4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 52 ## **TEST REPORT** of FCC Part 15 Subpart C §15.247 FCC ID: TQ8-DA350TYGU Equipment Under Test : DISPLAY CAR SYSTEM Model Name : DA350TYGU Variant Model Name(s) : Refer to the page 3 Applicant : Hyundai Mobis Co., Ltd. Manufacturer : Hyundai Mobis Co., Ltd. Date of Receipt : 2021.12.09 Date of Test(s) : 2021.12.13 ~ 2022.01.07 Date of Issue : 2022.01.07 In the configuration tested, the EUT complied with the standards specified above. This test report does not assure KOLAS accreditation. 1) The results of this test report are effective only to the items tested. Murphy Kim - 2) The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. - 3) This test report cannot be reproduced, except in full, without prior written permission of the Company. - 4) The data marked * in this report was provided by the customer and may affect the validity of the test results. We are responsible for all the information of this test report except for the data(*) provided by the customer. Tested by: Technical Manager: Jinhyoung Cho SGS Korea Co., Ltd. Gunpo Laboratory 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 2 of 52 ## **INDEX** ## Table of Contents | 1. General Information | 3 | |--|----| | 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission | 10 | | 3. 6 dB Bandwidth | 39 | | 4. Maximum Peak Conducted Output Power | 44 | | 5. Power Spectral Density | 47 | | 6. Antenna Requirement | 52 | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 3 of 52 ## 1. General Information ## 1.1. Testing Laboratory SGS Korea Co., Ltd. (Gunpo Laboratory) 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 - Designation number: KR0150 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Phone No. : +82 31 688 0901 Fax No. : +82 31 688 0921 ## 1.2. Details of Applicant Applicant : Hyundai Mobis Co., Ltd. Address : 203, Teheran-ro, Gangnam-gu, Seoul, South Korea, 135-977 Contact Person : Seung-hoon, Choe Phone No. : +82 31 260 0098 #### 1.3. Details of Manufacturer Company : Same as applicant Address : Same as applicant ## 1.4. Description of EUT | Kind of Product | DISPLAY CAR SYSTEM | | | | | |---------------------------|--|--|--|--|--| | Model Name | DA350TYGU | | | | | | Variant Model Name | DA360TYGU | | | | | | Serial Number | Conducted Sample: C-001 Radiated Sample: R-001 | | | | | | Power Supply | DC 14.4 V | | | | | | Frequency Range | 2 412 Mb ~ 2 462 Mb (11b/g/n_HT20) | | | | | | Modulation Technique | DSSS, OFDM | | | | | | Number of Channels | 11 channels (11b/g/n_HT20) | | | | | | Antenna Type | Pattern antenna | | | | | | Antenna Gain [*] | -0.01 dBi | | | | | | H/W Version | 1.0 | | | | | | S/W Version | 1.0 | | | | | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 4 of 52 ## 1.5. Test Equipment List | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal.
Interval | Cal. Due | |-----------------------------|--------------------------------|--------------------------------------|---------------------------|---------------|------------------|---------------| | Signal Generator | R&S | SMR40 | 100272 | Jun. 16, 2021 | Annual | Jun. 16, 2022 | | Signal Generator | R&S | SMBV100A | 255834 | May 31, 2021 | Annual | May 31, 2022 | | Spectrum Analyzer | R&S | FSV30 | 103210 | Dec. 08, 2021 | Annual | Dec. 08, 2022 | | Spectrum Analyzer | Agilent | N9020A | MY53421758 | Aug. 27, 2021 | Annual | Aug. 27, 2022 | | Attenuator | AEROFLEX / INMET | 26A-10dB | 3 | Mar. 24, 2021 | Annual | Mar. 24, 2022 | | High Pass Filter | Wainwright Instrument
GmbH | WHKX3.0/18G-6SS | 21 | Jun. 04, 2021 | Annual | Jun. 04, 2022 | | High Pass Filter | Wainwright Instrument
GmbH | WHNX7.5/26.5G-6SS | 11 | Aug. 11, 2021 | Annual | Aug. 11, 2022 | | Low Pass Filter | Mini-Circuits | NLP-1200+ | V 8979400903-2 | Feb. 08, 2021 | Annual | Feb. 08, 2022 | | Power Sensor | R&S | NRP-Z81 | 100669 | May 07, 2021 | Annual | May 07, 2022 | | DC Power Supply | R&S | HMP2020 | 020089489 | May 14, 2021 | Annual | May 14, 2022 | | Preamplifier | H.P. | 8447F | 2944A03909 | Aug. 06, 2021 | Annual | Aug. 06, 2022 | | Signal Conditioning
Unit | R&S | SCU-18 | 10117 | Jun. 09, 2021 | Annual | Jun. 09, 2022 | | Pre Amplifier | TESTEK | TK-PA1840H | 130016 | Jan. 07, 2021 | Annual | Jan. 07, 2022 | | Loop Antenna | Schwarzbeck
Mess-Elektronik | FMZB 1519 | 1519-039 | Aug. 23, 2021 | Biennial | Aug. 23, 2023 | | Bilog Antenna | Schwarzbeck
Mess-Elektronik | VULB 9163 | 01126 | Dec. 22, 2020 | Annual | Dec. 22, 2021 | | Horn Antenna | R&S | HF906 | 100326 | Feb. 04, 2021 | Annual | Feb. 04, 2022 | | Horn Antenna | Schwarzbeck
Mess-Elektronik | BBHA 9170 | 9170-540 | Nov. 30, 2021 | Annual | Nov. 30, 2022 | | EMI Test Receiver | R&S | ESU26 | 100109 | Feb. 19, 2021 | Annual | Feb. 19, 2022 | | Turn Table | Innco systems GmbH | DS 1200 S | N/A | N.C.R. | N/A | N.C.R. | | Controller | Innco systems GmbH | CONTROLLER
CO3000-4P | CO3000/963/383
30516/L | N.C.R. | N/A | N.C.R. | | Antenna Mast | Innco systems GmbH | MA4640-XP-ET | MA4640/536/383
30516/L | N.C.R. | N/A | N.C.R. | | Anechoic Chamber | SY Corporation | L × W × H
(9.6 m × 6.4 m × 6.6 m) | N/A | N.C.R. | N/A | N.C.R. | | Coaxial Cable | RFONE | MWX221-NMSNMS (4
m) | J1023142 | Sep. 14, 2021 | Semi-
Annual | Mar. 14, 2022 | | Coaxial Cable | RFONE | PL520-NMNM-10M (10
m) | 20200324001 | Sep. 14, 2021 | Semi-
Annual | Mar. 14, 2022 | | Coaxial Cable | RFONE | PL360P-292M292M-1.5
M-A | 20200324002 | Aug. 18, 2021 | Semi-
Annual | Feb. 18, 2022 | ## Note; For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibraition due date 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 5 of 52 ## 1.6. Summary of Test Results The EUT has been tested according to the following specifications: | APPLIED STANDARD: FCC Part15 Subpart C | | | | | | | | | | |--|---|-------------------|--|--|--|--|--|--|--| | Section | Section Test Item(s) | | | | | | | | | | 15.205(a)
15.209
15.247(d) | Transmitter Radiated Spurious Emissions and Conducted Spurious Emission | Complied | | | | | | | | | 15.247(a)(2) | 6 dB Bandwidth | Complied | | | | | | | | | 15.247(b)(3) | Maximum Peak Conducted Output Power | Complied | | | | | | | | | 15.247(e) | Power Spectral Density | Complied | | | | | | | | | 15.207 | AC Power Line Conducted Emission | N/A ¹⁾ | | | | | | | | #### Note: #### 1.7. Test Procedure(s) The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT. ## 1.8. Sample Calculation Where relevant, the following sample calculation is provided: #### 1.8.1. Conducted Test Offset value (dB) = Attenuator (dB) + Cable loss (dB) #### 1.8.2. Radiation Test Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB) + Duty factor (dB) #### 1.9. Information of software for test - Operating software of EUT has integrated test interface. No additional software was used. ¹⁾ The AC power line test was not performed because the EUT use battery power for operation and which do not operate from the AC power lines. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 6 of 52 ## 1.10. Worst-Case Configuration and Test Mode #### 802.11b mode: We found out the test mode with the highest power level after we analyze all the data rates. 1 Mbps data rate among 1 Mbps, 2 Mbps, 5.5 Mbps and 11 Mbps is chosen as worst case. #### 802.11g mode: We found out the test mode with the highest power level after we analyze all the data rates. 6 Mbps data rate among 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps and 54 Mbps is chosen as worst case. #### 802.11n HT20 mode: We found out the test mode with the highest power level after we analyze all the data rates. MCS0 data rate among MCS0, MCS1, MCS2, MCS3, MCS4, MCS5, MCS6 and MCS7 is chosen as worst case. Radiated emission below 1GHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. Radiated emission above 1GHz was performed with the EUT set to transmit Low/Middle/High Channels. Conducted tests were performed with the EUT set to transmit Low/Middle/High channels with highest output power. ## 1.11. Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Parameter |
Uncertainty | | | | | |-------------------------------------|-------------|------------------|--|--|--| | RF Output Power | ± 0.36 dB | | | | | | Occupied Bandwidth | ± 13.12 kHz | | | | | | Power Spectral Density | ± 0.63 dB | | | | | | Conducted Spurious Emission | ± 0.63 dB | | | | | | Padiated Emission O His to 20 Mile | Н | ± 3.66 dB | | | | | Radiated Emission, 9 kllz to 30 Mlz | V | ± 3.66 dB | | | | | Padiated Emission, halow 1. Mg | Н | ± 4.90 dB | | | | | Radiated Emission, below 1 | V | ± 4.82 dB | | | | | Dadiated Emission, above 1 Mg | Н | ± 3.62 dB | | | | | Radiated Emission, above 1 | V | ± 3.64 dB | | | | All measurement uncertainty values are shown with a coverage factor k = 2 to indicate a 95 % level of confidence. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 7 of 52 ## 1.12. Test Report Revision | Revision | Report Number | Date of Issue | Description | |----------|----------------------|---------------|-------------| | 0 | F690501-RF-RTL002858 | 2022.01.07 | Initial | ## 1.13. Description of Variant Model | Model | Model
Name | AMP | вт | Wi-Fi | FM
Fre. Range | FM
Ch.Space | AM
Fre. Range | AM
Ch. Space | |------------------|---------------|----------|----|-------|------------------|----------------|------------------|-----------------| | Basic
Model | DA350TYGU | Internal | 0 | 0 | 87.5~107.9 Mb | 200 kHz | 530 ~ 1 701 kHz | 9 kHz | | Variant
Model | DA360TYGU | External | 0 | 0 | 87.5~107.9 Mb | 200 kHz | 530 ~ 1 701 klb | 9 kHz | #### Note; All the test was performed with basic model. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 8 of 52 ## 1.14. Duty Cycle of EUT Regarding to KDB 558074 D01 15.247 Meas Guidance v05r02, 6, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below; Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. | Mode | Data Rate
(Mbps) | Duty Cycle
(%) | Correction Factor (dB) | |----------|---------------------|-------------------|------------------------| | 11b | 1 | 99.20 | 0 | | 11g | 6 | 88.84 | 0.51 | | 11n_HT20 | MCS0 | 93.83 | 0.28 | #### Remark; - 1. As measured duty cycles of EUT, all of mode and data rate keeps constant period and are converted to log scale (power averaging) to compensate correction factor to result of average test items. - 2. Duty Cycle (%) = $(Tx \text{ on time } / Tx \text{ on + off time}) \times 100$ - 3. Correction Factor (dB) = 10 log (1 / Duty Cycle) #### - Test plots 802.11b 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 9 of 52 802.11n_HT20 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 10 of 52 # 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission ## 2.1. Test Setup #### 2.1.1. Transmitter Radiated Spurious Emissions The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\mathrm{kll}$ to 30 $\,\mathrm{lll}$ emissions. The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\text{Mb}$ to 1 $\,\text{GHz}$ emissions. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 11 of 52 The diagram below shows the test setup that is utilized to make the measurements for emission . The spurious emissions were investigated form 1 \times to the 10th harmonic of the highest fundamental frequency or 40 \times , whichever is lower. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 12 of 52 #### 2.1.2. Conducted Spurious Emission #### 2.2. Limit According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency
(썐) | Field Strength $(\mu V/m)$ | Measurement Distance (Meters) | |------------------|----------------------------|-------------------------------| | 0.009-0.490 | 2 400/F(klz) | 300 | | 0.490-1.705 | 24 000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100** | 3 | | 88-216 | 150** | 3 | | 216-960 | 200** | 3 | | Above 960 | 500 | 3 | ^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 ½, 76-88 ½, 174-216 ½ or 470-806 ½. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 13 of 52 #### 2.3. Test Procedures Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013. #### 2.3.1. Test Procedures for emission below 30 Mb - 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. - 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. - 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. - 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode. #### 2.3.2. Test Procedures for emission from above 30 Mb - 2. During performing radiated emission below 1 (Hz), the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 (Hz), the EUT was set 3 meter away from the interference-receiving antenna. - 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. - 5. For measurements below 1 db resolution bandwidth is set to 100 kb for peak detection measurements or 120 kb for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak. - 6. For measurements Above 1 @ resolution bandwidth is set to 1 \(\mu \), the video bandwidth is set to 3 \(\mu \) for peak measurements and as applicable for average measurements. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 14 of 52 - 1. Unwanted Emissions into Non-Restricted Frequency Bands - The Reference Level Measurement refer to section 11.11.2 Set analyzer center frequency to DTS channel center frequency, SPAN \geq 1.5 times the DTS bandwidth, the RBW = 100 kHz and VBW \geq 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold. - Unwanted Emissions Level Measurement refer to section 11.11.3 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 $\,\mathrm{kll}$ and $\,\mathrm{VBW} \ge 3 \times \mathrm{RBW}$, Detector = Peak, Sweep time = Auto couple, Trace = Max hold. - 2. Unwanted Emissions into Restricted Frequency Bands - Peak Power measurement procedure refer to section 11.12.2.4 Set RBW = as specified in Table 9, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = auto, Trace = Max hold. Table 9 - RBW as a function of frequency | Frequency | RBW | |---------------------|--------------------| | 9 kHz to 150 kHz | 200 Hz to 300 Hz | | 0.15 MHz to 30 MHz | 9 kHz to 10 kHz | | 30 MHz to 1 000 MHz | 100 kHz to 120 kHz | | > 1 000 MHz | 1 MHz | If the peak – detected amplitude can be shown to comply with the average limit, then it is not
necessary to perform a separate average measurement. - Average Power measurements procedure refer to section 11.12.2.5.2 The EUT shall be configured to operate at the maximum achievable duty cycle. Measure the duty cycle D of the transmitter output signal as described in section 11.6. Set RBW = 1 Mb, VBW ≥ 3 x RBW, Detector = RMS, if span / (# of points in sweep) ≤ (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak. Averaging type = power (i.e., RMS). As an alternative the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used. Sweep time = auto, Perform a trace average of at least 100 traces. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows: - 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log(1 / D)], where D is the duty cycle. - 2) If a specific emission is demonstrated to be continuous (D ≥ 98 %) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission. - 3. Definition of DUT Axis. The test orthogonal plan of EUT was investigated with three axis described in the test setup photo. The Z-axis was worst-case, all radiated testing of EUT was performed with Z-axis. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 15 of 52 #### 2.3.3. Test Procedures for Conducted Spurious Emissions All data rates and modes were investigated for conducted spurious emissions. Per the guidance of ANSI C63.10-2013, section 11.11.1 & 11.11.2 & 11.11.3, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 $\,\mathrm{kHz}$. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 20 $\,\mathrm{dB}$ below the fundamental emission level measured in a 100 $\,\mathrm{kHz}$ bandwidth. #### 1. Conducted Emissions at Band Edge - The Measurement refer to section 11.11.3 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 klbz and VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace mode = Max hold, The trace was allowed to stabilize. #### 2. Conducted Spurious Emissions - The Measurement refer to section 11.11.3 Start frequency was set to 9 № and stop frequency was set to 25 № (separated into two plots per channel), RBW = 1 №, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, The trace was allowed to stabilize. #### 3. TDF function - For plots showing conducted spurious emissions from 9 \(\text{ltz}\) to 25 GHz, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 16 of 52 #### 2.4. Test Results Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H. ## 2.4.1. Radiated Spurious Emission below 1 000 胚 The frequency spectrum from 9 klb to 1 000 klb was investigated. All reading values are peak values. | Radiated Emissions | | | Ant. | Correction Factors | | Total | Lim | it | |--------------------|-------------------|----------------|------|--------------------|------------------|-----------------|-------------------|----------------| | Frequency
(账) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP + CL
(dB) | Actual (dBμV/m) | Limit
(dBµV/m) | Margin
(dB) | | 39.09 | 40.50 | Peak | V | 17.95 | -27.17 | 31.28 | 40.00 | 8.72 | | 114.27 | 40.30 | Peak | Н | 16.57 | -26.43 | 30.44 | 43.50 | 13.06 | | 365.14 | 36.80 | Peak | Н | 20.41 | -24.75 | 32.46 | 46.00 | 13.54 | | 457.16 | 38.20 | Peak | V | 21.94 | -25.15 | 34.99 | 46.00 | 11.01 | | 685.72 | 42.70 | Peak | V | 25.20 | -24.94 | 42.96 | 46.00 | 3.04 | | 933.07 | 29.00 | Quasi
Peak | V | 28.04 | -23.70 | 33.34 | 46.00 | 12.66 | #### Remark; - 1. Spurious emissions for all channels were investigated and almost the same below 1 $\, \mathrm{GHz}.$ - 2. Reported spurious emissions are in 11n_HT20 / MCS0 / Middle channel as worst case among other modes. - 3. Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL) - 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 17 of 52 ## - Test plots 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 18 of 52 ## 2.4.2. Radiated Spurious Emission above 1 000 胍 The frequency spectrum above 1 000 Mb was investigated. All reading values are peak and average values. DSSS: 802.11b Low Channel (2 412 Mb) | Radi | Radiated Emissions | | | Correction Factors | | Total | Lim | it | | |------------------|--------------------|----------------|------|--------------------|------------|------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 310.00 | 14.02 | Peak | Н | 28.00 | 7.55 | - | 49.57 | 74.00 | 24.43 | | *2 310.00 | 3.18 | Average | Н | 28.00 | 7.55 | - | 38.73 | 54.00 | 15.27 | | *2 381.90 | 15.80 | Peak | Н | 28.13 | 7.53 | - | 51.46 | 74.00 | 22.54 | | *2 384.37 | 4.46 | Average | Н | 28.14 | 7.54 | - | 40.14 | 54.00 | 13.86 | | *2 390.00 | 13.92 | Peak | Н | 28.16 | 7.54 | - | 49.62 | 74.00 | 24.38 | | *2 390.00 | 3.89 | Average | Н | 28.16 | 7.54 | - | 39.59 | 54.00 | 14.41 | | Radia | ated Emissio | ons | Ant. | Corr | Correction Factors | | | Total Limit | | |-------------------|-----------------|----------------|------|--------------|--------------------|------------|-----------------|-------------------|----------------| | Frequency
(账) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 823.50 | 40.14 | Peak | Н | 32.64 | -30.70 | - | 42.08 | 74.00 | 31.92 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | - | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 19 of 52 Mid Channel (2 437 账) | Radia | ated Emissic | ons | Ant. | Corr | Correction Factors | | Total | Lim | nit | |-------------------|-----------------|----------------|------|--------------|--------------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 874.16 | 40.08 | Peak | Н | 32.94 | -30.17 | - | 42.85 | 74.00 | 31.15 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | - | High Channel (2 462 Mb) | Radi | ated Emissio | ons | Ant. | Corr | ection Fact | tors | Total | Limi | it | |----------------|-------------------|----------------|------|--------------|-------------|------------|-----------------|----------------------------|----------------| | Frequency (Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | DF
(dB) | Actual (dBμV/m) | Limit
(dB <i>µ</i> V/m) | Margin
(dB) | | *2 483.50 | 14.21 | Peak | Н | 28.33 | 7.91 | - | 50.45 | 74.00 | 23.55 | | *2 483.50 | 3.96 | Average | Н | 28.33 | 7.91 | 1 | 40.20 | 54.00 | 13.80 | | *2 495.08 | 16.06 | Peak | Н | 28.31 | 8.03 | ı | 52.40 | 74.00 | 21.60 | | *2 490.18 | 4.79 | Average | Н | 28.32 | 7.98 | ı | <u>41.09</u> | 54.00 | 12.91 | | *2 500.00 | 14.91 | Peak | Н | 28.30 | 8.08 | ı | 51.29 | 74.00 | 22.71 | | *2 500.00 | 4.32 | Average | Н | 28.30 | 8.08 | - | 40.70 | 54.00 | 13.30 | | Radia | ated Emissic | ons | Ant. | Corr | ection Fact | ors | Total | Lim | nit | |----------------|-----------------|----------------|------|--------------|----------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 924.14 | 40.18 | Peak | Н | 33.20 | -29.90 | - | 43.48 | 74.00 | 30.52 | | Above 5 000.00 | Not
detected | - | - | - | - | - | - | - | - | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 20 of 52 OFDM: 802.11g Low Channel (2 412 Mb) | Radi | ated Emissic | ons | Ant. | Corr | ection Fact | ors | Total | Limi | it | |----------------|-------------------|----------------|------|--------------|-------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 310.00 | 14.28 | Peak | Н | 28.00 | 7.55 | - | 49.83 |
74.00 | 24.17 | | *2 310.00 | 3.31 | Average | Н | 28.00 | 7.55 | 0.51 | 39.37 | 54.00 | 14.63 | | *2 388.92 | 15.98 | Peak | Н | 28.16 | 7.54 | - | 51.68 | 74.00 | 22.32 | | *2 352.91 | 4.48 | Average | Н | 28.01 | 7.47 | 0.51 | 40.47 | 54.00 | 13.53 | | *2 390.00 | 14.82 | Peak | Н | 28.16 | 7.54 | - | 50.52 | 74.00 | 23.48 | | *2 390.00 | 3.98 | Average | Н | 28.16 | 7.54 | 0.51 | 40.19 | 54.00 | 13.81 | | Radia | ated Emissic | ons | Ant. | Corr | Correction Factors | | Total | Lim | it | |-------------------|-----------------|----------------|------|--------------|--------------------|------------|-----------------|-------------------|----------------| | Frequency
(畑) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 823.06 | 42.46 | Peak | Н | 32.64 | -30.70 | - | 44.40 | 74.00 | 29.60 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | - | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 21 of 52 Mid Channel (2 437 账) | Radia | ated Emissic | ons | Ant. | Corr | ection Fact | ors | Total | Lim | nit | |-------------------|-----------------|----------------|------|--------------|----------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 871.74 | 39.76 | Peak | Н | 32.93 | -30.18 | - | 42.51 | 74.00 | 31.49 | | Above
4 900.00 | Not
detected | - | - | - | - | 1 | - | - | - | High Channel (2 462 Mb) | Radi | ated Emissio | ns | Ant. | Corr | ection Fact | tors | Total | Limi | it | |----------------|-------------------|----------------|------|--------------|-------------|------------|-----------------|----------------------------|----------------| | Frequency (Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | DF
(dB) | Actual (dBμV/m) | Limit
(dB <i>µ</i> V/m) | Margin
(dB) | | *2 483.50 | 13.86 | Peak | Н | 28.33 | 7.91 | - | 50.10 | 74.00 | 23.90 | | *2 483.50 | 4.45 | Average | Н | 28.33 | 7.91 | 0.51 | 41.20 | 54.00 | 12.80 | | *2 493.12 | 15.73 | Peak | Н | 28.31 | 8.01 | - | 52.05 | 74.00 | 21.95 | | *2 486.89 | 4.86 | Average | Н | 28.33 | 7.95 | 0.51 | <u>41.65</u> | 54.00 | 12.35 | | *2 500.00 | 14.02 | Peak | Н | 28.30 | 8.08 | - | 50.40 | 74.00 | 23.60 | | *2 500.00 | 4.19 | Average | Н | 28.30 | 8.08 | 0.51 | 41.08 | 54.00 | 12.92 | | Radia | ated Emissic | ons | Ant. | Corr | ection Fact | ors | Total | Lim | nit | |----------------|-----------------|----------------|------|--------------|----------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 922.54 | 40.31 | Peak | Н | 33.19 | -29.96 | - | 43.54 | 74.00 | 30.46 | | Above 5 000.00 | Not
detected | - | - | - | - | - | - | - | - | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 22 of 52 OFDM: 802.11n_HT20 Low Channel (2 412 Mb) | Radi | ated Emissic | ons | Ant. | Corr | ection Fact | ors | Total | Lim | it | |------------------|-------------------|----------------|------|--------------|-------------|------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 310.00 | 12.89 | Peak | Н | 28.00 | 7.55 | - | 48.44 | 74.00 | 25.56 | | *2 310.00 | 3.65 | Average | Н | 28.00 | 7.55 | 0.28 | 39.48 | 54.00 | 14.52 | | *2 325.87 | 16.01 | Peak | Н | 28.00 | 7.58 | - | 51.59 | 74.00 | 22.41 | | *2 388.53 | 4.81 | Average | Н | 28.15 | 7.54 | 0.28 | 40.78 | 54.00 | 13.22 | | *2 390.00 | 13.91 | Peak | Н | 28.16 | 7.54 | - | 49.61 | 74.00 | 24.39 | | *2 390.00 | 4.28 | Average | Н | 28.16 | 7.54 | 0.28 | 40.26 | 54.00 | 13.74 | | Radia | ated Emissic | ons | Ant. | Corr | Correction Factors | | | Lim | nit | |-------------------|-------------------|----------------|------|--------------|--------------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 825.04 | 41.95 | Peak | Н | 32.65 | -30.72 | - | 43.88 | 74.00 | 30.12 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | - | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 23 of 52 Mid Channel (2 437 Mb) | Radia | ated Emissic | ons | Ant. | Corr | ection Fact | ors | Total | Lim | nit | |-------------------|-----------------|----------------|------|--------------|----------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 873.70 | 39.96 | Peak | Н | 32.94 | -30.17 | - | 42.73 | 74.00 | 31.27 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | - | High Channel (2 462 Mb) | Radiated Emissions | | | Ant. | Correction Factors | | | Total | Limit | | |--------------------|-------------------|----------------|------|--------------------|------------|------------|-----------------|----------------------------|----------------| | Frequency (Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | DF
(dB) | Actual (dBμV/m) | Limit
(dB <i>µ</i> V/m) | Margin
(dB) | | *2 483.50 | 13.94 | Peak | Н | 28.33 | 7.91 | - | 50.18 | 74.00 | 23.82 | | *2 483.50 | 4.67 | Average | Н | 28.33 | 7.91 | 0.28 | 41.19 | 54.00 | 12.81 | | *2 497.25 | 17.22 | Peak | Н | 28.31 | 8.05 | - | 53.58 | 74.00 | 20.42 | | *2 485.77 | 4.50 | Average | Н | 28.33 | 7.93 | 0.28 | 41.04 | 54.00 | 12.96 | | *2 500.00 | 14.08 | Peak | Н | 28.30 | 8.08 | ı | 50.46 | 74.00 | 23.54 | | *2 500.00 | 4.04 | Average | Н | 28.30 | 8.08 | 0.28 | 40.70 | 54.00 | 13.30 | | Radiated Emissions | | | Ant. | Correction Factors | | | Total | Limit | | |--------------------|-----------------|----------------|------|--------------------|----------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading (dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | DF
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 920.50 | 40.71 | Peak | Н | 33.18 | -30.03 | - | 43.86 | 74.00 | 30.14 | | Above 5 000.00 | Not
detected | - | - | - | - | - | - | - | - | #### Remarks; - 1. "*" means the restricted band. - 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode. - 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF). - 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB. - 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 24 of 52 - Test plots DSSS: 802.11b Low channel band edge (Peak) #### Low channel band edge (Average) #### Low channel 2nd harmonic (Peak) ## Middle channel 2nd harmonic (Peak) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 25 of 52 ## High channel band edge (Peak) ## High channel band edge (Average) ## High channel 2nd harmonic (Peak) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 26 of 52 OFDM: 802.11g ## Low channel band edge (Peak) ## Low channel band edge (Average) ## Low channel 2nd harmonic (Peak) ## Middle channel 2nd harmonic (Peak) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 27 of 52 ## High channel band edge (Peak) #### High channel band edge (Average) Delt ## High channel 2nd harmonic (Peak) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 28 of 52 OFDM: 802.11n_HT20 ## Low channel band edge (Peak) ## Low channel band edge (Average) Fixed ## Low channel 2nd harmonic (Peak) ## Middle channel 2nd harmonic (Peak) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 29 of 52 ## High channel band edge (Peak) ## High channel band edge (Average) ## High channel 2nd harmonic (Peak) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 30 of 52 ## **Plot of Conducted Spurious Emissions** DSSS: 802.11b Low Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 31 of 52 #### Middle Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 32 of 52 ## High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 33 of 52 OFDM: 802.11g Low Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 34 of 52 #### Middle Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 35 of 52 ## High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 36 of 52 #### OFDM: 802.11n_HT20 Low Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 37 of 52 ### Middle Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 38 of 52 # High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 39 of 52 ### 3. 6 dB Bandwidth # 3.1. Test Setup ### 3.2. Limit According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb. ### 3.3. Test Procedure ### 6 dB Bandwidth The test follows section 11.8 DTS bandwidth of ANSI C63.10-2013. Tests performed using section 11.8.1 Option 1. - Option 1: - 1. Set RBW to = 100 kHz. - 2. Set the VBW \geq [3 x RBW]. - 3. Detector = peak. - 4. Trace mode = \max hold. - 5. Sweep = auto couple. - 6. Allow the trace to stabilize. - 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 40 of 52 # 3.4. Test Results Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 % R.H. | Operation
Mode | Data Rate
(Mbps) | Channel | Frequency
(쌘) | 6 dB Bandwidth (Mb) | Minimum Limit
(灺) | | |------------------------|---------------------|---------|------------------|---------------------|----------------------|--| | DSSS
(802.11b) | 1 | Low | 2 412 | 7.113 | | | | | | Middle | 2 437 | 7.113 | | | | | | High | 2 462 | 7.153 | | | | OFDM
(802.11g) | 6 | Low | 2 412 | 16.344 | 500 | | | | | Middle | 2 437 | 16.344 | | | | | | High | 2 462 | 16.384 | | | | OFDM
(802.11n_HT20) | MCS0 | Low | 2 412 | 17.622 | | | | | | Middle | 2 437 | 17.343 | | | | | | High | 2 462 | 17.343 | | | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 41 of 52 # - Test plots DSSS: 802.11b #### Middle Channel ## High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 42 of 52 OFDM: 802.11g #### Middle Channel ### High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 43 of 52 ### OFDM: 802.11n_HT20 Low Channel #### Middle Channel ### High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 44 of 52 # 4. Maximum Peak Conducted Output Power ## 4.1. Test Setup #### 4.2. Limit According to §15.247(b)(3), for systems using digital modulation in the 902-928 Mz, 2 400-2 483.5 Mz, and 5 725-5 850 Mz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 45 of 52 ### 4.3. Test Procedure The test follows section 11.9.1.3 of ANSI C63.10-2013. #### PKPM1 Peak-reading power meter method - The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector. The test follows section 11.9.2.3.2 of ANSI C63.10-2013. ### Method AVGPM-G (Measurement using a gated RF average-reading power meter) - Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required. Test program: (S/W name: R&S Power Viewer, Version: 3.2.0) - 1. Initially overall offset for attenuator and cable loss is measured per frequency. - 2. Measured offset is inserted in test program in advance of measurement for output power. - 3. Power for each frequency (channel) of device is investigated as final result. - 4. Final result reported on this section from R&S power viewer program includes with several factors and test program shows only final result. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 46 of 52 # 4.4. Test Results Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H. | Mode | Channel | Frequency
(脈) | Data Rate
(Mbps) | Average
Power Result
(dB m) | Peak Power Result (dB m) | Limit
(dB m) | |------------------------|---------|------------------|---------------------|-----------------------------------|--------------------------|-----------------| | DSSS
(802.11b) | Low | 2 412 | | 3.32 | <u>6.61</u> | | | | Middle | 2 437 | 1 | 2.93 | 6.23 | | | | High | 2 462 | | 2.96 | 6.25 | | | OFDM
(802.11g) | Low | 2 412 | 6 | 4.17 | <u>15.32</u> | | | | Middle | 2 437 | | 3.68 | 14.83 | 30 | | | High | 2 462 | | 3.36 | 14.58 | | | OFDM
(802.11n_HT20) | Low | 2 412 | | 3.18 | 14.97 | | | | Middle | 2 437 | MCS0 | 3.15 | <u>15.40</u> | | | | High | 2 462 | | 2.88 | 14.83 | | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 47 of 52 # 5. Power Spectral Density ### 5.1. Test Setup ## 5.2. Limit According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 kk band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. #### 5.3. Test Procedure The measurements are recorded using the PKPSD measurement procedure in section 11.10.2 of ANSI C63.10-2013. - This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance. - 1. Set analyzer center frequency to DTS channel center frequency. - 2. Set the span to 1.5 times the DTS bandwidth. - 3. Set the RBW to 3 kHz \leq RBW \leq 100 kHz. - 4. Set the VBW \geq [3 x RBW]. - 5. Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum amplitude level within the RBW. - 10. If measured value exceeds requirement, then reduce RBW (but no less than 3 klz) and repeat. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 48 of 52 # 5.4. Test Results Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H. | Operation Mode | Data
Rate
(Mbps) | Channel | Frequency
(쌘) | Measured PSD
(個 m/3 址) | Limit
(dB m/3 战) | | |------------------------|---------------------|---------|------------------|---------------------------|---------------------|--| | DSSS
(802.11b) | 1 | Low | 2 412 | -16.31 | | | | | | Middle | 2 437 | -16.81 | | | | | | High | 2 462 | -17.14 | | | | OFDM
(802.11g) | 6 | Low | 2 412 | -18.87 | | | | | | Middle | 2 437 | -19.12 | 8 | | | | | High | 2 462 | -19.27 | | | | OFDM
(802.11n_HT20) | MCS0 | Low | 2 412 | -19.34 | | | | | | Middle | 2 437 | -20.54 | | | | | | High | 2 462 | -20.48 | | | 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 49 of 52 # - Test plots DSSS: 802.11b RTT7081-02(2020.10.05)(0) A4(210 mm * 297 mm) 100 dBm 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 50 of 52 OFDM: 802.11g ### Middle Channel ### High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 51 of 52 ### OFDM: 802.11n_HT20 Low Channel #### Middle Channel ### High Channel 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr Report Number: F690501-RF-RTL002858 Page: 52 of 52 # 6. Antenna Requirement # 6.1. Standard Applicable For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section and according to FCC 47 CFR Section §15.247(b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i. #### 6.2. Antenna Connected Construction Antenna used in this product is Pattern Antenna with gain of -0.01 dB i. - End of the Test Report -