

RADIO TEST REPORT FCC ID: 2AAUI-GDIEXSEDS3201

Product: Double Sided SoundExtreme Trade Mark: ECOXGEAR Model No.: GDI-EXSEDS3201 Family Model: N/A Report No.: S21080600602001 Issue Date: Dec 13. 2021

Prepared for

Grace Digital Inc.

Grace Digital Inc. 10531 4S Commons Drive #166 Suite #430,San Diego, CA 92127

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1	1 TEST RESULT CERTIFICATION				
2	2 SUMMARY OF TEST RESULTS				
3	FACILITIES AND ACCREDITATIONS				
	3.1	FACILITIES	5		
	3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY			
4		NERAL DESCRIPTION OF EUT			
-		SCRIPTION OF TEST MODES			
5					
6	SET	TUP OF EQUIPMENT UNDER TEST			
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9		
	6.2	SUPPORT EQUIPMENT	10		
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS			
7	TES	ST REQUIREMENTS	12		
	7.1	CONDUCTED EMISSIONS TEST	12		
	7.2	RADIATED SPURIOUS EMISSION			
	7.3	NUMBER OF HOPPING CHANNEL			
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT			
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)			
	7.6	20DB BANDWIDTH TEST			
	7.7 7.8	PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT	28		
	7.8 7.9	SPURIOUS RF CONDUCTED EMISSION			
	7.10	ANTENNA APPLICATION			
	7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS			
8		ST RESULTS			
0	IL				
	8.1	DWELL TIME			
	8.2	MAXIMUM CONDUCTED OUTPUT POWER			
	8.3	OCCUPIED CHANNEL BANDWIDTH			
	8.4 8.5	CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL			
	8.5 8.6	NUMBER OF HOPPING CHANNEL BAND EDGE			
	8.0 8.7	CONDUCTED RF SPURIOUS EMISSION			
	0.7				

1 TEST RESULT CERTIFICATION

Applicant's name:	Grace Digital Inc.
Address:	Grace Digital Inc. 10531 4S Commons Drive #166 Suite #430,San Diego, CA 92127
Manufacturer's Name:	Xingtel Xiamen Group Co., Ltd.
Address:	Xingtel Building,Chuangxin Road, Torch Hi-Tech Industrial District,Xiamen 361006, PR China
Product description	
Product name:	Double Sided SoundExtreme
Model and/or type reference:	GDI-EXSEDS3201
Family Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD/ TEST PROCEDURE TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Testing Engineer

Authorized Signatory

(Alex Li)

1) Men tin

(Allen Liu)

Oct 27. 2021 ~ Dec 10, 2021

2 SUMMARY OF TEST RESULTS					
FCC Part15 (15.247), Subpart C					
Standard Section	Test Item	Verdict	Remark		
15.207	Conducted Emission	N/A			
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	15.247 (d) Spurious RF Conducted Emission				
15.203	Antenna Requirement	PASS			

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Double Sided SoundExtreme	
Trade Mark	ECOXGEAR	
FCC ID	2AAUI-GDIEXSEDS3201	
Model No.	GDI-EXSEDS3201	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	0 dBi	
Power supply	DC 12V from battery	
Adapter	N/A	
HW Version	BT-333-AMP-V1.3; BT-333-M-V1.3	
SW Version	ECOXGEAR_BA_BT333_Uart0839py	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01 Revision History				
Report No.	Version	Description	Issued Date	
S21080600602001	Rev.01	Initial issue of report	Dec 13, 2021	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode	Description			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For Radiated Test Cases	ï
EUT	
For Conducted Test Cases	1
Measurement C-1 EUT	

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

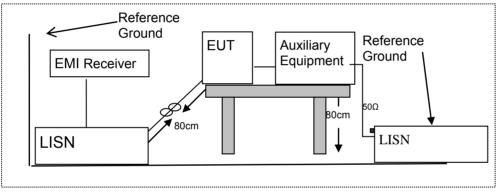
We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Frequency/MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

EUT:	Double Sided SoundExtreme	Model Name :	GDI-EXSEDS3201
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: The product is battery powered, Not Applicable.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fart 15.205, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

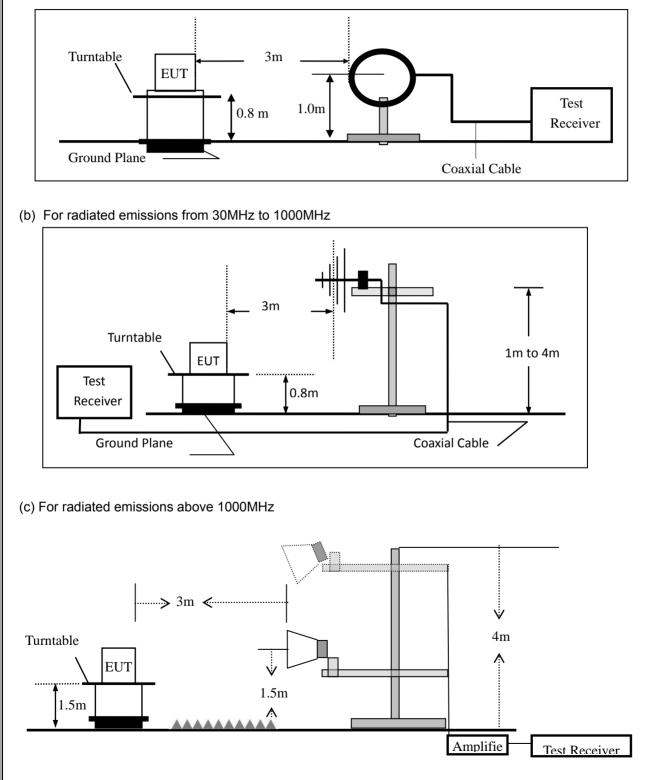
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

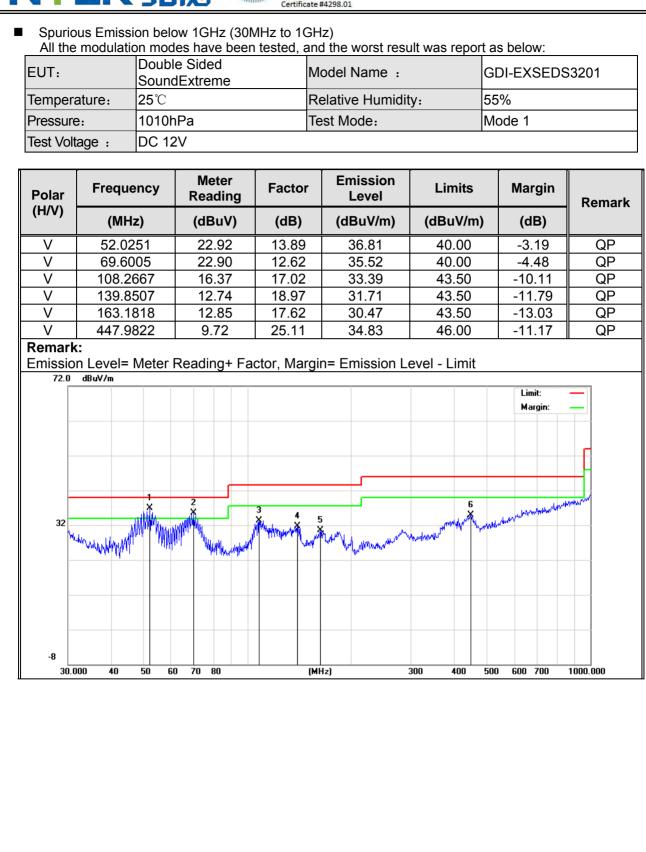
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:					
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Above 1000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

 Spurious Emission below 30MHz (9KHz to 30MHz) 					
EUT: Double Sided SoundExtreme Model No.: GDI-EXSEDS3201					
Temperature:	20 ℃	Relative Humidity:	48%		
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu		

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK AV Í		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

(H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remar
11	(MHz)	(dBuV)	(dB) (dBuV/m)		(dBuV/m)	(dB)	
Н	71.8320	19.43	12.77	32.20	40.00	-7.80	QP
Н	106.3850	16.34	17.05	33.39	43.50	-10.11	QP
Н	140.8351	17.07	18.86	35.93	43.50	-7.57	QP
Н	193.0945	22.25	15.72	37.97	43.50	-5.53	QP
Н	206.3976 22.98		15.56	38.54	43.50	-4.96	QP QP
H 407.5145 13.36 23.76 37.12 46.00 -8.88							
Emission 72.0	n Level= Meter F	Reading+ Fac	tor, Margin:	Emission Lev	vel - Limit	Limit: — Margin: —	
32	nan na		3	4 5	mingue to the second se	nste here instrument	
-8	00 10 50 50	70 00) 20	D 400 F00	<u> </u>	
30.00	00 40 50 60	70 80	(MHz) 30	0 400 500	600 700 10	00.000

 Spurious Emission Above 1GHz (1GHz to 25GHz) 										
EUT:		uble Side undExtrei		Mode	l No.:		GDI-E	XSEDS32	201	
Temperature	: 20	°C		Relat	ive Humidity	/:	48%			
Test Mode:	Мо	de2/Mod	e3/Mode4	Test	By:		Allen I	_iu		
All the modul	ation mod	les have	been teste			t was	report	as below	:	
r				,			•			
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lir	mits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	µV/m)	(dB)		
			Low Chann	iel (2402 N	Hz)(8-DPSK)Abo	ove 1G			
4804.214	63.01	5.21	35.59	44.30	59.51	74	4.00	-14.49	Pk	Vertical
4804.214	40.31	5.21	35.59	44.30	36.81	54	4.00	-17.19	AV	Vertical
7206.265	60.86	6.48	36.27	44.60	59.01	74	4.00	-14.99	Pk	Vertical
7206.265	44.08	6.48	36.27	44.60	42.23	54	1.00	-11.77	AV	Vertical
4804.109	62.23	5.21	35.55	44.30	58.69	74	4.00	-15.31	Pk	Horizontal
4804.109	43.62	5.21	35.55	44.30	40.08	54	4.00	-13.92	AV	Horizontal
7206.224	63.63	6.48	36.27	44.52	61.86	74	4.00	-12.14	Pk	Horizontal
7206.224	47.62	6.48	36.27	44.52	45.85	54	4.00	-8.15	AV	Horizontal
			Mid Chann	el (2441 M	Hz)(8-DPSK)Abc	ove 1G			
4882.396	63.55	5.21	35.66	44.20	60.22	74	4.00	-13.78	Pk	Vertical
4882.396	42.82	5.21	35.66	44.20	39.49	54	4.00	-14.51	AV	Vertical
7323.241	59.75	7.10	36.50	44.43	58.92	74	4.00	-15.08	Pk	Vertical
7323.241	46.83	7.10	36.50	44.43	46.00	54	4.00	-8.00	AV	Vertical
4882.108	61.32	5.21	35.66	44.20	57.99	74	4.00	-16.01	Pk	Horizontal
4882.108	48.13	5.21	35.66	44.20	44.80	54	4.00	-9.20	AV	Horizontal
7323.132	61.02	7.10	36.50	44.43	60.19	74	4.00	-13.81	Pk	Horizontal
7323.132	41.46	7.10	36.50	44.43	40.63		4.00	-13.37	AV	Horizontal
		1	High Chann	el (2480 M	Hz)(8-DPSK	.) Ab	ove 1G	i		
4960.397	66.93	5.21	35.52	44.21	63.45	74	4.00	-10.55	Pk	Vertical
4960.397	43.34	5.21	35.52	44.21	39.86	54	4.00	-14.14	AV	Vertical
7440.201	61.40	7.10	36.53	44.60	60.43	74	4.00	-13.57	Pk	Vertical
7440.201	44.53	7.10	36.53	44.60	43.56	54	4.00	-10.44	AV	Vertical
4960.225	66.91	5.21	35.52	44.21	63.43		4.00	-10.57	Pk	Horizontal
4960.225	47.22	5.21	35.52	44.21	43.74	54	4.00	-10.26	AV	Horizontal
7440.298	61.60	7.10	36.53	44.60	60.63	74	4.00	-13.37	Pk	Horizontal
7440.298	45.30	7.10	36.53	44.60	44.33	54	1.00	-9.67	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious I	Emission ir	n Restrie	cted Band	2310-23	90MHz and	2483.	5-25	00MHz		
EU	T:	Double Si	ded Sou	undExtrem	e Mod	el No.:		GDI-	EXSED	53201	
Ter	nperature:	20 ℃			Rela	tive Humidi	ty:	48%			
Tes	t Mode:	Mode2/ M	ode4		Test	By:		Aller	n Liu		
All	the modul	ation mode	es have	been test	ed, and th	ne worst res	ult wa	is rep	ort as be	elow:	
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	iits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ\	V/m)	(dB)	Туре	
	3Mbps(8-DPSK)-Non-hopping										
	2310.00	58.07	2.97	27.80	43.80	45.04	74	4	-28.96	Pk	Horizontal
	2310.00	44.86	2.97	27.80	43.80	31.83	54	4	-22.17	AV	Horizontal
	2310.00	59.39	2.97	27.80	43.80	46.36	74	4	-27.64	Pk	Vertical
	2310.00	41.99	2.97	27.80	43.80	28.96	54	4	-25.04	AV	Vertical
	2390.00	57.83	3.14	27.21	43.80	44.38	74	4	-29.62	Pk	Vertical
	2390.00	42.94	3.14	27.21	43.80	29.49	54	4	-24.51	AV	Vertical
	2390.00	56.90	3.14	27.21	43.80	43.45	74	4	-30.55	Pk	Horizontal
	2390.00	42.96	3.14	27.21	43.80	29.51	54	4	-24.49	AV	Horizontal
	2483.50	58.15	3.58	27.70	44.00	45.43	74	4	-28.57	Pk	Vertical
	2483.50	43.10	3.58	27.70	44.00	30.38	54	4	-23.62	AV	Vertical
	2483.50	60.28	3.58	27.70	44.00	47.56	74	4	-26.44	Pk	Horizontal
	2483.50	43.37	3.58	27.70	44.00	30.65	54	4	-23.35	AV	Horizontal
					3Mbps(8-	DPSK)-hoppin	g				
	2310.00	51.35	2.97	27.80	43.80	38.32	74.	00	-35.68	Pk	Vertical
	2310.00	44.55	2.97	27.80	43.80	31.52	54.	00	-22.48	AV	Vertical
	2310.00	50.39	2.97	27.80	43.80	37.36	74.	00	-36.64	Pk	Horizontal
	2310.00	44.99	2.97	27.80	43.80	31.96	54.	00	-22.04	AV	Horizontal
	2390.00	52.51	3.14	27.21	43.80	39.06	74.	00	-34.94	Pk	Vertical
	2390.00	42.25	3.14	27.21	43.80	28.80	54.	00	-25.20	AV	Vertical
	2390.00	54.18	3.14	27.21	43.80	40.73	74.	00	-33.27	Pk	Horizontal
	2390.00	41.44	3.14	27.21	43.80	27.99	54.	00	-26.01	AV	Horizontal
	2483.50	50.07	3.58	27.70	44.00	37.35	74.	00	-36.65	Pk	Vertical
	2483.50	43.84	3.58	27.70	44.00	31.12	54.	00	-22.88	AV	Vertical
	2483.50	54.59	3.58	27.70	44.00	41.87	74.	00	-32.13	Pk	Horizontal
	2483.50	40.52	3.58	27.70	44.00	27.80	54.	00	-26.20	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:		ble Side			Model No.:			GDI-EXSEDS3201			
Temperature:	20 °	С			Relati	Relative Humidity: 48%					
Test Mode:	Mod	de2/ Mod	e4	ľ	Test E	Зу:		Allen	Liu		
All the modu	lation mod	des have	been teste	ed, a	ind the	e worst resu	ult wa	is repo	rt as belo	ow:	
Frequency	Reading Level	Cable Loss	Antenna Factor		eamp ictor	Emission Level	Lii	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(0	βB)	(dBµV/m)	(dB	uV/m)	(dB)	Туре	
3260	60.57	4.04	29.57	44	1.70	49.48	7	74	-24.52	Pk	Vertical
3260	56.37	4.04	29.57	44	1.70	45.28	Ę	54	-8.72	AV	Vertical
3260	61.41	4.04	29.57	44	1.70	50.32	7	74	-23.68	Pk	Horizontal
3260	56.60	4.04	29.57	44	1.70	45.51	Ę	54	-8.49	AV	Horizontal
3332	65.41	4.26	29.87	44	1.40	55.14	7	74	-18.86	Pk	Vertical
3332	53.56	4.26	29.87	44	1.40	43.29	ę	54	-10.71	AV	Vertical
3332	62.92	4.26	29.87	44	1.40	52.65	7	74	-21.35	Pk	Horizontal
3332	53.46	4.26	29.87	44	1.40	43.19	Ę	54	-10.81	AV	Horizontal
17797	43.84	10.99	43.95	43	3.50	55.28	7	74	-18.72	Pk	Vertical
17797	32.90	10.99	43.95	43	3.50	44.34	Ę	54	-9.66	AV	Vertical
17788	44.36	11.81	43.69	44	l.60	55.26	7	74	-18.74	Pk	Horizontal
17788	32.36	11.81	43.69	44	1.60	43.26	Į	54	-10.74	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

	Double Sided SoundExtreme	Model No.:	GDI-EXSEDS3201 48% Allen Liu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

	Double Sided SoundExtreme	Model No.:	GDI-EXSEDS3201 48% Allen Liu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Double Sided SoundExtreme	Model No.:	GDI-EXSEDS3201
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

	Double Sided SoundExtreme	Model No.:	GDI-EXSEDS3201
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Double Sided SoundExtreme	Model No.:	GDI-EXSEDS3201 48% Allen Liu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Double Sided SoundExtreme	Model No.:	GDI-EXSEDS3201
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 0dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmission sover the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

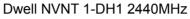
7.11.2 Frequency Hopping System

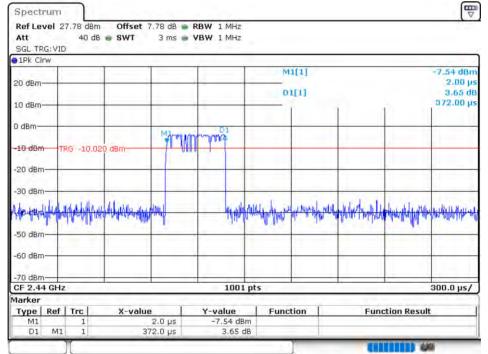
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

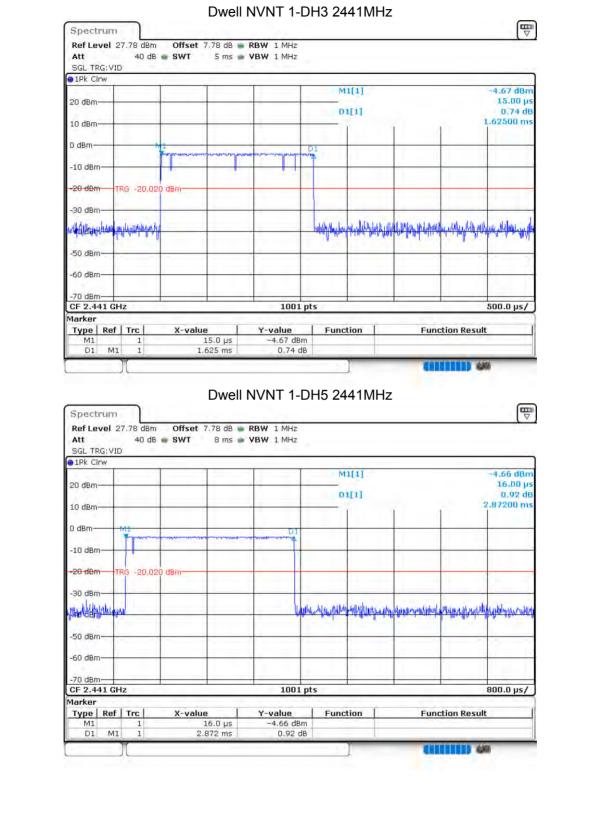
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

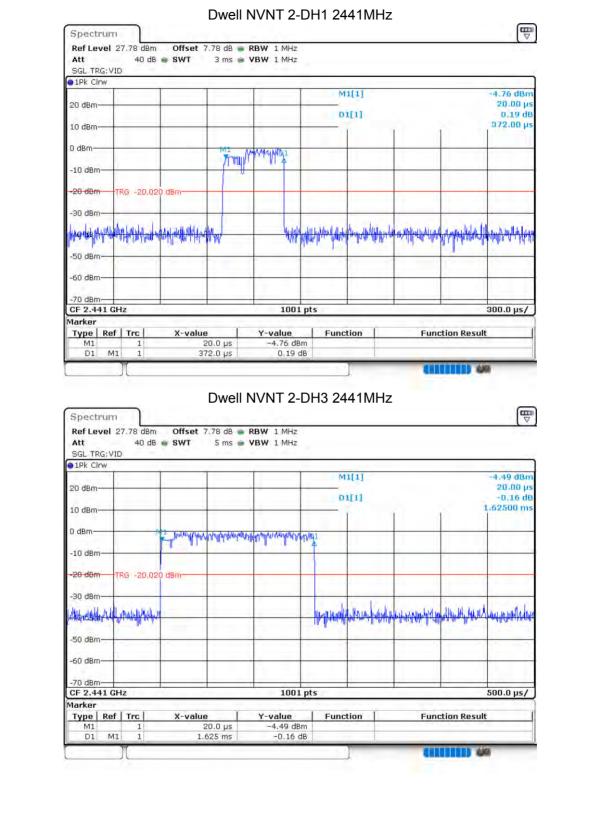

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



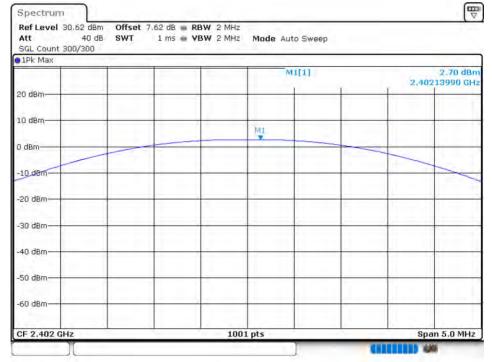
8 TEST RESULTS


8.1 DWELL TIME

0.1 DWELL							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2440	0.372	119.04	31600	400	Pass
NVNT	1-DH3	2441	1.625	260	31600	400	Pass
NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	2-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	2-DH3	2441	1.625	260	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	3-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	3-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	3-DH5	2441	2.864	305.493	31600	400	Pass



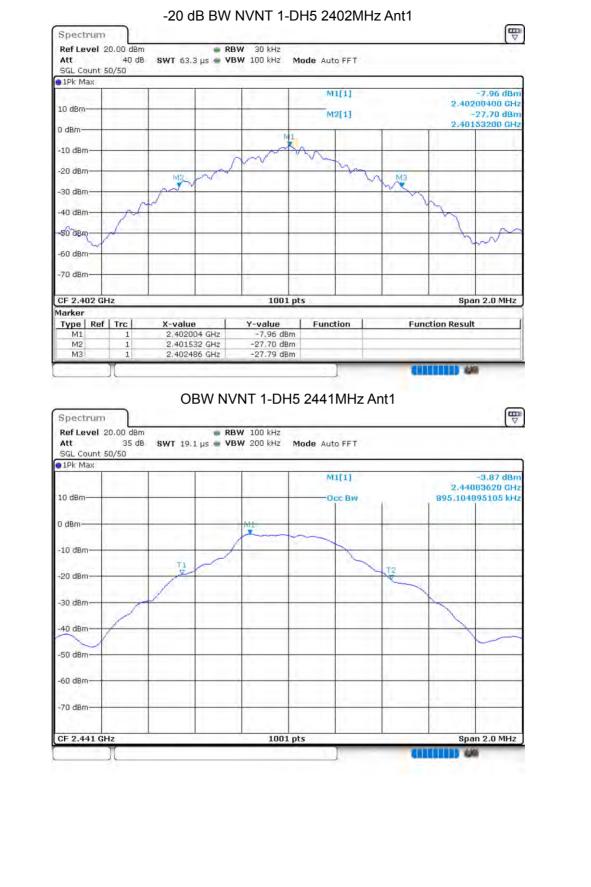
SGL TRG		5 Y Y		2010/201	_				
OIPK CIIW	-	1	1	-	M	1[1]			-3.88 dBm
20 dBm-	-			-	DI	L[1]			24.00 µs -0.80 dB
10 dBm-			-				í l	1	2.87200 ms
D dBm	PAS MUTTA	And Mar Wanter And And	Pay Award Phy Anti-	dinder of the state of the		-			-
-10 dBm-		- a 96 - 1	10 . 0 000	4	1				
-20 dBm	TRG -20.02	0 d8m							
	1110 -20,02								1-5
-30 dBm-	u dat				. I with the to	transfellist.	alamanahuh		al Anita de he th
N#8/ABAA				4	Holen Health	en lander som ander	eleftica Maria de Adadi	awan ka sabalala	the daman and
-50 dBm—				-					1
-60 dBm—	-		\rightarrow	-	-		-		
-70 dBm—									
CF 2.441 Marker	GHz			1001	L pts		~	1	800.0 µs/
Type R	ef Trc	X-value	e I	Y-value	Funct	tion	Fund	tion Result	1
M1	1	2	24.0 µs	-3.88 dE	Bm				
D1	M1 1	2,	872 ms	-0.80	dB				
01									11
)[1			
Spectru	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Offset	in in	200	DH1 24	41MHz	2		
Spectru Ref Leve Att SGL TRG:	1 27.78 dBm 40 dB VID	Offset 3	7.78 dB 🍙 F	NVNT 3- RBW 1 MHz VBW 1 MHz		41MHz	2		
Spectru Ref Leve Att	1 27.78 dBm 40 dB VID		7.78 dB 🍙 F	RBW 1 MHz		41MHz	2		-4.68 dBm
Spectru Ref Leve Att SGL TRG:	1 27.78 dBm 40 dB VID		7.78 dB 🍙 F	RBW 1 MHz	M	1[1]	-		-4.68 dBm 11.00 µs
Spectru Ref Leve Att SGL TRG: PIPk Cirw	1 27.78 dBm 40 dB VID		7.78 dB 🍙 F	RBW 1 MHz	M				-4.68 dBm
Spectru Ref Leve Att SGL TRG: 91Pk Clrw 20 dBm-	1 27.78 dBm 40 dB VID		7.78 dB F 3 ms F	RBW 1 MHz VBW 1 MHz	M	1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: • IPk Clrw 20 dBm- 10 dBm- 0 dBm-	el 27.78 dBm 40 dB VID	• SWT	7.78 dB F 3 ms F	RBW 1 MHz	M	1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: 1Pk Cirw 20 dBm- 10 dBm- 0 dBm- - 10 dBm-	el 27.78 dBm 40 dB VID	• SWT	7.78 dB F 3 ms F	RBW 1 MHz VBW 1 MHz	M	1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: • IPk Clrw 20 dBm- 10 dBm- 0 dBm-	el 27.78 dBm 40 dB VID	• SWT	7.78 dB F 3 ms F	RBW 1 MHz VBW 1 MHz	M	1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: 9 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 27.78 dBm 40 dB VID TRG -10.02	o dBm		RBW 1 MHz VBW 1 MHz	M: D1	1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm- 0 dBm- -10 dBm- -20 dBm-	1 27.78 dBm 40 dB VID TRG -10.02	• SWT		RBW 1 MHz VBW 1 MHz	M: D1	1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: 9 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 27.78 dBm 40 dB VID TRG -10.02	o dBm		RBW 1 MHz VBW 1 MHz	M: D1	1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: • 1Pk Clrw 20 dBm	1 27.78 dBm 40 dB VID TRG -10.02	o dBm		RBW 1 MHz VBW 1 MHz	M: D1	1[1]		1. Allenger allenger	-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: 9 1Pk Clrw 20 dBm- 10 dBm- 10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -60 dBm-	1 27.78 dBm 40 dB VID TRG -10.02	o dBm		RBW 1 MHz VBW 1 MHz	M: D1	1[1]		un fallaget	-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: 9 1Pk Clrw 20 dBm- 10 dBm- 0 dBm- -20 dBm- -30 dBm- -30 dBm-	27.78 dBm 40 dB VID	o dBm		RBW 1 MHz VBW 1 MHz		1[1]			-4.68 dBm 11.00 ps 2,97 dB
Spectru Ref Leve Att SGL TRG: 9 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -50 dBm- -50 dBm- -70 dBm- GF 2.441 Marker	El 27.78 dBm 40 dB VID	a dBm		RBW 1 MHz VBW 1 MHz	M: DI	1[1] 4[1]			-4.68 dBm 11.00 µs 2,97 dB 372.00 µs
Spectru Ref Leve Att SGL TRG: 9 IPk Clrw 20 dBm- 10 dBm- 10 dBm- 20 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- CF 2.441 Marker Type R M1	El 27.78 dBm 40 dB VID	C dBm	7.78 dB F	RBW 1 MHz VBW 1 MHz 1	L pts	1[1] 4[1]			-4.68 dBm 11.00 µs 2,97 dB 372.00 µs
Spectru Ref Leve Att SGL TRG: 91Pk Clrw 20 dBm- 10 dBm- 0 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- CF 2.441 Marker Type R M1	el 27.78 dBm 40 dB VID TRG -10.02 TRG -10.02 GHz CHz	C dBm	7.78 dB F	RBW 1 MHz VBW 1 MHz MMU 1 MHz 1 M	L pts	1[1] 4[1]	Func	tion Result	-4.68 dBm 11.00 µs 2,97 dB 372.00 µs 372.00 µs 300.0 µs/
Spectru Ref Leve Att SGL TRG: 9 IPK CIrw 20 dBm	El 27.78 dBm 40 dB VID	C dBm	7.78 dB F	RBW 1 MHz VBW 1 MHz 1	L pts	1[1] 4[1]	Func		-4.68 dBm 11.00 µs 2,97 dB 372.00 µs 372.00 µs 300.0 µs/


1Pk Clrw	1	1 1	M1[1]		-0	.57 dBm
20 dBm						15.00 µs
10 dBm			01[1]	1	1.6	3,77 dB 2000 ms
D dBm			21			
the second se		unparter programments	*			
-10 dBm TRG -10,020	dBm					1.0
-20 dBm-						
-30 dBm-	_		17.0 41.	w		Tr an
nale approximation of the providence of	_	-	Healthand	h have been and the second and the second and the second	angeling the fill	upply and a start
-50 dBm-			A. 100			
-60 dBm-						
		1.1.1				1.1
-70 dBm		1001 p	ts		50	0.0 µs/
Marker Type Ref Trc	X-value	Y-value	Function	1	tion Result	
M1 1	15.0 µs	-4.57 dBm				
M1 1 D1 M1 1	1.62 ms	3,77 dB	1	(11		
D1 M1 1	1.62 ms Dwell I Offset 7.78 dB	3,77 dB NVNT 3-D RBW 1 MH2	H5 2441N	1Hz		
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG:VID	1.62 ms Dwell I Offset 7.78 dB	3,77 dB	H5 2441N	1Hz		E ♥
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG:VID	1.62 ms Dwell I Offset 7.78 dB	3,77 dB NVNT 3-D RBW 1 MH2	H5 2441M	1Hz		.87 dBm
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB	1.62 ms Dwell I Offset 7.78 dB	3,77 dB NVNT 3-D RBW 1 MH2	M1[1]	1Hz		.87 dBm 16.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw	1.62 ms Dwell I Offset 7.78 dB	3,77 dB NVNT 3-D RBW 1 MH2		1Hz		.87 dBm
D1 M1 1 Spectrum	1.62 ms Dwell I Offset 7.78 dB SWT 8 ms	3.77 dB NVNT 3-D RBW 1 MHz YBW 1 MHz	M1[1]	1Hz		.87 dBm 16.00 µs 2.20 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG:VID 1PR CIrw 20 dBm 10 dBm 0 dBm	1.62 ms	3.77 dB NVNT 3-D RBW 1 MHz YBW 1 MHz	M1[1]	1Hz		.87 dBm 16.00 µs 2.20 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm 10 dBm TRG -10,020	1.62 ms	3.77 dB NVNT 3-D RBW 1 MHz YBW 1 MHz	M1[1]	1Hz		.87 dBm 16.00 µs 2.20 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk CIrw 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm	1.62 ms	3.77 dB NVNT 3-D RBW 1 MHz YBW 1 MHz	M1[1]	/Hz		.87 dBm 16.00 µs 2.20 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk CIrw 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm TRG -10.020 -20 dBm -30 dBm -30 dBm	1.62 ms	3.77 dB	M1[1]		2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk CIrw 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm	1.62 ms	3.77 dB	M1[1]		2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk CIrw 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm TRG -10.020 -20 dBm -30 dBm -30 dBm	1.62 ms	3.77 dB	M1[1]		2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Clrw 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm -10 dBm -30 dBm -3	1.62 ms	3.77 dB	M1[1]		2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm TRG - 10,020 -20 dBm -30 dBm -30 dBm	1.62 ms	3.77 dB	M1[1]		2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk CIrw 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm -10 dBm TRG -10.020 -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm	1.62 ms	3.77 dB	M1[1] 01[1]		2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Clrw 20 dBm 10 dBm 10 dBm M1 1 20 dBm 10 dBm 10.020 -20 dBm -10.020 -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm	1.62 ms	3.77 dB	M1[1] D1[1] All Market And All All All All All All All All All Al	and the second sec	2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG:VID IPk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	1.62 ms	3.77 dB	M1[1] D1[1] All Market And All All All All All All All All All Al	and the second sec	2.8	.87 dBm 16.00 µs 2.20 dB 6400 ms


8.2 MAXIMUM CONDUCTED OUTPUT POWER

		ID COTED COTTON	OHER			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	2.704	30	Pass
NVNT	1-DH5	2441	Ant 1	4.617	30	Pass
NVNT	1-DH5	2480	Ant 1	3.078	30	Pass
NVNT	2-DH5	2402	Ant 1	4.873	21	Pass
NVNT	2-DH5	2441	Ant 1	6.593	21	Pass
NVNT	2-DH5	2480	Ant 1	5.204	21	Pass
NVNT	3-DH5	2402	Ant 1	5.467	21	Pass
NVNT	3-DH5	2441	Ant 1	7.102	21	Pass
NVNT	3-DH5	2480	Ant 1	5.816	21	Pass

Power NVNT 1-DH5 2402MHz Ant1

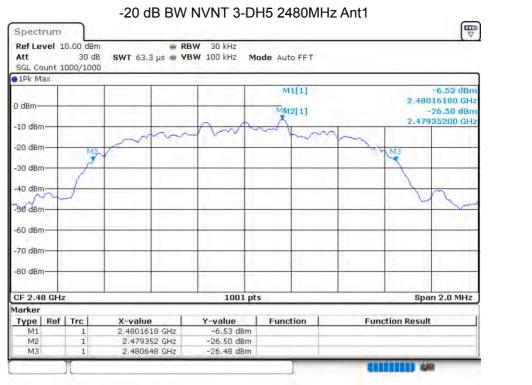

8.3 OCCUPIED CHANNEL BANDWIDTH

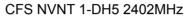
0.3 00001			1			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.9231	0.954	Pass
NVNT	1-DH5	2441	Ant 1	0.8951	0.95	Pass
NVNT	1-DH5	2480	Ant 1	0.959	0.944	Pass
NVNT	2-DH5	2402	Ant 1	1.1908	1.332	Pass
NVNT	2-DH5	2441	Ant 1	1.1928	1.334	Pass
NVNT	2-DH5	2480	Ant 1	1.1928	1.334	Pass
NVNT	3-DH5	2402	Ant 1	1.1788	1.298	Pass
NVNT	3-DH5	2441	Ant 1	1.1808	1.298	Pass
NVNT	3-DH5	2480	Ant 1	1.1808	1.296	Pass

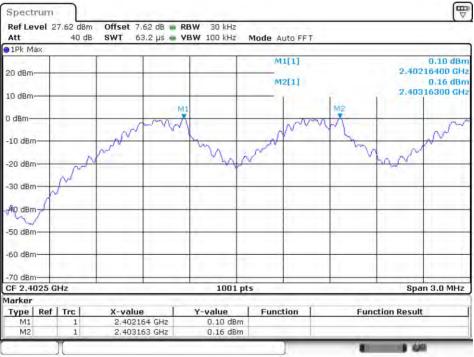
OBW NVNT 1-DH5 2402MHz Ant1

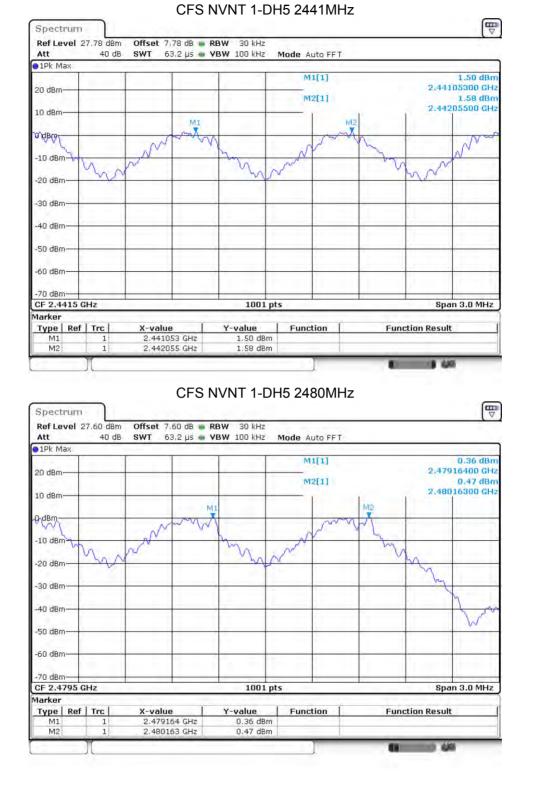




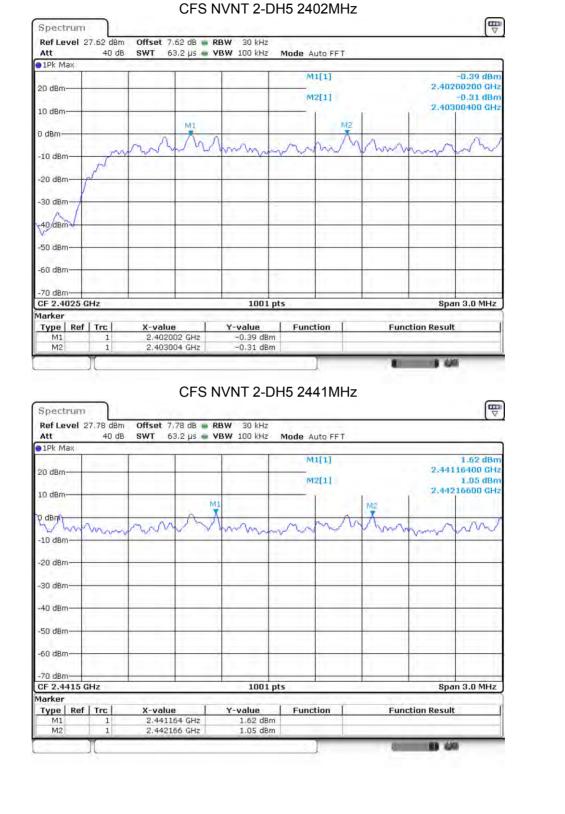


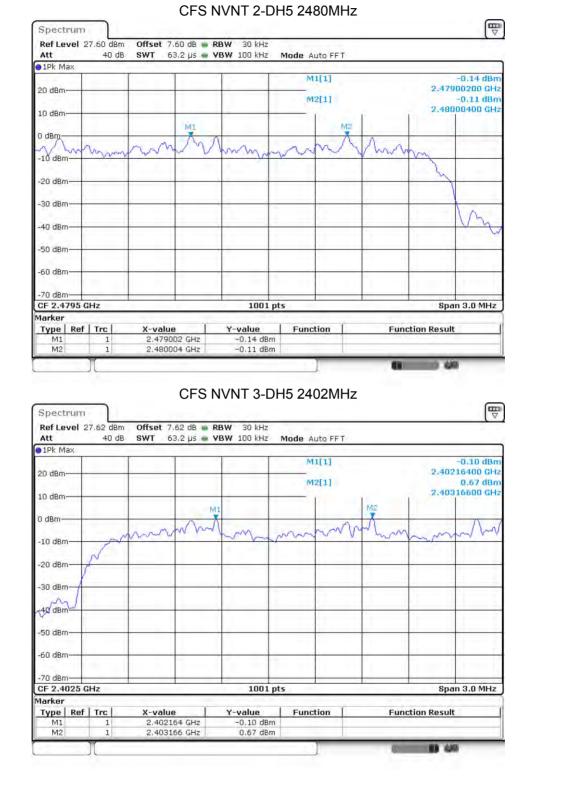


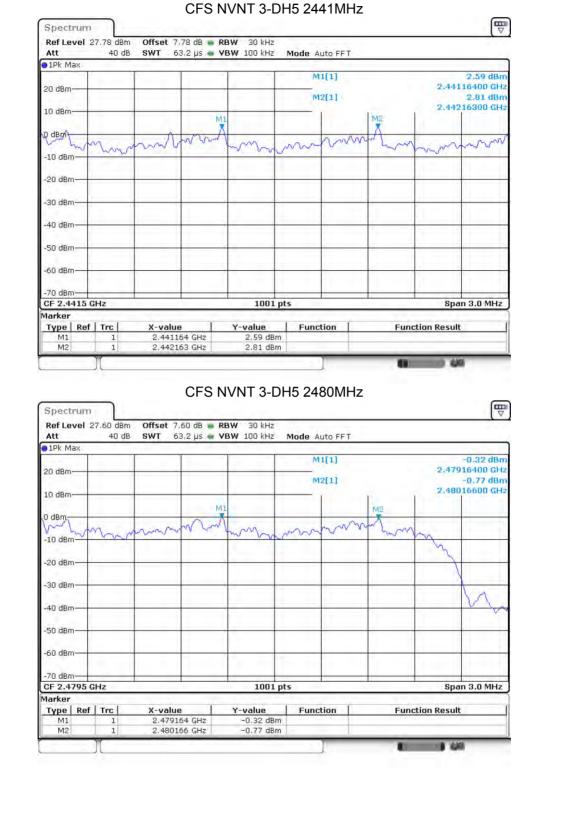


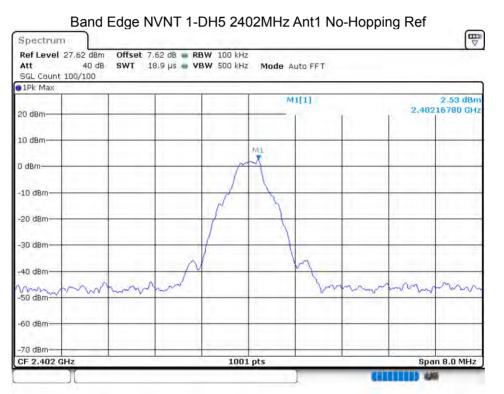

8.4 CARRIER FREQUENCIES SEPARATION

			N			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.164	2403.163	0.999	0.954	Pass
NVNT	1-DH5	2441.053	2442.055	1.002	0.95	Pass
NVNT	1-DH5	2479.164	2480.163	0.999	0.944	Pass
NVNT	2-DH5	2402.002	2403.004	1.002	0.888	Pass
NVNT	2-DH5	2441.164	2442.166	1.002	0.889	Pass
NVNT	2-DH5	2479.002	2480.004	1.002	0.889	Pass
NVNT	3-DH5	2402.164	2403.166	1.002	0.865	Pass
NVNT	3-DH5	2441.164	2442.163	0.999	0.865	Pass
NVNT	3-DH5	2479.164	2480.166	1.002	0.864	Pass



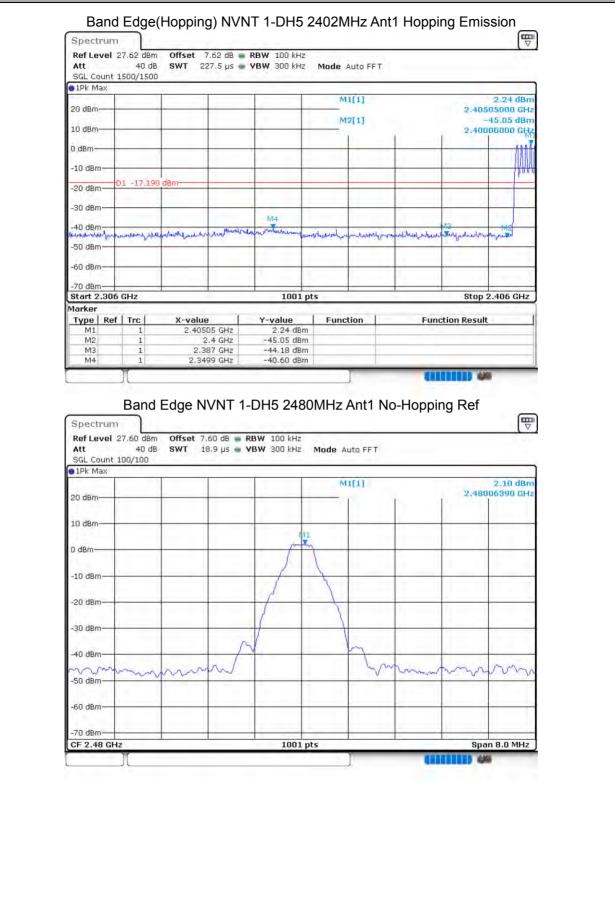






3.5 NUMB Condition NVNT	Mode 1-DH5	Hopping	g Number 79		Verdic Pass	t				
	1 2110				4	 -DH5 24(าวเขา-	7		
	Spectre		-			-0115 240	JZ1VII 12	<u>_</u>		En ⊽
	Att	el 27.62 dBm 40 dB nt 7000/7000	SWT 1			Mode Auto Sw	еер			
	• 1Pk Max			1		M1[1]			-	1.81 dBn
	20 dBm-	1		- 115		M2[1]				8370 GH 2,11 dBn 2435 GH
	10 dBm- M1 0 dBmA4	0.000000000000000000000000000000000000	hananaaaaa	naanaada	AAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	anahana	nanaha		MO
	-10 ¢6m+		NWWWWW	WWWW			YNW	ЩЩ		WW.
	-20 dBm-								3409	
	-80 dBm-						-		_	-
	40 dBm-									- to
	-50 dBm-									
	-60 dBm-									
	-70 dBm-									
	-70 dBm- Start 2.4 Marker	4 GHz			1001 pts	s		1	Stop 2.4	835 GHz
	Start 2.4 Marker Type M1	Ref Trc 1	X-value 2.401837	GHz	-value	s Function	1	Functio	Stop 2.4 n Result	1835 GHz
	Start 2.4 Marker Type	Ref Trc		GHz	-value			Functio		1835 GHz
	Start 2.4 Marker Type M1	Ref Trc 1	2.401837	GHz	-value			Functio		+835 GHz
	Start 2.4 Marker Type M1	Ref Trc 1	2.401837	GHz	-value			Functio		H835 GHZ
	Start 2.4 Marker Type M1	Ref Trc 1	2.401837	GHz	-value			Functio		4835 GHz
	Start 2.4 Marker Type M1	Ref Trc 1	2.401837	GHz	-value			Functio		1835 GHz
	Start 2.4 Marker Type M1	Ref Trc 1	2.401837	GHz	-value			Functio		HB35 GHZ
	Start 2.4 Marker Type M1	Ref Trc 1	2.401837	GHz	-value			Functio		H835 GHZ
	Start 2.4 Marker Type M1	Ref Trc 1	2.401837	GHz	-value			Functio		HB35 GHZ

8.6 BAND EDGE

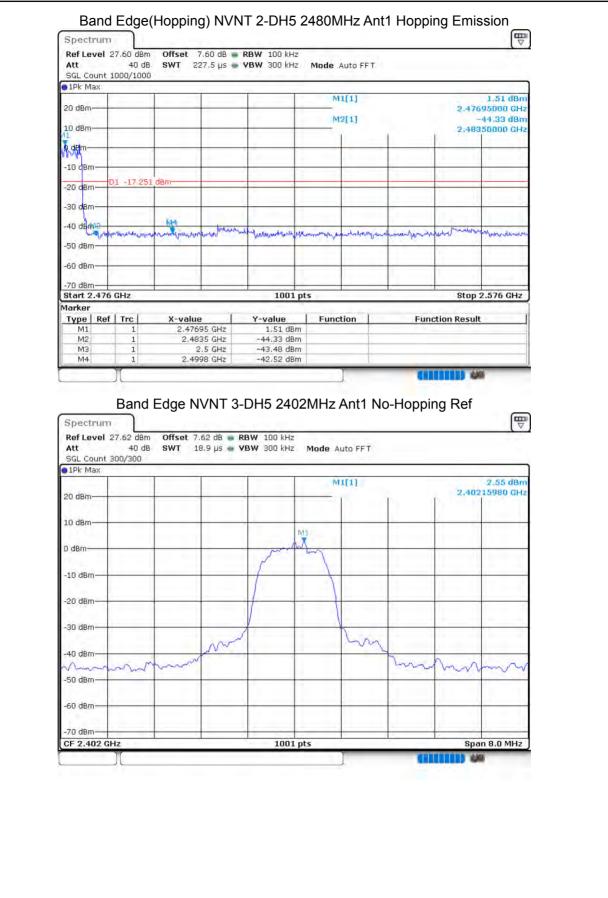

0.0 BANDE							
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-43.76	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-43.4	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-45.2	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-44.33	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-43.37	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-42	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-44.4	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-45.27	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-43.19	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-42.7	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-45.38	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-44.87	-20	Pass

Att 40 dl SGL Count 100/100	5WI 227.5	µs 🎃 VBW 500 kH:	z Mode Auto FFT		
20 dBm			M1[1]		2.39 dBm 40205000 GHz
10 dBm			M2[1]		-46.62 dBm
0 dBm				1	+0000000, GHz
-10 dBm					
-20 dBm 01 -17,46	i8 dBm				
-30 dBm		M4			1 16 11
-40 dBm Murunhalushensensensensensensensensensensensensense	sub-charge hubble hubble hubble	manharmon	an and the second particular second	www.water yor and pullion as the ast	hund hund
-60 dBm			1		1
-70 dBm					1
Start 2.306 GHz	1 1	1001	pts	St	op 2.406 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Function Re	sult
M1 1 M2 1	2.40205 G 2.4 G				
M3 1	2.39 G 2.3492 G				
M4 1					
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p		N. 2. 1. 1.	2 Ant1 Hopping	Ref
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 1Pk Max	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	N. 2. 1. 1.		
Band Ec Spectrum Ref Level 27.62 dBr Att 40 di SGL Count 8000/800	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT		2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 1Pk Max	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT		2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 1Pk Max 20 dBm-	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 1Pk Max 20 dBm 10 dBm 0 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 • 1Pk Max 20 dBm 10 dBm -10 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 1Pk Max 20 dBm 10 dBm 0 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 • 1Pk Max 20 dBm 10 dBm -10 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 © 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D 18 - RBW 100 kHz	Mode Auto FFT	2.	2.81 dBm #0-4B3720 GHz
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D	Mode Auto FFT	2.	2.81 dBm +0-4B3720 GHz
Band Ec Spectrum Ref Level 27.62 dBr Att 40 dl SGL Count 8000/800 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dge(Hopping n Offset 7.62 d 8 SWT 18.9 p	g) NVNT 1-D	Mode Auto FFT	2.	2.81 dBm #0-4B3720 GHz

20 dBm		M1[1] M2[1]		2.85 dBm 015000 GHz -44.89 dBm 350000 GHz
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm ⁻¹⁴⁴		M2[1]	2.46	
-10 dBm -20 dBm - 01 -17,903 dBm -30 dBm -40 dBm ⁻¹⁴⁴				1
-20 dBm D1 -17,903 dBm -30 dBm -40 dBm /2 114				
-30 dBm				
-40 dBrms M4				
and how many many have				
-50 dBm-	Monday was apprenting want	unny alternor and please moleling	mun unor water	plate bull for a party and
Ter Ser			1	
-60 dBm		-		1+ []
Start 2.476 GHz		1001 pts	Stop	2.576 GHz
	(-value Y-va		Function Resu	lt
M1 1 M2 1	2.4835 GHz -44.	85 dBm		
M3 1 M4 1		81 dBm 11 dBm		
(100
SGL Count 8009/8009 1Pk Max 20 dBm		M1[1]	2.47	2,92 dBm
10 dBm		<u></u>		616380 GHz
M1 0 dBm -10 dBm				616380 GH2
M1 0 dBm -10 dBm -20 dBm				616380 GH2
M1 0 dBm -10 dBm				616380 GH2
M1 0 dBm -10 dBm -20 dBm -30 dBm			mmmmmmm	616380 GH2
M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm			mmmmm	
M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				616380 GH2
M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm		1001 pts		an 8.0 MHz

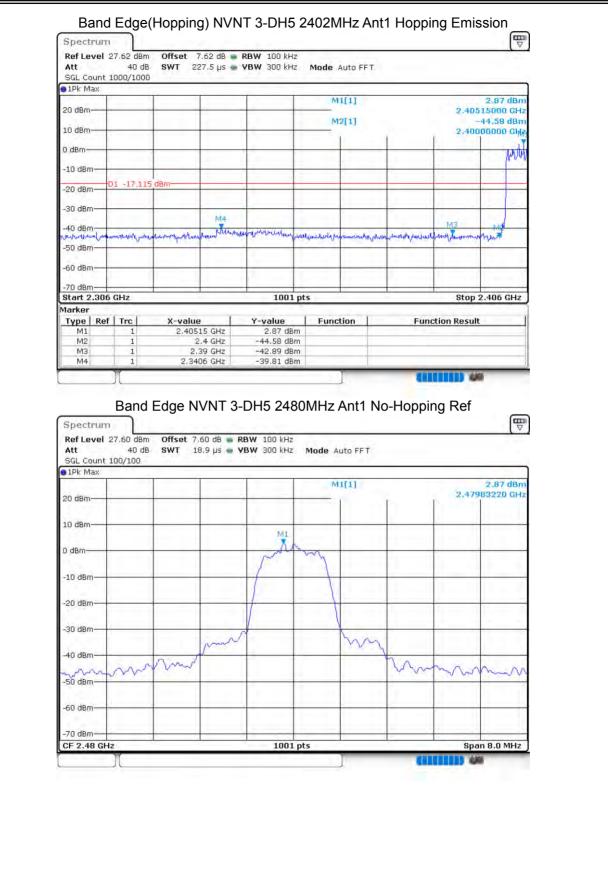
●1Pk Max			- î - î	M1[1]		2.18 dBm
20 dBm				M2[1]	2.	47815000 GHz -44.43 dBm
10 dBm-					2.	48350000 GHz
Ø dBm						
(HI)))/dBm	01 -17,078	dBm				
-20 CBm						
-30 dBm	Ma	MB				
-50 dBm	and how we	with the meridian states	and when when when the	personal and a second	unsubhrowight and a standard with	white in a second
-60 dBm						
-70 dBm						1
Start 2.476 Marker	GHz		1001 p	its	St	op 2.576 GHz
Type Ref	Trc 1	X-value 2.47815 GHz	Y-value 2.18 dBm	Function	Function Re	sult
			-44.43 dBm			
M2	1	2.4835 GHz				
M2 M3 M4 Spectrum Ref Level 2 Att	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz	<u> </u>	No-Hopping Re	ef (T
M2 M3 M4 Spectrum Ref Level 3	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz	2MHz Ant1 N	No-Hopping Re	
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 3	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz	2MHz Ant1 N Mode Auto FFT		
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 3 O 1Pk Max	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 3 O 1Pk Max 20 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 3 O dBm 0 dBm 0 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 3 O 1Pk Max 20 dBm 10 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 3 O dBm 0 dBm 0 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm
M2 M3 M4 Spectrum Ref Level 2 Att SGL Count 2 O dBm 10 dBm 0 dBm -10 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm
M2 M3 M4 Spectrum Ref Level 2 Att SGL Count 3 O BM 10 dBm 0 dBm -10 dBm -20 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm
M2 M3 M4 Spectrum Ref Level : Att SGL Count : 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT		2,35 dBm 40200800 GHz
M2 M3 M4 Spectrum Ref Level : Att SGL Count : SGL Count : 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT	2.	2,35 dBm 40200800 GHz
M2 M3 M4 Spectrum Ref Level : Att SGL Count : 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 1 Band 27.62 dBm 40 dB	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT	2.	2,35 dBm 40200800 GHz
M2 M3 M4 Spectrum Ref Level 2 Att SGL Count 2 O dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	1 1 27.62 dBm 40 dB 100/100	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz M1	2MHz Ant1 N Mode Auto FFT	2. Marine	2,35 dBm 40200800 GHz
M2 M3 M4 Spectrum Ref Level : Att SGL Count : SGL Count : 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm	1 1 27.62 dBm 40 dB 100/100	2.5 GHz 2.4908 GHz Edge NVNT Offset 7.62 dB	-43.26 dBm -41.42 dBm 2-DH5 2402 RBW 100 kHz VBW 300 kHz	2MHz Ant1 N Mode Auto FFT	2. Marine	2,35 dBm 40200800 GHz

Ref Level : Att SGL Count :	40 dB			RBW 100 kH: VBW 300 kH:		Auto FFT.			
1Pk Max		-		1	M	1[1]		0.0	0.26 dBm
20 dBm			-		M	2[1]			205000 GHz -45.05 dBm
10 dBm							()	2.40	000000 GHz M1
0 dBm			-						Å
-10 dBm-	01 -17.646	dBrow							
-20 UB/II	1-17.040	apin		-					
-30 dBm				M4	1	11.071	1		
-40 dBm	well-white the	and the production of	Mr. Million	multitustery	human	nummunum	an a	mon Tunyhan	warment have
-50 dBm									
-60 dBm		· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·			J	1	
-70 dBm	GHz		-	1001	pts			Stop	2.406 GHz
Marker Type Ref	Trc	X-value	1	Y-value	Funct	tion	Func	tion Resu	t I
M1 M2	1	2.4020	5 GHz .4 GHz	0.26 dB -45.05 dB	m				
M3 M4	1		39 GHz 33 GHz	-44.73 dB -41.02 dB					
	N					1	CIL		6
Spectrum Ref Level 3 Att SGL Count 1	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	VNT 2-D	10.2		Ant1 Hop	oping F	Ref
Spectrum Ref Level : Att SGL Count I 1Pk Max 20 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	BW 100 kHz	Mode A		Ant1 Hop		
Spectrum Ref Level : Att SGL Count I 1Pk Max	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I 1Pk Max 20 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I • 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I • 1Pk Max 20 dBm 10 dBm 0 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I PIPk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode A	uto FFT		2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I I D dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode A	uto FFT		2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode A	uto FFT		2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.62 dBm 40 dB	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode A	uto FFT		2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode Ar	uto FFT	Ant1 Hop	2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode Ar	uto FFT		2,40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode Ar	uto FFT		2.40	2,59 dBm 516480 GHz
Spectrum Ref Level : Att SGL Count I 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7.	62 dB R 3,9 µs V	BW 100 kHz	Mode Ar	uto FFT		2.40	2,59 dBm 516480 GHz



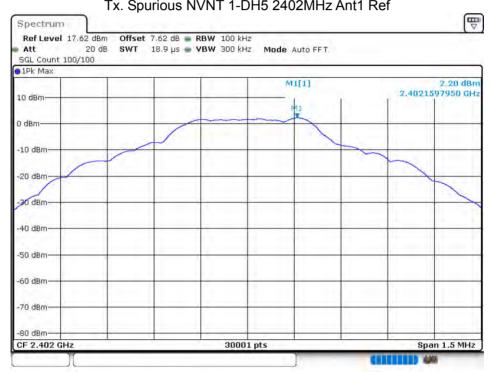
●1Pk Max	1200/1200		T	1 1						1
20 dBm			-			1[1]			1.89 dBn 395000 GH	z
10 dBm					M	2[1]			-44,28 dBn 000000 GH	
0 dBm			_			-			M	
-10 dBm									rrvu	
-20 dBm	01 -17.406	dBm			_					-
-30 dBm	·	-						1	122	4
-40 dBm			M4	L Had as a sur		1	1	Ma	Ma	-
-50 dBm-	man Mitheman	numericalities	Moury Monor	when and manufactures	humanitantinanit	Manager and Start	a learn partit	andre Manhun	menored	
-60 dBm									· · · · ·	
-70 dBm				· · · · · ·			1			
Start 2.30	6 GHz		<u></u>	1001	pts			Stop	2.406 GHz	1
Marker Type Re		X-valu		Y-value	Funct	tion	Fun	ction Resu	lt	1
M1 M2	1		395 GHz 2.4 GHz	1.89 dBr -44.28 dBr	m					
M3 M4	1		.39 GHz 402 GHz	-44.59 dBr -39.41 dBr						1
1913T						_	and the second se			
Spectrur	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	DH5 248	10.2		o-Hoppi	ng Ref	1	
Spectrum Ref Level Att SGL Count	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode Au		o-Hoppin		₩ 1,59 dBn 000000 GH:	1
Spectrun Ref Level Att SGL Count 1Pk Max	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode Au	uto FFT			1,59 dBn	1
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode Au	uto FFT	o-Hoppin		1,59 dBn	1
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode Au	uto FFT			1,59 dBn	1
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode Au	uto FFT			1,59 dBn	1
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode Au	uto FFT			1,59 dBn	1
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.60 dBm 40 dB	Offset 7	/,60 dB • F 8,9 μs • Υ	BW 100 kHz	Mode Au	uto FFT			1,59 dBn	1
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 🖡	BW 100 kHz	Mode Au	uto FFT	o-Hoppin		1,59 dBn	1
Spectrum Ref Level Att SGL Count I DdBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	n 27.60 dBm 40 dB	Offset 7	/,60 dB • F 8,9 μs • Υ	BW 100 kHz	Mode Au	uto FFT	o-Hoppin		1,59 dBn	1
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.60 dBm 40 dB	Offset 7	/,60 dB • F 8,9 μs • Υ	BW 100 kHz	Mode Au	uto FFT	o-Hoppin		1,59 dBn	1
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 27.60 dBm 40 dB	Offset 7	/,60 dB • F 8,9 μs • Υ	BW 100 kHz	Mode Au	uto FFT			1,59 dBn	1
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.60 dBm 40 dB	Offset 7	/,60 dB • F 8,9 μs • Υ	BW 100 kHz	Mode Au	uto FFT			1,59 dBn	1
Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	n 27.60 dBm 40 dB 100/100	Offset 7	/,60 dB • F 8,9 μs • Υ	BW 100 kHz	Mode Au	uto FFT	o-Hoppin	2.48	1,59 dBn	
Spectrum Ref Level Att SGL Count SGL Count SGL Count ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 100/100	Offset 7	/,60 dB • F 8,9 μs • Υ		Mode Au	uto FFT		2.48	1,59 dBn 000000 GH:	
Spectrum Ref Level Att SGL Count SGL Count SGL Count ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 100/100	Offset 7	/,60 dB • F 8,9 μs • Υ		Mode Au	uto FFT		2.48	1,59 dBn 000000 GH:	

-30 dBm	3,405 dBm			M	TET			015000 GHz -46.16 dBm
0 dBm	3,405 dBm				el + 1			
-10 cBm	3.405 dBm					í í	2,483	350000 GHz
-20 aBm-101 -18	3,405 dBm	-	-		-			
-30 dBm	3.405 dBm			_		-		
					_			
						1		.! \$.
	14			1		1		1 - 5
-40 deministration	The month marked	hipsing all all all all all all all all all al	or formany	Man Multillion	monther	no have and had	www.dateman.wa	with uncertain
-50 dBm								
-60 dBm			1					
-70 dBm		-						0.636.00
Start 2.476 GHz Marker		_	1001	pts			Stop	2.576 GHz
Type Ref Trc			Y-value	Func	tion	Func	tion Result	t]
M1 1 M2 1		B35 GHz	2.78 dBr -46.16 dBr					
M3 1 M4 1		2.5 GHz	-46.19 dBr -42.82 dBr					
T	-1	and let let 1		(is)	1	100		6
Spectrum Ref Level 27.60	Odb SWT 1	7.60 dB 🖷 R	VNT 2-D BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop	oping R	
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A		Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 1Pk Max 20 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 1Pk Max	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 1Pk Max 20 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4: SGL Count 8000/8 • 1Pk Max 20 dBm 10 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 1Pk Max 20 dBm- 10 dBm-	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4: SGL Count 8000/8 • 1Pk Max 20 dBm 10 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4: SGL Count 8000/8 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4. SGL Count 8000/8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4. SGL Count 8000/8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/6 • 1Pk Max • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level 27.60 Att 4 SGL Count 8000/8 • 1Pk Max • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7 0 dB SWT 1	7.60 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.476	

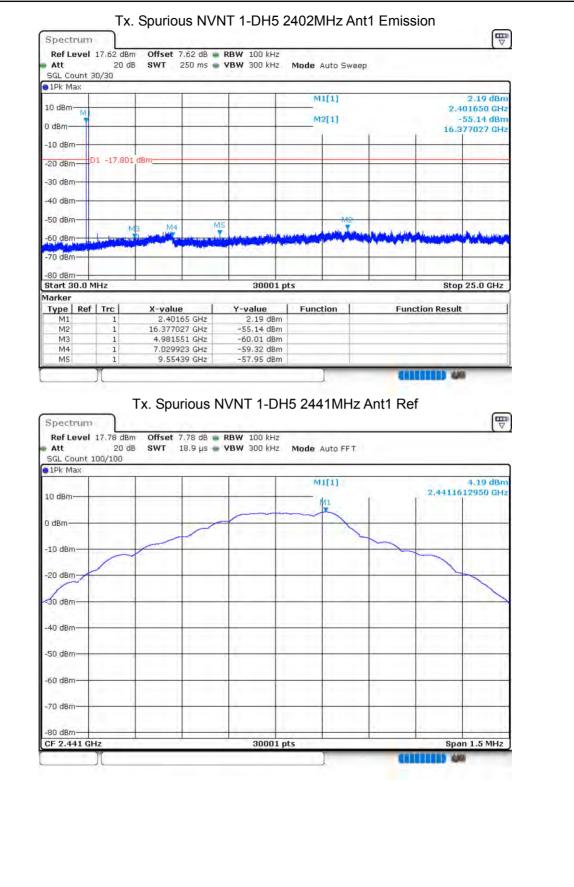


20 dBm	_	1			1641			O FO JO
10 dBm-			-		[1]			2.50 dBm 185000 GHz
	_	-	-	Ma	2[1]	2		-44.84 dBm 000000,GHz
0 dBm			-		-	-	-	X
-10 dBm		-	-			-		
-20 dBm 01 -17	.453 dBm			-				
-30 dBm			100	-				
-40 dBm			M4	a section of the sect	Collins.		Ма	to the
-50 dBm	Manananana	ninguna		PAL COLLADOR AND AND	an provident	and an internation	. Muddal Sume	manhan an
-60 dBm				-				
-70 dBm Start 2.306 GHz		-	1001	pts		-	Stop	2.406 GHz
Marker	r				1.46	-	2 m 2	
Type Ref Trc M1 1	2.40	0185 GHz	<u>Y-value</u> 2.50 dB		ion	Fund	tion Resul	It
M2 1 M3 1	1 - E 8	2.4 GHz 2.39 GHz	-44.84 dB -46.15 dB	m				
M4 1	2,3	8496 GHz	-40.65 dB	m	-	-		10
Spectrum Ref Level 27.62 Att 40 SGL Count 8000/8	dB SWT	7.62 dB 👜)	IVNT 3-D RBW 100 kHz YBW 300 kHz	Mode Au	ito FFT	Ant1 Hop	oping R	
Spectrum Ref Level 27.62 Att 40	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au		Ant1 Hop		
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 1Pk Max	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 1Pk Max 20 dBm 10 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop		2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 1Pk Max 20 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 1Pk Max 20 dBm 10 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IPk Max 20 dBm 10 dBm 0 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IPk Max 20 dBm 10 dBm -10 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IRK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2,89 dBm 516480 GHz
Spectrum Ref Level 27.62 Att 44 SGL Count 8000/8 IR Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset) dB SWT	7.62 dB 👜)	RBW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.40	2.89 dBm 516480 GHz

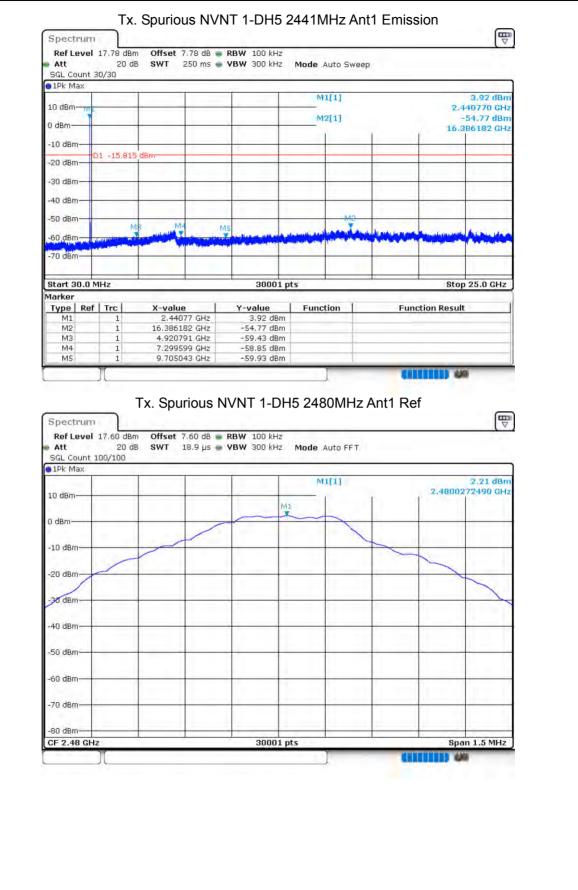
●1Pk Max		1 1	-	<i>i</i> – i	M1[11		-	2.60 dBm
20 dBm				-					015000 GHz -46.52 dBm
10 dBm	_	-			M2[11	6		350000 GHz
0 d8m			-	-					
-10 cBm	5.06.0				-		-	-	-
-20 dBm	01 -17,13	4 dBm		1					
-30 dBm						1			
-40 dBm	mpontourn	Manufunerhind	Javabakakakakaka	a the work where the	detourner	walkinghand	hyphome hyperoel	and appearing held	why have my
-50 dBm-		1.							
-60 dBm								1	1
-70 dBm	GHz	1		1001	pts			Stop	2.576 GHz
Marker Type Ref	Trc	X-value		Y-value	Functio	on	Fund	tion Resul	t I
	1	2.4801	15 GHz	2.60 dB	m				
M1 M2	1	2.483	35 GHz	-46.52 dB					
	1	2	35 GHz .5 GHz 54 GHz	-46.52 dB -44.05 dB -42.52 dB	m				
M2 M3 M4	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB	m H5 2480 Mode Aut	Q FFT	ant1 Ho	oping R	
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 1	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB WNT 3-D	m J H5 2480	Q FFT	ant1 Hop		
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 1 SGL Count 1 9 1Pk Max 20 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB WNT 3-D	m H5 2480 Mode Aut	Q FFT	ant1 Hoj		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 10 dBm M1	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB WNT 3-D	m H5 2480 Mode Aut	Q FFT	Ant1 Hop		2,95 dBm
M2 M3 M4 Spectrum Ref Level : Att SGL Count I 9 IPk Max 20 dBm 10 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB WNT 3-D	m H5 2480 Mode Aut	Q FFT	Ant1 Ho		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 10 dBm M1	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	m H5 2480 Mode Aut	Q FFT	Ant1 Hop		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 1 SGL Count 1 O dBm M1 C dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	m H5 2480 Mode Aut	Q FFT	Ant1 Ho		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count : SGL Count : 10 dBm M1 -10 dBm -20 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	m H5 2480 Mode Aut	Q FFT	Ant1 Ho		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count : SGL Count : 10 dBm M1 d dBm M1 d dBm -10 dBm -20 dBm -30 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	Mode Aut	Q FFT	Ant1 Ho		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count : SGL Count : 10 dBm M1 -10 dBm -20 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	Mode Aut	0 FFT	Ant1 Ho		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count : SGL Count : 10 dBm M1 d dBm M1 d dBm -10 dBm -20 dBm -30 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	Mode Aut	0 FFT	Ant1 Hop		2,95 dBm
M2 M3 M4 Spectrum Ref Level : Att SGL Count / SGL Count / O dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	Mode Aut	0 FFT	Ant1 Hop		2,95 dBm
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 4 SGL Count 4 O dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 1 27.60 dBm 40 dB	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	Mode Aut	0 FFT	Ant1 Hop		2,95 dBm
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 4 SGL Count 4 O dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50 dBm	1 1 27.60 dBm 40 dB 8000/8000	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	Mode Aut	0 FFT	Ant1 Hop	2.47	2,95 dBm
M2 M3 M4 M4 Spectrum Ref Level 3 Att SGL Count 3 Att SGL Count 3 Att 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm	1 1 27.60 dBm 40 dB 8000/8000	2 2.486 ge(Hopp Offset 7.1 SWT 18	.5 GHz 54 GHz Ding) N	-44.05 dB -42.52 dB VNT 3-D RBW 100 kHz yBW 300 kHz	Mode Aut	0 FFT	Ant1 Hop	2.47	2.95 dBm 616380 GHz



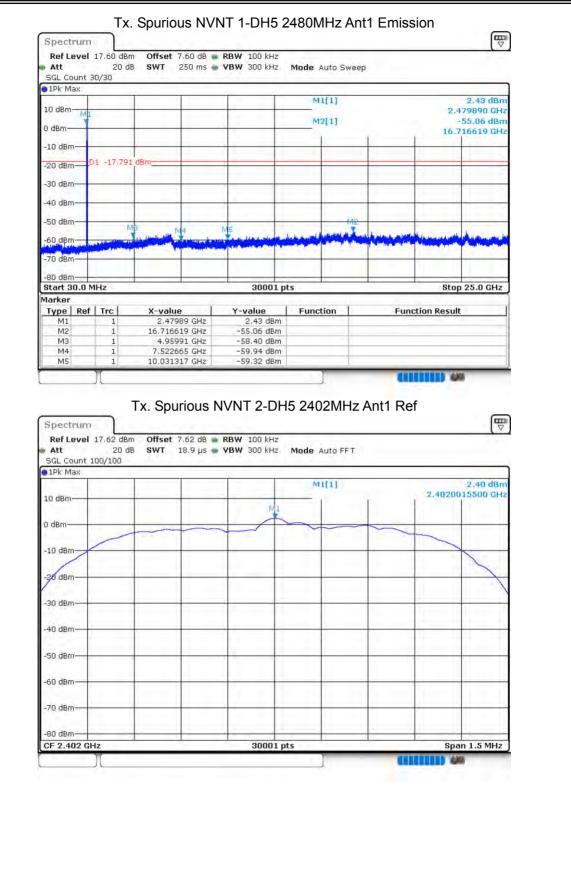
▼				-				pectrum
		de Auto FFT		RBW 100 VBW 300	THE CONTRACT OF		40 dB	ef Level 2 t GL Count 11
							00/ 1000	Pk Max
2.92 dBm		M1[1]		1				
2.47715000 GHz		-	-	-				dBm
-44.23 dBm		M2[1]						dBm
2.48350000 GHz	í í			1				UDITI
			_	-				Bm-
1 1 1		2.1.1.1.1.1.1.1		1.				
							7) cBm
			-	-		dBm	-17,054	CBm D
				1				Gom
· · · · · · · · · · · · · · · · · · ·	-		_	1) dBm
						100		4. M4
and the state of the second	and and an Antonia	An with multiple and	million	Muth manual a	and the more man	MARTINA	Alexandration	demi-
	A second	00.00		and to be a set			N. N.	dBm
				1				
(-	-) dBm
The second secon	· · · · · · · · · · · · · · · · · · ·		1.1	1.1		1		
Stop 2.576 GHz			001 pts	10			11-) dBm
Stup 2.570 GH2			outpes					rker
iction Result	Eunct	unction	10 I	Y-value		X-valu	Tre	pe Ref
iccion Result	Tunce	unction	2 dBm		715 GHz	1.1. 1. 1111.19	1	M1
				-44.23	B35 GHz		1	M2
			4 dBm	-43.94	2.5 GHz	1	1	MЗ
				-41.92	364 GHz		1	M4

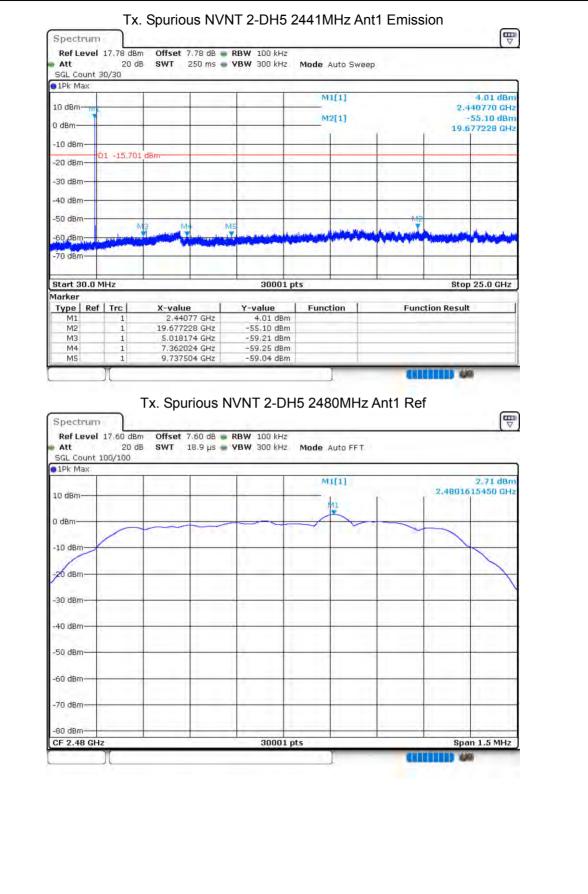

8.7 CONDUCTED RF SPURIOUS EMISSION

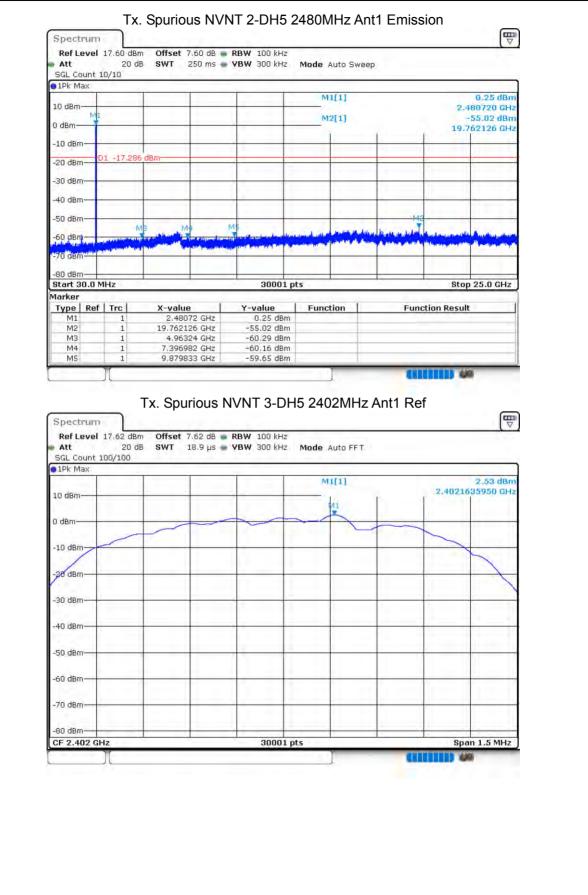
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-57.34	-20	Pass
NVNT	1-DH5	2441	Ant 1	-58.96	-20	Pass
NVNT	1-DH5	2480	Ant 1	-57.26	-20	Pass
NVNT	2-DH5	2402	Ant 1	-57.53	-20	Pass
NVNT	2-DH5	2441	Ant 1	-59.4	-20	Pass
NVNT	2-DH5	2480	Ant 1	-57.72	-20	Pass
NVNT	3-DH5	2402	Ant 1	-57.69	-20	Pass
NVNT	3-DH5	2441	Ant 1	-58.26	-20	Pass
NVNT	3-DH5	2480	Ant 1	-58.65	-20	Pass



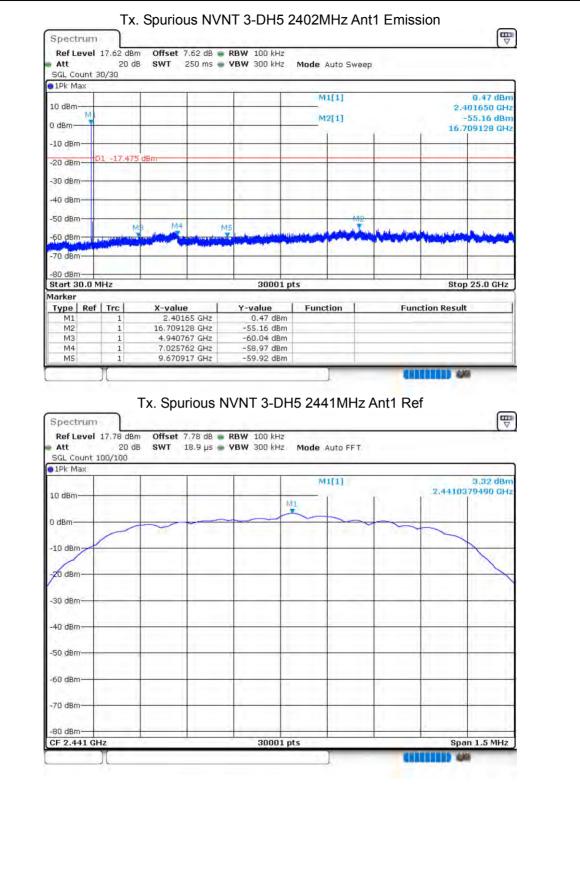
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

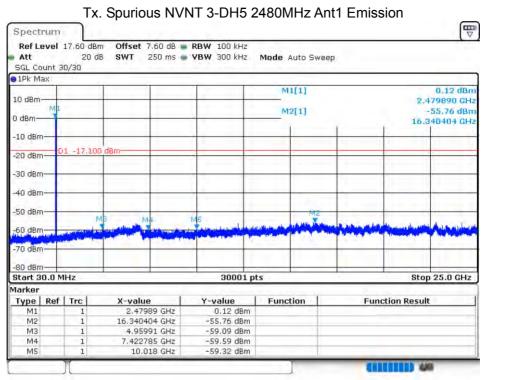






• 1Pk Max	1 1	i i			
10 dBm-			M1[1]		0.83 dBm 2.401650 GHz
0 dBm			M2[1]		-55.13 dBm 19.559037 GHz
-10 dBm			-		19.009007 012
5 40.4 ***	96 dBm				
-30 dBm		-			
-40 dBm		17			
	M3 M4	MS	and and the state of the second	at the second second second	
-60 dBm				Anthony and the first second	
-70 dBm				1	
-80 dBm Start 30.0 MHz		30001 pts	-		Stop 25.0 GHz
Marker	water 1	NUMBER 1	endered 1	ectored of a	
TypeRefTrcM11	X-value 2.40165 GHz	Y-value 0.83 dBm	Function	Function R	esuit
M2 1 M3 1	19.559037 GHz 4.700222 GHz	-55.13 dBm -60.64 dBm			
M4 1 M5 1	7.317911 GHz 9.575199 GHz	-59.33 dBm -59.86 dBm			
T			- 1		446
Spectrum Ref Level 17,78 df Att 20 SGL Count 100/100 1Pk Max		RBW 100 kHz VBW 300 kHz N	Iode Auto FFT		(₩)
Ref Level 17,78 df Att 20 SGL Count 100/100			M1[1]	2.4	(∇ 4,30 dBm +11619950 GHz
Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 dBm				2,4	4,30 dBm
Ref Level 17,78 di Att 20 SGL Count 100/100 1Pk Max			M1[1]	2.4	4,30 dBm
Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 dBm			M1[1]	2.4	4,30 dBm
Ref Level 17,78 dl Att 20 SGL Count 100/100 IPk Max 10 10 dBm 0 -10 dBm -10			M1[1]	2.4	4,30 dBm
Ref Level 17,78 dl Att 20 SGL Count 100/100 IPk Max 10 10 dBm 0			M1[1]	2.4	4,30 dBm
Ref Level 17,78 dl Att 20 SGL Count 100/100 IPk Max 10 10 dBm 0 -10 dBm -10			M1[1]	2.4	4,30 dBm
Ref Level 17,78 dl Att 20 SGL Count 100/100 IPk Max 10 dBm 0 -10 dBm - -20 dBm -			M1[1]	2.4	4,30 dBm
Ref Level 17.78 dl Att 20 SGL Count 100/100 1Pk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm -			M1[1]	2.4	4,30 dBm
Ref Level 17.78 dl Att 20 SGL Count 100/100 1Pk Max 10 0 dBm 0 -10 dBm 20 -20 dBm -30 dBm			M1[1]	2.4	4,30 dBm
Ref Level 17.78 dl Att 20 SGL Count 100/100 1Pk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm -			M1[1]	2.4	4,30 dBm
Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -60 dBm -			M1[1]	2.4	4,30 dBm
Ref Level 17.78 dl Att 20 SGL Count 100/100 1Pk Max 10 10 dBm 10 -10 dBm 20 -20 dBm -30 dBm -40 dBm -50 dBm			M1[1]	2.4	4,30 dBm
Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 0 dBm 0 -10 dBm -0 -20 dBm			M1[1]	2.4	4.30 dBm +11619950 GHz
Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 0 dBm 10 -10 dBm 20 -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm			M1[1]	2.4	4,30 dBm





1Pk Max				í í				
10 dBm					M1[1]		2.4	2.18 dBm 40770 GHz
0 dBm				_	M2[1]			54.95 dBm 16162 GHz
-10 dBm-						-		
-20 dBm	D1 -16.679	dBm	_			-		
-30 dBm							1	1
-40 dBm-								1
-50 dBm-					LAC.			
-6D,dBm	M	3. manufer M	M5	and the second	and some state of the state	all Handair Samo	The west build an	San Section of the Ass
-70 dBm-								
-70 0611						1		1 1 1
Start 30.0	MHz			30001	pts		Stop	25.0 GHz
Marker Type Ref	f Trc	X-value		Y-value	Function	Fue	tion Result	
M1	1	2,440	77 GHz	2.18 dBn	1	run	anon Result	
M2 M3	1	15.01610 5.0414		-54.95 dBn -59.90 dBn				
M4 M5	1	7.3936		-59.39 dBn -59.67 dBn				
	T				1			8
10 dBm			-		M1[1]		0 10010	
	-						2.48010	2.90 dBm 46450 GHz
					MI		2.48010	
0 dBm	~						2.48010	
	~				M1		2.48010	
0 dBm	~~	~			M1		2.48010	
0 dBm	~				M1		2.48010	
0 dBm	~~						2.48010	
0 dBm -10 dBm -20 dBm -30 dBm							2.48010	
0 dBm -10 dBm -20 dBm							2.48010	
0 dBm -10 dBm -20 dBm -30 dBm							2.48010	
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm							2.48010	
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm							2.48010	
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm							2.48010	
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm							2.48010	
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	12			30001			Spa	n 1,5 MHz
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm				30001			Spa	n 1,5 MHz
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm				30001			Spa	n 1,5 MHz

END OF REPORT