Logitech Antenna Under Test (AUT) Report

Equipment Type: Wireless USB dongle

Manufacturer: Logitech Far East LTD.

Test Location: No. 3 Songshan Road, Suzhou New District, Jiangsu, China

Model Name: C-U0011

Test personnel: _____Jin Wang____

Report Date: 2023.12.18 ____

Report No: EVT-700-002401 Page 1 of 14

Report Release History

Report version	Description	Date Issued	
C-U0011 AUT Report	Original release	2023/12/18	

Table of Contents

1.	EUT Antenna Information	2
2.	Measured Values and Calculation of Antenna Gains	2
3.	Conducted Power Measurement	3
	3.1 Test Setup	3
	3.2 Test Instruments	3
	3.3 Test Procedure	3
	3.4 Test Result of RF conducted Power	4
4.	2D Radiation Pattern Measurement	4
	4.1 Test Location	4
	4.2 Description of the anechoic chamber	4
	4.3 Test Instruments	4
	4.4 Test Procedure	7
	4.5 Test Setup photos	8
	4.6 2D Pattern Test Plot	8

Report No: EVT-700-002401 Page 2 of 14

1. EUT Antenna Information

1) Antenna Material: PCB on board

2) Antenna Type: Printed Inverted F Antenna

3) Antenna Dimension: 1.3 x 0.7 mm

4) Operating Frequency: 2.4 GHz - 2.4835 GHz

5) Input Impedance: 50 Ω6) Standing-Wave Ratio: 2:1

2. Measured Values and Calculation of Antenna Gains

Measure peak horizontal/vertical EIRP on each x-y, y-z, x-z plane. The highest measured values will be used to calculate the antenna peak gain.

Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

	X-Y Plane φ=0~360°, θ=90°		X-Z Plane φ=0°, θ=0~360°		Y-Z Plane φ=90⁰, θ=0~360⁰		Max Peak	Conducted	Antenna
Frequency	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	Ver. Peak EIRP (dBm)	Hori. Peak EIRP (dBm)	EIRP (dBm)	Power (dBm)	Peak Gain (dBi)
2405	-3.71	-3.18	-9.38	0.06	-2.50	0.34	0.34	-1.13	1.47
2444	-3.84	-3.17	-7.60	0.05	-2.94	0.56	0.56	-1.12	1.68
2474	-4.01	-3.38	-7.28	0.10	-3.23	0.50	0.50	-1.25	1.75

Test Date: ______2023.12.18

Report No: EVT-700-002401 Page 3 of 14

3. Conducted Power Measurement

3.1 Test Setup

3.2 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9020A	MY48011353	2023.07.16
RF signal cable Woken	Huber+suhner 10844497	276	2023.05.28

Note: The calibration interval of the above test instruments is <u>12</u> months

3.3 Test Procedure

A spectrum analyzer or Power meter was used to perform output power measurement, setting the detector to average and configuring EUT continuously transmitting power(100% duty cycle).

Report No: EVT-700-002401 Page 4 of 14

3.4 Test Result of RF conducted Power

Frequency	Conducted Power (dBm)		
2405	-1.13		
2444	-1.12		
2474	-1.25		

Test Date: <u>2023.12.18</u>

Report No: EVT-700-002401 Page 5 of 14

4. 2D Radiation Pattern Measurement

4.1 Test Location

2D radiation pattern measurement in the anechoic chamber

4.2 Description of the anechoic chamber

Length: 5.0m Width: 2.8m Height: 2.8m

Turn table Height: 1.4m

Measurement antenna height: 1.4m

Report No: EVT-700-002401 Page 6 of 14

4.3 Test Instruments

Description	Model No.	Serial No.	Last Calibration
Spectrum Analyzer Keysight	N9010A	MY49061163	2023.07.25
Horn Antenna ETS	BBHA 9120 D(1201)	D69250	2023.07.28
RF signal cable	SUCOFLEX104	SN293270/4	2023.07.28
Software	FAC-Radio Measurement System	Version 1.1.0.7	N/A
Turntable Controller	BJ3AC-100	N/A	N/A
Chamber Antenna Tower	LWP-AS	N/A	2023.11.28
LNA	LN1G11	321282	2023.11.28

Note: The calibration interval of the above test instruments is 12 months

4.4 Test Procedure

- i. Connect the EUT to Spectrum Analyzer and record the power setting of EUT and the measured conducted power.
- ii. Fasten the EUT in the center of the turntable, record the coordinates and take pictures.
- iii. Configuring EUT continuously transmitting power(100% duty cycle).
- iv. Make sure the transmit signal is stable and at the maximum RF power level.
- v. Setup the channel power function by spectrum analyzer.
- vi. Read the channel power level on the spectrum analyzer and record in the following positions.

Report No: EVT-700-002401 Page 7 of 14

- 1. The turntable is then stepped between 0 to 360 degrees along the horizontal plane in 15-degree increments.
- 2. Data is recorded using the spectrum analyzer for both theta and phi polarizations at each position.
- vii. Rotate the EUT with 90 degrees and repeat step f.1 and step f.2 until all 3 planes(X-Y,X-Z,Y-Z) were measured.
- viii. According to substitution techniques, a substitution horn antenna is substituted for EUT at the same position and the signal generator exports the CW signal to the substitution antenna via a TX cable. Rotated the turntable and moved the receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a value of spectrum reading equal to "Raw Value" gotten from step vii. Record the power level of S.G.

$$EIRP = P_{SigGen} + G_T - L_C$$

where:

P_{SigGen} = power setting of the signal generator that produces the same received power reading as the DUT, in dBm;

 G_T = gain of the substitute antenna, in dBd (ERP) or dBi (EIRP);

 L_{C} = signal loss in the cable connecting the signal generator to the substitute antenna, in dB

ix. Antenna Peak Gain (dBi) = Max EIRP(dBm) - Conducted Power (dBm)

4.5 Test Setup photos

confidential.

Report No: EVT-700-002401 Page 8 of 14

4.6 2D Pattern Test Plot

X-Y Plane: Horizontal and Vertical

Horizontal

[imgfile: tmp/_gnuplot20231218-21463-hginjm-0.png]

Vertical

Radiation pattern #1:

Dagami_RadPatt_Antenna gain_#1_Tx_CH05_H-XY_0_CORR

Average power = -9.89 dBm Front average power = -9.22 dBm (From 0 deg to 180 deg)

Min power = -31.92 dBm @ -84.00 deg Max power = -3.18 dBm @ 6.00 deg

Radiation pattern #2:

Dagami_RadPatt_Antenna gain_#l_Tx_CH44_H-XY_0_CORR

Average power = -10.04 dBmFront average power = -9.71 dBm (From 0 deg to 180 deg)

Min power = -29.73 dBm @ 90.00 deg Max power = -3.17 dBm @ 3.00 deg

Delta max power = 0.01 dBm Delta average power = -0.15 dBm Delta front average power = -0.48 dBm

Radiation pattern #3:

Dagami_RadPatt_Antenna gain_#1_Tx_CH74_H-XY_0_CORR

Average power = -10.11 dBmFront average power = -9.75 dBm (From 0 deg to 180 deg)

Min power = -30.59 dBm @ 90.00 deg Max power = -3.38 dBm @ 3.00 deg

Delta max power = -0.20 dBm Delta average power = -0.22 dBm Delta front average power = -0.53 dBm

[imgfile: tmp/_gnuplot20231218-21464-120da8r-0.png]

X-Z Plane: Horizontal and Vertical

Horizontal

Radiation pattern #1:

Dagami_RadPatt_Antenna gain_#1_Tx_CH05_V-XY_0_CORR

Average power = $-13.65 \ dBm$ Front average power = $-16.18 \ dBm$ (From 0 deg to 180 deg)

Min power = -24.65 dBm @ -57.00 deg Max power = -3.71 dBm @ -153.00 deg

Radiation pattern #2:

Dagami_RadPatt_Antenna gain_#1_Tx_CH44_V-XY_0_CORR

Average power = -14.17 dBm Front average power = -17.07 dBm (From 0 deg to 180 deg)

Min power = -25.00 dBm @ 60.00 deg Max power = -3.84 dBm @ -150.00 deg

Delta max power = -0.13 dBm

Delta average power = -0.52 dBm

Delta front average power = -0.89 dBm

Radiation pattern #3:

Dagami_RadPatt_Antenna gain_#1_Tx_CH74_V-XY_0_CORR

Average power = -14.32 dBmFront average power = -17.37 dBm (From 0 deg to 180 deg)

Min power = -26.27 dBm @ 45.00 deg Max power = -4.01 dBm @ -150.00 deg

Delta max power = -0.29 dBm Delta average power = -0.67 dBm Delta front average power = -1.19 dBm

 $[imgfile: tmp/_gnuplot20231218-21463-l2nieu-0.png] \\$

Vertical

Radiation pattern #1:

Dagami_RadPatt_Antenna gain_#1_Tx_CH05_H-XZ_0_CORR

Average power = $-10.97 \ dBm$ Front average power = $-15.88 \ dBm$ (From 0 deg to 180 deg)

Min power = -28.14 dBm @ -84.00 degMax power = 0.06 dBm @ -117.00 deg

Radiation pattern #2:

Dagami_RadPatt_Antenna gain_#1_Tx_CH44_H-XZ_0_CORR

Average power = -10.97 dBmFront average power = -15.79 dBm (From 0 deg to 180 deg)

Min power = -30.89 dBm @ -84.00 deg Max power = 0.05 dBm @ -117.00 deg

Delta max power = -0.01 dBm Delta average power = 0.01 dBm Delta front average power = 0.09 dBm

Radiation pattern #3:

Dagami_RadPatt_Antenna gain_#1_Tx_CH74_H-XZ_0_CORR

Average power = -11.56 dBmFront average power = -17.03 dBm (From 0 deg to 180 deg)

Min power = -30.91 dBm @ 36.00 deg Max power = 0.10 dBm @ -114.00 deg

Delta max power = 0.04 dBm Delta average power = -0.59 dBm Delta front average power = -1.15 dBm

Report No: EVT-700-002401 Page 11 of 14

Rad #1: Dagami_RadPatt_Antenna gain_#1_Tx_CH05_V-XZ_0_CORF Rad #2: Dagami_RadPatt_Antenna gain_#1_Tx_CH44_V-XZ_0_CORF Rad #1: Dagami_RadPatt_Antenna gain_#1_Tx_CH44_V-XZ_0_CORF

[imgfile: tmp/_gnuplot20231218-21463-5jfya3-0.png]

Y-Z Plane: Horizontal and Vertical

• Horizontal

Radiation pattern #1:

Dagami_RadPatt_Antenna gain_#1_Tx_CH05_V-XZ_0_CORR

Average power = -14.97 dBmFront average power = -15.91 dBm (From 0 deg to 180 deg)

Min power = -20.18 dBm @ -87.00 deg Max power = -9.38 dBm @ -54.00 deg

Radiation pattern #2:

Dagami_RadPatt_Antenna gain_#1_Tx_CH44_V-XZ_0_CORR

Average power = -15.30 dBm Front average power = -16.89 dBm (From 0 deg to 180 deg) Min power = -21.63 dBm @ 114.00 deg Max power = -7.60 dBm @ -123.00 deg Delta max power = 1.79 dBm

Delta max power = 1.79 dBm

Delta average power = -0.33 dBm

Delta front average power = -0.98 dBm

Radiation pattern #3:

Dagami_RadPatt_Antenna gain_#1_Tx_CH74_V-XZ_0_CORR

Average power = -15.58 dBmFront average power = -17.21 dBm (From 0 deg to 180 deg)

Min power = -23.12 dBm @ 120.00 deg Max power = -7.28 dBm @ -123.00 deg

Delta max power = 2.10 dBm Delta average power = -0.60 dBm Delta front average power = -1.30 dBm

Rad #1: Dagami_RadPatt_Antenna gain_#1_Tx_CH05_H-YZ_0_CORR Rad #2: Dagami_RadPatt_Antenna gain_#1_Tx_CH44_H-YZ_0_CORR Rad #3: Dagami_RadPatt_Antenna gain_#1_Tx_CH74_H-YZ_0_CORR

 $[imgfile: tmp/_gnuplot20231218-21464-xvzyg4-0.png] \\$

Vertical

Radiation pattern #1:

$Dagami_RadPatt_Antenna\ gain_\#l_Tx_CH05_H-YZ_0_CORR$

Average power = -10.39~dBm Front average power = -10.92~dBm (From 0 deg to 180 deg)

Min power = -32.13 dBm @ 96.00 deg Max power = 0.34 dBm @ 120.00 deg

Radiation pattern #2:

Dagami_RadPatt_Antenna gain_#1_Tx_CH44_H-YZ_0_CORR

Average power = -10.28 dBmFront average power = -10.67 dBm (From 0 deg to 180 deg)

Min power = **-24.86 dBm** @ 96.00 deg Max power = **0.56 dBm** @ 120.00 deg

Delta max power = 0.22 dBm Delta average power = 0.11 dBm Delta front average power = 0.25 dBm

Radiation pattern #3:

Dagami_RadPatt_Antenna gain_#1_Tx_CH74_H-YZ_0_CORR

Average power = -10.38 dBmFront average power = -10.63 dBm (From 0 deg to 180 deg)

Min power = -22.82 dBm @ 96.00 deg Max power = 0.50 dBm @ 120.00 deg

Delta max power = 0.16 dBmDelta average power = 0.02 dBmDelta front average power = 0.29 dBm

Rad #1: Dagami_RadPatt_Antenna gain_#1_Tx_CH05_V-YZ_0_CORR Rad #2: Dagami_RadPatt_Antenna gain_#1_Tx_CH44_V-YZ_0_CORR Rad #3: Dagami_RadPatt_Antenna gain_#1_Tx_CH74_V-YZ_0_CORR

[imgfile: tmp/_gnuplot20231218-21464-9neik4-0.png]

Radiation pattern #1:

Dagami_RadPatt_Antenna gain_#1_Tx_CH05_V-YZ_0_CORR

Average power = -6.55 dBmFront average power = -7.00 dBm (From 0 deg to 180 deg)

Min power = -10.25 dBm @ 33.00 deg Max power = -2.50 dBm @ 111.00 deg

Radiation pattern #2:

Dagami_RadPatt_Antenna gain_#1_Tx_CH44_V-YZ_0_CORR

Average power = -6.76 dBmFront average power = -7.17 dBm (From 0 deg to 180 deg)

Min power = -10.33 dBm @ 33.00 deg Max power = -2.94 dBm @ 111.00 deg

Delta max power = -0.43 dBm Delta average power = -0.21 dBm Delta front average power = -0.17 dBm

Radiation pattern #3:

Dagami_RadPatt_Antenna gain_#1_Tx_CH74_V-YZ_0_CORR

Average power = -7.30 dBmFront average power = -7.79 dBm (From 0 deg to 180 deg)

Min power = -12.25 dBm @ 78.00 deg Max power = -3.23 dBm @ 111.00 deg

Delta max power = -0.73 dBm Delta average power = -0.74 dBm Delta front average power = -0.79 dBm

Report No: EVT-700-002401 Page 14 of 14