.47dBm                                                                                                                       |
| Modulation Technique                   | BLE 1M: GFSK                                                                                                                           |
| Antenna Specification*                 | 0 dBi (provided by the applicant)                                                                                                      |
| Voltage Range                          | DC 11.1V from battery or<br>DC 20V/15V/12V/9V/5.0V from adapter for charging battery                                                   |
| Sample serial number                   | SZNS220307-07616E-RF-S1(Assigned by ATC)                                                                                               |
| Sample/EUT Status                      | Good condition                                                                                                                         |
| Adapter Information                    | Model:EM1047S<br>Input: AC 100-240 V,2.0A,50-60Hz<br>Output: DC 20.0V 2.25A, 15.0V 3.0A, 12.0 V 3.0A, 9.0V,3.0A, 5.0V 3.0A,<br>45W max |

### Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

### **Measurement Uncertainty**

| Parameter              |                    | Uncertainty     |
|------------------------|--------------------|-----------------|
| Occupied Char          | nnel Bandwidth     | 5%              |
| RF Fre                 | equency            | $0.082*10^{-7}$ |
| RF output pov          | wer, conducted     | 0.73dB          |
| Unwanted Emis          | ssion, conducted   | 1.6dB           |
| AC Power Lines C       | onducted Emissions | 2.72dB          |
|                        | 9kHz - 30MHz       | 2.66dB          |
|                        | 30MHz - 1GHz       | 4.28dB          |
| Emissions,<br>Radiated | 1GHz - 18GHz       | 4.98dB          |
| Radiated               | 18GHz - 26.5GHz    | 5.06dB          |
|                        | 26.5GHz - 40GHz    | 4.72dB          |
| Temperature            |                    | 1 °C            |
| Humidity               |                    | 6%              |
| Supply                 | voltages           | 0.4%            |

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

### **Test Facility**

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

# SYSTEM TEST CONFIGURATION

# **Description of Test Configuration**

For BLE mode, 40 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 0       | 2402               | 20      | 2442               |
| 1       | 2404               | 21      | 2444               |
| 2       | 2406               | 22      | 2446               |
| 3       | 2408               | 23      | 2448               |
| 4       | 2410               | 24      | 2450               |
| 5       | 2412               | 25      | 2452               |
| 6       | 2414               | 26      | 2454               |
| 7       | 2416               | 27      | 2456               |
| 8       | 2418               | 28      | 2458               |
| 9       | 2420               | 29      | 2460               |
| 10      | 2422               | 30      | 2462               |
| 11      | 2424               | 31      | 2464               |
| 12      | 2426               | 32      | 2466               |
| 13      | 2428               | 33      | 2468               |
| 14      | 2430               | 34      | 2470               |
| 15      | 2432               | 35      | 2472               |
| 16      | 2434               | 36      | 2474               |
| 17      | 2436               | 37      | 2476               |
| 18      | 2438               | 38      | 2478               |
| 19      | 2440               | 39      | 2480               |

EUT was tested with Channel 0, 19 and 39.

# **Equipment Modifications**

No modification was made to the EUT tested.

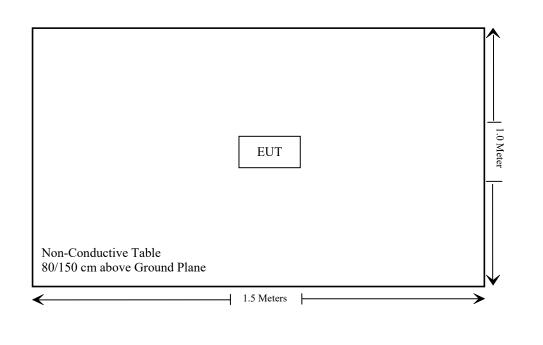
### EUT Exercise Software

"BT tool.exe"\* software was used to test and power level set was default\*. The software and power level was provided by the applicant.

# Duty cycle

Test Result: Compliant. Please refer to the Appendix.

# Support Equipment List and Details


| Manufacturer | Description | Model | Serial Number |
|--------------|-------------|-------|---------------|
| /            | /           | /     | /             |

# External I/O Cable

| Cable Description | Length (m) | From Port | То |
|-------------------|------------|-----------|----|
| /                 | /          | /         | /  |

# **Block Diagram of Test Setup**

For Radiated Emissions:



# SUMMARY OF TEST RESULTS

| FCC Rules                                 | Description of Test                             | Result         |
|-------------------------------------------|-------------------------------------------------|----------------|
| §15.247 (i), §1.1307 (b) (1) &<br>§2.1093 | RF Exposure                                     | Compliant      |
| §15.203                                   | Antenna Requirement                             | Compliant      |
| §15.207 (a)                               | AC Line Conducted Emissions                     | Not Applicable |
| §15.205, §15.209,<br>§15.247(d)           | Spurious Emissions                              | Compliant      |
| §15.247 (a)(2)                            | 6 dB Emission Bandwidth & Occupied<br>Bandwidth | Compliant      |
| §15.247(b)(3)                             | Maximum Conducted Output Power                  | Compliant      |
| §15.247(d)                                | 100 kHz Bandwidth of Frequency Band Edge        | Compliant      |
| §15.247(e)                                | Power Spectral Density                          | Compliant      |

Note Applicable: EUT was powered by battery when operating Bluetooth

# **TEST EQUIPMENT LIST**

| Manufacturer         | Description             | Model                | Serial Number | Calibration<br>Date | Calibration<br>Due Date |  |  |  |
|----------------------|-------------------------|----------------------|---------------|---------------------|-------------------------|--|--|--|
|                      | Radiated Emissions Test |                      |               |                     |                         |  |  |  |
| Rohde& Schwarz       | Test Receiver           | ESR                  | 102725        | 2021/12/13          | 2022/12/12              |  |  |  |
| Rohde&Schwarz        | Spectrum Analyzer       | FSV40                | 101949        | 2021/12/13          | 2022/12/12              |  |  |  |
| SONOMA<br>INSTRUMENT | Amplifier               | 310 N                | 186131        | 2021/11/09          | 2022/11/08              |  |  |  |
| A.H. Systems, inc.   | Preamplifier            | PAM-0118P            | 135           | 2021/11/09          | 2022/11/08              |  |  |  |
| Quinstar             | Amplifier               | QLW-<br>18405536-J0  | 15964001002   | 2021/11/11          | 2022/11/10              |  |  |  |
| Schwarzbeck          | Bilog Antenna           | VULB9163             | 9163-323      | 2021/07/06          | 2024/07/05              |  |  |  |
| Schwarzbeck          | Horn Antenna            | BBHA9120D            | 9120D-1067    | 2020/01/05          | 2023/01/04              |  |  |  |
| Schwarzbeck          | HORN ANTENNA            | BBHA9170             | 9170-359      | 2020/01/05          | 2023/01/04              |  |  |  |
| Radiated Emission T  | est Software: e3 19821b | (V9)                 |               |                     |                         |  |  |  |
| Unknown              | RF Coaxial Cable        | No.10                | N050          | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown              | RF Coaxial Cable        | No.11                | N1000         | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown              | RF Coaxial Cable        | No.12                | N040          | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown              | RF Coaxial Cable        | No.13                | N300          | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown              | RF Coaxial Cable        | No.14                | N800          | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown              | RF Coaxial Cable        | No.15                | N600          | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown              | RF Coaxial Cable        | No.16                | N650          | 2021/12/14          | 2022/12/13              |  |  |  |
| Wainwright           | High Pass Filter        | WHKX3.6/18<br>G-10SS | 5             | 2021/12/14          | 2022/12/13              |  |  |  |
|                      | RF Conducted Test       |                      |               |                     |                         |  |  |  |
| Rohde & Schwarz      | Spectrum Analyzer       | FSV-40               | 101948        | 2021/12/13          | 2022/12/12              |  |  |  |
| Tonscend             | RF Control Unit         | JS0806-2             | 19G8060182    | 2021/07/06          | 2022/07/05              |  |  |  |
| Unknown              | RF Coaxial Cable        | No.31                | RF-01         | Eacl                | n time                  |  |  |  |
| Unknown              | RF Cable                | Unknown              | Unknown       | Eacl                | n time                  |  |  |  |

\* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

# FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

### **Applicable Standard**

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances  $\leq$  50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$  for 1-g SAR and  $\le 7.5$  for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

#### **Measurement Result**

For worst case:

| Mode | Frequency<br>(MHz) | Max tune-up<br>conducted<br>power<br>(dBm) | Max tune-up<br>conducted<br>power<br>(mW) | Distance<br>(mm) | Calculated<br>value | Threshold<br>(1-g SAR) | SAR Test<br>Exclusion |
|------|--------------------|--------------------------------------------|-------------------------------------------|------------------|---------------------|------------------------|-----------------------|
| BLE  | 2480               | 0                                          | 1.0                                       | 5                | 0.3                 | 3.0                    | Yes                   |

**Result: No SAR test is required** 

# FCC §15.203 - ANTENNA REQUIREMENT

### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

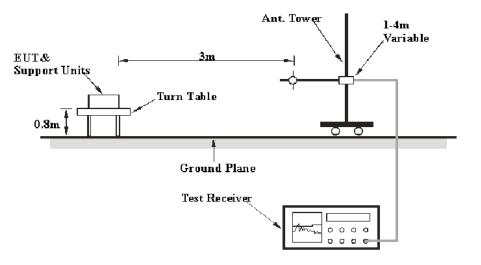
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

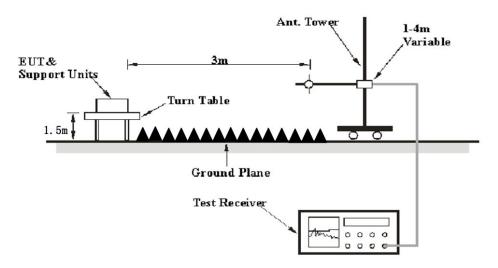
### **Antenna Connector Construction**

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


# FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

### **Applicable Standard**


FCC §15.247 (d); §15.209; §15.205;

# **EUT Setup**

### Below 1 GHz:



#### Above 1GHz:



The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

#### EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W                       | IF B/W  | Measurement |
|-------------------|---------|---------------------------------|---------|-------------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz                         | 120 kHz | QP          |
|                   | 1MHz    | 3 MHz                           | /       | РК          |
| Above 1 GHz       | 1MHz    | $10 \text{ Hz}^{\text{Note 1}}$ | /       | Average     |
|                   | 1MHz    | $> 1/T^{Note 2}$                | /       | Average     |

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

#### Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

#### **Test Data**

#### **Environmental Conditions**

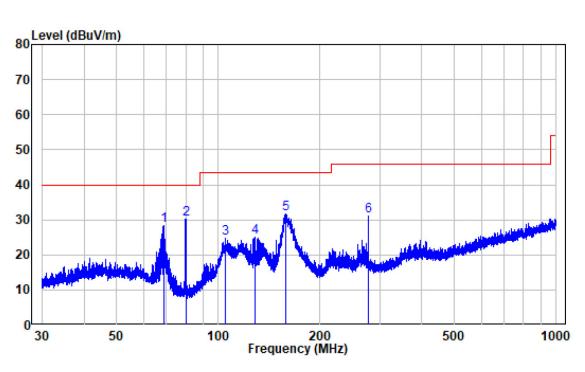
| Temperature:       | 25~25.8 °C |
|--------------------|------------|
| Relative Humidity: | 51~55 °C   |
| ATM Pressure:      | 101.2 kPa  |

*The testing was performed by Nick Fang on 2022-04-28 for below 1GHz and Nick Fang on 2022-05-09 and Amy Cao on 2022-03-29 for above 1GHz.* 

*EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)* 

Version 14: 2021-11-09

#### **30MHz-1GHz:** (worst case is high channel)


Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.





Site : chamber Condition: 3m HORIZONTAL Job No. : SZNS220307-07616E-RF Test Mode: BLE

|     | Freq    | Factor |       |        | Limit<br>Line |        | Remark |
|-----|---------|--------|-------|--------|---------------|--------|--------|
| 1.0 | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m        | dB     |        |
| 1   | 68.451  | -14.04 | 43.79 | 29.75  | 40.00         | -10.25 | Peak   |
| 2   | 80.010  | -16.79 | 42.29 | 25.50  | 40.00         | -14.50 | Peak   |
| 3   | 128.507 | -14.75 | 50.61 | 35.86  | 43.50         | -7.64  | Peak   |
| 4   | 157.835 | -14.52 | 54.29 | 39.77  | 43.50         | -3.73  | QP     |
| 5   | 359.344 | -7.65  | 41.51 | 33.86  | 46.00         | -12.14 | Peak   |
| 6   | 786.471 | -0.06  | 36.18 | 36.12  | 46.00         | -9.88  | Peak   |



Vertical

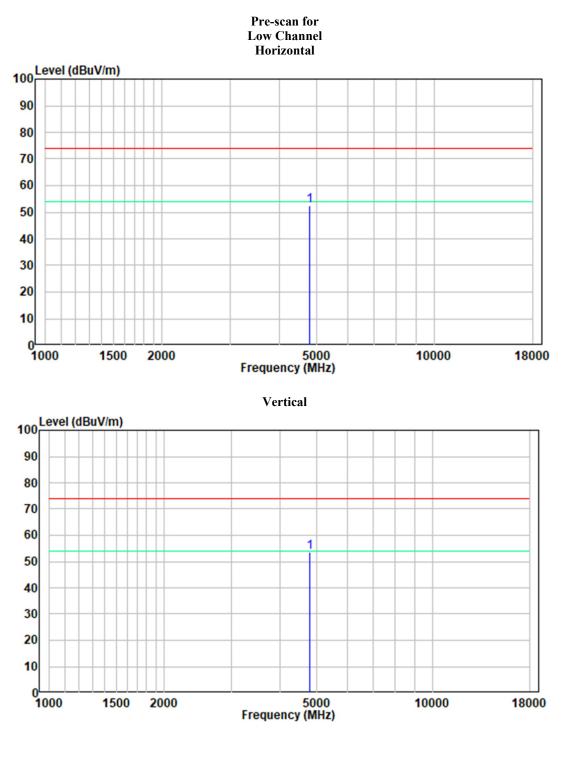
| Site :     | chamber              |
|------------|----------------------|
| Condition: | 3m VERTICAL          |
| Job No. :  | SZNS220307-07616E-RF |
| Test Mode: | BLE                  |

|   | Freq    | Factor |       |        | Limit<br>Line |        | Remark |
|---|---------|--------|-------|--------|---------------|--------|--------|
|   | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m        | dB     |        |
| 1 | 68.842  | -14.23 | 42.62 | 28.39  | 40.00         | -11.61 | Peak   |
| 2 | 80.010  | -16.79 | 47.10 | 30.31  | 40.00         | -9.69  | Peak   |
| 3 | 105.226 | -11.85 | 36.73 | 24.88  | 43.50         | -18.62 | Peak   |
| 4 | 128.001 | -14.70 | 39.70 | 25.00  | 43.50         | -18.50 | Peak   |
| 5 | 157.835 | -14.52 | 46.30 | 31.78  | 43.50         | -11.72 | Peak   |
| 6 | 278.189 | -9.70  | 40.87 | 31.17  | 46.00         | -14.83 | Peak   |

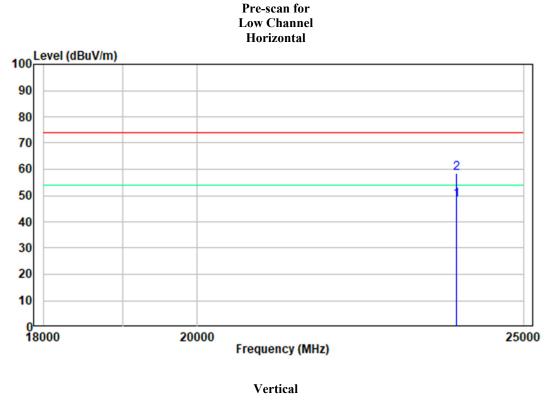
#### Report No.: SZNS220307-07616E-RF-00

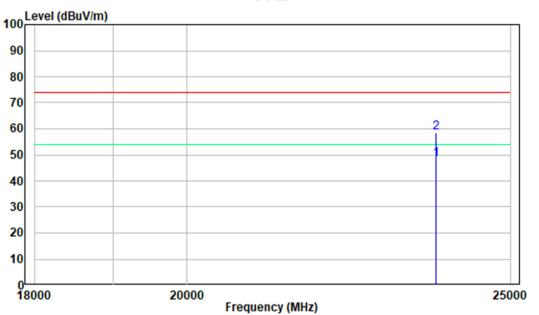
#### 1-25 GHz:

| E                      | Re                      | eceiver    | Turntable | Rx An         | tenna          | Corrected | Corrected             | T :: 14           | Manain         |
|------------------------|-------------------------|------------|-----------|---------------|----------------|-----------|-----------------------|-------------------|----------------|
| Frequency<br>(MHz)     | Reading<br>(dBµV)       | PK/QP/Ave. | Degree    | Height<br>(m) | Polar<br>(H/V) |           | Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|                        | Low Channel(2402MHz)    |            |           |               |                |           |                       |                   |                |
| 2310                   | 67.79                   | PK         | 238       | 1.2           | Н              | -7.24     | 60.55                 | 74                | -13.45         |
| 2310                   | 53.63                   | Ave.       | 238       | 1.2           | Н              | -7.24     | 46.39                 | 54                | -7.61          |
| 2390                   | 68.38                   | PK         | 268       | 1.8           | Н              | -7.22     | 61.16                 | 74                | -12.84         |
| 2390                   | 53.23                   | Ave.       | 268       | 1.8           | Н              | -7.22     | 46.01                 | 54                | -7.99          |
| 2310                   | 68.29                   | РК         | 251       | 1.1           | V              | -7.24     | 61.05                 | 74                | -12.95         |
| 2310                   | 53.64                   | Ave.       | 251       | 1.1           | V              | -7.24     | 46.4                  | 54                | -7.6           |
| 2390                   | 68.06                   | PK         | 8         | 1             | V              | -7.22     | 60.84                 | 74                | -13.16         |
| 2390                   | 53.25                   | Ave.       | 8         | 1             | V              | -7.22     | 46.03                 | 54                | -7.97          |
| 4804                   | 55.9                    | PK         | 314       | 1             | Н              | -3.51     | 52.39                 | 74                | -21.61         |
| 4804                   | 57.27                   | РК         | 146       | 1.8           | V              | -3.51     | 53.76                 | 74                | -20.24         |
|                        | Middle Channel(2440MHz) |            |           |               |                |           |                       |                   |                |
| 4880                   | 55.6                    | РК         | 251       | 2.5           | Н              | -3.38     | 52.22                 | 74                | -21.78         |
| 4880                   | 56.8                    | РК         | 4         | 2.2           | V              | -3.38     | 53.42                 | 74                | -20.58         |
| High Channel(2480 MHz) |                         |            |           |               |                |           |                       |                   |                |
| 2483.5                 | 69.11                   | РК         | 214       | 2.3           | Н              | -7.2      | 61.91                 | 74                | -12.09         |
| 2483.5                 | 54.16                   | Ave.       | 214       | 2.3           | Н              | -7.2      | 46.96                 | 54                | -7.04          |
| 2500                   | 69.04                   | РК         | 92        | 1.3           | Н              | -7.18     | 61.86                 | 74                | -12.14         |
| 2500                   | 54.65                   | Ave.       | 92        | 1.3           | Н              | -7.18     | 47.47                 | 54                | -6.53          |
| 2483.5                 | 68.65                   | PK         | 130       | 2             | V              | -7.2      | 61.45                 | 74                | -12.55         |
| 2483.5                 | 53.66                   | Ave.       | 130       | 2             | V              | -7.2      | 46.46                 | 54                | -7.54          |
| 2500                   | 69.32                   | PK         | 46        | 1.3           | V              | -7.18     | 62.14                 | 74                | -11.86         |
| 2500                   | 54.5                    | Ave.       | 46        | 1.3           | V              | -7.18     | 47.32                 | 54                | -6.68          |
| 4960                   | 55.06                   | РК         | 272       | 2.5           | Н              | -3.01     | 52.05                 | 74                | -21.95         |
| 4960                   | 56.42                   | РК         | 261       | 1.9           | V              | -3.01     | 53.41                 | 74                | -20.59         |


#### Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit


The other spurious emission which is in the noise floor level was not recorded.


The test result of peak was less than the limit of average, so just peak value were recorded.

#### 1-18 GHz:



#### 18 -25GHz:





# FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

### **Applicable Standard**

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

# **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

| EUT | RF control unit |  | Spectrum Analyzer |
|-----|-----------------|--|-------------------|
|-----|-----------------|--|-------------------|

### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 25 ℃      |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 55 °C     |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Key Pei on 2022-03-28.

EUT operation mode: Transmitting

# FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

### **Applicable Standard**

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

### **Test Procedure**

- c. Place the EUT on a bench and set it in transmitting mode.
- d. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- e. Add a correction factor to the display.

| EUT RF control | unit |
|----------------|------|
|----------------|------|

Note: the RF control unit with a built-in power sensor.

### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 25 ℃      |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 55 °C     |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Key Pei on 2022-03-28.

EUT operation mode: Transmitting

# FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

### Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

# **Test Procedure**

- f. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- g. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- h. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- i. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- j. Repeat above procedures until all measured frequencies were complete.

|--|

# **Test Data**

### **Environmental Conditions**

| Temperature:              | 25 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 55 °C     |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Key Pei on 2022-03-28.

EUT operation mode: Transmitting

# FCC §15.247(e) - POWER SPECTRAL DENSITY

### **Applicable Standard**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

### **Test Procedure**

- k. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 1. Set the RBW to:  $3kHz \le RBW \le 100 kHz$ .
- m. Set the VBW  $\geq 3 \times RBW$ .
- n. Set the span to 1.5 times the DTS bandwidth.
- o. Detector = peak.
- p. Sweep time = auto couple.
- q. Trace mode = max hold.
- r. Allow trace to fully stabilize.
- s. Use the peak marker function to determine the maximum amplitude level within the RBW.
- t. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

| Spectrum Anaryzer | EUT |  | RF control unit |  | Spectrum Analyzer |
|-------------------|-----|--|-----------------|--|-------------------|
|-------------------|-----|--|-----------------|--|-------------------|

# **Test Data**

#### **Environmental Conditions**

| Temperature:              | 25 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 55 °C     |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Key Pei on 2022-03-28.

EUT operation mode: Transmitting

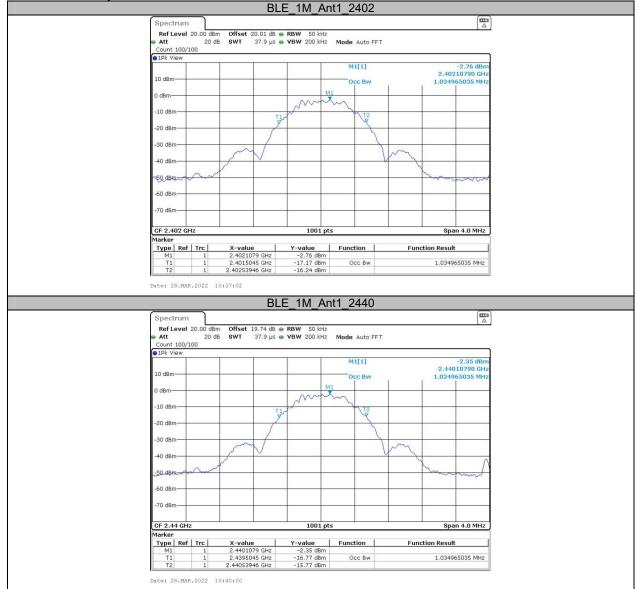
# APPENDIX

# Appendix A: DTS Bandwidth

# Test Result

| Test Mode   | Antenna | Channel | DTS BW [MHz] | Limit[MHz] | Verdict |
|-------------|---------|---------|--------------|------------|---------|
| BLE_1M Ant1 |         | 2402    | 0.72         | 0.5        | PASS    |
|             | Ant1    | 2440    | 0.72         | 0.5        | PASS    |
|             |         | 2480    | 0.72         | 0.5        | PASS    |

# **Test Graphs**


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                        | BLF                     | E 1M A                         | nt1 2402                                                                         |     |               |                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|-------------------------|--------------------------------|----------------------------------------------------------------------------------|-----|---------------|----------------------------------|
| Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rum                   |                                        |                         |                                |                                                                                  |     |               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | evel 20.00 dB         | m Offset :                             | 20.01 dB 🖷              | RBW 100 kH:                    | 2                                                                                |     |               |                                  |
| 👄 Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 c<br>100/100       |                                        |                         |                                | Z Mode Auto FF                                                                   | т   |               |                                  |
| ● 1Pk V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6M<br>100/100         |                                        |                         |                                |                                                                                  |     |               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                        |                         |                                | M1[1]                                                                            |     |               | 6.57 dBm                         |
| 10 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                     | -                                      | -                       |                                | M2[1]                                                                            |     |               | 6000 GHz<br>0.62 dBm             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                        |                         |                                | M2                                                                               |     |               | 6800 GHz                         |
| 0 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                        |                         | M1                             | ~                                                                                |     |               |                                  |
| -10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D1 -6.620             | dBm                                    | /                       |                                | 2                                                                                |     |               |                                  |
| -20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                        | 1                       |                                |                                                                                  |     |               |                                  |
| -20 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                        |                         |                                |                                                                                  | 1   |               |                                  |
| -30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                     | -                                      |                         |                                |                                                                                  | L   | -             | 0                                |
| -40 dBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                     | 1                                      |                         |                                |                                                                                  | 1   |               |                                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sim$                | 4                                      |                         |                                |                                                                                  |     | Mart          |                                  |
| -50 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     |                                        |                         |                                |                                                                                  |     |               | ~~~                              |
| -60 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                     |                                        |                         |                                |                                                                                  |     |               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                        |                         |                                |                                                                                  |     |               |                                  |
| -70 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     |                                        |                         |                                |                                                                                  |     |               |                                  |
| CF 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02 GHz                | -                                      | 1                       | 1001                           | ots                                                                              |     | Span          | 4.0 MHz                          |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                        |                         |                                |                                                                                  |     |               |                                  |
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ref Trc 1             | X-value                                | e 66 GHz                | Y-value<br>-6.57 dBm           | Function                                                                         | Fur | nction Result |                                  |
| M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                     | 2.4022                                 | 68 GHz                  | -0.62 dBm                      |                                                                                  |     |               |                                  |
| D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1 1                  | 71                                     | 6.0 kHz                 | 0.02 dB                        |                                                                                  |     |               |                                  |
| Date: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.MAR.2022            | 10:36:50                               |                         |                                |                                                                                  |     |               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                        | BIC                     | = 1N/ A                        | nt1 2440                                                                         |     |               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                        | DLL                     | A                              | <u>1111_2440</u>                                                                 |     |               | (m)                              |
| Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | - //                                   |                         |                                |                                                                                  |     |               |                                  |
| Ref L<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | evel 20.00 dB<br>20 d |                                        |                         | RBW 100 kH:<br>VBW 300 kH:     |                                                                                  | т   |               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | IB SWT                                 |                         |                                |                                                                                  |     |               |                                  |
| Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100/100               | IB SWI                                 |                         |                                | Mode Auto Fr                                                                     |     |               |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | IB SWI                                 | 1                       |                                |                                                                                  |     |               | 6.14 dBm                         |
| Count<br>PIPK v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ew                    | 18 SW1                                 |                         |                                | M1[1]                                                                            |     | 2.4396        | 6.14 dBm<br>6000 GHz             |
| Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ew                    | 18 SW1                                 |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>● 1Pk v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ew                    |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz                         |
| Count<br>● 1Pk V<br>10 dBm<br>0 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ew                    |                                        |                         | M1                             | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>• 1Pk v<br>10 dBm<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>P IPK V<br>10 dBm<br>0 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D1 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>• 1Pk v<br>10 dBm<br>-10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>IPK V<br>10 dBm<br>0 dBm-<br>-10 dBr<br>-20 dBr<br>-30 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D1 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>● 1Pk ∿<br>10 dBm<br>0 dBm<br>-10 dBr<br>-20 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>IPK V<br>10 dBm<br>0 dBm-<br>-10 dBr<br>-20 dBr<br>-30 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D1 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>• 1Pk V<br>10 dBn<br>-10 dBn<br>-20 dBn<br>-20 dBn<br>-30 dBn<br>-30 dBn<br>-30 dBn<br>-30 dBn<br>-30 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>• 1Pk V<br>10 dBm<br>-10 dB<br>-20 dB<br>-30 dB<br>-40 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>• 1Pk V<br>10 dBn<br>-10 dBn<br>-20 dBn<br>-20 dBn<br>-30 dBn<br>-30 dBn<br>-30 dBn<br>-30 dBn<br>-30 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 -6.200             |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>● 1Pk ↓<br>10 dBm<br>0 dBm<br>-10 dBu<br>-20 dBu<br>-30 dBu<br>-40 dBu<br>-50 dBu<br>-50 dBu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ew 01 -6.200          |                                        |                         |                                | M1[1]                                                                            |     | 2.4396        | 6000 GHz<br>0.20 dBm<br>6800 GHz |
| Count<br>● 1Pk ∿<br>10 dBn<br>0 dBm<br>-10 dBi<br>-20 dBi<br>-20 dBi<br>-30 dBi<br>-50 dBi<br>-60 dBi<br>-70 dBi<br>CF 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ew 01 -6.200          |                                        |                         |                                | M1[1]<br>M2[1]<br>M2                                                             |     | 2.4396        | 6000 GHz<br>0.20 dBm             |
| Count<br>• 1Pk V<br>10 dBm<br>0 dBm<br>-10 dBi<br>-20 dBi<br>-20 dBi<br>-30 dBi<br>-30 dBi<br>-30 dBi<br>-30 dBi<br>-30 dBi<br>-20 dBi<br>-30 dBi<br>-30 dBi<br>-40 dBi<br>-50 dBi<br>-50 dBi<br>-50 dBi<br>-50 dBi<br>-50 dBi<br>-60 dBi<br>-70 dBi<br>- | ew 01 -6.200          | CBm                                    |                         | M1                             | M1[1]<br>M2[1]<br>M2<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3 |     | 2.4396        | 6000 GHz<br>0.20 dBm<br>6800 GHz |
| Count<br>() 10 dBn<br>0 dBm<br>-10 dBn<br>-20 dBn<br>-20 dBn<br>-20 dBn<br>-30 dBn<br>-30 dBn<br>-50 dBn<br>-50 dBn<br>-60 dBn<br>-70 dBn<br>-60 dBn<br>-70 dBn<br>-70 dBn<br>-60 dBn<br>-70 d     | ew 01 -6.200          | CBm<br>X-valut<br>2.439                | e<br>666 GHz            | 1001 r<br>Y-value              | M1[1]<br>M2[1]<br>M2<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3<br>V3 |     | 2.4396        | 6000 GHz<br>0.20 dBm<br>6800 GHz |
| Count<br>● 1Pk ∿<br>10 dBn<br>0 dBm<br>-10 dB<br>-20 dB<br>-20 dB<br>-30 dB<br>-40 dB<br>-50 dB<br>-50 dB<br>-70 dB<br>CF 24<br>Market<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ew 01 -6.200          | CBm<br>X-valut<br>2.439<br>2.439       |                         | M1                             | M1[1]<br>M2[1]<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2       |     | 2.4396        | 6000 GHz<br>0.20 dBm<br>6800 GHz |
| Count<br>ID dBn<br>0 dBm<br>-10 dBn<br>-20 dBn<br>-20 dBn<br>-30 dBn<br>-30 dBn<br>-50 dBn<br>-50 dBn<br>-70 dBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ew 01 -6.200          | <b>X-valu</b><br>2.439<br>2.4492<br>71 | e<br>666 GHz<br>666 GHz | 1001 ;<br>Y-value<br>-6.14 dBr | M1[1]<br>M2[1]<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2<br>M2       |     | 2.4396        | 6000 GHz<br>0.20 dBm<br>6800 GHz |



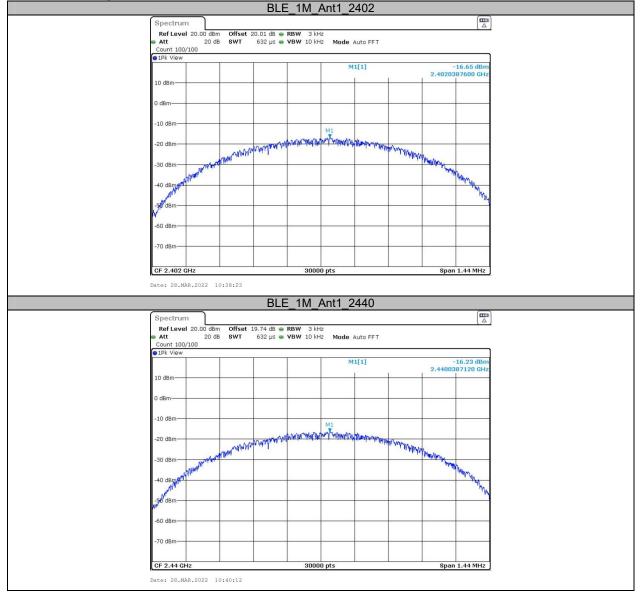
# Appendix B: Occupied Channel Bandwidth Test Result

| Test Mode | Antenna | Channel | Channel OCB [MHz] |  | Verdict |
|-----------|---------|---------|-------------------|--|---------|
| BLE_1M    |         | 2402    | 1.035             |  |         |
|           | Ant1    | 2440    | 1.035             |  |         |
|           |         | 2480    | 1.035             |  |         |

# **Test Graphs**

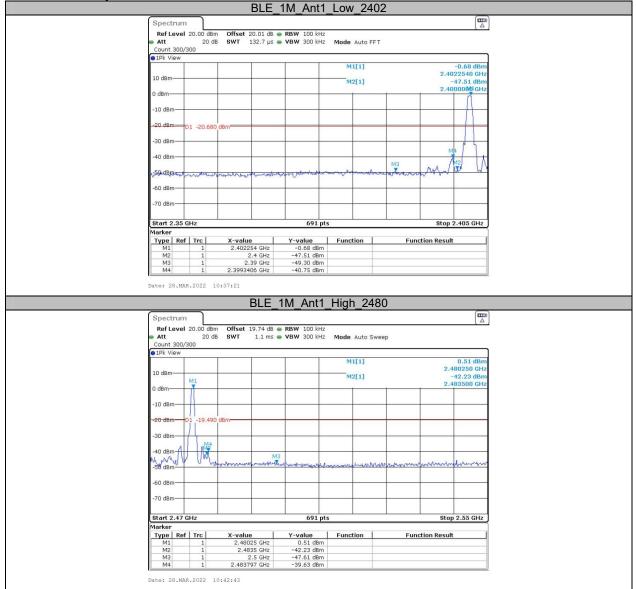





# Appendix C: Maximum conducted Peak output power Test Result

| Test Mode | Antenna | Channel | Result[dBm] | Limit[dBm] | Verdict |
|-----------|---------|---------|-------------|------------|---------|
| BLE_1M    |         | 2402    | -1.50       | ≤30.00     | PASS    |
|           | Ant1    | 2440    | -1.03       | ≤30.00     | PASS    |
|           |         | 2480    | -0.47       | ≤30.00     | PASS    |

# Appendix D: Maximum power spectral density Test Result


| Test Mode   | Antenna | Channel | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|-------------|---------|---------|------------------|-----------------|---------|
| BLE_1M Ant1 |         | 2402    | -16.65           | ≤8.00           | PASS    |
|             | Ant1    | 2440    | -16.23           | ≤8.00           | PASS    |
|             |         | 2480    | -15.63           | ≤8.00           | PASS    |

# **Test Graphs**





### Appendix E: Band edge measurements Test Graphs



# Appendix F: Duty Cycle Test Result

| Test Mode | Antenna | Channel | Transmission<br>Duration [ms] | Transmission<br>Period [ms] | Duty Cycle [%] |
|-----------|---------|---------|-------------------------------|-----------------------------|----------------|
| BLE_1M    | Ant1    | 2440    | 2.13                          | 2.50                        | 85.20          |

# **Test Graphs**

|                            | BL                     | E 1M Ant     | 1 2440   |              |                           |      |
|----------------------------|------------------------|--------------|----------|--------------|---------------------------|------|
| Spectrum                   | J                      |              |          |              |                           |      |
| Ref Level 10.0             | 00 dBm Offset 19.74 dB | RBW 10 MHz   |          |              |                           |      |
| Att                        |                        | . VBW 10 MHz |          |              |                           |      |
| SGL Count 1/1              | TRG: VID               |              |          |              |                           |      |
| 1Pk Clrw                   |                        |              |          |              |                           |      |
|                            |                        |              | M1[1]    |              | -3.83 dBm<br>0.00000000 s |      |
| blittBm                    | D2                     | 24 141       | D1[1]    |              | -29.75 dB                 |      |
|                            |                        |              |          |              | 2.13000 ms                |      |
| <mark>⊶10 dBm</mark> ──TRG | -9.600 dBm             |              |          |              |                           |      |
| -20 dBm                    |                        |              |          |              |                           |      |
|                            |                        |              |          |              |                           |      |
| -30 dBm                    | gen                    | Marrie       |          | holes        | 44                        |      |
| -40 dBm                    | Δ.                     | 100 C        |          |              |                           |      |
| -40 dBm                    |                        |              | 0        |              |                           |      |
| -50 dBm                    |                        |              |          |              |                           |      |
|                            |                        |              |          |              |                           |      |
| -60 dBm                    |                        |              |          |              |                           |      |
| 20                         |                        |              |          |              |                           |      |
| -70 dBm                    |                        |              |          |              |                           |      |
| 00 100                     |                        |              |          |              |                           |      |
| -80 dBm                    |                        |              |          |              |                           |      |
| CF 2.44 GHz                |                        | 1001 pts     |          |              | 1.0 ms/                   |      |
| Marker                     |                        | 1001 pts     |          |              | 1.0 113/                  |      |
| Type   Ref   Tr            | c X-value              | Y-value      | Function | Function R   | esult                     |      |
|                            | 1 0.0 s                | -3.83 dBm    |          | . unction is |                           |      |
| D1 M1                      |                        | -29.75 dB    |          |              |                           |      |
| D2 M1                      | 1 2.5 ms               | 0.10 dB      |          |              |                           |      |
| Date: 28.MAR.20            | 22 10.49.20            |              |          |              |                           |      |
| Date: 28.PAR.20            | LL 10:40:30            |              |          |              |                           |      |
|                            |                        |              |          |              |                           | <br> |

\*\*\*\*\* END OF REPORT \*\*\*\*\*