

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

Proxfinity

MODEL NUMBER: PinV10

FCC ID: 2AFPT00P010

REPORT NUMBER: 10932099B

ISSUE DATE: 9/21/2015 Prepared for Proxfinity Inc. 222 W Merchandise Mart, Floor 12, Suite 1871 Chicago IL, 60654, USA

> Prepared by **UL LLC** 333 Pfingsten Rd. Northbrook, IL 60062 TEL: (847) 272-8800

NVLAP Lab code: 100414-0

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	9/21/2015	Initial Issue	V Sabalvaro

TABLE OF CONTENTS

1.	ATTE	STATION OF TEST RESULTS	4
2.	TEST	METHODOLOGY	5
3.	FACI	LITIES AND ACCREDITATION	5
4.	CALI	BRATION AND UNCERTAINTY	5
	4.1. N	IEASURING INSTRUMENT CALIBRATION	5
	4.2. S	AMPLE CALCULATION	5
	4.3. N	IEASUREMENT UNCERTAINTY	6
	5.1. L	DESCRIPTION OF TEST SETUP	
6.	TEST	AND MEASUREMENT EQUIPMENT	12
6. 7.		AND MEASUREMENT EQUIPMENT	
		-	13
	TEST 7.1.1.	RESULTS	13
	TEST 7.1.1.	RESULTS	13 13 20
	TEST 7.1.1. <i>7.1. R</i>	RESULTS	13 13 20 21
	TEST 7.1.1. <i>7.1. K</i> 7.1.1.	RESULTS 20dB & 99% BANDWIDTH <i>ADIATED EMISSIONS</i> FUNDAMENTAL FREQUENCY RADIATED EMISSION	13 13 20 21 22
	TEST 7.1.1. <i>7.1. K</i> 7.1.1. 7.1.1.	RESULTS	13 13 20 21 22 26 30
	TEST 7.1.1. 7.1. <i>K</i> 7.1.1. 7.1.1. 7.1.1.	RESULTS	13 13 20 21 22 26 30

Page 3 of 45

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Proxfinity Inc. 222 W Merchandise Mart, Floor 12, Suite 1871 Chicago, IL 60654, USA
EUT DESCRIPTION:	Wearable tradeshow radio
MODEL:	PinV10
DATE TESTED:	August 25, 2015 – September 9, 2015

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart C	Pass				

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC By:

Mhuh

BART MUCHA WISE STAFF ENGINEER UL LLC

Tested By:

Vincent Sabalvaro WISE Laboratory Engineer UL LLC

Page 4 of 45

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 333 Pfingsten Road, Northbrook, IL 60062 USA.

UL NBK is accredited by NVLAP, Laboratory Code 100414-0. The full scope of accreditation can be viewed at http://ts.nist.gov/Standards/scopes/1004140.htm

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

Page 5 of 45

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test	Range	Equipment	Uncertainty k=2
Radiated Emissions	30-200MHz	Bicon 10m Horz	4.27dB
Radiated Emissions	30-200MHz	Bicon 10m Vert	4.28dB
Radiated Emissions	200-1000MHz	LogP 10m Horz	3.33dB
Radiated Emissions	200-1000MHz	LogP 10m Vert	3.39dB
Radiated Emissions	30-200MHz	Bicon 3m Horz	3.30dB
Radiated Emissions	30-130MHz	Bicon 3m Vert	4.84dB
Radiated Emissions	130-200MHz	Bicon 3m Vert	4.94dB
Radiated Emissions	200-1000MHz	LogP 3m Horz	3.46dB
Radiated Emissions	200-1000MHz	LogP 3m Vert	4.98dB
Radiated Emissions	1-6GHz	Horn	5.02dB
Radiated Emissions	6-18GHz	Horn	5.34dB
Radiated Emissions	18-26GHz	Horn	6.60dB
Conducted Ant Port	30MHz-26GHz	Spectrum Analyzer	2.94

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Wearable device for use at tradeshows. Devices talk to each other using an 802.15.4 radio in 2.4Ghz band. Devices talk to smartphone using Bluetooth Low Energy radio in 2.4Ghz band.

The device is manufactured by Proxfinity, Inc.

5.2. MAXIMUM OUTPUT E-FIELD STRENGTH

The transmitter has a maximum output peak E-field as follows:

Frequency Range	Mode	Output AV E-field Strength
(MHz)		(dBuV/m)
2402-2480	BTLE	86.29
2402-2480	BTLE & 802.15.4	91.3

* Only one single channel from each respective radio on the EUT are overlapping. This measurement, from the overlapping channels, was included to demonstrate worst-case scenario.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Chip antenna, with a maximum gain of 0.5 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was PinV10 RF Test Software Version 3.0

5.5. WORST-CASE CONFIGURATION AND MODE

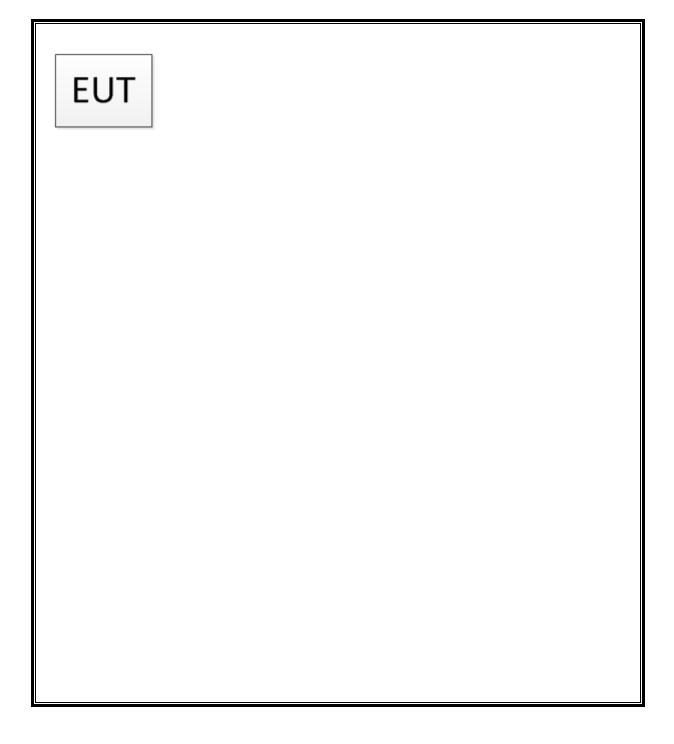
The worst-case mode is determined as the simultaneous transmission of both available radios at their overlapping channels due to the combined outputs producing the highest power levels. The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
EUT	Proxfinity, Inc.	PinV10	non-serialized	2AFPT00P010			

I/O CABLES


	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	MicroUSB	1	MicroUSB	MicroUSB	1	Charger	

TEST SETUP

The EUT is battery operated and was tested in normal operating mode. The test units were programed for lowest, middle, highest channel operation, and overlapping channels of the two radios.

Page 8 of 45

SETUP DIAGRAM FOR TESTS

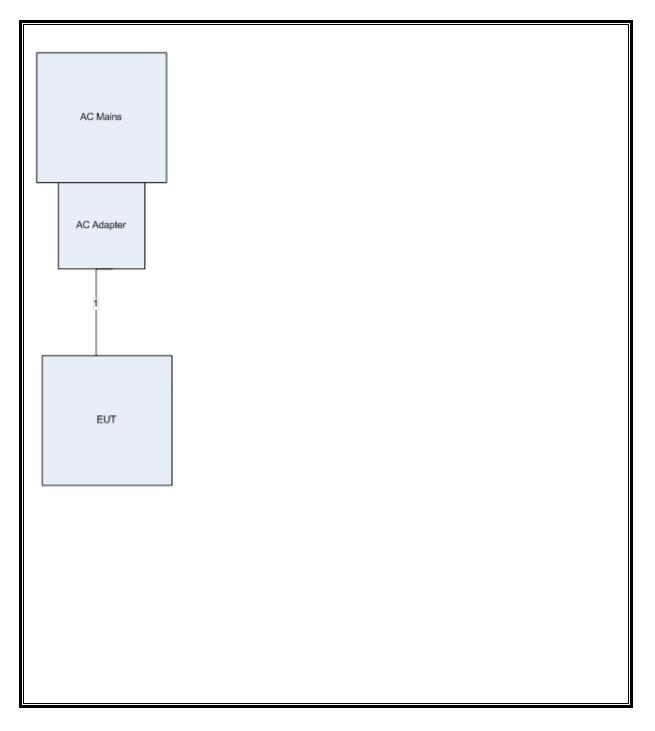
Page 9 of 45

SETUP FOR DIGITAL DEVICE TESTS

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
EUT	Proxfinity, Inc.	PinV10	non-seralized	2AFPT00P010		

I/O CABLES


	I/O Cable List						
Cable		# of identical		Cable Type		Remarks	
No		ports	Туре		Length (m)		
1	MicroUSB	1	MicroUSB	MicroUSB	1	Charger	

TEST SETUP

The EUT is battery operated and was tested in receive mode and charge mode.

Page 10 of 45

SETUP DIAGRAM FOR DIGITAL DEVICE TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List					
Description	Manufacturer	Model	T No.	Cal Date	Cal Due
Radiated Software	UL	UL EMC	١	/er 9.5, July 22,	2014
Conducted Software	UL	UL EMC	١	/er 9.5, May 17	2012
EMI Test Receiver	Rohde & Schwarz	ESR	EMC4377	4/20/2015	4/20/2016
Transient Limiter	Electro-Metrics	EM7600-2	EMC4224	N/A	N/A
HighPass Filter	Solar Electronics	2803-150	EMC4327	N/A	N/A
Attenuator	HP	8494B	2831A0083	N/A	N/A
LISN - L1	Solar	8602-50-TS-50-N	EMC4052	1/15/2015	1/15/2016
LISN - L2	Solar	8602-50-TS-50-N	EMC4064	1/9/2015	1/9/2016
Signal Analyzer	Agilent	РХА	EMC4360	12/19/2014	12/19/2015
Near Field Probe	EMCO	7405	1270	N/A	N/A
Test Receiver	Rhode & Schwarz	ESCI	EMC4328	12/18/2014	12/30/2015
Log-P Antenna	Chase	UPA6112A	EMC4313	11/19/2014	11/19/2015
Bicon Antenna	Electro-Metrics	UPA6109	EMC4323	12/18/2014	12/31/2015
Antenna Array	UL	BOMS	EMC4276	12/1/2014	12/31/2015
Test Receiver	Rhode & Schwarz	ESU	EMC4323	12/16/2014	12/30/2015

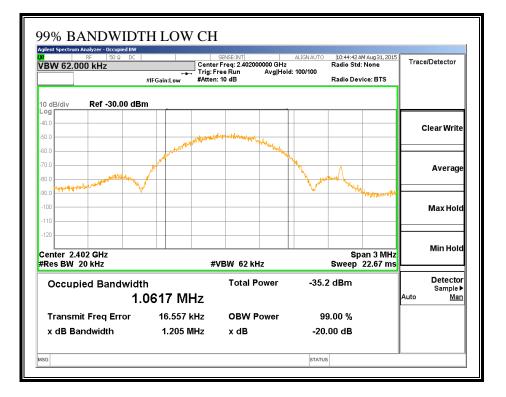
7. TEST RESULTS

7.1. 20dB & 99% BANDWIDTH

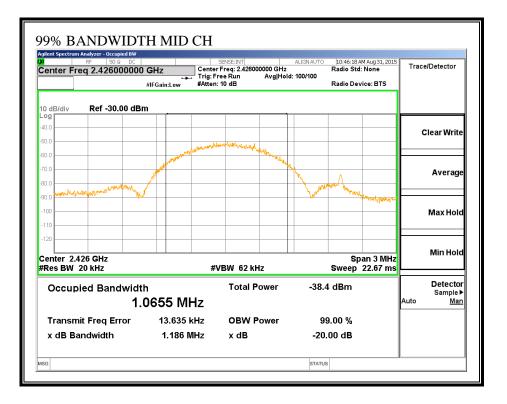
7.1.1. LIMITS

None; for reporting purposes only.

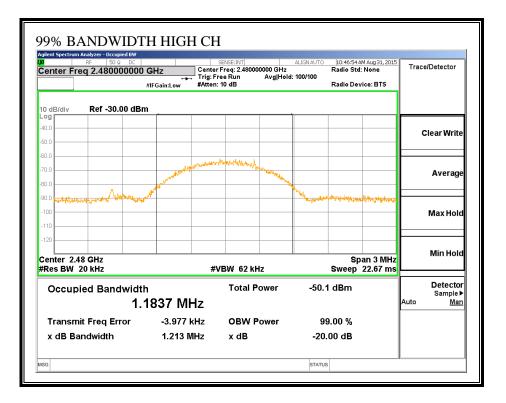
7.1.2. TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

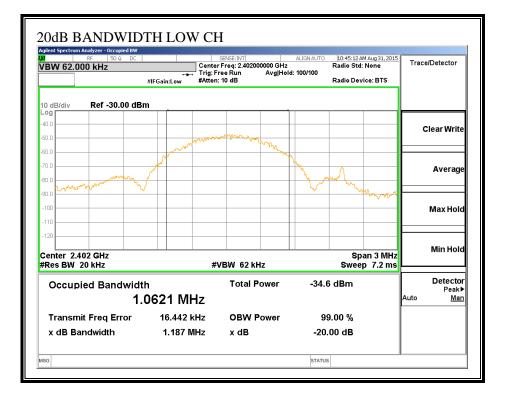
7.1.3. **RESULTS**


Channel	Frequency	99% Bandwidth	20dB Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.0617	1.187
Middle	2426	1.0655	1.184
High	2480	1.1837	1.199

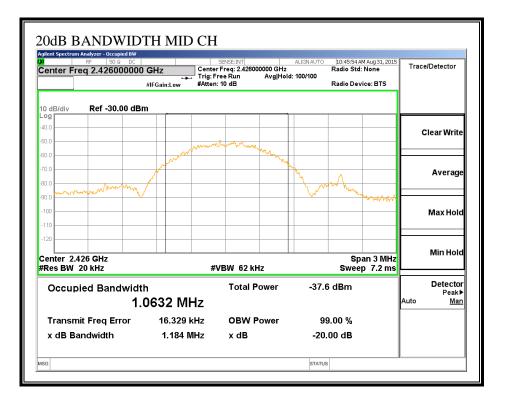
Page 13 of 45


7.1.4. 99% BANDWIDTH

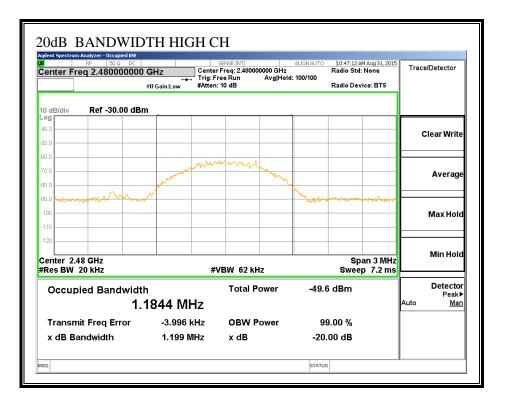
Page 14 of 45



Page 15 of 45



Page 16 of 45


7.1.5. 20dB BANDWIDTH

Page 17 of 45

Page 18 of 45

Page 19 of 45

7.2. RADIATED EMISSIONS

<u>LIMIT</u>

FCC 15.249

Operation within the bands 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHZ, and 24.0–24.25 GHz.

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/ meter)	Field strength of harmonics (microvolts/ meter)		
902–928 MHz	50	500		
2400–2483.5 MHz	50	500		
5725–5875 MHz	50	500		
24.0–24.25 GHz	250	2500		

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)		
0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500	300 30 30 3 3 3 3 3		

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76– 88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

RESULTS

7.2.1. FUNDAMENTAL FREQUENCY RADIATED EMISSION

BLE

			FCC							
Test	Meter			Cable	Corrected	15.249				
Frequency	Reading		Antenna	Gain/Loss	Reading	РК	Margin	Azimuth	Height	
(GHz)	(dBuV)	Detector	Factor	(dB)	dBuV/m	Limit	(dB)	[Degs]	[cm]	Polarity
2.4023	59.04	Pk	21.8	4.58	85.42	94	-8.58	236	108	V
2.4023	49.65	Pk	21.8	4.58	76.03	94	-17.97	68	100	Н
2.4262	51.13	Pk	21.9	4.54	77.57	94	-16.43	75	259	Н
2.4262	59.85	Pk	21.9	4.54	86.29	94	-7.71	240	102	V
2.4798	51.5	Pk	22	4.36	77.86	94	-16.14	217	264	Н
2.4797	56.55	Pk	22	4.36	82.91	94	-11.09	239	100	V

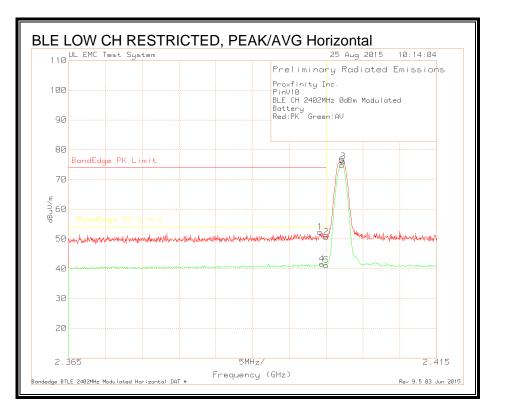
Pk - Peak detector

*Peak levels are below Average limit, therefore average measurements are not needed.

Simultaneous BLE & 802.15.4

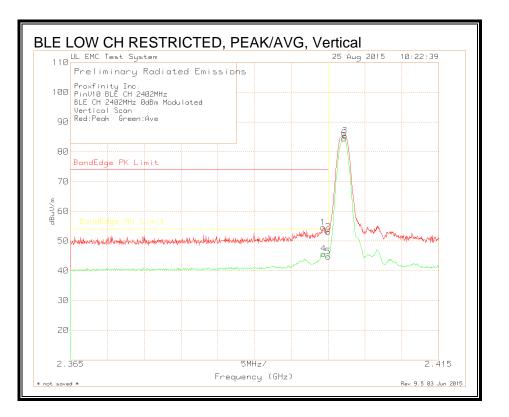
Test	Meter			Cable	Corrected	FCC				
Frequency	Reading		Antenna	Gain/Loss	Reading	15.249	Margin	Azimuth	Height	
(GHz)	(dBuV)	Detector	Factor	(dB)	dBuV/m	PK Limit	(dB)	[Degs]	[cm]	Polarity
2.4256	64.86	6 Pk	21.9	4.54	91.3	94	-2.7	240	101	V
2.4256	57.43	Pk	21.9	4.54	83.87	94	-10.13	76	259	Н

Pk - Peak detector

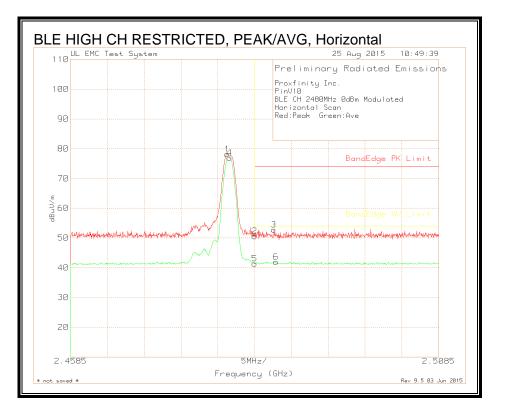

*Peak levels are below Average limit, therefore average measurements are not needed.

**Only one single channel from each respective radio on the EUT are overlapping. This measurement, from the overlapping channels, was included to demonstrate worst-case scenario.

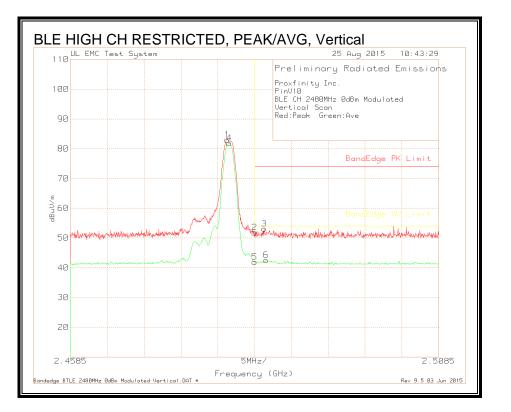
Page 21 of 45


7.2.2. TRANSMITTER RESTRICTED BAND EDGES

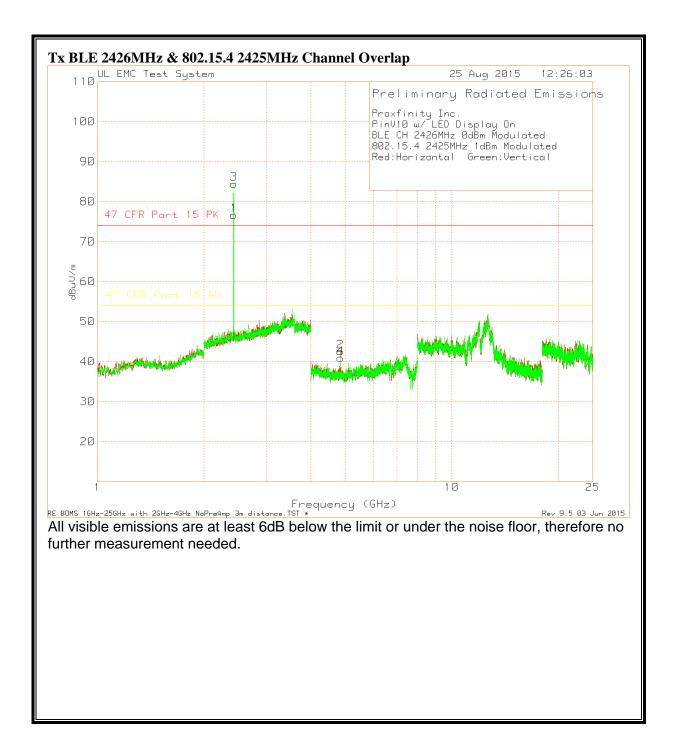
RESTRICTED BANDEDGE (BLE, LOW CHANNEL, HORIZONTAL)


Page 22 of 45

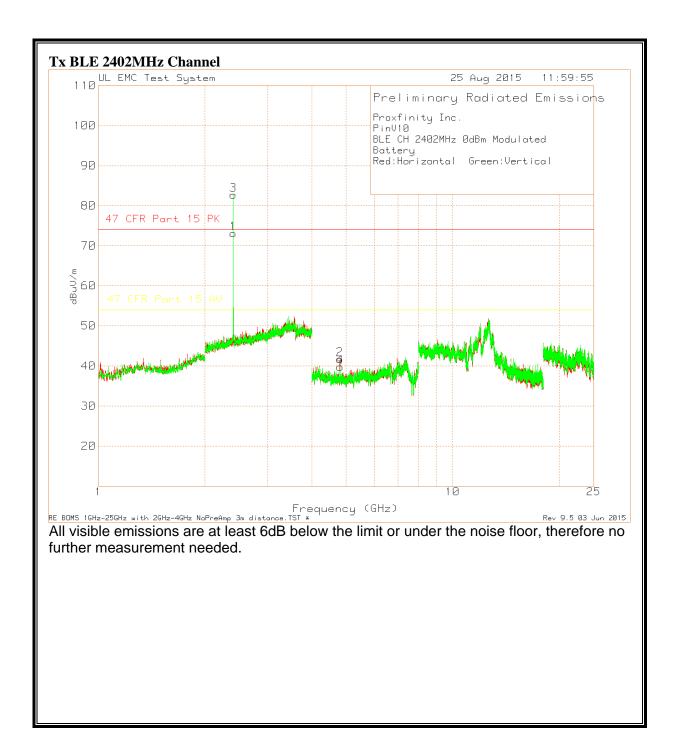
RESTRICTED BANDEDGE (BLE LOW CHANNEL, VERTICAL)


Page 23 of 45

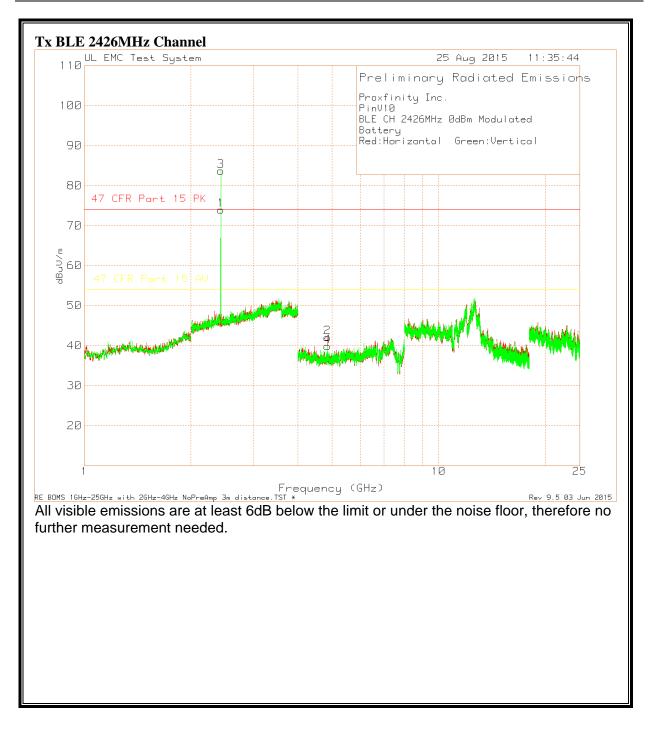
RESTRICTED BANDEDGE (BLE HIGH CHANNEL, HORIZONTAL)

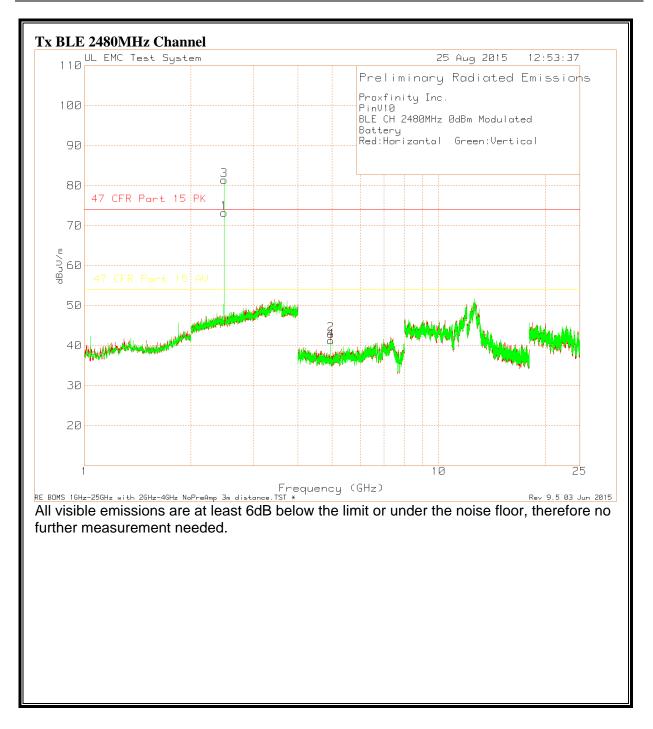

Page 24 of 45

RESTRICTED BANDEDGE (BLE HIGH CHANNEL, VERTICAL)

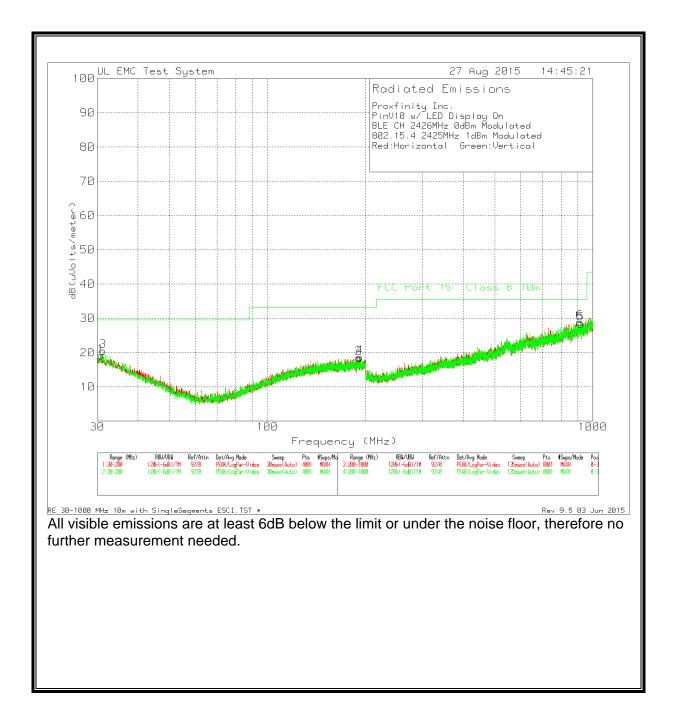


Page 25 of 45

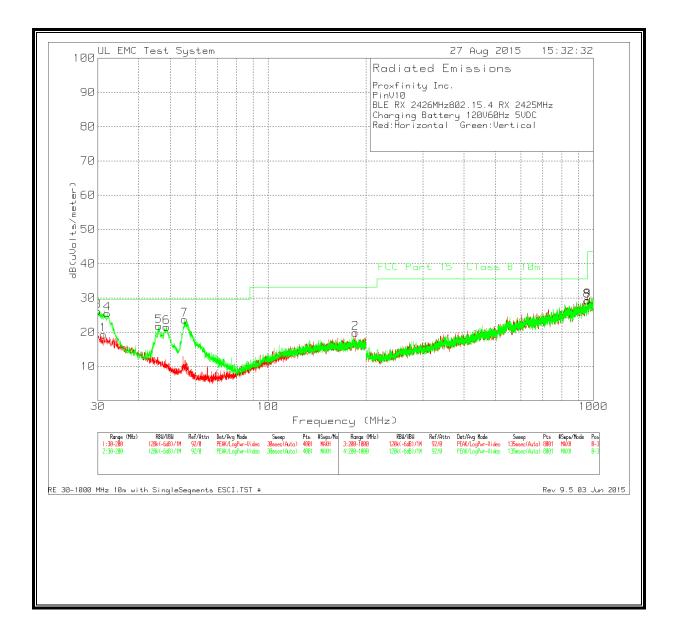

7.2.3. HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz


Page 26 of 45

Page 27 of 45



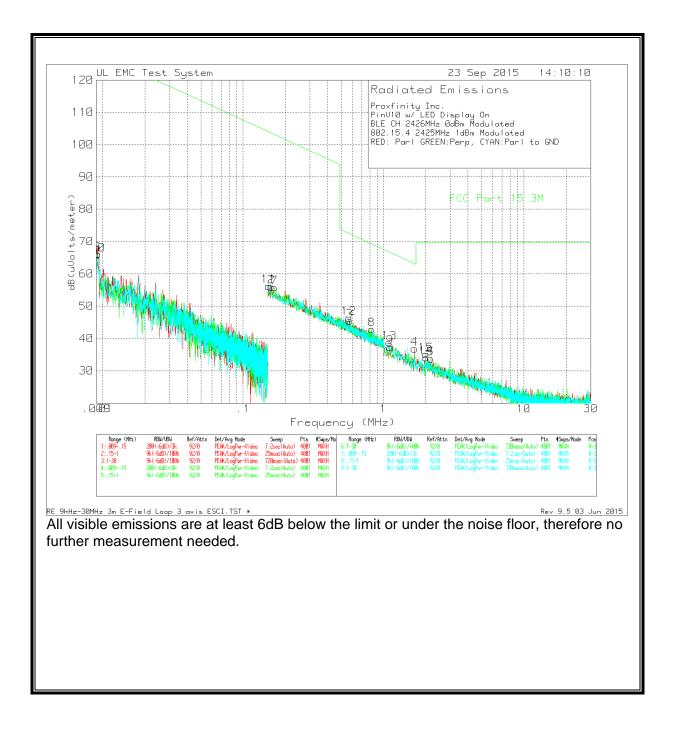
Page 28 of 45


7.2.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (TX BLE 2426MHz & 802.15.4 2425MHz Overlap)

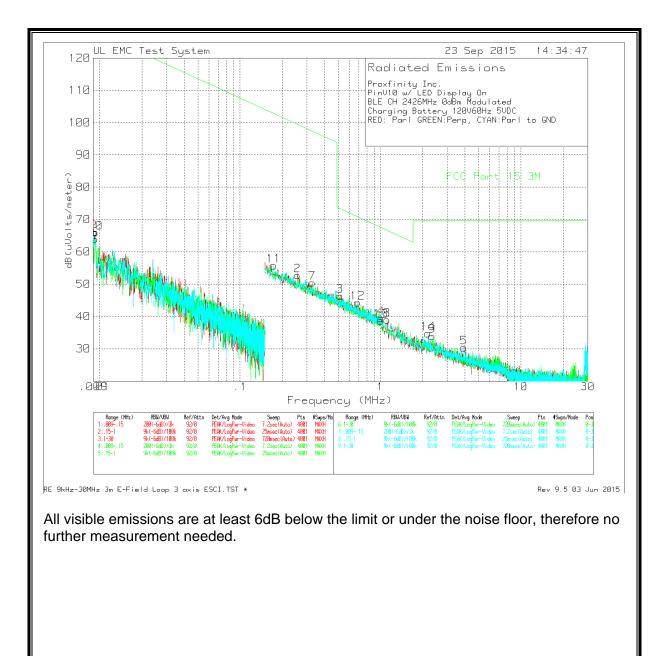
Page 30 of 45

SPURIOUS EMISSIONS 30 TO 1000 MHz (RX BLE & 802.15.4 Charging)



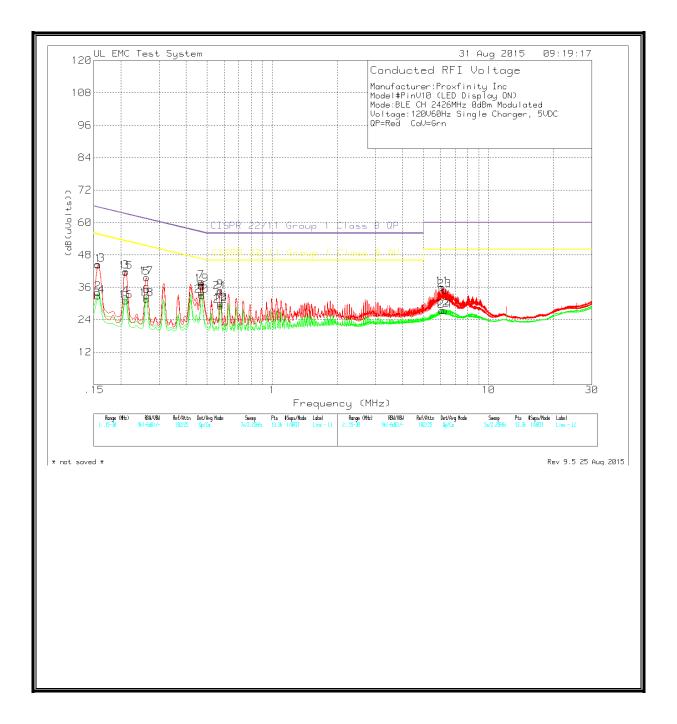
					Corrected					
Test	Meter				Reading	FCC Part				
Frequency	Reading		Antenna	Cable	dB(uVolts/	15 Class B	Margin	Azimuth	Height	
(MHz)	(dBuV)	Detector	Gain	Loss	meter)	10m	(dB)	[Degs]	[cm]	Polarity
30.1012	34.03	Qp	18.2	-30.2	22.03	29.55	-7.52	1	105	V
32.328	34.74	Qp	17.3	-30.2	21.84	29.55	-7.71	0	100	V
55.5357	41.85	Qp	7.2	-30.1	18.95	29.55	-10.6	56	224	V

Qp - Quasi-Peak detector

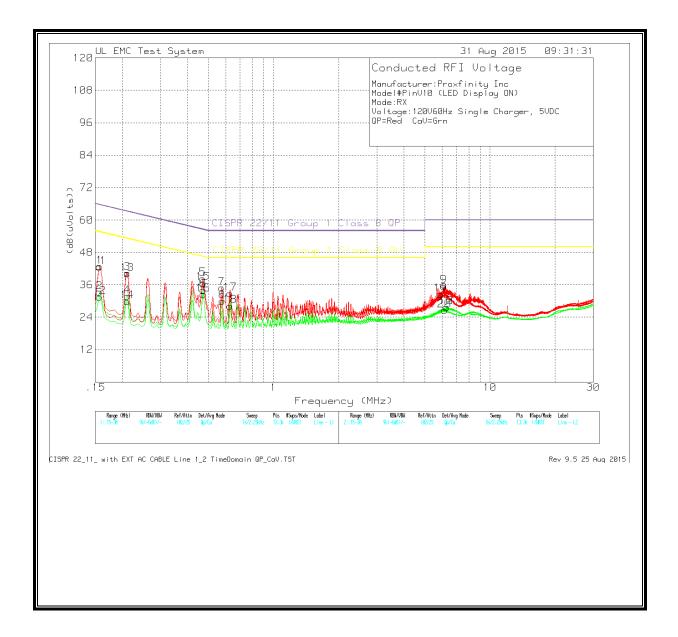

Page 31 of 45

SPURIOUS EMISSIONS 9 kHz TO 30 MHz (TX BLE 2426MHz & 802.15.4 2425MHz Overlap)

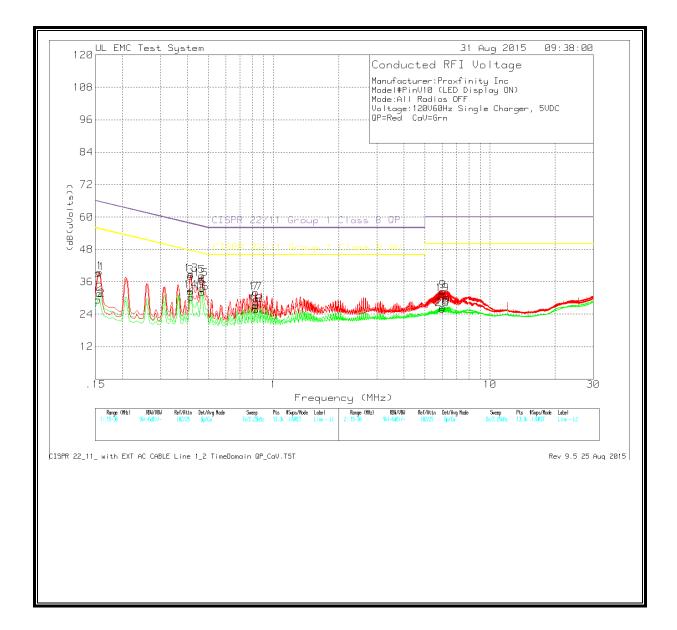
Page 32 of 45


SPURIOUS EMISSIONS 9 kHz TO 30 MHz (RX BLE & 802.15.4 Charging)

Page 33 of 45


7.2.1. CONDUCTED EMISSIONS

CONDUCTED EMISSIONS 150 kHz TO 30 MHz (TX BLE 2426MHz & 802.15.4 2425MHz Overlap)



Page 34 of 45

CONDUCTED EMISSIONS 150 kHz TO 30 MHz (RX BLE & 802.15.4 Charging)

CONDUCTED EMISSIONS 150 kHz TO 30 MHz (Standby)

