

RADIO TEST REPORT FCC ID: 2AU4M-TL30

Product:iGPSPORT TL30 Smart TaillightTrade Mark:N/AModel No.:TL30Family Model:TL30SReport No.:S23091304502001Issue Date:Oct 12, 2023

Prepared for

Wuhan Qiwu Technology Co.,Ltd. 3 / F, Creative workshop, No.04, District D, Creative world, No.16 Yezhihu West Road, Hongshan District, Wuhan City, Hubei Province, China.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1						
2	SUI	MMARY OF TEST RESULTS	4			
3	FAC	CILITIES AND ACCREDITATIONS	5			
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5			
4	GE	NERAL DESCRIPTION OF EUT	6			
5	DE	SCRIPTION OF TEST MODES	8			
6	SET	FUP OF EQUIPMENT UNDER TEST	9			
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10			
7	TES	ST REQUIREMENTS	13			
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	16 25 26 28 29 31 32 33			
0	TE	ST RESULTS				
8	I LA					

1 TEST RESULT CERTIFICATION

I TEST RESULT CERTIFIC					
Applicant's name:	Wuhan Qiwu Technology Co.,Ltd.				
Address	3 / F, Creative workshop, No.04, District D, Creative world, No.16 Yezhihu West Road, Hongshan District, Wuhan City, Hubei Province, China.				
Manufacturer's Name:	Wuhan C	Qiwu Technology Co.,I	Ltd.		
Address	3 / F, Creative workshop, No.04, District D, Creative world, No.16 Yezhihu West Road, Hongshan District, Wuhan City, Hubei Province, China.				
Product description					
Product name:	iGPSPO	RT TL30 Smart Taillig	ht		
Model and/or type reference .:	TL30				
Family Model	TL30S				
Test Sample Number:	S230913	045002			
Measurement Procedure Used:					
	APPLIC	ABLE STANDARD	S		
APPLICABLE STANDAR			TEST RE	SULT	
FCC 47 CFR Pa	FCC 47 CFR Part 2, Subpart J				
FCC 47 CFR Par	FCC 47 CFR Part 15, Subpart C				
KDB 174176 D01 Line 0	KDB 174176 D01 Line Conducted FAQ v01r01			ed	
ANSI C63	ANSI C63.10-2013				
KDB 558074 D01 15.247					
This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.					
Date of Test	:	Sep 13,2023 ~	Oct 12, 2023		
Testing Engineer	Testing Engineer :		. Hu		
			Hu)		
Authorized Signatory :		A	les		
		(Alex	: Li)		

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section	Test Item	Verdict	Remark			
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b) Peak Output Power		PASS				
15.209 (a)Radiated Spurious Emission		PASS				
15.247 (e)	15.247 (e) Power Spectral Density					
15.247 (d) Band Edge Emission		PASS				
15.247 (d) Spurious RF Conducted Emission		PASS				
15.203	Antenna Requirement	PASS				

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted,PSD	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±3.70dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification						
Equipment	iGPSPORT TL30 Smart Taillight					
Trade Mark N/A						
FCC ID	2AU4M-TL30					
Model No.	TL30					
Family Model	TL30S					
Model Difference	All models are the same circuit and RF module, except the model name.					
Operating Frequency	2402MHz~2480MHz					
Modulation	GFSK					
Number of Channels	40 Channels					
Antenna Type	PCB Antenna					
Antenna Gain	-1.12dBi					
Adapter	N/A					
Power Supply	DC 3.8V from battery or DC 5V from Charge port.					
Hardware Version TL30-A3						
Firmware version	V1.03					
Software Version	V1.03					

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Revision History					
Report No.	Version	Description	Issued Date		
S23091304502001	Rev.01	Initial issue of report	Oct 12, 2023		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases					
Test Item Data Rate/ Modulation					
AC Conducted Emission	Mode 1: normal link mode				
	Mode 1: normal link mode				
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps/2Mbps				
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps/2Mbps				
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps/2Mbps				
	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps/2Mbps				
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps/2Mbps				
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps/2Mbps				

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For AC Conducted Emission Mode	
C-1 AC PLUG	
Adapter	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
Measurement Instrument EUT	
Note:The temporary antenna connector is soldered on the PCB board in order to perform con tests and this temporary antenna connector is listed in the equipment list.	ducted

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

EQUIPMENTS LIST FOR ALL TEST ITEMS 6.3

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer			MY41000130	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	9 Amplifier EMC	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.04	2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2023.05.06	2026.05.05	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
16	16 temporary antenna connector (Note) NTS R001		N/A	N/A	N/A	N/A	

ACCRED

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction	Test e	eaui	oment
	1001 0	Jun	onnonic

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZB ECK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MHz)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MHz)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MHz)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

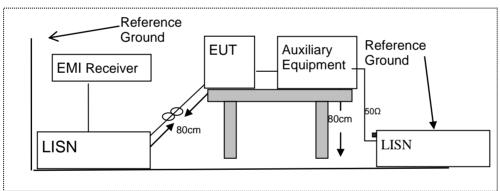
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Eroguopov(MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

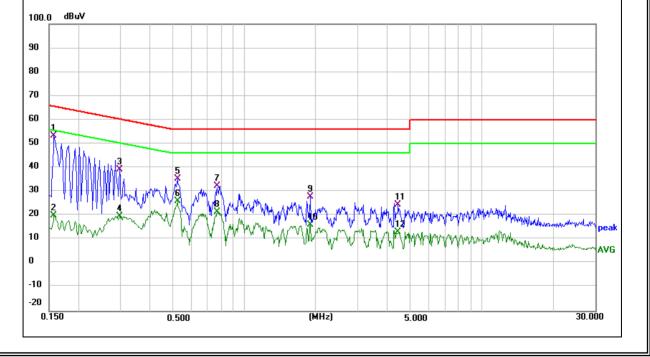
7.1.6 Test Results

NTEK 北视

EUT:	iGPSPORT TL30 Smart Taillight	Model Name :	TL30
Temperature:		Relative Humidity:	50%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCREDITED Certificate #4298.01

R


ac-M

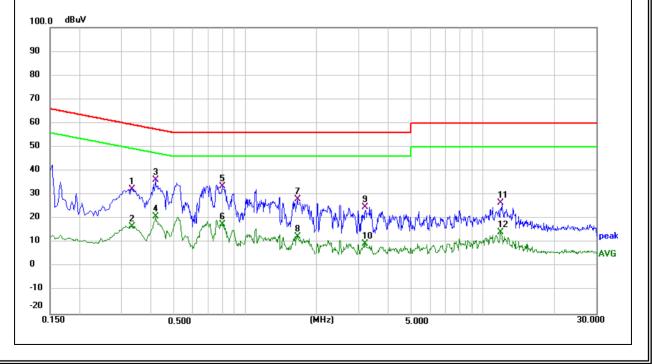
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	43.43	9.95	53.38	65.57	-12.19	QP
0.1580	10.14	9.95	20.09	55.57	-35.48	AVG
0.2980	29.11	10.24	39.35	60.30	-20.95	QP
0.2980	9.54	10.24	19.78	50.30	-30.52	AVG
0.5220	24.71	10.69	35.40	56.00	-20.60	QP
0.5220	15.41	10.69	26.10	46.00	-19.90	AVG
0.7700	21.24	11.20	32.44	56.00	-23.56	QP
0.7700	10.41	11.20	21.61	46.00	-24.39	AVG
1.8900	14.39	13.44	27.83	56.00	-28.17	QP
1.8900	2.61	13.44	16.05	46.00	-29.95	AVG
4.4380	14.82	9.67	24.49	56.00	-31.51	QP
4.4380	3.55	9.67	13.22	46.00	-32.78	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	iGPSPORT TL30 Smart Taillight	Model Name :	TL30
Temperature:	20 ℃	Relative Humidity:	50%
Pressure:	1010hPa	Phase :	N
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3339	22.13	10.30	32.43	59.35	-26.92	QP
0.3339	6.33	10.30	16.63	49.35	-32.72	AVG
0.4180	25.81	10.49	36.30	57.49	-21.19	QP
0.4180	10.36	10.49	20.85	47.49	-26.64	AVG
0.7980	22.22	11.26	33.48	56.00	-22.52	QP
0.7980	6.40	11.26	17.66	46.00	-28.34	AVG
1.6620	15.18	12.98	28.16	56.00	-27.84	QP
1.6620	-0.40	12.98	12.58	46.00	-33.42	AVG
3.1900	15.29	9.67	24.96	56.00	-31.04	QP
3.1900	-0.26	9.67	9.41	46.00	-36.59	AVG
11.8700	16.95	9.70	26.65	60.00	-33.35	QP
11.8700	4.53	9.70	14.23	50.00	-35.77	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

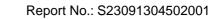
According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz				
16.42-16.423	399.9-410	4.5-5.15				
16.69475-16.69525	608-614	5.35-5.46				
16.80425-16.80475	960-1240	7.25-7.75				
25.5-25.67	1300-1427	8.025-8.5				
37.5-38.25	1435-1626.5	9.0-9.2				
73-74.6	1645.5-1646.5	9.3-9.5				
74.8-75.2	1660-1710	10.6-12.7				
123-138	2200-2300	14.47-14.5				
149.9-150.05	2310-2390	15.35-16.2				
156.52475-156.52525	2483.5-2500	17.7-21.4				
156.7-156.9	2690-2900	22.01-23.12				
162.0125-167.17	3260-3267	23.6-24.0				
167.72-173.2	3332-3339	31.2-31.8				
240-285	3345.8-3358	36.43-36.5				
322-335.4	3600-4400	(2)				
	$\begin{array}{r} 16.42 - 16.423 \\ 16.69475 - 16.69525 \\ 16.80425 - 16.80475 \\ 25.5 - 25.67 \\ 37.5 - 38.25 \\ 73 - 74.6 \\ 74.8 - 75.2 \\ 123 - 138 \\ 149.9 - 150.05 \\ 156.52475 - 156.52525 \\ 156.7 - 156.9 \\ 162.0125 - 167.17 \\ 167.72 - 173.2 \\ 240 - 285 \end{array}$	16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

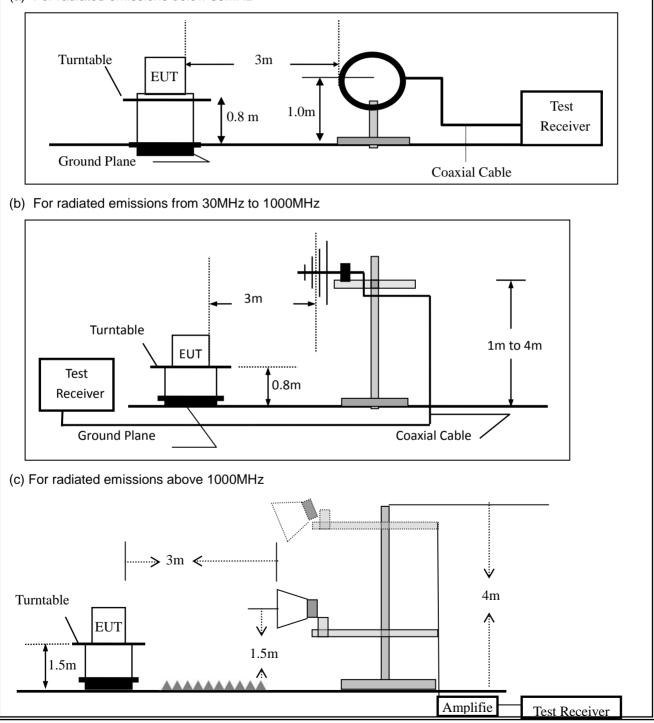

Eroquopov(MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

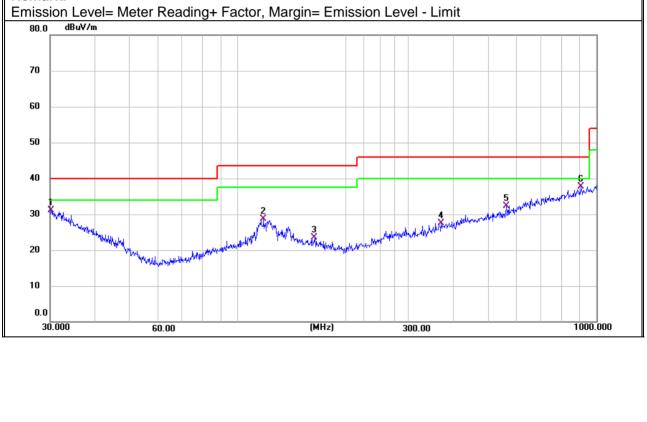
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	iGPSPORT TL30 Smart Taillight	Model No.:	TL30
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

a halaw



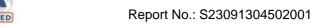
Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result wa

All the modulat	tion modes have been tested, and	a the worst result was repo	on as below:
EUT:	iGPSPORT TL30 Smart Taillight	Model Name :	TL30
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 2
Test Voltage :	DC 3.8V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.2111	4.68	26.35	31.03	40.00	-8.97	QP
V	118.1862	9.93	18.69	28.62	43.50	-14.88	QP
V	164.3301	5.64	17.81	23.45	43.50	-20.05	QP
V	369.4047	4.94	22.56	27.50	46.00	-18.50	QP
V	560.6928	6.38	25.87	32.25	46.00	-13.75	QP
V	906.4824	6.87	30.86	37.73	46.00	-8.27	QP

Remark:

Version.1.3


Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtoman
Н	30.6379	4.94	26.11	31.05	40.00	-8.95	QP
Н	65.3432	5.47	12.59	18.06	40.00	-21.94	QP
Н	138.3873	6.07	18.73	24.80	43.50	-18.70	QP
Н	251.1804	7.16	19.01	26.17	46.00	-19.83	QP
Н	394.8545	6.81	23.10	29.91	46.00	-16.09	QP
H Remark	955.4381	5.78	31.38	37.16	46.00	-8.84	QP
	n Level= Meter dBuV/m	Reading+ Fa	ictor, Margin=	= Emission Le	vei - Limit		
70							
60							
50							
40						بلين ا	An (Mary Spice
30	hurshhander		3	A ANALASIA	5 WARNING AND	W. March Margan Walkington	
20	And March and Ma	2 martin and a start and a start	yvernandradharhendradharaderad	Wedgement Herein White P			
10							
0.0 30.00		50.00		Hz)	300.00		1000.000

JT:	iGPS	PORT T	L30 Smar	t Taillight	Model No.	:	TL30			
emperature:	20 °C Relative Humidity: 48%					20 ℃ Relative Humidity:				
est Mode:	Mode	2/Mode	3/Mode4		Test By:		Mary Hu			
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
			Low Cha	innel (2402	2 MHz)(GFSł	<)Above 1	G			
4802.45	63.83	5.21	35.59	44.30	60.33	74.00	-13.67	Pk	Vertical	
4802.45	43.48	5.21	35.59	44.30	39.98	54.00	-14.02	AV	Vertical	
7206.50	61.99	6.48	36.27	44.60	60.14	74.00	-13.86	Pk	Vertical	
7206.50	43.42	6.48	36.27	44.60	41.57	54.00	-12.43	AV	Vertical	
4804.64	60.44	5.21	35.55	44.30	56.90	74.00	-17.10	Pk	Horizontal	
4804.64	43.87	5.21	35.55	44.30	40.33	54.00	-13.67	AV	Horizontal	
7206.96	60.89	6.48	36.27	44.52	59.12	74.00	-14.88	Pk	Horizontal	
7206.96	43.88	6.48	36.27	44.52	42.11	54.00	-11.89	AV	Horizontal	
		-	Mid Cha	nnel (2440	MHz)(GFSk	K)Above 1	G			
4880.172	62.37	5.21	35.66	44.20	59.04	74.00	-14.96	Pk	Vertical	
4880.172	43.91	5.21	35.66	44.20	40.58	54.00	-13.42	AV	Vertical	
7320.216	62.17	7.10	36.50	44.43	61.34	74.00	-12.66	Pk	Vertical	
7320.216	43.63	7.10	36.50	44.43	42.80	54.00	-11.20	AV	Vertical	
4880.731	62.88	5.21	35.66	44.20	59.55	74.00	-14.45	Pk	Horizontal	
4880.731	43.99	5.21	35.66	44.20	40.66	54.00	-13.34	AV	Horizontal	
7320.836	62.12	7.10	36.50	44.43	61.29	74.00	-12.71	Pk	Horizontal	
7320.836	43.61	7.10	36.50	44.43	42.78	54.00	-11.22	AV	Horizontal	
		•	High Cha	nnel (2480	MHz)(GFS	<) Above	1G			
4960.591	64.10	5.21	35.52	44.21	60.62	74.00	-13.38	Pk	Vertical	
4960.591	43.04	5.21	35.52	44.21	39.56	54.00	-14.44	AV	Vertical	
7440.893	63.33	7.10	36.53	44.60	62.36	74.00	-11.64	Pk	Vertical	
7440.893	43.73	7.10	36.53	44.60	42.76	54.00	-11.24	AV	Vertical	
4960.343	64.27	5.21	35.52	44.21	60.79	74.00	-13.21	Pk	Horizontal	
4960.343	43.67	5.21	35.52	44.21	40.19	54.00	-13.81	AV	Horizontal	
7440.079	62.33	7.10	36.53	44.60	61.36	74.00	-12.64	Pk	Horizontal	
7440.079	43.90	7.10	36.53	44.60	42.93	54.00	-11.07	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Certificate #4298.01

UT: IGPSPORT TL30 Smart Taillight					Model N	lo.:	TL30	TL30		
emperature:	2	20 °C			Relative	Humidity:	umidity: 48%			
est Mode:	Ν	Mode2/ N	lode4		Test By:		Mary H	lu		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2Mbps(GFSK)										
2310.00	60.16	2.97	27.80	43.80	47.13	74	-26.87	Pk	Horizontal	
2310.00	39.17	2.97	27.80	43.80	26.14	54	-27.86	AV	Horizontal	
2310.00	64.80	2.97	27.80	43.80	51.77	74	-22.23	Pk	Vertical	
2310.00	43.11	2.97	27.80	43.80	30.08	54	-23.92	AV	Vertical	
2390.00	64.12	3.14	27.21	43.80	50.67	74	-23.33	Pk	Vertical	
2390.00	43.50	3.14	27.21	43.80	30.05	54	-23.95	AV	Vertical	
2390.00	63.97	3.14	27.21	43.80	50.52	74	-23.48	Pk	Horizontal	
2390.00	43.53	3.14	27.21	43.80	30.08	54	-23.92	AV	Horizontal	
2483.50	60.07	3.58	27.70	44.00	47.35	74	-26.65	Pk	Vertical	
2483.50	43.18	3.58	27.70	44.00	30.46	54	-23.54	AV	Vertical	
2483.50	62.26	3.58	27.70	44.00	49.54	74	-24.46	Pk	Horizontal	
2483.50	43.41	3.58	27.70	44.00	30.69	54	-23.31	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

EUT: iGPSPORT TL30 Smart Taillight						Model No.:		TL30			
emp	perature:	20	С			Relative Hu	midity:	48%	48%		
est N	Mode:	Мо	de2/ Mode	e4		Test By:		Mary H	u		
Fr	requency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
	3260	61.77	4.04	29.57	44.70	50.68	74	-23.32	Pk	Vertical	
	3260	43.79	4.04	29.57	44.70	32.70	54	-21.30	AV	Vertical	
	3260	64.33	4.04	29.57	44.70	53.24	74	-20.76	Pk	Horizontal	
	3260	43.55	4.04	29.57	44.70	32.46	54	-21.54	AV	Horizontal	
	3332	63.00	4.26	29.87	44.40	52.73	74	-21.27	Pk	Vertical	
	3332	43.66	4.26	29.87	44.40	33.39	54	-20.61	AV	Vertical	
	3332	62.35	4.26	29.87	44.40	52.08	74	-21.92	Pk	Horizontal	
	3332	43.04	4.26	29.87	44.40	32.77	54	-21.23	AV	Horizontal	
	17797	46.32	10.99	43.95	43.50	57.76	74	-16.24	Pk	Vertical	
	17797	34.97	10.99	43.95	43.50	46.41	54	-7.59	AV	Vertical	
	17788	49.69	11.81	43.69	44.60	60.59	74	-13.41	Pk	Horizontal	
	17788	34.50	11.81	43.69	44.60	45.40	54	-8.60	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	iGPSPORT TL30 Smart Taillight	Model No.:	TL30
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	iGPSPORT TL30 Smart Taillight	Model No.:	TL30
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	iGPSPORT TL30 Smart Taillight	Model No.:	TL30
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	iGPSPORT TL30 Smart Taillight	Model No.:	TL30
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	iGPSPORT TL30 Smart Taillight	Model No.:	TL30
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

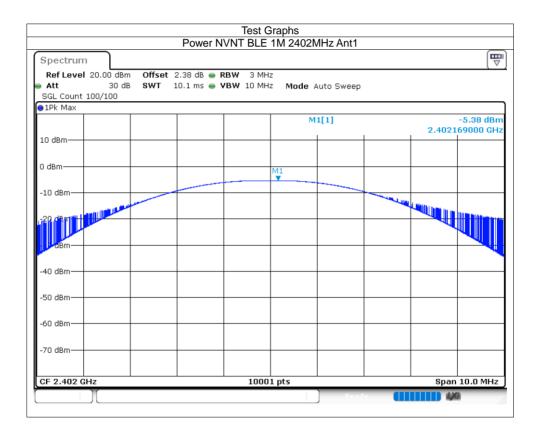
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

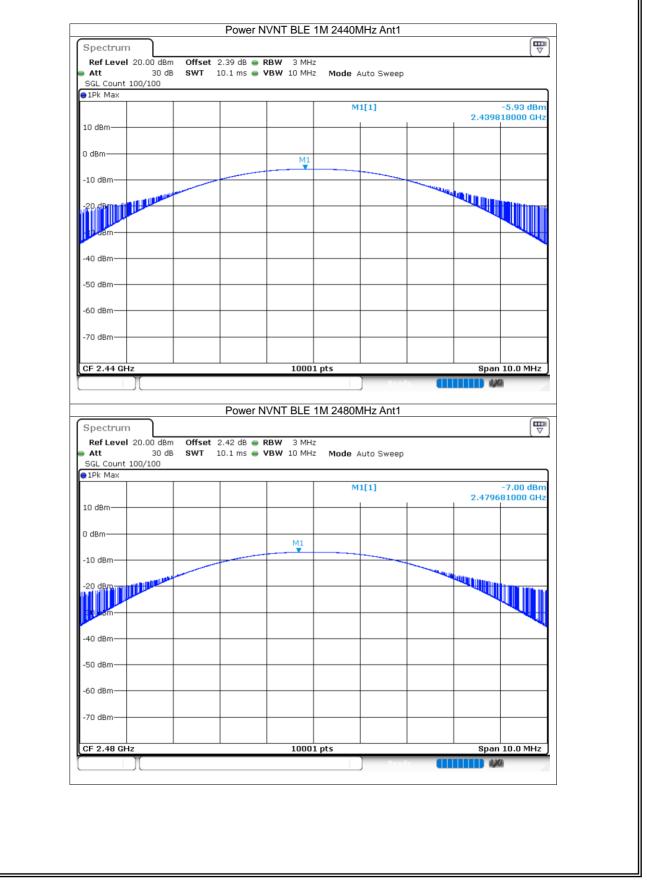
7.9.2 Result

The EUT antenna is permanent attached PCB Antenna (Gain: -1.12dBi). It comply with the standard requirement.



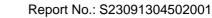
8 TEST RESULTS

8.1 **1M**


8.1.1 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-5.38	30	Pass
NVNT	BLE 1M	2440	Ant1	-5.93	30	Pass
NVNT	BLE 1M	2480	Ant1	-7	30	Pass

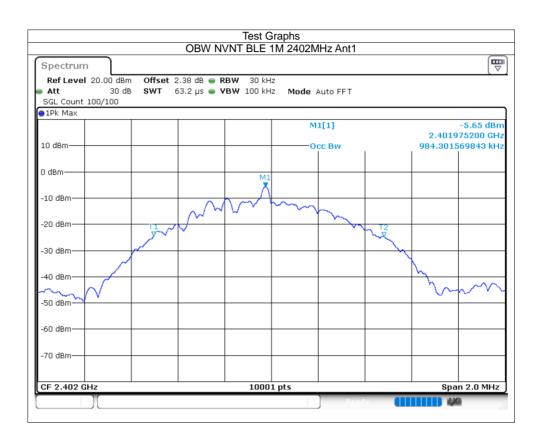
Report No.: S23091304502001

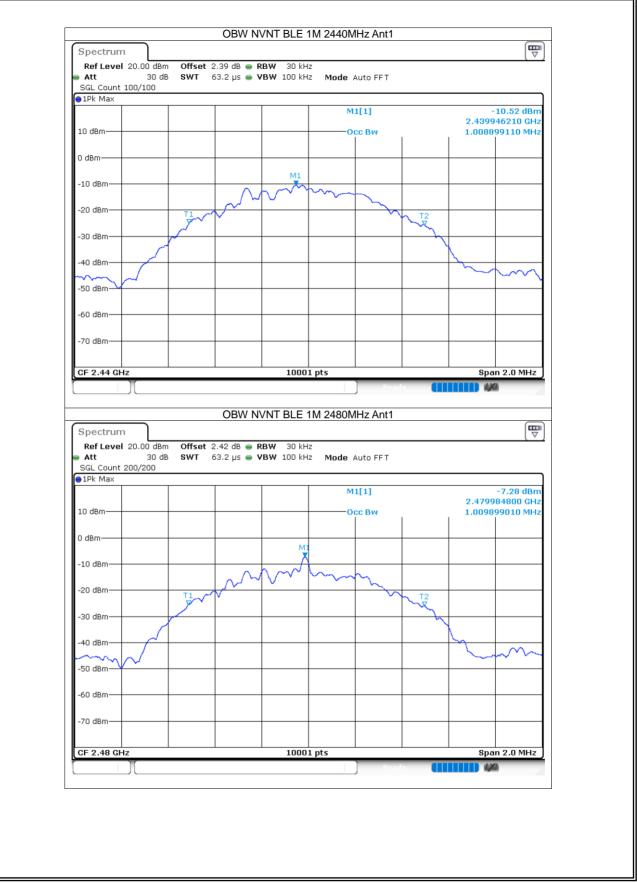

ACCREDITED Certificate #4298.01

8.1.2 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.647	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.648	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.653	0.5	Pass

0								ſ
Spectr								
	vel 3	20.00 dB		RBW 100 kHz				
Att		30 c	iB SWT 18.9 μs	VBW 300 kHz	Mode Auto FF	T		
SGL Cou		30/200						
1Pk Ma	×							
					M1[1]			-5.53 dB 76800 GF
10 dBm-	-				M2[1]			76800 GF 11.55 dB
					MZ[1]			51000 GF
0 dBm—	+			IM			2.4010	1000 01
			M2		м	3		
-10 dBm·								
-20 dBm-								
-20 ubiii:								
-30 dBm-								
00 abiii								
40 dBm	_							<u> </u>
	\sim							
-50 dBm·	+							
-60 dBm·								
-70 dBm·								
-70 ubiii								
CF 2.40	2 GH	z		10001	. pts		Spar	1 2.0 MH
1arker					1			
Туре	Ref		X-value	Y-value	Function	Fun	ction Result	
M1		1	2.4019768 GHz	-5.53 dBr				
M2		1	2.401661 GHz 2.402309 GHz	-11.55 dBr -11.57 dBr				





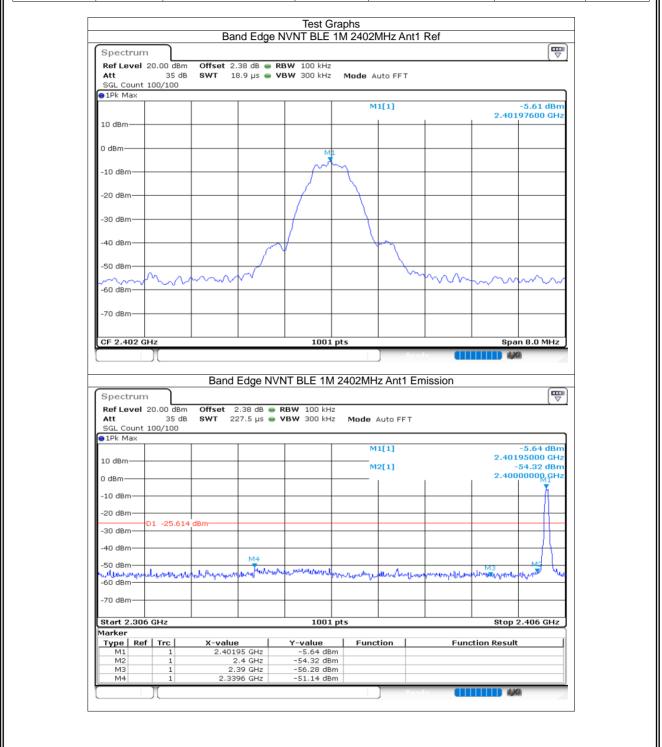
8.1.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	0.984
NVNT	BLE 1M	2440	Ant1	1.009
NVNT	BLE 1M	2480	Ant1	1.01

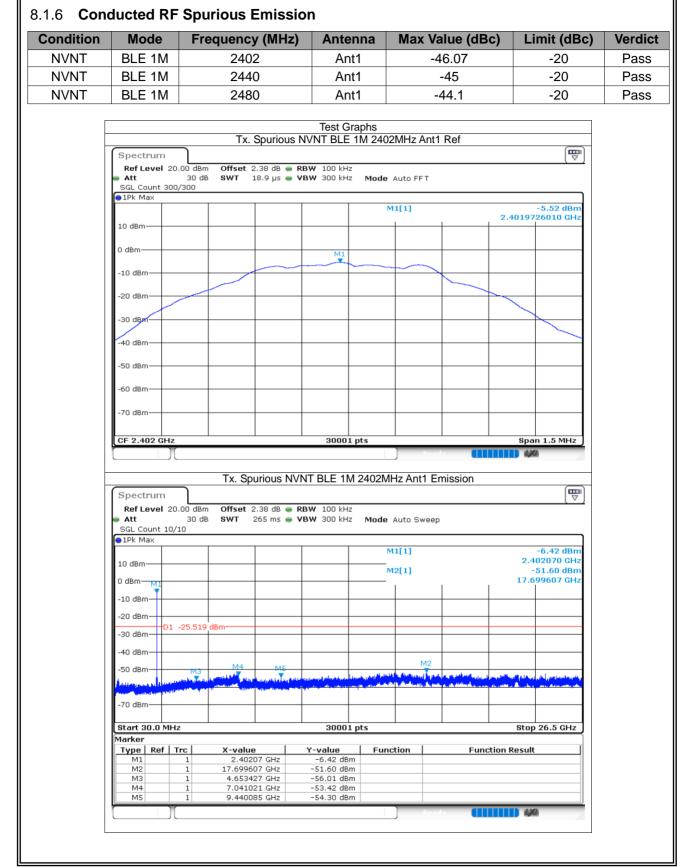
8.1.4 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-17.91	8	Pass
NVNT	BLE 1M	2440	Ant1	-18.78	8	Pass
NVNT	BLE 1M	2480	Ant1	-20.7	8	Pass

T BLE 1M 2402MHz Ant1	
3W 3 kHz 3W 10 kHz Mode Auto FFT	(`
M1[1]	-17.91 dBr
	2.401977700 GH
A a max a log a north of the defendence	hornon
	TO WARNAN AND TO
1001 pts	Span 970.5 kHz
	BW 3 kHz BW 10 kHz Mode Auto FFT M1[1] M1[1] M1 M1 M1 M1 M1 M1 M1 M1


SGL Count	200/200								
					м	1[1]			18.78 dBm
10 dBm								2.4399	78640 GHz
0 dBm									
o abiii									
-10 dBm—									
-20 dBm—				M1					
	www	mony	Monor	mum "	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon	Manno	-	Mannar
-30 dBm	WWW	۰.					<u>v</u> -	and	Muman.
-40 dBm									1.16
-50 dBm									
-60 dBm									
-70 dBm									
<u> </u>	- Iz			1001	nts			Span	972.0 kHz
CF 2.44 G			PSD N\	/NT BLE 1) Pead Hz Ant1	× (11		- ////
Spectrur	_)(/NT BLE 1	IM 2480M) Read Hz Ant1	× (11		
Spectrun Ref Leve			2.42 dB 👄	/NT BLE 1 квж з кн.	IM 2480M		× (11		- ////
Spectrun Ref Leve Att SGL Count	n I 20.00 dBm 30 dB		2.42 dB 👄	/NT BLE 1	IM 2480M		× (11		- ////
Spectrun Ref Leve Att SGL Count	n I 20.00 dBm 30 dB		2.42 dB 👄	/NT BLE 1 квж з кн.	IM 2480M ^z z Mode /		y (11		(₩) 20.70 dBm
Spectrun Ref Leve Att SGL Count 1Pk Max	n I 20.00 dBm 30 dB		2.42 dB 👄	/NT BLE 1 квж з кн.	IM 2480M ^z z Mode /	Auto FFT	× ••••		
Spectrum Ref Leve Att SGL Count 1Pk Max 10 dBm-	n I 20.00 dBm 30 dB		2.42 dB 👄	/NT BLE 1 квж з кн.	IM 2480M ^z ^z Mode /	Auto FFT	× ••••		(₩) 20.70 dBm
Spectrum Ref Leve Att SGL Count 1Pk Max 10 dBm—	n I 20.00 dBm 30 dB		2.42 dB 👄	/NT BLE 1 квж з кн.	IM 2480M ^z ^z Mode /	Auto FFT	× •••••		(₩) 20.70 dBm
Spectrum Ref Leve Att SGL Count 1Pk Max 10 dBm	n I 20.00 dBm 30 dB		2.42 dB 👄	/NT BLE 1 квж з кн.	IM 2480M ^z ^z Mode /	Auto FFT	× •••••		(₩) 20.70 dBm
Spectrun Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
Spectrun Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
Spectrun Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
Spectrun Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	(₩) 20.70 dBm
Spectrum Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
Spectrum Ref Level Att SGL Count 10 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
 Att SGL Count SGL Count SGL Count Att SGL Count Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm 	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	n 1 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT		2.4799	20.70 dBm 79450 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	n I 20.00 dBm 30 dB 300/300	SWT 6	2.42 dB • 32.1 µs •	/NT BLE 1 RBW 3 kH VBW 10 kH	Z Mode /	Auto FFT	M. Jones	2.4799	20.70 dBm 79450 GHz

ACCREDITED


8.1.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-45.52	-20	Pass
NVNT	BLE 1M	2480	Ant1	-35.86	-20	Pass

Spectrum Ref Level Att	30.00 dB 45 c			RBW 100 kHz VBW 300 kHz		uto FFT			
SGL Count	100/100								
					М	1[1]			-7.23 dBm
20 dBm						1	1	2.479	998400 GHz
20 ubiii									
10 dBm									
10 0000									
0 dBm									
				M	1				
-10 dBm				<u>- ~</u> 4	~ <u>~</u>				
-20 dBm									
-30 dBm									
				/					
-40 dBm—				\ /		ha			
\sim	\sim	$+ \cdots$	hn.			~~	form	from	mm
-50 dBm			-						
co do-									
-60 dBm									
CF 2.48 GF	iz			1001	pts)		Spa	in 8.0 MHz
Spectrum Ref Level				NT BLE 1M		lz Ant1 En	nission		
Spectrum Ref Level Att SGL Count	30.00 dB 45 c	m Offset 2	2.42 dB 😑	(NT BLE 1M RBW 100 kH: VBW 300 kH:	z		nission		
Ref Level Att	30.00 dB 45 c	m Offset 2	2.42 dB 😑	RBW 100 kH:	z z Mode .	Auto FFT	nission		
Ref Level Att SGL Count 9 1Pk Max	30.00 dB 45 c	m Offset 2	2.42 dB 😑	RBW 100 kH:	z z Mode .		nission	2.480	-7.27 dBm 125000 GHz
Ref Level Att SGL Count	30.00 dB 45 c	m Offset 2	2.42 dB 😑	RBW 100 kH:	z Mode . Mode .	Auto FFT	nission	-	-7.27 dBm 025000 GHz -45.34 dBm
Ref Level Att SGL Count 9 1Pk Max	30.00 dB 45 c	m Offset 2	2.42 dB 😑	RBW 100 kH:	z Mode . Mode .	Auto FFT	l	-	-7.27 dBm)25000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm	30.00 dB 45 c	m Offset 2	2.42 dB 😑	RBW 100 kH:	z Mode . Mode .	Auto FFT	nission	-	-7.27 dBm 025000 GHz -45.34 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	30.00 dB 45 c	m Offset 2	2.42 dB 😑	RBW 100 kH:	z Mode . Mode .	Auto FFT		-	-7.27 dBm 025000 GHz -45.34 dBm
Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	30.00 dB 45 c	m Offset 2	2.42 dB 😑	RBW 100 kH:	z Mode . Mode .	Auto FFT		-	-7.27 dBm 025000 GHz -45.34 dBm
Ref Level Att SGL Count ● 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	30.00 dB 45 c 100/100	m Offset 2 B SWT 27	2.42 dB 😑	RBW 100 kH:	z Mode . Mode .	Auto FFT		-	-7.27 dBm 025000 GHz -45.34 dBm
Ref Level Att SGL Count ● 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	30.00 dB 45 c	m Offset 2 B SWT 27	2.42 dB 😑	RBW 100 kH:	z Mode . Mode .	Auto FFT		-	-7.27 dBm 025000 GHz -45.34 dBm
Ref Level Att SGL Count ● 1Pk Max 20 dBm	30.00 dB 45 c 100/100	m Offset 2 B SWT 22	2.42 dB • 27.5 µs •	RBW 100 kH: VBW 300 kH:	Z Mode M	Auto FFT [1[1] [2[1] [2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	30.00 dB 45 c 100/100	m Offset 2 B SWT 22	2.42 dB • 27.5 µs •	RBW 100 kH:	Z Mode M	Auto FFT [1[1] [2[1] [-	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00 dB 45 c 100/100 D1 -27.2	m Offset 2 B SWT 22	2.42 dB • 27.5 µs •	RBW 100 kH: VBW 300 kH:	Z Mode M	Auto FFT [1[1] [2[1] [2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	30.00 dB 45 c 100/100 D1 -27.2	m Offset 2 B SWT 22	2.42 dB • 27.5 µs •	RBW 100 kH: VBW 300 kH:	Z Mode M	Auto FFT [1[1] [2[1] [2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	30.00 dB 45 c 100/100 D1 -27.2	m Offset 2 B SWT 22	2.42 dB • 27.5 µs •	RBW 100 kH; VBW 300 kH;	2 Mode M	Auto FFT [1[1] [2[1] [2.483	-7.27 dBm 925000 GHz -45.34 dBm 850000 GHz
Ref Level Att SGL Count • IPk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.476	30.00 dB 45 c 100/100 D1 -27.2	m Offset 2 B SWT 22	2.42 dB • 27.5 µs •	RBW 100 kH: VBW 300 kH:	2 Mode M	Auto FFT [1[1] [2[1] [2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.470 Marker Type	30.00 dB 45 c 100/100 01 -27.2 0 GHz f Trc	m Offset 2 B SWT 22	2.42 dB • 27.5 µs •	RBW 100 kH; VBW 300 kH; Image: state st	2 Mode . ۲ Mode . ۲ M	Auto FFT [1[1] 2[1]		2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.470 Marker Type M1	30.00 dB 45 c 100/100 01 -27.2 bb/(n	m Offset 2 B SWT 22 0 dBm 0 dB	2.42 dB • 27.5 µs •	RBW 100 kH; VBW 300 kH; Image: state st	2 2 Mode M 	Auto FFT [1[1] 2[1]		2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.470 Marker Type M1 M2 M3	30.00 dB 45 c 100/100 D1 -27.2 b GHz f Trc 1 1 1 1	m Offset 2 B SWT 22 30 dBm Ma Ma Ma Ma Ma Ma Ma Ma Subla Sub	2.42 dB	RBW 100 kH; VBW 300 kH;	z z Mode M M M M M M M Func m m m	Auto FFT [1[1] 2[1]		2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.476 Marker Type M1 M2	30.00 dB 45 c 100/100 D1 -27.2 b GHz f Trc 1 1	m Offset 2 B SWT 22 30 dBm Ma Ma Ma Ma Ma Ma Ma Ma Subla Sub	2.42 dB 27.5 µs 27.5 µs 25.6Hz 35.6Hz	RBW 100 kH: VBW 300 kH: 	z z Mode M M M M M M M Func m m m	Auto FFT [1[1] 2[1]		2.483	-7.27 dBm 125000 GHz -45.34 dBm 550000 GHz
Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.470 Marker Type M1 M2 M3	30.00 dB 45 c 100/100 D1 -27.2 b GHz f Trc 1 1 1 1	m Offset 2 B SWT 22 30 dBm Ma Ma Ma Ma Ma Ma Ma Ma Subla Sub	2.42 dB	RBW 100 kH; VBW 300 kH;	z z Mode M M M M M M M Func m m m	Auto FFT [1[1] 2[1]		2.483	-7.27 dBm 025000 GHz -45.34 dBm 150000 GHz
Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.470 Marker Type M1 M2 M3	30.00 dB 45 c 100/100 D1 -27.2 b GHz f Trc 1 1 1 1	m Offset 2 B SWT 22 30 dBm Ma Ma Ma Ma Ma Ma Ma Ma Subla Sub	2.42 dB	RBW 100 kH; VBW 300 kH;	z z Mode M M M M M M M Func m m m	Auto FFT [1[1] 2[1]		2.483	-7.27 dBm 025000 GHz -45.34 dBm 150000 GHz

®

AC-MR

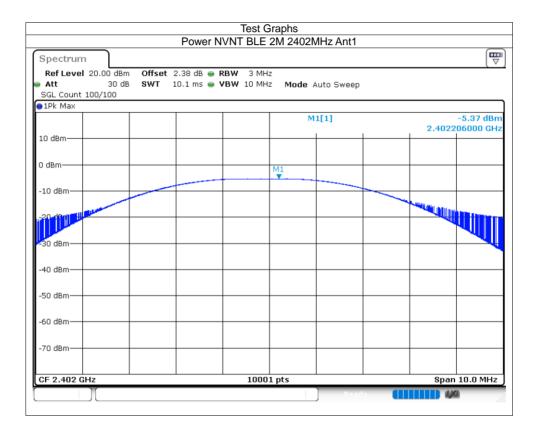
ACCREDITED Certificate #4298.01

NTEK 北视

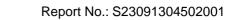
Ref Level 20.00 dB Att 30 d SGL Count 100/100	m Offset 2.39 dB B SWT 18.9 µs	 RBW 100 kHz VBW 300 kHz 	Mode Auto FF	т		
●1Pk Max						
			M1[1]		2,43998	-6.08 dBm 98000 GHz
10 dBm						
0 dBm						
o doni		M				
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.44 GHz		30001			0	n 1.5 MHz
01 2.11 0112		00001	pr3		opo	
Spectrum Ref Level 20.00 dB	m Offset 2.39 dB	NVNT BLE 1M				
Ref Level 20.00 dBi Att 30 d SGL Count 10/10	m Offset 2.39 dB					
Ref Level 20.00 dB Att 30 d	m Offset 2.39 dB	● RBW 100 kHz				(∇) -7.01 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10	m Offset 2.39 dB	● RBW 100 kHz	Mode Auto Sv M1[1]		2.4	
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 PIPK Max 10	m Offset 2.39 dB	● RBW 100 kHz	Mode Auto Sv		2.4	(∇) -7.01 dBm ₩0010 GHz
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 INK 10 dBm 10 dBm	m Offset 2.39 dB	● RBW 100 kHz	Mode Auto Sv M1[1]		2.4	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10 dBm 10 dBm -10 dBm -10 dBm	m Offset 2.39 dB B SWT 265 ms	● RBW 100 kHz	Mode Auto Sv M1[1]		2.4	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm M1 -10 dBm	m Offset 2.39 dB B SWT 265 ms	● RBW 100 kHz	Mode Auto Sv M1[1]		2.4	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm D1 -26.08	m Offset 2.39 dB B SWT 265 ms	● RBW 100 kHz	Mode Auto Sv M1[1]		2.4	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -26.085	m Offset 2.39 dB B SWT 265 ms 2 dBm 2 dBm	● RBW 100 kHz	Mode Auto Sv M1[1] M2[1] 	/eep	2.4	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -20 dBm 01 -26.08 -40 dBm -40 dBm	m Offset 2.39 dB B SWT 265 ms	• RBW 100 kHz	Mode Auto Sv M1[1] M2[1] 	veep	2.4	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -20 dBm 01 -26.08 -40 dBm -40 dBm	m Offset 2.39 dB B SWT 265 ms 2 dBm 2 dBm	• RBW 100 kHz	Mode Auto Sv 	veep	2.4	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 10 dBm 0 -10 dBm 0 -20 dBm 01 -26.08 -30 dBm 01 -26.08 -50 dBm 01 -26.08 -70 dBm 01 -26.08	m Offset 2.39 dB B SWT 265 ms 2 dBm 2 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Sv M1[1] M2[1] 	veep	2.4 22.7	▼ -7.01 dBm +40010 GHz >51.08 dBm 7/2142 GHz
Ref Level 20.00 dBi Att 30 d SGL Count 10 dBm 10 0 dBm 10 -10 dBm 10 -20 dBm -20 dBm -30 dBm -21 -20 dBm -26.08: -30 dBm -10 -30 dBm -10 -20 dBm -10 -30 dBm -10 -30 dBm -10 -20 dBm -10 -30 dBm -10 -40 dBm -10 -50 dBm -10	m Offset 2.39 dB B SWT 265 ms 2 dBm 2 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Sv 	veep	2.4 22.7	-7.01 dBm 440010 GHz 51.08 dBm
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -0 -20 dBm 01 -26.08 -30 dBm -0 -50 dBm -0 -70 dBm -0 Start 30.0 MHz Marker Type Ref Trc	m Offset 2.39 dB B SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Sv M1[1] M2[1]		2.4 22.7	-7.01 dBm 440010 GHz 51.08 dBm 72142 GHz
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 10 dBm 0 0 dBm 10 -10 dBm 0 -20 dBm 0 -30 dBm 01 -26.08 -30 dBm 01 -26.08 -70 dBm 0 Start 30.0 MHz Marker Type Ref M1 1 M2 1	m Offset 2.39 dB B SWT 265 ms	RBW 100 kHz VBW 300 kHz VBW 300 kHz	Mode Auto Sv M1[1] M2[1]		2.4 22.7 M2	-7.01 dBm 440010 GHz 51.08 dBm 72142 GHz
Ref Level 20.00 dsi Att 30 d SGL Count 10/10 1Pk Max 10 10 10 dBm - - 0 dBm - - -10 dBm - - -20 dBm - - -30 dBm - - -20 dBm - - -20 dBm - - -30 dBm - - -40 dBm - - -50 dBm - - 50 dBm - - -70 dBm - - Start 30.0 MHz - - M1 1 1 - M2 1 1 - M3 1 1 -	m Offset 2.39 dB B SWT 265 ms	RBW 100 kHz VBW 300 kHz VBW 300 VBW 30	Mode Auto Sv M1[1] M2[1]		2.4 22.7 M2	-7.01 dBm 440010 GHz 51.08 dBm 72142 GHz
Ref Level 20.00 display="block">display="block" Att 30 d SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm	m Offset 2.39 dB B SWT 265 ms	RBW 100 kHz VBW 300 kHz VBW 300 VBW 30	Mode Auto Sv M1[1] M2[1]	veep	2.4 22.7 M2	-7.01 dBm 440010 GHz 51.08 dBm 72142 GHz

ACCREDITED

SGL Count 200/200			Mode Auto FFT			
●1Pk Max						
			M1[1]		2 47000	-7.19 dBm 952500 GHz
10 dBm					2.4799	
0 dBm		ML				
-10 dBm						
-20 dBm						
-30 dBpa						
-40 dBm						
50 db						
-50 dBm						
-60 dBm						
-70 dBm		+ +				
CF 2.48 GHz		30001 pts	5		Spa	an 1.5 MHz
SGL Count 5/5)dB SWT 265 ms 🧉	VBW 300 kHz (Mode Auto Swe	ер		
●1Pk Max			M1[1]			-8.47 dBm
10 dBm						479720 GHz
0 dBm			M2[1]			-51.29 dBm 386695 GHz
-10 dBm						
-20 dBm	191_dBm					
-20 dBm D1 -27.:						
-30 dBm D1 -27.3						
-30 dBm - D1 -27.3			M2			
-30 dBm D1 -27.3	1913 M4 M		M2	an ha an	ور و و و و و و و و و و و و و و و و و و	1
-30 dBm27.3	M(3)				a fa sa bibble dina patao	
-30 dBm27.3	M(3)			na konstrukturen eta era eta era eta era eta era eta era era era era era era era era era er		
-30 dBm D1 -27.: -40 dBm - -50 dBm - -70 dBm - -70 dBm -	M(3)			na ka pana ka ka na	Ctor	
-30 dBm D1 -27.: -40 dBm - -50 dBm - -50 dBm - -70 dBm - Start 30.0 MHz	M(3)				stoj	p 26.5 GHz
-30 dBm D1 -27.: -40 dBm - -50 dBm - -50 dBm - -70 dBm - Start 30.0 MHz Marker Type Ref Trc	NY 3 CALL AND A CALL A	30001 pts Y-value			Stop	
-30 dBm D1 -27.: -40 dBm - -50 dBm - -50 dBm - -70 dBm - Start 30.0 MHz Marker Type Ref Trc M1 1 M2 1	X-value 2.47972 GHz 16.386695 GHz 16.386695 GHz	30001 pts -8.47 dBm -51.29 dBm	s			
-30 dBm D1 -27.: -40 dBm - -50 dBm - -50 dBm - -70 dBm - -70 dBm - Start 30.0 MHz Marker Type Ref Trc M1 1 M2 1 M3 1	X-value 16.386695 GHz 16.386695 GHz 4.961361 GHz	30001 pts 	s			
-30 dBm D1 -27.: -40 dBm - -50 dBm - -50 dBm - -70 dBm - Start 30.0 MHz Marker Type Ref Trc M1 1 M2 1	X-value 2.47972 GHz 16.386695 GHz 16.386695 GHz	30001 pts -8.47 dBm -51.29 dBm	s			


ACCREDITED

8.2 **2M**


8.2.1 Maximum Conducted Output Power

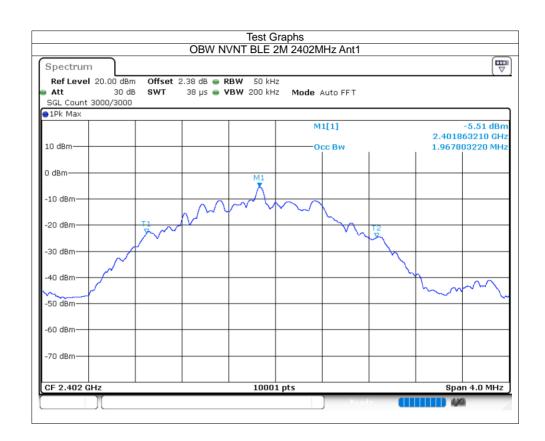
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-5.37	30	Pass
NVNT	BLE 2M	2440	Ant1	-5.91	30	Pass
NVNT	BLE 2M	2480	Ant1	-7.02	30	Pass

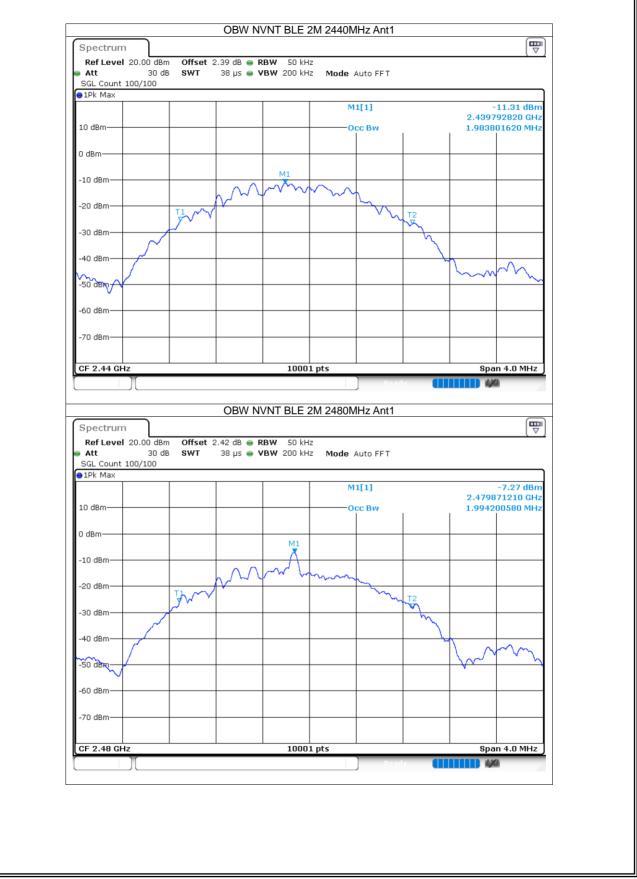
8.2.2 -6dB Bandwidth

NTEK 北测

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.116	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.117	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.116	0.5	Pass
		0.10				
				st Graphs		
		-60B	Bandwidth NVP	NT BLE 2M 2402MHz Ant1		
	Spectrum		Bandwidth NVr	NT BLE 2M 2402MHz Ant1		
	Spectrum Ref Level 20.0 Att SGL Count 3000	00 dBm Offset 2.3 30 dB SWT 18.	8 dB e RBW 100 9 µs e VBW 300) kHz		
	Ref Level 20.0	00 dBm Offset 2.3 30 dB SWT 18.	8 dB 👄 RBW 100) kHz	-5,49 dBm	

				M1[1]		-5.49 dB 2.401864010 GH	
10 dBm				M2[1]		-11.49 dBr	
0 dBm			- IVI			2.401326000 GH	
		M2		- M3			
-10 dBm				\sim			
-20 dBm				~	\searrow		
	_						
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm-							
-70 dBm							
-/U aBm							
CF 2.402 G	Ηz		10001 pt	s		Span 4.0 MHz	
Marker							
Type Ref		X-value	Y-value	Function	Functi	ion Result	
M1 M2	1	2.40186401 GHz 2.401326 GHz	-5.49 dBm -11.49 dBm				
M3	1	2.402442 GHz	-11.43 dBm				





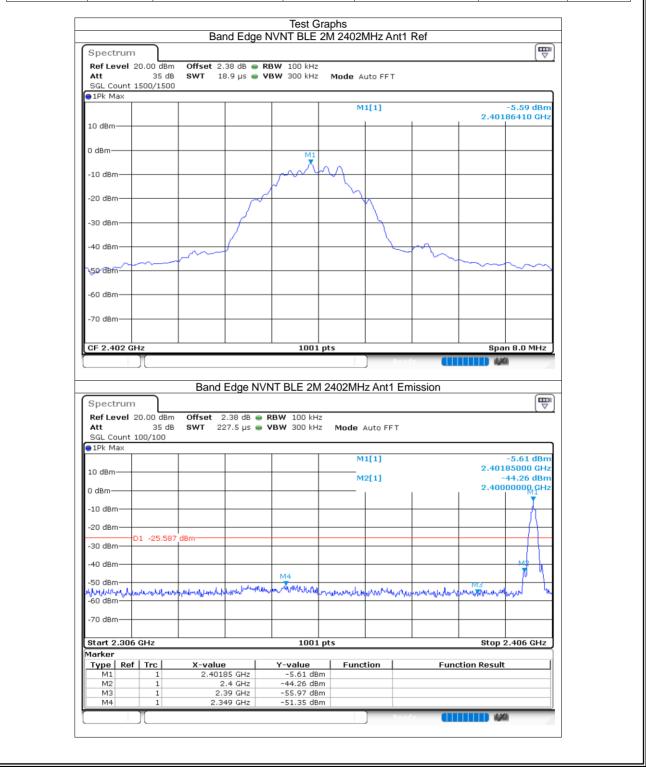
8.2.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	1.968
NVNT	BLE 2M	2440	Ant1	1.984
NVNT	BLE 2M	2480	Ant1	1.994

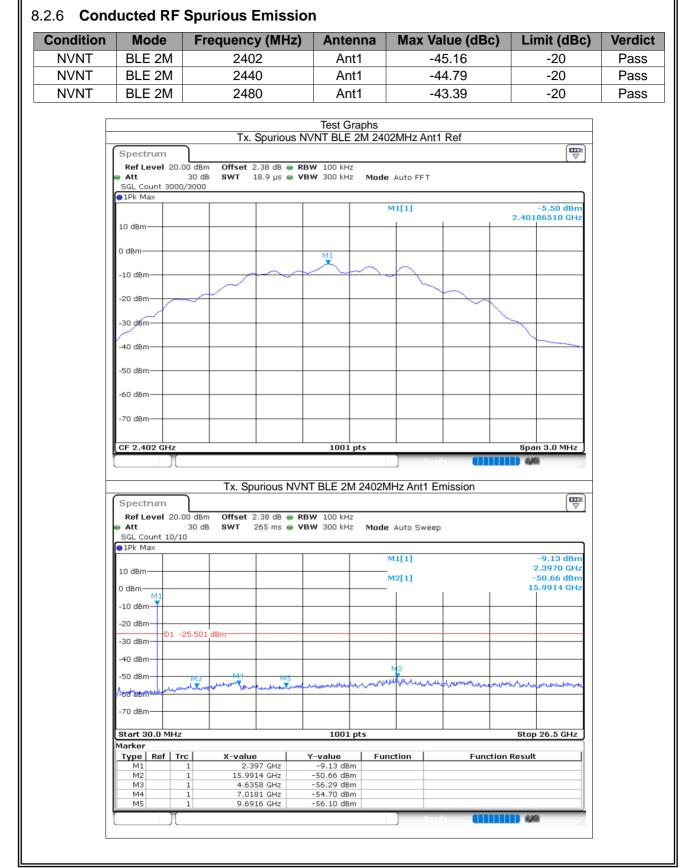
8.2.4 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-18.2	8	Pass
NVNT	BLE 2M	2440	Ant1	-20.18	8	Pass
NVNT	BLE 2M	2480	Ant1	-20.87	8	Pass

Spectrum							R
Ref Level 20.00		+ 0.00 db =	RBW 3 kH	17			(\
	30 dB SWT		VBW 10 kH		Ito FET		
SGL Count 6000/		00110 pp		ie mode A			
∎1Pk Max							
				M1	[1]		-18.20 dBr
10 10-				1 .	1	2.401	866090 GH
10 dBm							
0 dBm							
10 -10							
-10 dBm			M1				1
00.40			X				
-20 dBm			1.5.				
	Agoon and And And Marine	world work work	well Withman	Whitehallogel	Maria Maria		
-30 dBm	NUMBER OF THE OWNER				. Warner well with the first	millione	
					arter and south a logic many	1 Way way	market and and
-40 dBm							- with sold
-50 dBm							
co dos							
-60 dBm							
-70 dBm							1
CF 2.402 GHz			1000	1 pts		Span	1.674 MHz



1Pk Max		Mode Auto FFT		
		M1[1]		-20.18 dBm 57600 GHz
10 dBm			2.4390	07000 012
0 dBm				
-10 dBm				
	M1			
-20 dBm	Ă.			
-30 dBm Www.chillowney.def	warman have allowed	et on glad sore from most fight	Mynhulen Werken 1	
-40 dBm			and and and and and a second of the second o	What we want
-50 dBm				
-60 dBm				
-70 dBm				
CF 2.44 GHz	10001	nte	0	6765 MU-
CF 2.44 GHZ	10001	pts Read	span 1.	.6755 MHz
Spectrum Ref Level 20.00 dBm Offset 2				
Ref Level 20.00 dBm Offset 2				
Ref Level 20.00 dBm Offset 20.00 dBm 20.00 dBm	2.42 dB 👄 RBW 3 kHz			20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 10 IPk Max 10 dBm 10	2.42 dB 👄 RBW 3 kHz	Mode Auto FFT		20.87 dBm
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 1Pk Max 10 dBm 0 0 0 0	2.42 dB 👄 RBW 3 kHz	Mode Auto FFT		20.87 dBm
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 10 IPk Max 10 dBm 10	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT		20.87 dBm
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 1Pk Max 10 dBm 0 0 0 0	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.4796	20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 6 SGL Count 100/100 100/100 100/100 1Pk Max 10 dBm 10 dBm 10 dBm -0 dBm	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.4796	20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 9 10 1Pk Max 10 0 10 10 10 dBm	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.4796	20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 10 1Pk Max 10 10 10 10 dBm 10 10 10 -10 dBm	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT		20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 9 10 1Pk Max 10 0 10 10 10 dBm	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.4796	20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 10 1Pk Max 10 10 10 10 dBm 10 10 10 -10 dBm	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.4796	20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 100/100 100/100 1Pk Max 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.4796	20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 SWT 63 1Pk Max 10 10 10 10 dBm 10 10 10 10 -10 dBm	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.479E	20.87 dBm 73290 GHz
Ref Level 20.00 dBm Offset 3 Att 30 dB SWT 63 SGL Count 100/100 9 10 1Pk Max 10 10 10 10 dBm 10 10 10 -10 dBm 10 10 10 -20 dBm 10 10 10 -30 dBm 10 10 10 -60 dBm 10 10 10	2.42 dB • RBW 3 kHz 31.9 µs • VBW 10 kHz	Mode Auto FFT	2.479E	20.87 dBm 73290 GHz


8.2.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-45.76	-20	Pass
NVNT	BLE 2M	2480	Ant1	-45.3	-20	Pass

Shectr	um	ſ			NVNT BLE					
Spectr Ref Lev		0 dBm	Offset 2.	42 dB 👄 F	RBW 100 kHz					[\]
Att SGL Cou		35 dB			VBW 300 kHz		uto FFT			
●1Pk Ma			_	-	_					
						м	1[1]		2 470	-7.18 dBm 984820 GHz
10 dBm-								+	2.47	984820 GHZ
0 dBm—										
					M1 X					
-10 dBm-					1 mm	$\sim \langle -$				
-20 dBm-					\int	<u> </u>				
				<i></i>			h			
-30 dBm-				- /			\vdash			
				1						
-40 dBm-			~~	/				1		
-50 dBm-										· · · ·
$1 \vee 2$	γ	\sim								$\psi \lor \neg \lor$
-60 dBm-								+		┼───┨
-70 dBm-										
CF 2.48	GHZ				1001	pts	\		spa	an 8.0 MHz
Ref Lev	el 20.0		Offset 2	2.42 dB 👄	(NT BLE 2M	z		mission		
Ref Lev Att SGL Cou	el 20.0	35 dB	Offset 2	2.42 dB 👄		z		mission		
Ref Lev Att SGL Cou	el 20.0	35 dB	Offset 2	2.42 dB 👄	RBW 100 kH:	z z Mode	Auto FFT	mission		
Ref Lev Att SGL Cou 1Pk Ma	el 20.0	35 dB	Offset 2	2.42 dB 👄	RBW 100 kH:	z Mode M	Auto FFT	mission	2.479	-10.19 dBm 985000 GHz
Ref Lev Att SGL Cou 1Pk Ma	el 20.0	35 dB	Offset 2	2.42 dB 👄	RBW 100 kH:	z Mode M	Auto FFT	nission	2.47	-10.19 dBm 985000 GHz -54.41 dBm
Ref Lev Att SGL Cou 1Pk Ma 10 dBm-	el 20.0	35 dB	Offset 2	2.42 dB 👄	RBW 100 kH:	z Mode M	Auto FFT	mission	2.47	-10.19 dBm 985000 GHz
Ref Lev Att SGL Cou 1Pk Ma	el 20.0	35 dB	Offset 2	2.42 dB 👄	RBW 100 kH:	z Mode M	Auto FFT	mission	2.47	-10.19 dBm 985000 GHz -54.41 dBm
Ref Lev Att SGL Cou 1Pk Ma 10 dBm- 0 dBm- M1	el 20.04	35 dB	Offset 2	2.42 dB 👄	RBW 100 kH:	z Mode M	Auto FFT	mission	2.47	-10.19 dBm 985000 GHz -54.41 dBm
Ref Lev Att SGL Cou 1Pk Ma 10 dBm- 0 dBm- 0 dBm- M1 -10 fBm-	el 20.0	35 dB 100	Offset 2	2.42 dB 👄	RBW 100 kH:	z Mode M	Auto FFT		2.47	-10.19 dBm 985000 GHz -54.41 dBm
Ref Lev Att SGL Cou 1Pk Ma 10 dBm- 0 dBm- 0 dBm- -20 dBm- -30 dBm-	el 20.0	35 dB 100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH:	z Mode M	Auto FFT		2.47	-10.19 dBm 985000 GHz -54.41 dBm
Ref Lev Att SGL Cou 91Pk Ma 10 dBm- 0 dBm- -10 dBm- -20 dBm- -40 dBm-	el 20.0	35 dB 100	Offset 2 SWT 22	2.42 dB 	RBW 100 kH:	z Mode M	Auto FFT		2.47	-10.19 dBm 985000 GHz -54.41 dBm
Att SGL Cou 1Pk Ma 10 dBm 0 dBm -20 dBm -30 dBm- -40 dBm-	el 20.0	35 dB 100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH:	Z Mode M	Auto FFT		2.479	-10.19 dBm 985000 GHz -54.41 dBm 50000 GHz
Ref Lev Att SGL Cou 91Pk Ma 10 dBm- 0 dBm- -10 JBm- -20 dBm- -30 dBm- -40 dBm-	el 20.0	35 dB 100	Offset 2 SWT 22	2.42 dB 	RBW 100 kH:	z Mode M	Auto FFT		2.47	-10.19 dBm 985000 GHz -54.41 dBm 50000 GHz
Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm- 0 dBm- -10 JBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm'	el 20.0	35 dB 100	Offset 2 SWT 22	2.42 dB 	RBW 100 kH:	Z Mode M	Auto FFT		2.479	-10.19 dBm 985000 GHz -54.41 dBm 50000 GHz
Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm 0 dBm -20 dBm -30 dBm- -40 dBm- -50 dBm- -70 dBm-	el 20.00 <u>int 100/</u> × D1 <u>D1</u> <u>2 M4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>5</u> <u>6</u> <u>6</u> <u>6</u> <u>7</u> <u>7</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	35 dB	Offset 2 SWT 22	2.42 dB 	RBW 100 kH: VBW 300 kH:	2 Mode M	Auto FFT		2.47 2.48	-10.19 dBm 985000 GHz 54.41 dBm 350000 GHz
Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm 0 dBm -20 dBm- -20 dBm- -4p dBm- -50 dBm- -70 dBm- 70 dBm-	el 20.00 <u>int 100/</u> × D1 <u>D1</u> <u>2 M4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>5</u> <u>6</u> <u>6</u> <u>6</u> <u>7</u> <u>7</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	35 dB	Offset 2 SWT 22	2.42 dB 	RBW 100 kH:	2 Mode M	Auto FFT		2.47 2.48	-10.19 dBm 985000 GHz -54.41 dBm 50000 GHz
Ref Lev Att SGL Cou SGL Cou SGL Cou SGL Cou SGL Cou Att SGL Cou	el 20.00 <u>int 100/</u> × D1 <u>D1</u> <u>2 M4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>5</u> <u>6</u> <u>6</u> <u>6</u> <u>7</u> <u>7</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	35 dB 100 27.18: 4(l-j)v z	Offset 22 SWT 22	2.42 dB • 7.5 µs •	RBW 100 kH: VBW 300 kH: 	z Mode M M M M M M M M M M M M M M M M M M M	Auto FFT		2.47 2.48	-10.19 dBm 085000 GHz 554.41 dBm 550000 GHz
Ref Lev Att SGL Cou SGL Cou SGL Cou SGL Cou O dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -50 dBm- -70 dBm- -70 dBm- Start 2. Marker	el 20.00 int 100/ × 	35 dB 100 27,183 444,444 z	Offset 2 SWT 22 3 dBm 3 dBm M3 4 m3 4 m3 4 m3 4 m3 4 m3 4 m3 4 m3 4 m	2.42 dB ● 	RBW 100 kH: VBW 300 kH: 	2 2 Mode M M M M M M M M M M M M M M M M M M M	Auto FFT		2.479 2.483	-10.19 dBm 085000 GHz 554.41 dBm 550000 GHz
Ref Lev Att SGL Cou SGL Cou SGL Cou SGL Cou 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -70 dBm- Start 2. Marker Type M1 M2 M3	el 20.00 int 100/ × 	27.18: 27.18: 4:4/4,007 z z 1 1 1	Offset 2 SWT 22 SWT 22 3 dBm 3 dBm 3 dBm 4 X-value 2.479 2.48 2.479 2.48 2	2.42 dB • 7.5 µs •	RBW 100 kH: VBW 300 kH: 	2 Mode M M M M M M M M M M M M M	Auto FFT		2.479 2.483	-10.19 dBm 085000 GHz 554.41 dBm 550000 GHz
Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm- 0 dBm- -10 JBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -70 dBm- Start 2. Marker Type M1 M2	el 20.00 int 100/ × 	35 dB 100 27.18 444,00 z z c 1 1	Offset 2 SWT 22 SWT 22 3 dBm 3 dBm 3 dBm 4 X-value 2.479 2.48 2.479 2.48 2	2.42 dB 2.7.5 µs 	RBW 100 kH: VBW 300 kH: 	2 Mode M M M M M M M M M M M M M	Auto FFT		2.479 2.483	-10.19 dBm 085000 GHz 554.41 dBm 850000 GHz
Ref Lev Att SGL Cou SGL Cou SGL Cou SGL Cou 10 dBm- 0 dBm- 10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -70 dBm- Type M1 M2 M3	el 20.00 int 100/ × 	27.18: 27.18: 4:4/4,007 z z 1 1 1	Offset 2 SWT 22 SWT 22 3 dBm 3 dBm 3 dBm 4 X-value 2.479 2.48 2.479 2.48 2	2.42 dB • 7.5 µs •	RBW 100 kH: VBW 300 kH: 	2 Mode M M M M M M M M M M M M M	Auto FFT		2.479 2.483	-10.19 dBm 085000 GHz 554.41 dBm 850000 GHz
Ref Lev Att SGL Cou SGL Cou SGL Cou SGL Cou 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -70 dBm- Start 2. Marker Type M1 M2 M3	el 20.00 int 100/ × 	27.18: 27.18: 4:4/4,007 z z 1 1 1	Offset 2 SWT 22 SWT 22 3 dBm 3 dBm 3 dBm 4 X-value 2.479 2.48 2.479 2.48 2	2.42 dB • 7.5 µs •	RBW 100 kH: VBW 300 kH: 	2 Mode M M M M M M M M M M M M M	Auto FFT		2.479 2.483	-10.19 dBm 085000 GHz 554.41 dBm 850000 GHz

®

AC-MR

ACCREDITED Certificate #4298.01

NTEK 北视

Ref Level 20.00 dB	m Offcot 0.00 do -	DDW 100 kt-				
	m Offset 2.39 dB 🖷 IB SWT 18.9 µs 🖷		Mode Auto FFT			
SGL Count 300/300						
●1Pk Max	1 1		M1[1]			6.00 dDm
			M1[1]			-6.08 dBm 86210 GHz
10 dBm						
0 dBm		M1				
-10 dBm			\wedge h			
-10 0.0111			\sim			
-20 dBm	┥╱──			\rightarrow		
-30 dBm						
10 10-						
-40 dBm						
-50 dBm						Ť.
-60 dBm	+					
-70 dBm						
CF 2.44 GHz		1001 pt	ts		Spa	n 3.0 MHz
			Re	adv		1
	Tx. Spurious N	NVNT BLE 2M	2440MHz Ant1	Emission		
	m Offset 2.39 dB e	• RBW 100 kHz				
Ref Level 20.00 dB Att 30 d		• RBW 100 kHz				
Ref Level 20.00 dB	m Offset 2.39 dB e	• RBW 100 kHz				
Ref Level 20.00 dB Att 30 d SGL Count 30/30	m Offset 2.39 dB e	• RBW 100 kHz				-9.13 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30	m Offset 2.39 dB e	• RBW 100 kHz	Mode Auto Swee		:	-9.13 dBm 2.4500 GHz
Ref Level 20.00 dB Att 30 d SGL Count 30/30 1Pk Max 10 dBm 0 dBm 0 dBm	m Offset 2.39 dB e	• RBW 100 kHz	Mode Auto Swe		:	-9.13 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm	m Offset 2.39 dB e	• RBW 100 kHz	Mode Auto Swee		:	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 1Pk Max 10 dBm 10 dBm	m Offset 2.39 dB e	• RBW 100 kHz	Mode Auto Swee		:	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm 01 -26 08	m Offset 2.39 dB B SWT 265 ms	• RBW 100 kHz	Mode Auto Swee		:	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 1Pk Max 10 dBm 10 dBm	m Offset 2.39 dB B SWT 265 ms	• RBW 100 kHz	Mode Auto Swee		:	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm 01 -26 08	m Offset 2.39 dB B SWT 265 ms	• RBW 100 kHz	Mode Auto Swee		:	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 1Pk Max 10 dBm 0 dBm 0 -10 dBm	m Offset 2.39 dB B SWT 265 ms 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee	ep	10	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm	m Offset 2.39 dB B SWT 265 ms 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee	ep	:	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 -10 dBm	m Offset 2.39 dB B SWT 265 ms 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee	ep	10	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm	m Offset 2.39 dB B SWT 265 ms 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swee	ep	10	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 -10 dBm	m Offset 2.39 dB B SWT 265 ms 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swe	ep	: - - 	-9.13 dBm 2.4500 GHz 50.88 dBm
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 -10 dBm 0 -20 dBm 01 -26.08 -30 dBm 01 -26.08 -50 dBm -00 -26.08 -70 dBm -70 dBm	m Offset 2.39 dB B SWT 265 ms 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swe	ep	: - - 	-9.13 dBm 2.4500 GHz 50.88 dBm 5.2561 GHz
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -20 dBm 0 -30 dBm 0 -20 dBm 0 -30 dBm 0 -70 dBm 0 -70 dBm 0 Start 30.0 MHz Marker Type Ref Trc	m Offset 2.39 dB B SWT 265 ms Constraints of the second se	RBW 100 kHz VBW 300 kHz	Mode Auto Swe		: - - 	-9.13 dBm 2.4500 GHz 50.88 dBm 5.2561 GHz
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 01 -26.08 -30 dBm 01 -26.08 -50 dBm 04 -70 dBm 04 Start 30.0 MHz Marker	m Offset 2.39 dB B SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Swer		i j j j j j j j j j j j j j j j j j j j	-9.13 dBm 2.4500 GHz 50.88 dBm 5.2561 GHz
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 0 dBm 0 -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm - -70 dBm - Start 30.0 MHz - Marker - M1 1 M2 1 M3 1	m Offset 2.39 dB B SWT 265 ms 0 dBm 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swer		i j j j j j j j j j j j j j j j j j j j	-9.13 dBm 2.4500 GHz 50.88 dBm 5.2561 GHz
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 10 dBm 0 dBm 10 dBm -20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -10 -26.08 -30 dBm -26.08 -70 dBm -70 dBm Start 30.0 MHz Marker Type Ref Trc M1 1 1 M2 1 1	m Offset 2.39 dB B SWT 265 ms 0 dBm 0 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto Swer		i j j j j j j j j j j j j j j j j j j j	-9.13 dBm 2.4500 GHz 50.88 dBm 5.2561 GHz
Ref Level 20.00 dB Att 30 d SGL Count 30/30 IPk Max 10 dBm 0 dBm 0 -20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -20 dBm -30 dBm -40 dBm -50 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm Marker -70 dBm Type Ref Trc M1 1 M2 1 M3 1 M4 1	m Offset 2.39 dB B B SWT 265 ms B SWT 265 ms C C C C C C C C C C C C C C C C C C C	RBW 100 kHz VBW 300 kHz	Mode Auto Swer		i j j j j j j j j j j j j j j j j j j j	-9.13 dBm 2.4500 GHz 50.88 dBm 5.2561 GHz

Ref Level 20.00 dBm Att 30 dB SGL Count 300/300 1Pk Max	Offset 2.42 dB SWT 18.9 µs		Mode Auto FFT		
			M1[1]	2.4	-7.18 dBm 7986510 GHz
10 dBm					
0 dBm					
-10 dBm		M1			
		T 7	\neg		
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.48 GHz		1001 pts		Sr	oan 3.0 MHz
][Read		()KI
RefLevel 20.00 dBm	Offset 2.42 dB ● SWT 265 ms ●	RBW 100 kHz VBW 300 kHz	Mode Auto Sweep		
Att 30 dB SGL Count 10/10	Offset 2.42 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto Sweep		<u>(</u> _)
Att 30 dB SGL Count 10/10 1Pk Max	Offset 2.42 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	M1[1]		-11.91 dBm 2.4760 GHz
Att 30 dB SGL Count 10/10 1Pk Max 10 dBm	Offset 2.42 dB ● SWT 265 ms ●	RBW 100 kHz VBW 300 kHz			-11.91 dBm
Att 30 dB SGL Count 10/10 JPk Max 10 dBm 0 dBm	Offset 2.42 dB ● SWT 265 ms ●	RBW 100 kHz VBW 300 kHz	M1[1]		-11.91 dBm 2.4760 GHz -50.58 dBm
Att 30 dB SGL Count 10/10 10k Max 10 dBm -10 dBm -10 dBm -20 dBm	SWT 265 ms •	RBW 100 kHz VBW 300 kHz	M1[1]		-11.91 dBm 2.4760 GHz -50.58 dBm
Att 30 dB SGL Count 10/10 PIPk Max 10 dBm 0 dBm -10 dBm M1	SWT 265 ms •	RBW 100 kHz YBW 300 kHz	M1[1]		-11.91 dBm 2.4760 GHz -50.58 dBm
Att 30 dB SGL Count 10/10 1Pk Max 10 dBm 0 dBm 0 dBm -10 dBm -0 -20 dBm -0 -30 dBm -0 -40 dBm -0	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] 		-11.91 dBm 2.4760 GHz -50.58 dBm
Att 30 dB SGL Count 10/10 1Pk Max 10 dBm -0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	SWT 265 ms	VBW 300 kHz	M1[1] M2[1]		-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz
Att 30 dB SGL Count 10/10 1Pk Max 10 dBm -0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] 		-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz
Att 30 dB SGL Court 10/10 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] M2 M2 M2 M2	hanghalangang darahan Mari	-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz
Att 30 dB SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 30.0 MHz	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] M2 M2 m.//www.dura.	Martin Martin	-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz
Att 30 dB SGL Count 10/10 IPk Max	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] M2 M2 M2 M2	hanghalangang darahan Mari	-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz
Att 30 dB SGL Court 10/10 1Pk Max	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] M2 M2 m.//www.dura.	Martin Martin	-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz
Att 30 dB SGL Court 10/10 IPk Max	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] M2 M2 m.//www.dura.	Martin Martin	-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz
Att 30 dB SGL Count 10/10 1Pk Max	SWT 265 ms	VBW 300 kHz	M1[1] M2[1] M2 M2 m.//www.dura.	Martin Martin	-11.91 dBm 2.4760 GHz -50.58 dBm 15.6208 GHz