

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Indoor Camera

MODEL NUMBER: WP01006326

FCC ID: 2AYZ8WP01006

IC: 27824-WP01006

REPORT NUMBER: 4790283047-1

ISSUE DATE: February 21, 2022

Prepared for

Linkzone Technology Co., Limited ROOM 20 5/F WAYSON COMMERCIAL BLDG 28 CONNAUGHT ROAD WEST SHEUNG WAN

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

REPORT NO.: 4790283047-1

Page 2 of 122

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	2/21/2022	Initial Issue	

REPORT NO.: 4790283047-1 Page 3 of 122

Summary of Test Results							
Clause	Test Items	FCC/ISED Rules	Test Results				
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass				
2	Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass				
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass				
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass				
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass				
6	Conducted Emission Test for AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass				
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass				

Note:

^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.		ATTES	TATION OF TEST RESULTS	6
2.	7	TEST N	METHODOLOGY	7
3.	F	FACILI	TIES AND ACCREDITATION	7
4.	(CALIB	RATION AND UNCERTAINTY	8
	4.1	1. ME	EASURING INSTRUMENT CALIBRATION	8
	4.2	2. ME	EASUREMENT UNCERTAINTY	8
5.	E	EQUIP	MENT UNDER TEST	9
	5.1	1. DE	SCRIPTION OF EUT	9
	5.2	2. CF	HANNEL LIST	9
	5.3	3. MA	AXIMUM OUTPUT POWER	9
	5.4	4. TE	ST CHANNEL CONFIGURATION1	10
	5.5	5. TH	IE WORSE CASE POWER SETTING PARAMETER1	10
	5.6	6. TH	IE WORSE CASE CONFIGURATIONS1	11
	5.7	7. DE	SCRIPTION OF AVAILABLE ANTENNAS	12
	5.8	3. DE	SCRIPTION OF TEST SETUP1	13
6.	ľ	MEASI	JRING INSTRUMENT AND SOFTWARE USED1	4
7.		ANTEN	INA PORT TEST RESULTS1	6
7.	7. 1		INA PORT TEST RESULTS1	
7.		1. OI	N TIME AND DUTY CYCLE	16
7.	7.1 7.2	1. OI 2. 6 d	N TIME AND DUTY CYCLE	16 17
7.	7.1	1. OI 2. 6 d 3. CC	N TIME AND DUTY CYCLE	16 17 19
7.	7.1 7.2 7.3	1. ON 2. 6 d 3. Cd 4. Pd	N TIME AND DUTY CYCLE	16 17 19 20
	7.1 7.2 7.3 7.4 7.5	1. ON 2. 6 d 3. CC 4. PC 5. CC	N TIME AND DUTY CYCLE	16 17 19 20 22
7. 8.	7.1 7.2 7.3 7.4 7.5	1. ON 2. 6 G 3. CG 4. PG 5. CG	TIME AND DUTY CYCLE	16 17 19 20 22
	7.1 7.2 7.3 7.4 7.5 I 8.1	1. ON 2. 6 G 3. CG 4. PG 5. CG RADIA 1. RE 8.1.1.	TIME AND DUTY CYCLE	16 17 19 20 22 24 30
	7.1 7.2 7.3 7.4 7.5 i 8.1	1. ON 2. 6 d 3. Cd 4. Pd 5. Cd RADIA 1. RE 8.1.1. 8.1.2.	TIME AND DUTY CYCLE	16 17 19 20 22 24 30 34
	7.1 7.2 7.3 7.4 7.5 i 8.1	1. ON 2. 6 G 3. CG 4. PG 5. CG RADIA 1. RE 8.1.1.	TIME AND DUTY CYCLE	16 17 19 20 22 24 30 34 38
	7.1 7.2 7.3 7.4 7.5 I 8.1 8.1 8.8	1. ON 2. 6 0 3. CO 4. PO 5. CO RADIA 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4.	N TIME AND DUTY CYCLE	16 17 19 20 22 24 30 34 38 12
	7.1 7.2 7.3 7.4 7.5 8.1 8.1 8.2 8.2	1. ON 2. 6 0 3. CO 4. PO 5. CO RADIA 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4.	TIME AND DUTY CYCLE	16 17 19 20 22 24 30 34 38 42 46
	7.1 7.2 7.3 7.4 7.5 I 8.1 8.2 8.2 8.3	1. ON 2. 6 G 3. CG 4. PG 5. CG RADIA 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4. 2. SF 8.2.1.	## TIME AND DUTY CYCLE	16 17 19 20 22 24 30 34 38 12 46 16 52
	7.1 7.2 7.3 7.4 7.5 8.1 8.1 8.2 8.2 8.3	1. ON 2. 6 G 3. CG 4. PG 5. CG RADIA 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4. 2. SF 8.2.1. 3. SF 8.3.1.	## TIME AND DUTY CYCLE	16 17 19 20 22 24 30 34 38 46 46 52 52
	7.1 7.2 7.3 7.4 7.5 8.1 8.2 8.2 8.3 8.3	1. ON 2. 6 G 3. CG 4. PG 5. CG RADIA 1. RE 8.1.1. 8.1.2. 8.1.3. 8.1.4. 2. SF 8.2.1. 3. SF 8.3.1. 8.3.2.	## TIME AND DUTY CYCLE ## TIME AND DUTY CYCLE ## DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH ## TIME DINDUCTED OUTPUT POWER ## TIME DINDUCTED OUTPUT POWER ## TIME DINDUCTED BANDEDGE AND SPURIOUS EMISSIONS ## TED TEST RESULTS ##	16 17 19 20 22 24 30 34 38 46 46 52 52 58 46

		1 490 0 01 122
<i>8.4.</i> 8.4.1	SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)	76
<i>8.5.</i> 8.5.1	SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)	
<i>8.6.</i> 8.6.1	SPURIOUS EMISSIONS BELOW 30 MHz	
9. AC F	POWER LINE CONDUCTED EMISSIONS	83
9.1.1	802.11b SISO MODE	84
10. Al	NTENNA REQUIREMENTS	86
11. Ap	pendix	87
	Appendix A: DTS Bandwidth	
11.1	.1. Test Result	
	- 1	
	Appendix B: Occupied Channel Bandwidth	
	.2. Test Graphs	
<i>11.3.</i> 11.3		
11.4.		
11.4	.1. Test Result	
11.4	.2. Test Graphs	99
	Appendix E: Band edge measurements	
_	.1. Test Result	
	.2. Test Graphs	
11.6.	Appendix F: Conducted Spurious Emission	
	.2. Test Graphs	
11.7.	Appendix G: Duty Cycle	120
	.1. Test Result	120
11 7	2 Test Granhs	121

REPORT NO.: 4790283047-1 Page 6 of 122

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Linkzone Technology Co., Limited

Address: ROOM 20 5/F WAYSON COMMERCIAL BLDG 28 CONNAUGHT

ROAD WEST SHEUNG WAN

Manufacturer Information

Company Name: Linkzone Technology Co., Limited

Address: ROOM 20 5/F WAYSON COMMERCIAL BLDG 28 CONNAUGHT

ROAD WEST SHEUNG WAN

EUT Information

EUT Name: Indoor Camera
Model: WP01006326
Brand: UINCCS

Sample Received Date: February 09, 2022

Sample Status: Normal Sample ID: 4654895

Date of Tested: February 15, 2022 ~ February 20, 2022

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Prepared By:	Checked By:
kelo. zhang.	Shemmelier
Kebo Zhang Project Engineer	Shawn Wen Laboratory Leader
Approved By:	
LephenGuo	

Stephen Guo

Laboratory Manager

REPORT NO.: 4790283047-1 Page 7 of 122

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4790283047-1 Page 8 of 122

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)
Duty Cycle	±0.028%
DTS and 99% Occupied Bandwidth	±0.0196%
Maximum Conducted Output Power	±0.686 dB
Maximum Power Spectral Density Level	±0.743 dB
Conducted Band-edge Compliance	±1.328 dB
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Indoor Camera
Model Name	WP01006326
Radio Technology	IEEE802.11b/g/n HT20/ n HT40
0 "	IEEE 802.11b: 2412MHz—2462MHz
Operation	IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz
frequency	IEEE 802.11n HT20: 2412MH2—2462MH2 IEEE 802.11n HT40: 2422MHz—2452MHz
	IEEE 802.11b: DSSS(CCK)
Modulation	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Rated Input	DC 5V via Adapter

5.2. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	1	/

Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	1	1

5.3. MAXIMUM OUTPUT POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)	Maximum AVG EIRP (dBm)
b	2412 ~ 2462	1-11[11]	19.61	21.61
g	2412 ~ 2462	1-11[11]	17.62	19.62
n HT20	2412 ~ 2462	1-11[11]	16.80	18.80
n HT40	2422 ~ 2452	3-9[7]	16.88	18.88

REPORT NO.: 4790283047-1 Page 10 of 122

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	/are	Secure CRT						
	Transmit		Т	est Softwar	e setting val	ue		
Modulation Mode	Antenna		NCB: 20MHz			ICB: 40MHz		
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	49	49	49				
802.11g	1	59 57 58 /						
802.11n HT20	1	57	57 55 56					
802.11n HT40	1		/		55	54	55	

REPORT NO.: 4790283047-1 Page 11 of 122

5.6. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst case Data Rates declared by the customer:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

For spurious emission (1 GHz ~ 3 GHz), only the worst case mode test record in this report.

REPORT NO.: 4790283047-1 Page 12 of 122

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	Integral Antenna	2

Test Mode	Transmit and Receive	Description
	Mode	
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

REPORT NO.: 4790283047-1 Page 13 of 122

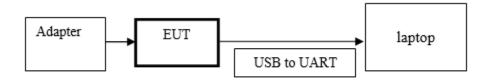
5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	laptop	Dell	Vostro 3902	8KNDDB2

I/O CABLES

Item	Type of cable	Shielded Type	Ferrite Core	Specification
1	USB cable	Unshielded	NO	1.5 m


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	Adapter	1	KA06E-0501000EU	INPUT: 100-240 V~50/60 Hz OUTPUT: 5 Vdc, 1 A, 5 W

TEST SETUP

The EUT can work in engineering mode with a software.

SETUP DIAGRAM FOR TESTS

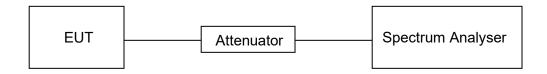
6. MEASURING INSTRUMENT AND SOFTWARE USED

R&S TS 8997 Test System											
Equipment		Manufacturer		Model	No.	Serial No.	Last C	al.	Due. Date		
Power sensor, Power M	leter		R&S	3	OSP1	20	100921	Mar.23,2	2021	Mar.22,2022	
Vector Signal Genera	tor		R&S	3	SMBV1	00A	261637	Oct.30, 2	2021	Oct.29, 2022	
Signal Generator			R&S	3	SMB10	00A	178553	Oct.30, 2	2021	Oct.29, 2022	
Signal Analyzer			R&S	3	FSV4	10	101118	Oct.30, 2	2021	Oct.29, 2022	
					Softwar	е					
Description			N	<i>l</i> lanut	facturer		Nam	ne		Version	
For R&S TS 8997 Test System Ro				hde &	Schwai	Z	EMC	32	10.60.10		
Tonsend RF Test System											
Equipment	Man	ufa	cturer	Mod	del No. Serial No.		erial No.	Last Cal.		Due. Date	
Wideband Radio Communication Tester		R&	S	CM	MW500		155523	Oct.30,	2021	Oct.29, 2022	
Wireless Connectivity Tester		R&	S	CM	IW270	120	1.0002N75- 102	Sep.29,	2021	Sep.28, 2022	
PXA Signal Analyzer	Ke	eysi	ght	N9	9030A	MY	′55410512	Oct.30,	2021	Oct.29, 2022	
MXG Vector Signal Generator	Ke	eysi	ght	N5	182B	MY	′56200284	Oct.30,	2021	Oct.29, 2022	
MXG Vector Signal Generator	Ke	eysi	ght	N5	5172B	MY	′56200301	Oct.30,	2021	Oct.29, 2022	
DC power supply	Keysight E				8642A	MY	′55159130	Oct.30,	2021	Oct.29, 2022	
Temperature & Humidity Chamber	SAN	SANMOOD SG			30-CC-2		2088	Nov.20,	2020	Nov.19,2022	
Software											
Description		Ма	nufact	urer	Name Vers			Version			
Tonsend SRD Test System Tonsend				JS1	120-3	3 RF Test S	ystem	2	.6.77.0518		

Radiated Emissions Equipment Manufacturer Model No. Serial No. Last Cal. Due Date MXE EMI **KESIGHT** N9038A MY56400036 Oct.30, 2021 Oct.29, 2022 Receiver Hybrid Log Aug.02, 2021 Aug.01, 2024 TDK HLP-3003C 130959 Periodic Antenna HP Preamplifier 8447D 2944A09099 Oct.30, 2021 Oct.29, 2022 EMI Measurement 101377 R&S ESR₂₆ Oct.30, 2021 Oct.29, 2022 Receiver Horn Antenna TDK HRN-0118 130940 July 20, 2021 July 19, 2024 TRS-305-TDK PA-02-0118 Oct.30, 2021 Preamplifier Oct.29, 2022 00067 Horn Antenna Schwarzbeck **BBHA9170** 697 July 20, 2021 July 19, 2024 TRS-307-Preamplifier TDK PA-02-2 Oct.31, 2021 Oct.30, 2022 00003 TRS-308-Preamplifier TDK PA-02-3 Oct.31, 2021 Oct.30, 2022 00002 Loop antenna Schwarzbeck 1519B 80000 Dec.14, 2021 Dec.13, 2024 PA-02-001-TRS-302-Preamplifier TDK Oct.31, 2021 Oct.30, 2022 3000 00050 ZX60-83LN-SUP01201941 Oct.30, 2022 Preamplifier Mini-Circuits Oct.31, 2021 S+ WHKX10-High Pass Filter Wi 23 2700-3000-Oct.31, 2021 Oct.30, 2022 18000-40SS WRCJV8-**Band Reject** 2350-2400-Wainwright 4 Oct.31, 2021 Oct.30, 2022 Filter 2483.5-2533.5-40SS Software Description Manufacturer Name Version Test Software for Radiated Emissions Farad **EZ-EMC** Ver. UL-3A1

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	50.8 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 5 V

RESULTS

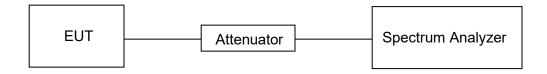
Please refer to appendix G.

REPORT NO.: 4790283047-1 Page 17 of 122

7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2							
Section Test Item Limit Frequency Range (MHz)							
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)			2400-2483.5				
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5				


TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	Between 1.5 times and 5.0 times the OBW
Detector	Peak
PRW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

REPORT NO.: 4790283047-1 Page 18 of 122

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	50.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

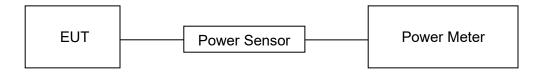
Please refer to appendix A & B.

REPORT NO.: 4790283047-1 Page 19 of 122

7.3. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	AVG Output Power	1 watt or 30 dBm	2400-2483.5


TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the average output power, after any

Measure peak emission level, the indicated level is the average output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	50.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Please refer to appendix C.

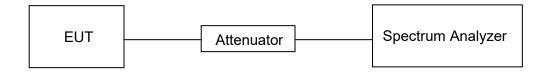
7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	50.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

Please refer to appendix D.

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Section Test Item Limit		
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

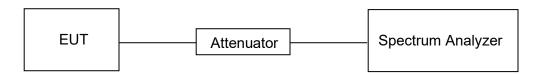
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

1209U	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	50.8 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Stren	gth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.	5
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	pove 1000 500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz)	Field strength (microvolts/meter) Measurement distance (meters)		
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

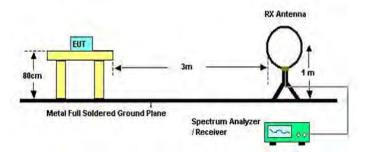
Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
8.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3280 - 3287	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		

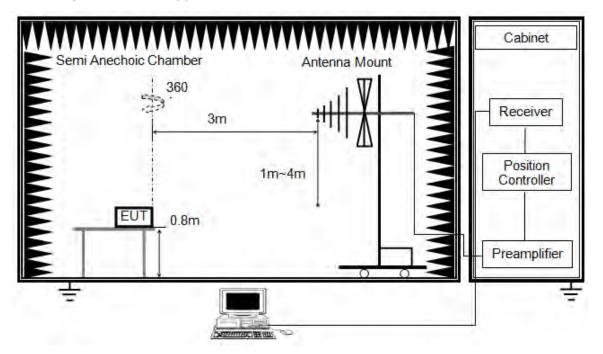
FCC Restricted bands of operation refer to FCC §15.205 (a):


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

TEST SETUP AND PROCEDURE

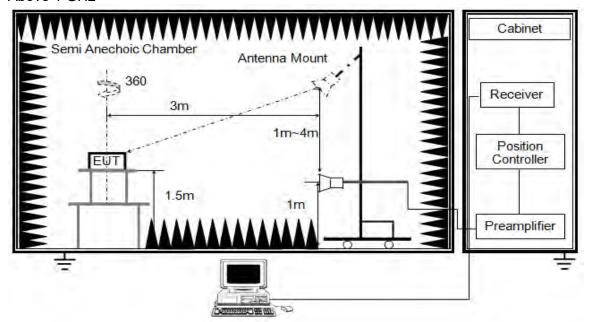
Below 30 MHz


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

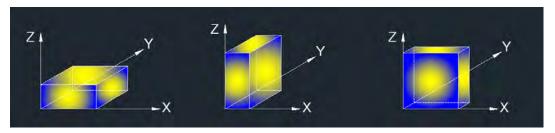


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz



The setting of the spectrum analyser

RBW	1 MHz
IVRW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	24.3 °C	Relative Humidity	61 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

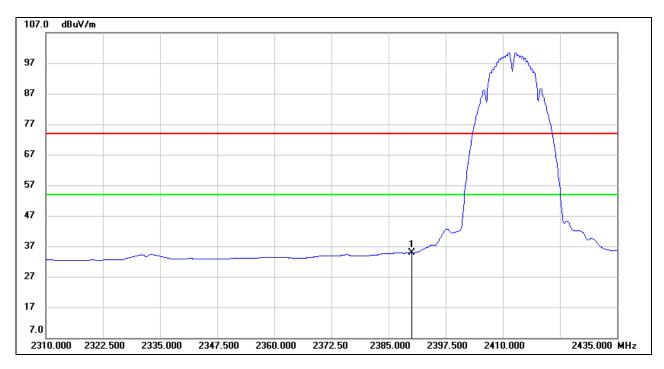
RESULTS

8.1. RESTRICTED BANDEDGE

8.1.1. 802.11b SISO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

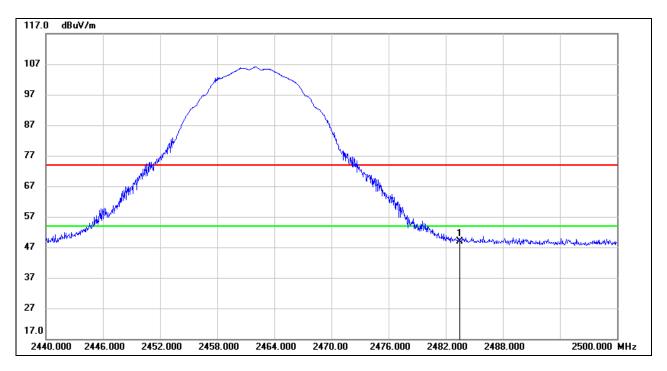
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	16.34	32.66	49.00	74.00	-25.00	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

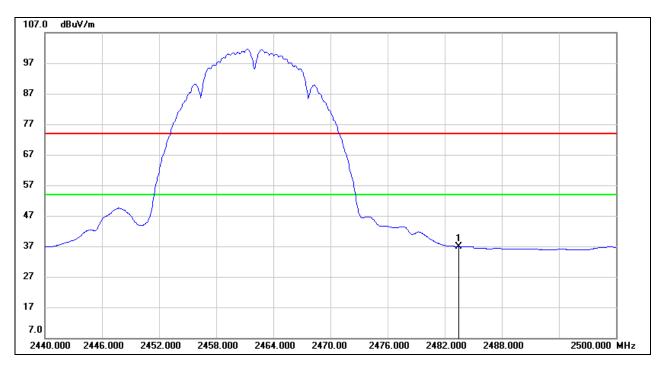
AVG


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	2.24	32.66	34.90	54.00	-19.10	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW = 1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.75	33.10	48.85	74.00	-25.15	peak

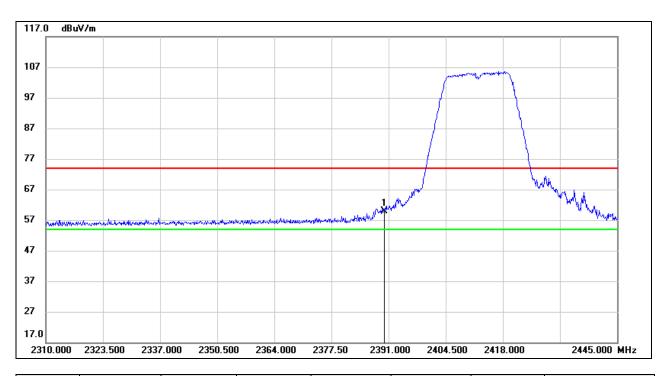
- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	3.72	33.10	36.82	54.00	-17.18	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

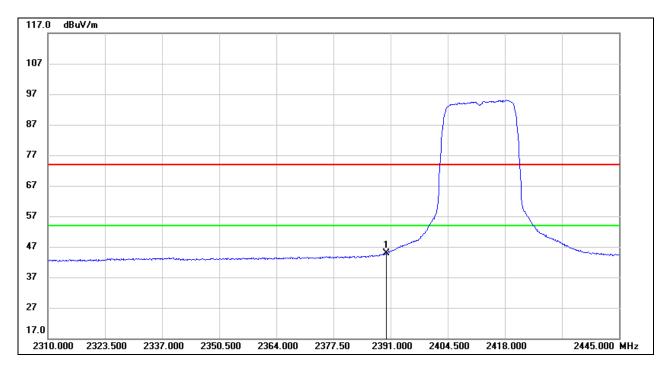
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW = 1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report.

8.1.2. 802.11g SISO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

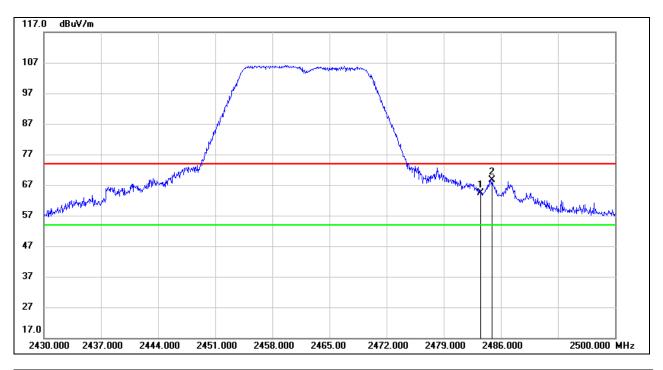
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	27.17	32.66	59.83	74.00	-14.17	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

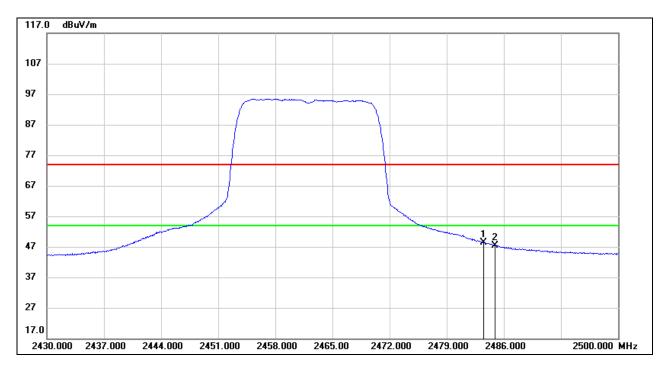
AVG


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	12.34	32.66	45.00	54.00	-9.00	AVG

- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	31.32	33.10	64.42	74.00	-9.58	peak
2	2484.950	35.45	33.10	68.55	74.00	-5.45	peak

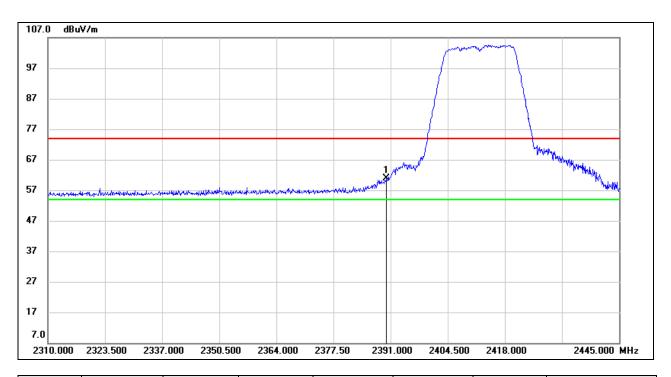
- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.39	33.10	48.49	54.00	-5.51	AVG
2	2484.950	14.30	33.10	47.40	54.00	-6.60	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

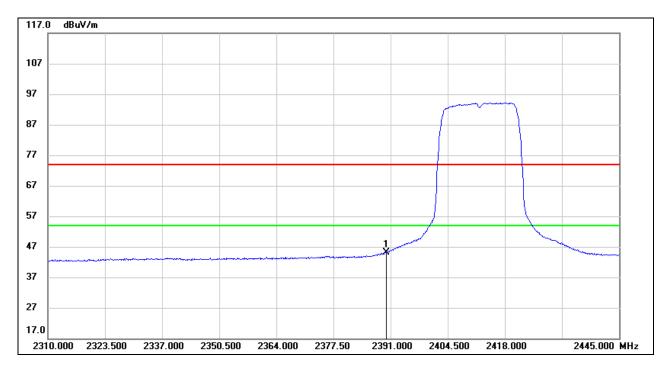
- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report.

8.1.3. 802.11n HT20 SISO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

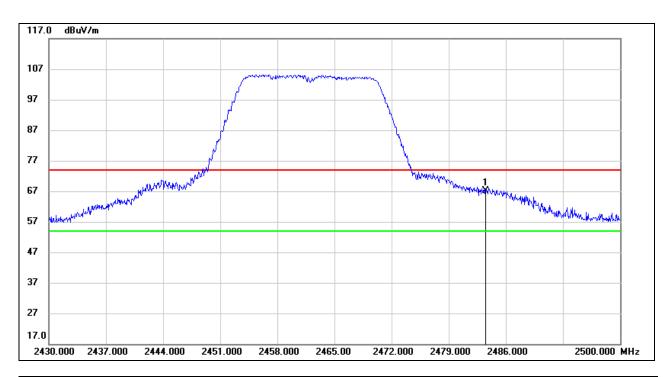
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	28.29	32.66	60.95	74.00	-13.05	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

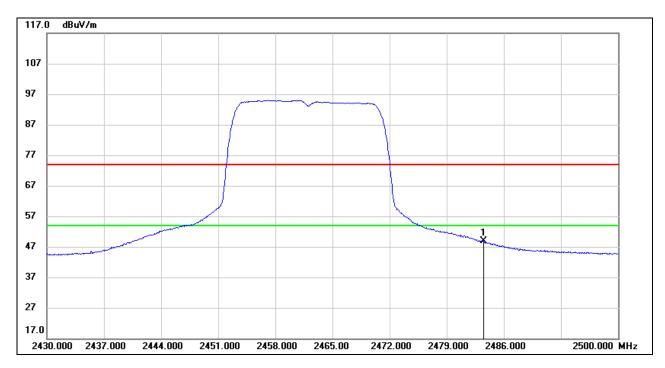
AVG


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	12.53	32.66	45.19	54.00	-8.81	AVG

- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	34.02	33.10	67.12	74.00	-6.88	peak

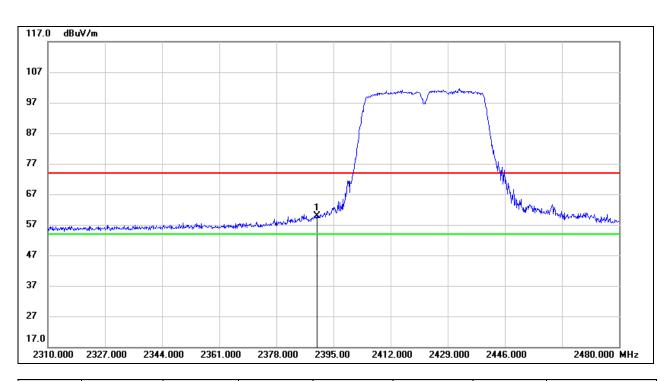
- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.74	33.10	48.84	54.00	-5.16	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

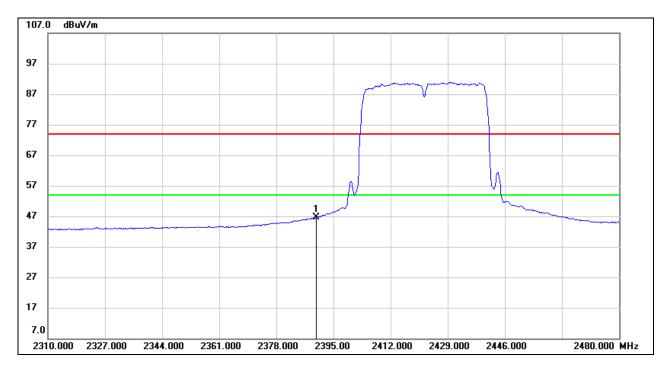
- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report. Note: All modes have been tested, only the worst data was recorded in the report.

8.1.4. 802.11n HT40 SISO MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

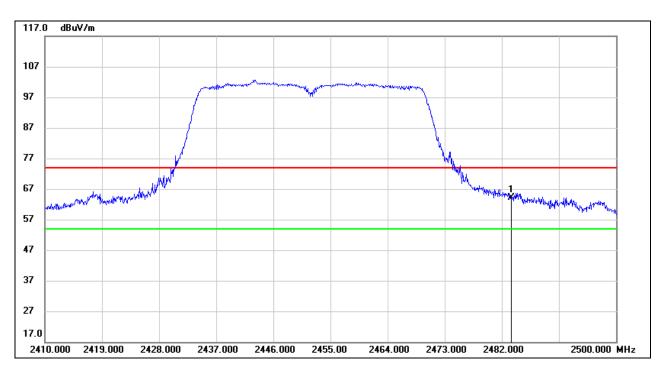
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	27.11	32.66	59.77	74.00	-14.23	peak

- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

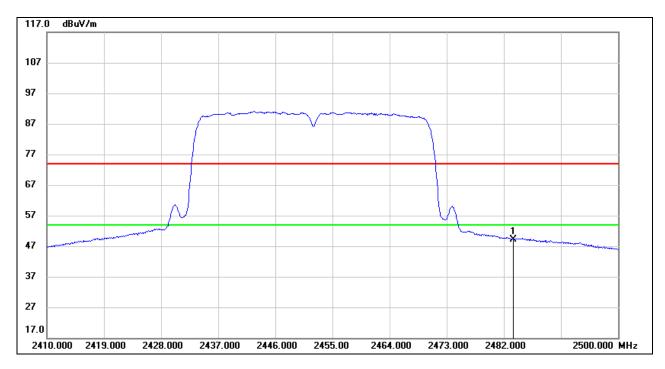
AVG


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	13.93	32.66	46.59	54.00	-7.41	AVG

- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	31.05	33.10	64.15	74.00	-9.85	peak

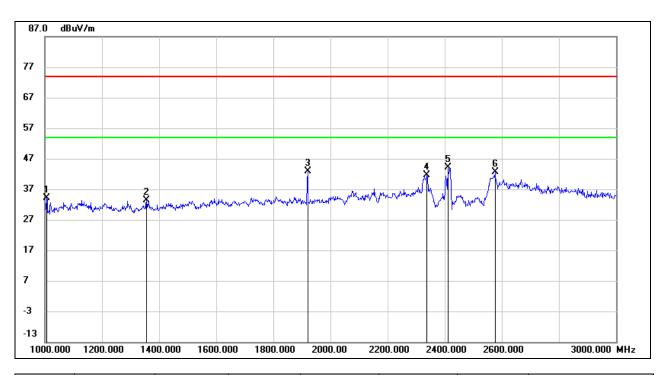
- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.14	33.10	49.24	54.00	-4.76	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

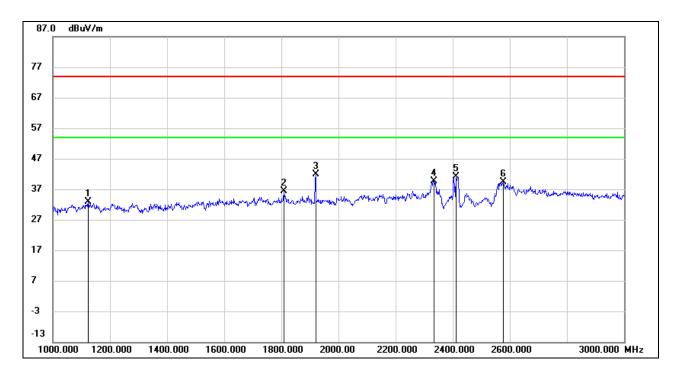
- 2. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 3. For the transmitting duration, please refer to clause 7.1.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


Note: Horizontal and Vertical have been tested, only the worst data was recorded in the report.

8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

8.2.1. 802.11b SISO MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1007.000	49.04	-15.02	34.02	74.00	-39.98	peak
2	1356.000	46.68	-13.20	33.48	74.00	-40.52	peak
3	1920.000	53.63	-10.81	42.82	74.00	-31.18	peak
4	2338.000	50.73	-9.18	41.55	74.00	-32.45	peak
5	2412.000	52.99	-8.92	44.07	/	/	fundamental
6	2577.000	51.35	-8.61	42.74	74.00	-31.26	peak

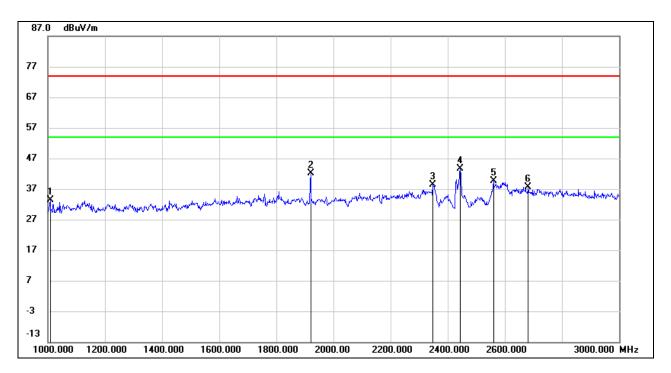
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1124.000	47.19	-14.22	32.97	74.00	-41.03	peak
2	1809.000	46.87	-10.60	36.27	74.00	-37.73	peak
3	1920.000	52.58	-10.81	41.77	74.00	-32.23	peak
4	2335.000	48.87	-9.20	39.67	74.00	-34.33	peak
5	2412.000	50.07	-8.92	41.15	/	/	fundamental
6	2577.000	47.87	-8.61	39.26	74.00	-34.74	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

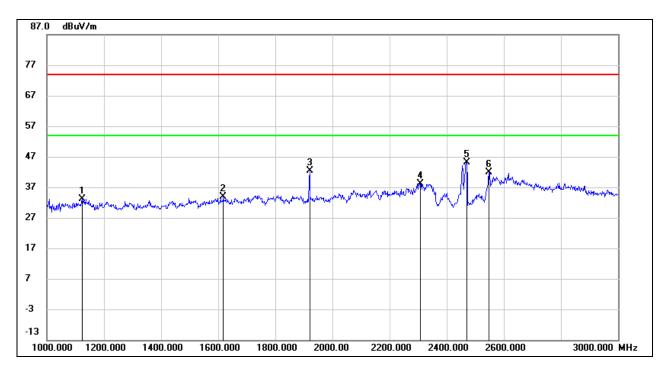
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1139.000	47.25	-14.12	33.13	74.00	-40.87	peak
2	1623.000	45.42	-11.70	33.72	74.00	-40.28	peak
3	1920.000	53.71	-10.81	42.90	74.00	-31.10	peak
4	2351.000	49.61	-9.13	40.48	74.00	-33.52	peak
5	2437.000	54.54	-8.84	45.70	/	/	fundamental
6	2604.000	49.77	-8.55	41.22	74.00	-32.78	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

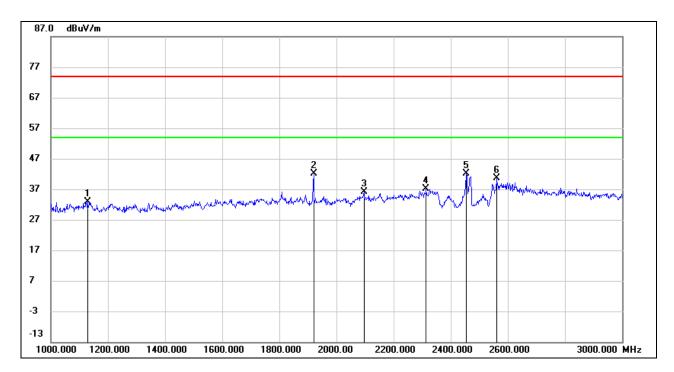
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1008.000	48.47	-15.00	33.47	74.00	-40.53	peak
2	1920.000	52.83	-10.81	42.02	74.00	-31.98	peak
3	2349.000	47.63	-9.15	38.48	74.00	-35.52	peak
4	2437.000	52.37	-8.85	43.52	/	/	fundamental
5	2560.000	48.28	-8.63	39.65	74.00	-34.35	peak
6	2683.000	45.78	-8.19	37.59	74.00	-36.41	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1125.000	47.42	-14.21	33.21	74.00	-40.79	peak
2	1619.000	45.58	-11.72	33.86	74.00	-40.14	peak
3	1920.000	53.07	-10.81	42.26	74.00	-31.74	peak
4	2308.000	47.48	-9.30	38.18	74.00	-35.82	peak
5	2462.000	54.03	-8.79	45.24	/	/	fundamental
6	2549.000	50.53	-8.65	41.88	74.00	-32.12	peak

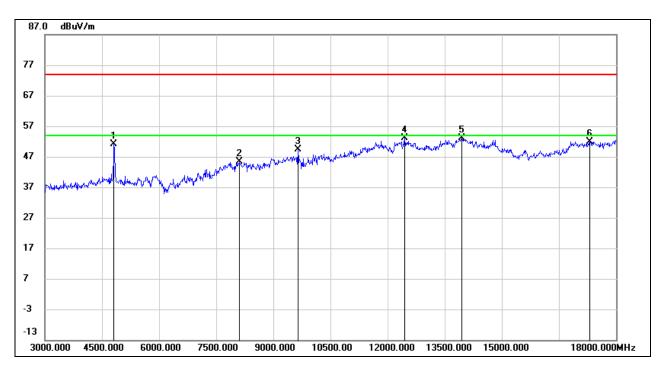
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1128.000	47.06	-14.19	32.87	74.00	-41.13	peak
2	1920.000	53.03	-10.81	42.22	74.00	-31.78	peak
3	2096.000	46.44	-10.36	36.08	74.00	-37.92	peak
4	2314.000	46.28	-9.27	37.01	74.00	-36.99	peak
5	2462.000	50.99	-8.82	42.17	/	/	fundamental
6	2560.000	49.30	-8.63	40.67	74.00	-33.33	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All modes and channels have been tested, only the worst data was recorded in the report.

8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. 802.11b SISO MODE

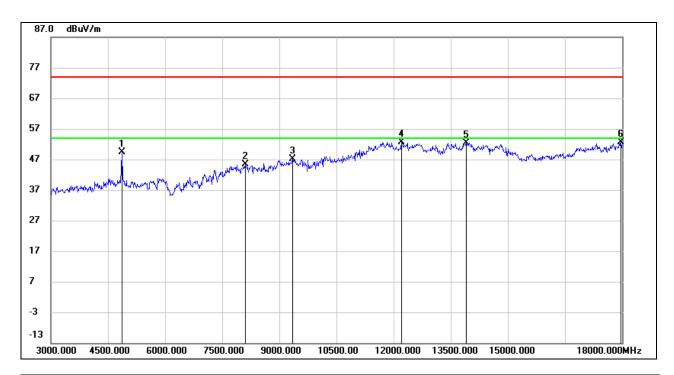
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4822.500	51.57	-0.39	51.18	74.00	-22.82	peak
2	8100.000	37.42	7.96	45.38	74.00	-28.62	peak
3	9645.000	38.91	10.56	49.47	74.00	-24.53	peak
4	12457.500	35.94	17.29	53.23	74.00	-20.77	peak
5	13957.500	31.78	21.35	53.13	74.00	-20.87	peak
6	17310.000	30.10	21.85	51.95	74.00	-22.05	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

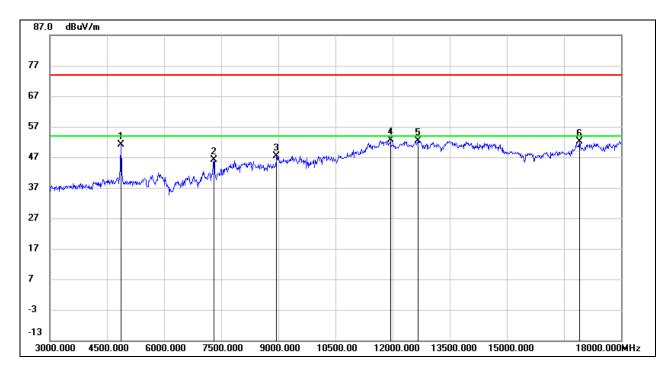
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4822.500	53.48	-0.39	53.09	74.00	-20.91	peak
2	7245.000	40.48	5.36	45.84	74.00	-28.16	peak
3	9645.000	38.74	10.56	49.30	74.00	-24.70	peak
4	11820.000	35.14	16.92	52.06	74.00	-21.94	peak
5	13950.000	32.01	21.33	53.34	74.00	-20.66	peak
6	17940.000	27.62	24.89	52.51	74.00	-21.49	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

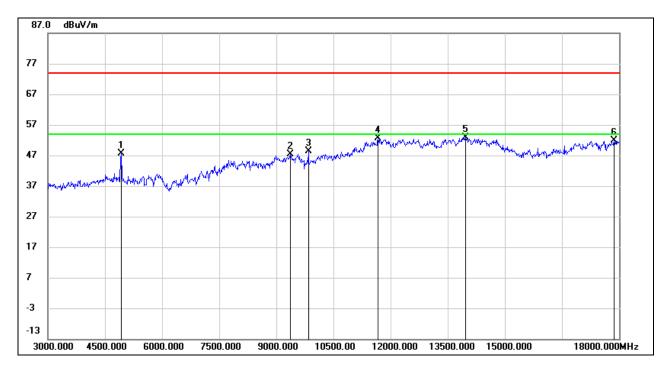
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4867.500	49.78	-0.51	49.27	74.00	-24.73	peak
2	8115.000	37.50	7.92	45.42	74.00	-28.58	peak
3	9345.000	37.16	9.96	47.12	74.00	-26.88	peak
4	12210.000	35.01	17.62	52.63	74.00	-21.37	peak
5	13912.500	31.26	21.22	52.48	74.00	-21.52	peak
6	17977.500	27.38	25.14	52.52	74.00	-21.48	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.1.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

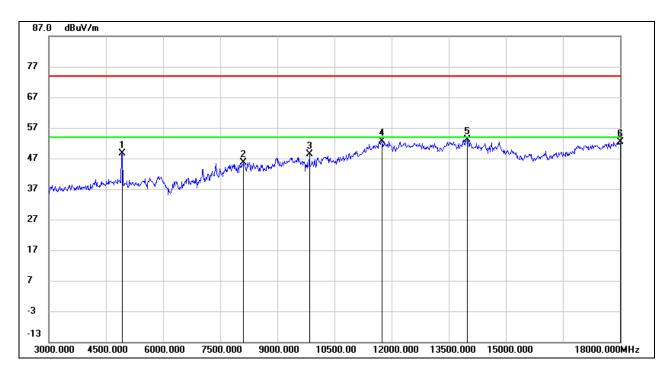
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	51.59	-0.52	51.07	74.00	-22.93	peak
2	7312.500	40.87	5.31	46.18	74.00	-27.82	peak
3	8962.500	38.10	9.40	47.50	74.00	-26.50	peak
4	11947.500	35.42	17.28	52.70	74.00	-21.30	peak
5	12667.500	35.11	17.23	52.34	74.00	-21.66	peak
6	16912.500	32.04	20.18	52.22	74.00	-21.78	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



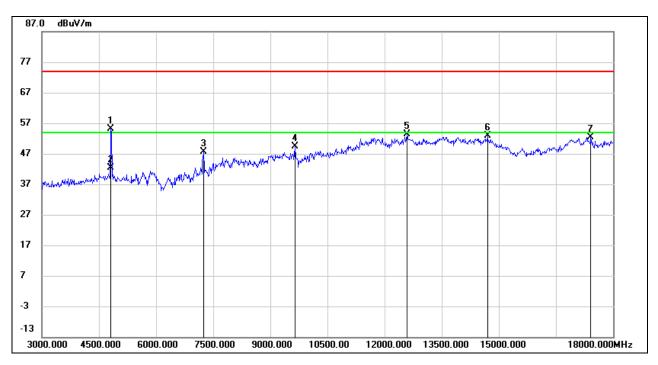
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4935.000	47.95	-0.34	47.61	74.00	-26.39	peak
2	9360.000	37.40	10.07	47.47	74.00	-26.53	peak
3	9847.500	37.63	10.66	48.29	74.00	-25.71	peak
4	11677.500	35.95	16.71	52.66	74.00	-21.34	peak
5	13972.500	31.46	21.38	52.84	74.00	-21.16	peak
6	17872.500	27.39	24.59	51.98	74.00	-22.02	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4927.500	49.10	-0.39	48.71	74.00	-25.29	peak
2	8107.500	37.76	7.94	45.70	74.00	-28.30	peak
3	9847.500	37.80	10.66	48.46	74.00	-25.54	peak
4	11745.000	35.71	16.87	52.58	74.00	-21.42	peak
5	13980.000	31.75	21.41	53.16	74.00	-20.84	peak
6	18000.000	27.20	25.28	52.48	74.00	-21.52	peak

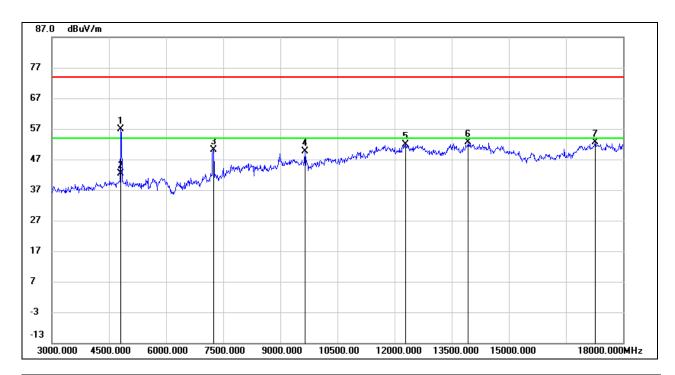
Note: 1. Peak Result = Reading Level + Correct Factor.


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: Both the two antennas had been tested, but only the worst data was recorded in the report.

8.3.2. 802.11g SISO MODE

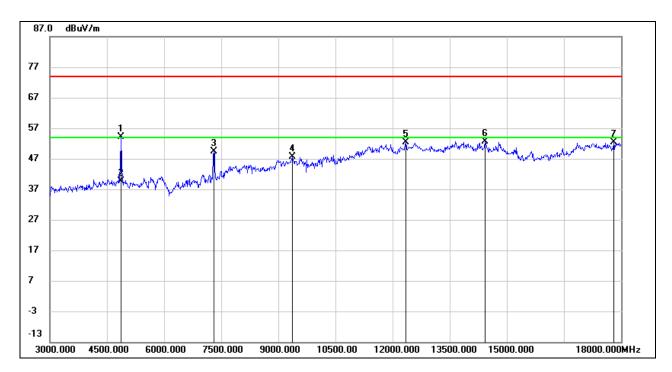
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4822.500	55.46	-0.39	55.07	74.00	-18.93	peak
2	4822.500	42.71	-0.39	42.32	54.00	-11.68	AVG
3	7252.500	42.20	5.33	47.53	74.00	-26.47	peak
4	9645.000	38.90	10.56	49.46	74.00	-24.54	peak
5	12592.500	36.04	17.28	53.32	74.00	-20.68	peak
6	14707.500	34.38	18.56	52.94	74.00	-21.06	peak
7	17422.500	31.06	21.43	52.49	74.00	-21.51	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

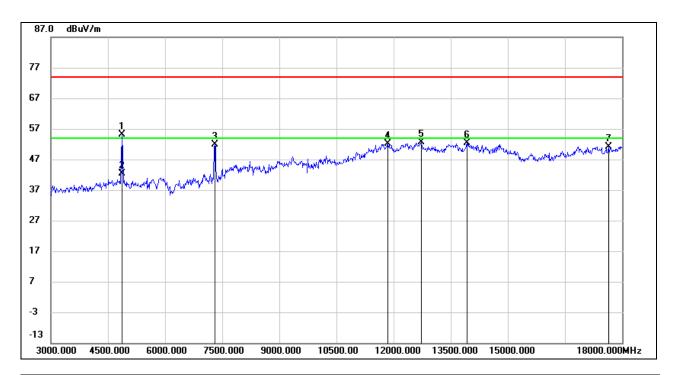
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4822.500	57.20	-0.39	56.81	74.00	-17.19	peak
2	4822.500	42.71	-0.39	42.32	54.00	-11.68	AVG
3	7245.000	44.77	5.36	50.13	74.00	-23.87	peak
4	9645.000	38.98	10.56	49.54	74.00	-24.46	peak
5	12292.500	34.10	17.67	51.77	74.00	-22.23	peak
6	13942.500	31.28	21.30	52.58	74.00	-21.42	peak
7	17272.500	30.96	21.67	52.63	74.00	-21.37	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	54.56	-0.52	54.04	74.00	-19.96	peak
2	4875.000	40.27	-0.52	39.75	54.00	-14.25	AVG
3	7305.000	44.06	5.25	49.31	74.00	-24.69	peak
4	9375.000	37.45	10.17	47.62	74.00	-26.38	peak
5	12345.000	34.67	17.59	52.26	74.00	-21.74	peak
6	14437.500	33.38	19.27	52.65	74.00	-21.35	peak
7	17805.000	27.74	24.53	52.27	74.00	-21.73	peak

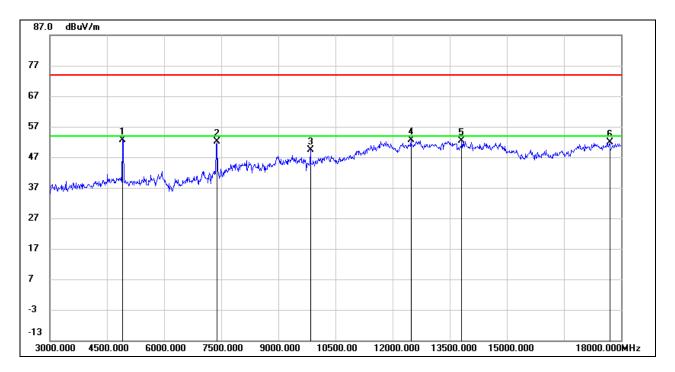
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	55.72	-0.52	55.20	74.00	-18.80	peak
2	4875.000	42.84	-0.52	42.32	54.00	-11.68	AVG
3	7305.000	46.58	5.25	51.83	74.00	-22.17	peak
4	11850.000	35.03	17.04	52.07	74.00	-21.93	peak
5	12727.500	35.39	17.32	52.71	74.00	-21.29	peak
6	13920.000	31.08	21.24	52.32	74.00	-21.68	peak
7	17647.500	28.05	23.15	51.20	74.00	-22.80	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



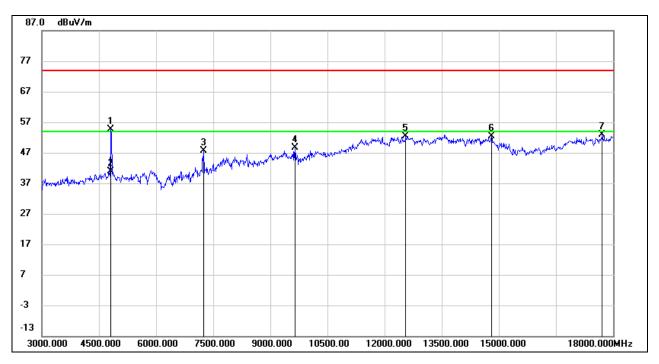
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	52.71	-0.45	52.26	74.00	-21.74	peak
2	7380.000	43.97	5.87	49.84	74.00	-24.16	peak
3	11370.000	36.98	15.46	52.44	74.00	-21.56	peak
4	12405.000	34.63	17.47	52.10	74.00	-21.90	peak
5	13912.500	32.00	21.22	53.22	74.00	-20.78	peak
6	17310.000	30.50	21.85	52.35	74.00	-21.65	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4905.000	53.16	-0.55	52.61	74.00	-21.39	peak
2	7380.000	46.28	5.87	52.15	74.00	-21.85	peak
3	9847.500	38.74	10.66	49.40	74.00	-24.60	peak
4	12480.000	35.41	17.21	52.62	74.00	-21.38	peak
5	13815.000	31.12	21.15	52.27	74.00	-21.73	peak
6	17707.500	28.06	23.74	51.80	74.00	-22.20	peak

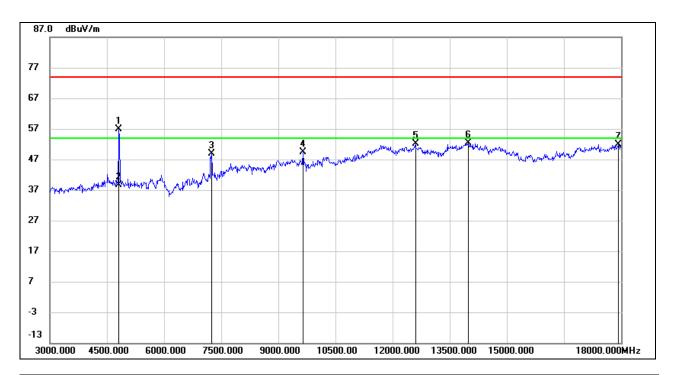
Note: 1. Peak Result = Reading Level + Correct Factor.


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: Both the two antennas had been tested, but only the worst data was recorded in the report.

8.3.3. 802.11n HT20 SISO MODE

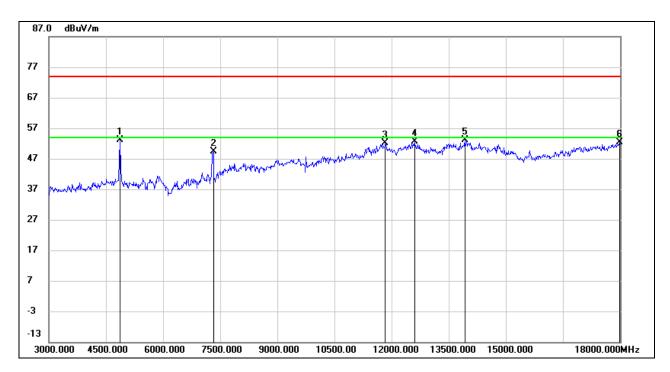
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4822.500	55.03	-0.39	54.64	74.00	-19.36	peak
2	4822.500	41.35	-0.39	40.96	54.00	-13.04	AVG
3	7245.000	42.24	5.36	47.60	74.00	-26.40	peak
4	9645.000	38.19	10.56	48.75	74.00	-25.25	peak
5	12555.000	35.19	17.23	52.42	74.00	-21.58	peak
6	14812.500	33.89	18.37	52.26	74.00	-21.74	peak
7	17722.500	29.03	23.88	52.91	74.00	-21.09	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4822.500	57.38	-0.39	56.99	74.00	-17.01	peak
2	4822.500	39.04	-0.39	38.65	54.00	-15.35	AVG
3	7252.500	43.53	5.33	48.86	74.00	-25.14	peak
4	9645.000	38.94	10.56	49.50	74.00	-24.50	peak
5	12600.000	34.79	17.30	52.09	74.00	-21.91	peak
6	13995.000	30.86	21.44	52.30	74.00	-21.70	peak
7	17932.500	27.07	24.84	51.91	74.00	-22.09	peak

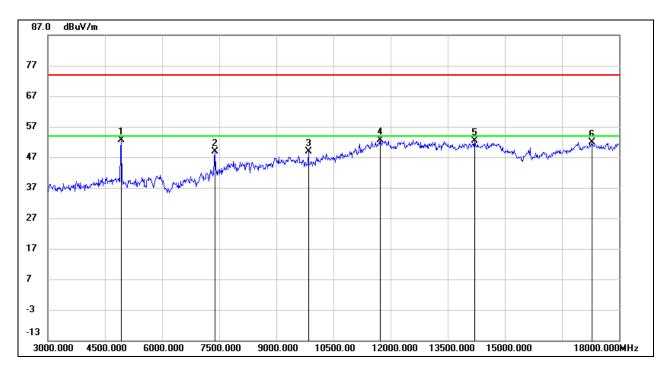
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4867.500	53.73	-0.51	53.22	74.00	-20.78	peak
2	7327.500	43.89	5.43	49.32	74.00	-24.68	peak
3	11835.000	35.10	16.98	52.08	74.00	-21.92	peak
4	12607.500	35.34	17.30	52.64	74.00	-21.36	peak
5	13920.000	31.79	21.24	53.03	74.00	-20.97	peak
6	17985.000	27.08	25.18	52.26	74.00	-21.74	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

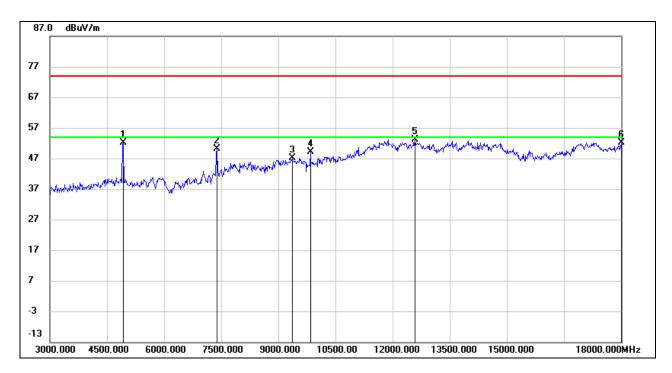
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4867.500	55.96	-0.51	55.45	74.00	-18.55	peak
2	4867.500	42.83	-0.51	42.32	54.00	-11.68	AVG
3	7320.000	46.02	5.37	51.39	74.00	-22.61	peak
4	9397.500	36.80	10.33	47.13	74.00	-26.87	peak
5	11812.500	35.46	16.89	52.35	74.00	-21.65	peak
6	13567.500	33.20	20.39	53.59	74.00	-20.41	peak
7	17265.000	30.58	21.61	52.19	74.00	-21.81	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

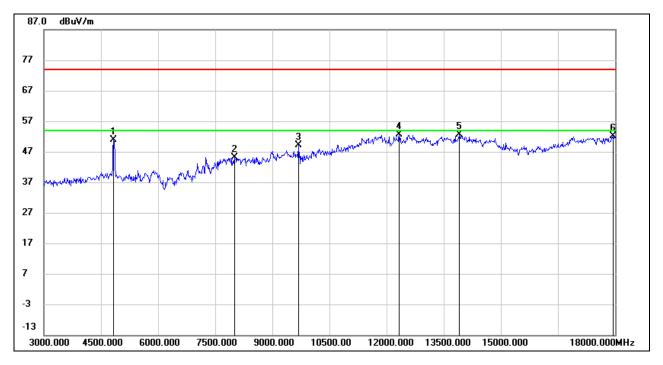
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	53.18	-0.45	52.73	74.00	-21.27	peak
2	7380.000	43.08	5.87	48.95	74.00	-25.05	peak
3	9847.500	38.12	10.66	48.78	74.00	-25.22	peak
4	11737.500	35.80	16.86	52.66	74.00	-21.34	peak
5	14212.500	31.53	20.73	52.26	74.00	-21.74	peak
6	17295.000	30.01	21.86	51.87	74.00	-22.13	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

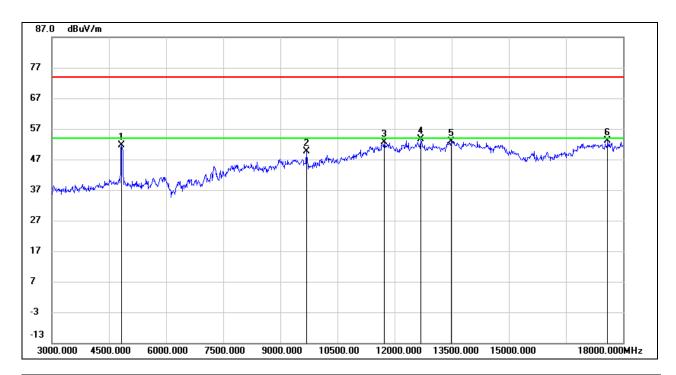
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4927.500	52.52	-0.39	52.13	74.00	-21.87	peak
2	7387.500	44.12	5.94	50.06	74.00	-23.94	peak
3	9360.000	36.95	10.07	47.02	74.00	-26.98	peak
4	9847.500	38.56	10.66	49.22	74.00	-24.78	peak
5	12592.500	35.89	17.28	53.17	74.00	-20.83	peak
6	18000.000	26.79	25.28	52.07	74.00	-21.93	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8.3.4. 802.11n HT40 SISO MODE

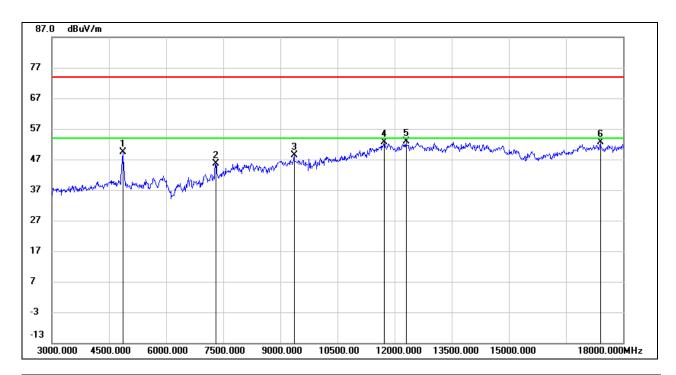
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4837.500	51.21	-0.43	50.78	74.00	-23.22	peak
2	8017.500	38.47	6.60	45.07	74.00	-28.93	peak
3	9690.000	38.70	10.40	49.10	74.00	-24.90	peak
4	12330.000	34.96	17.62	52.58	74.00	-21.42	peak
5	13905.000	31.40	21.21	52.61	74.00	-21.39	peak
6	17947.500	27.25	24.95	52.20	74.00	-21.80	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

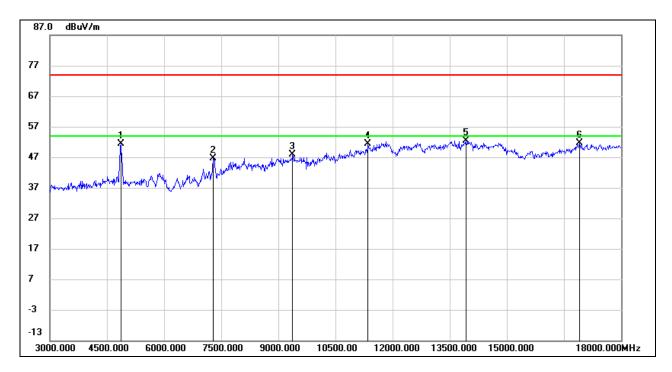
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4837.500	51.99	-0.43	51.56	74.00	-22.44	peak
2	9690.000	39.23	10.40	49.63	74.00	-24.37	peak
3	11737.500	35.67	16.86	52.53	74.00	-21.47	peak
4	12697.500	36.43	17.20	53.63	74.00	-20.37	peak
5	13492.500	32.60	20.35	52.95	74.00	-21.05	peak
6	17602.500	30.35	22.70	53.05	74.00	-20.95	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

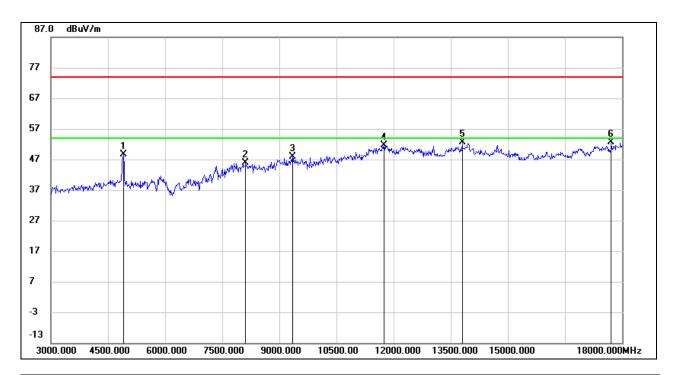
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4867.500	50.00	-0.51	49.49	74.00	-24.51	peak
2	7305.000	40.41	5.25	45.66	74.00	-28.34	peak
3	9360.000	38.29	10.07	48.36	74.00	-25.64	peak
4	11730.000	35.78	16.86	52.64	74.00	-21.36	peak
5	12300.000	35.23	17.68	52.91	74.00	-21.09	peak
6	17400.000	31.29	21.35	52.64	74.00	-21.36	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

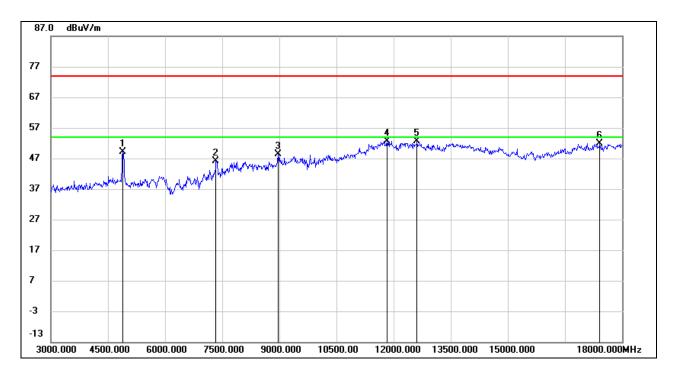
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4867.500	52.01	-0.51	51.50	74.00	-22.50	peak
2	7297.500	41.39	5.21	46.60	74.00	-27.40	peak
3	9375.000	37.62	10.17	47.79	74.00	-26.21	peak
4	11355.000	36.04	15.27	51.31	74.00	-22.69	peak
5	13920.000	31.25	21.24	52.49	74.00	-21.51	peak
6	16905.000	31.39	20.19	51.58	74.00	-22.42	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4905.000	49.06	-0.55	48.51	74.00	-25.49	peak
2	8115.000	38.05	7.92	45.97	74.00	-28.03	peak
3	9352.500	37.96	10.01	47.97	74.00	-26.03	peak
4	11752.500	34.74	16.86	51.60	74.00	-22.40	peak
5	13807.500	31.45	21.16	52.61	74.00	-21.39	peak
6	17715.000	28.79	23.81	52.60	74.00	-21.40	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

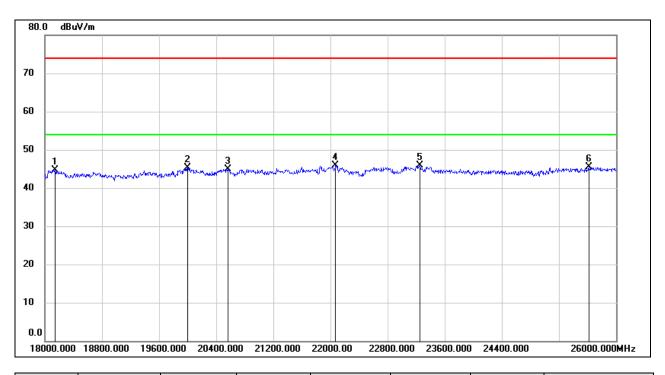
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4897.500	49.66	-0.58	49.08	74.00	-24.92	peak
2	7342.500	40.65	5.56	46.21	74.00	-27.79	peak
3	8977.500	38.63	9.71	48.34	74.00	-25.66	peak
4	11842.500	35.74	17.00	52.74	74.00	-21.26	peak
5	12615.000	35.30	17.29	52.59	74.00	-21.41	peak
6	17422.500	30.48	21.43	51.91	74.00	-22.09	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

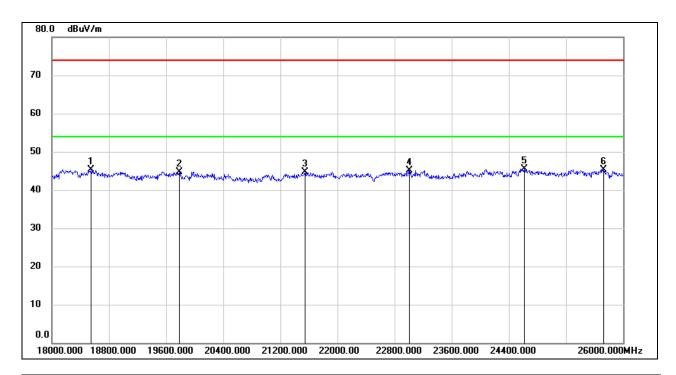
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: Both the two antennas had been tested, but only the worst data was recorded in the report.

8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1. 802.11b SISO MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18144.000	50.27	-5.48	44.79	74.00	-29.21	peak
2	20000.000	50.81	-5.45	45.36	74.00	-28.64	peak
3	20560.000	50.23	-5.30	44.93	74.00	-29.07	peak
4	22072.000	50.27	-4.41	45.86	74.00	-28.14	peak
5	23256.000	49.22	-3.35	45.87	74.00	-28.13	peak
6	25616.000	46.68	-1.24	45.44	74.00	-28.56	peak

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

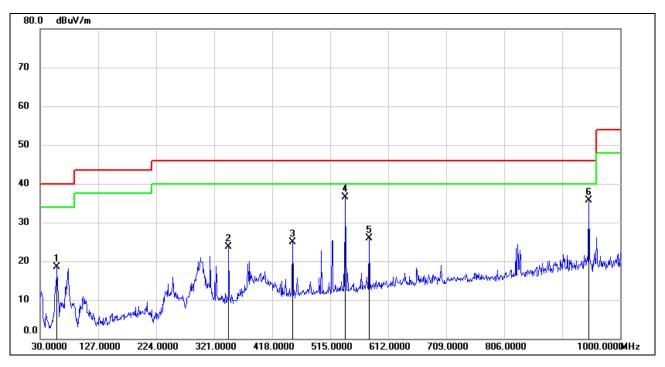
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18552.000	50.54	-5.28	45.26	74.00	-28.74	peak
2	19784.000	50.07	-5.28	44.79	74.00	-29.21	peak
3	21544.000	49.26	-4.63	44.63	74.00	-29.37	peak
4	23008.000	48.60	-3.44	45.16	74.00	-28.84	peak
5	24616.000	47.80	-2.33	45.47	74.00	-28.53	peak
6	25728.000	46.11	-0.72	45.39	74.00	-28.61	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

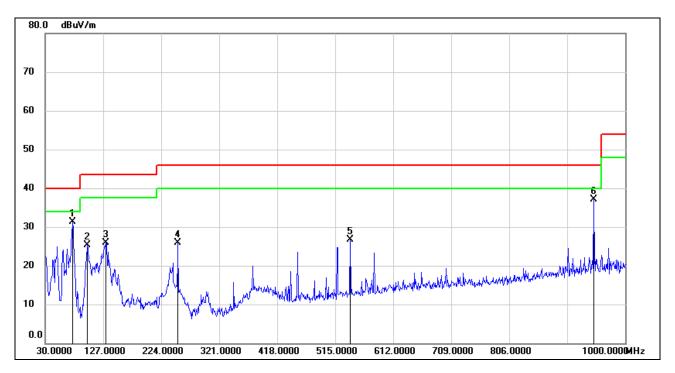
3. Peak: Peak detector.


Note: All modes and channels have been tested, only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.5.1. 802.11b SISO MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	58.1300	39.14	-20.55	18.59	40.00	-21.41	QP
2	345.2500	38.01	-14.38	23.63	46.00	-22.37	QP
3	451.9500	37.37	-12.42	24.95	46.00	-21.05	QP
4	540.2199	46.98	-10.49	36.49	46.00	-9.51	QP
5	579.9900	35.80	-9.99	25.81	46.00	-20.19	QP
6	947.6200	40.17	-4.43	35.74	46.00	-10.26	QP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

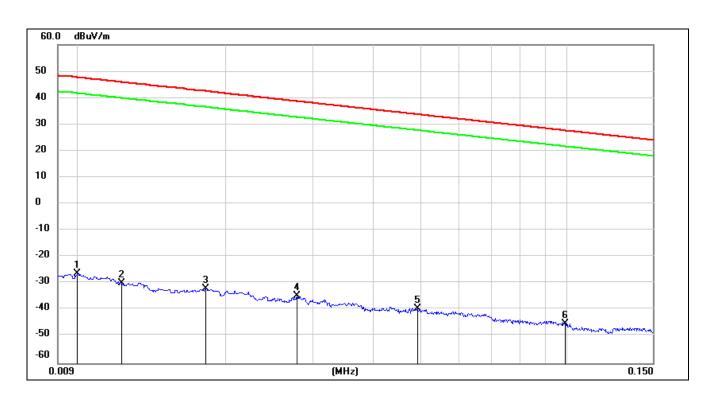
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	75.5899	52.22	-20.99	31.23	40.00	-8.77	QP
2	100.8100	46.29	-21.08	25.21	43.50	-18.29	QP
3	131.8500	45.22	-19.27	25.95	43.50	-17.55	QP
4	252.1300	44.72	-18.84	25.88	46.00	-20.12	QP
5	540.2199	37.11	-10.49	26.62	46.00	-19.38	QP
6	947.6200	41.61	-4.43	37.18	46.00	-8.82	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All modes and channels have been tested, only the worst data was recorded in the report.

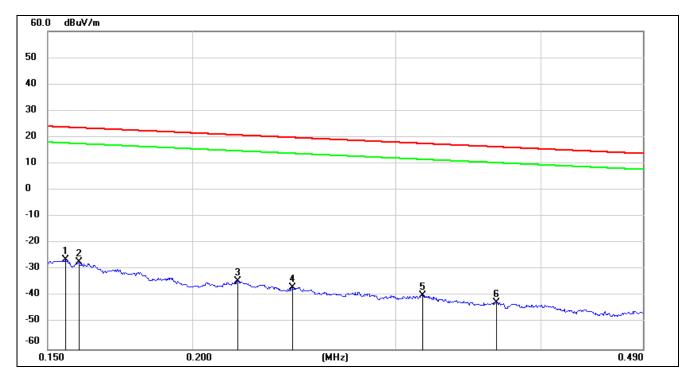


8.6. SPURIOUS EMISSIONS BELOW 30 MHz

8.6.1. 802.11b SISO MODE

SPURIOUS EMISSIONS (MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

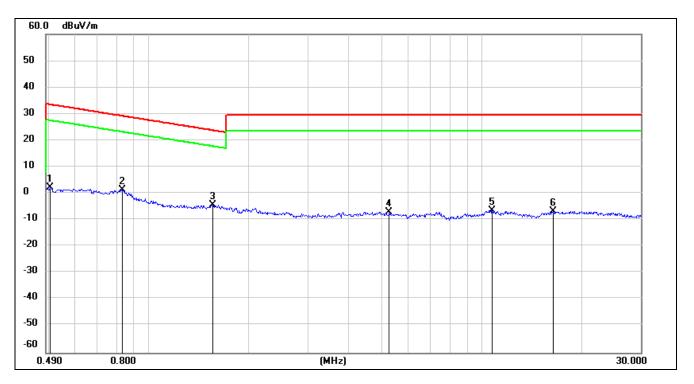
9 kHz~ 150 kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	75.22	-101.40	-26.18	47.60	-77.68	-3.90	-73.78	peak
2	0.0122	71.50	-101.39	-29.89	45.87	-83.48	-8.56	-75.76	peak
3	0.0181	69.35	-101.36	-32.01	42.45	-86.21	-12.81	-74.46	peak
4	0.0279	66.67	-101.38	-34.71	38.69	-90.81	-16.51	-73.40	peak
5	0.0492	62.05	-101.47	-39.42	33.76	-92.05	-18.72	-73.18	peak
6	0.0994	56.70	-101.80	-45.10	27.65	-95.51	-23.73	-72.75	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150 kHz ~ 490 kHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1554	75.27	-101.65	-26.38	23.77	-50.15	peak
2	0.1595	74.36	-101.65	-27.29	23.55	-50.84	peak
3	0.2190	67.27	-101.75	-34.48	20.79	-55.27	peak
4	0.2442	65.03	-101.79	-36.76	19.85	-56.61	peak
5	0.3163	62.20	-101.87	-39.67	17.60	-57.27	peak
6	0.3662	59.58	-101.93	-42.35	16.33	-58.68	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi]$ = dBuV/m- 51.5).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

490 kHz ~ 30 MHz

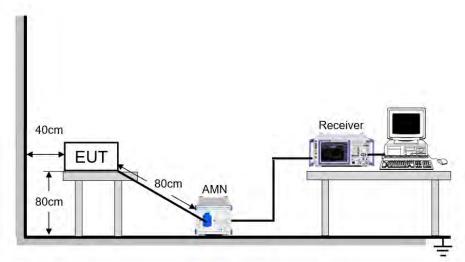
No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5039	64.44	-62.07	2.37	33.56	-49.13	-17.94	-31.19	peak
2	0.8296	63.44	-62.17	1.27	29.23	-50.23	-22.27	-27.96	peak
3	1.5564	57.68	-62.02	-4.34	23.76	-55.84	-27.74	-28.1	peak
4	5.2705	54.54	-61.45	-6.91	29.54	-58.41	-21.96	-36.45	peak
5	10.7299	54.48	-60.83	-6.35	29.54	-57.85	-21.96	-35.89	peak
6	16.3959	54.17	-60.96	-6.79	29.54	-58.29	-21.96	-36.33	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All modes, channels and antenna have been tested, only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

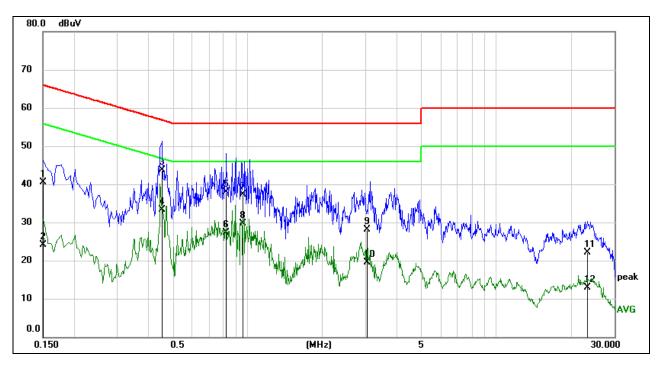
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

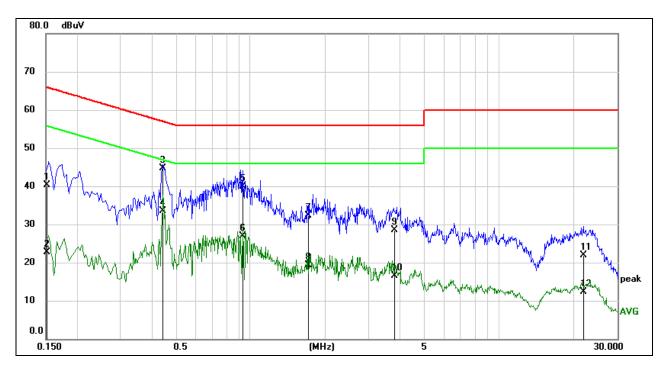
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST ENVIRONMENT

Temperature	20.6 °C	Relative Humidity	62.1 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

9.1.1. 802.11b SISO MODE

LINE L RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1513	31.01	9.49	40.50	65.93	-25.43	QP
2	0.1513	14.54	9.49	24.03	55.93	-31.90	AVG
3	0.4504	34.14	9.52	43.66	56.87	-13.21	QP
4	0.4504	23.75	9.52	33.27	46.87	-13.60	AVG
5	0.8173	28.42	9.50	37.92	56.00	-18.08	QP
6	0.8173	17.90	9.50	27.40	46.00	-18.60	AVG
7	0.9636	27.83	9.51	37.34	56.00	-18.66	QP
8	0.9636	20.28	9.51	29.79	46.00	-16.21	AVG
9	3.0381	18.58	9.62	28.20	56.00	-27.80	QP
10	3.0381	9.89	9.62	19.51	46.00	-26.49	AVG
11	23.4660	12.36	9.75	22.11	60.00	-37.89	QP
12	23.4660	3.17	9.75	12.92	50.00	-37.08	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

LINE N RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1508	30.80	9.49	40.29	65.96	-25.67	QP
2	0.1508	13.21	9.49	22.70	55.96	-33.26	AVG
3	0.4423	35.09	9.52	44.61	57.02	-12.41	QP
4	0.4423	24.01	9.52	33.53	47.02	-13.49	AVG
5	0.9306	30.31	9.51	39.82	56.00	-16.18	QP
6	0.9306	17.49	9.51	27.00	46.00	-19.00	AVG
7	1.7130	22.71	9.59	32.30	56.00	-23.70	QP
8	1.7130	9.81	9.59	19.40	46.00	-26.60	AVG
9	3.8213	18.85	9.60	28.45	56.00	-27.55	QP
10	3.8213	6.97	9.60	16.57	46.00	-29.43	AVG
11	21.8351	12.21	9.76	21.97	60.00	-38.03	QP
12	21.8351	2.62	9.76	12.38	50.00	-37.62	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

Note: All modes and channels have been tested, only the worst data was recorded in the report.

REPORT NO.: 4790283047-1 Page 86 of 122

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

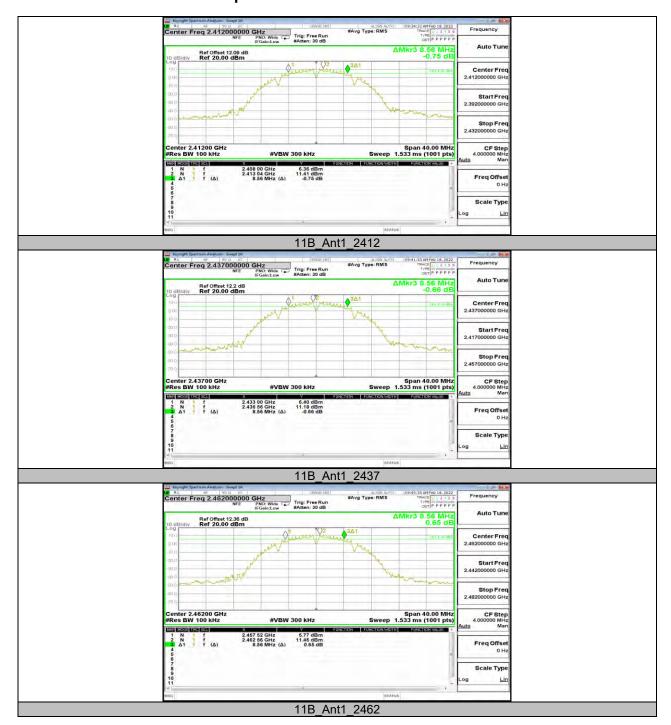
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies


11. Appendix

11.1. Appendix A: DTS Bandwidth 11.1.1. Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	8.560	2408.000	2416.560	0.5	PASS
11B	Ant1	2437	8.560	2433.000	2441.560	0.5	PASS
		2462	8.560	2457.520	2466.080	0.5	PASS
		2412	16.320	2403.880	2420.200	0.5	PASS
11G	Ant1	2437	16.320	2428.880	2445.200	0.5	PASS
		2462	16.320	2453.880	2470.200	0.5	PASS
		2412	17.560	2403.280	2420.840	0.5	PASS
11N20SISO	Ant1	2437	17.520	2428.280	2445.800	0.5	PASS
		2462	17.520	2453.280	2470.800	0.5	PASS
		2422	35.600	2404.320	2439.920	0.5	PASS
11N40SISO	Ant1	2437	36.000	2418.920	2454.920	0.5	PASS
		2452	36.080	2433.840	2469.920	0.5	PASS

11.1.2. Test Graphs

11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
1001111000	7 tintorina	•				
11B		2412	13.465	2405.398	2418.863	PASS
	Ant1	2437	13.472	2430.341	2443.813	PASS
		2462	13.435	2455.320	2468.755	PASS
		2412	17.147	2403.576	2420.723	PASS
11G	Ant1	2437	17.147	2428.467	2445.614	PASS
		2462	17.169	2453.389	2470.558	PASS
		2412	18.065	2403.063	2421.128	PASS
11N20SISO	Ant1	2437	18.106	2428.028	2446.134	PASS
		2462	18.139	2452.981	2471.120	PASS
11N40SISO		2422	36.391	2403.970	2440.361	PASS
	Ant1	2437	36.384	2418.921	2455.305	PASS
		2452	36.465	2433.721	2470.186	PASS

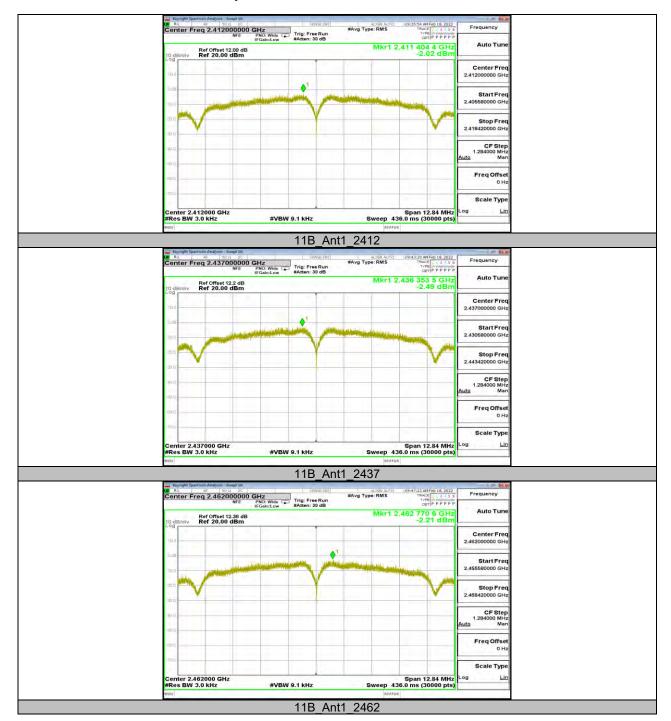
11.2.2. Test Graphs

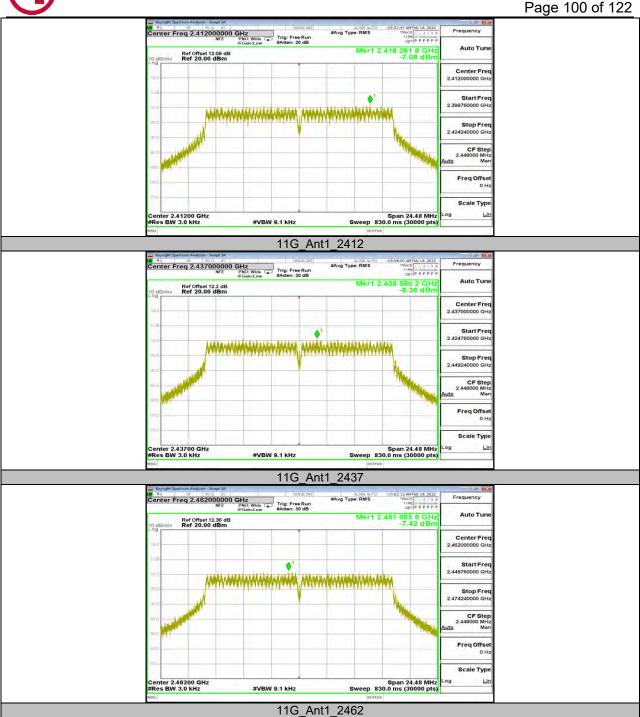
11.3. Appendix C: Maximum conducted output power 11.3.1. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2412	19.40	≤30.00	PASS
11B	Ant1	2437	19.61	≤30.00	PASS
		2462	19.55	≤30.00	PASS
	Ant1	2412	17.60	≤30.00	PASS
11G		2437	17.03	≤30.00	PASS
		2462	17.62	≤30.00	PASS
	Ant1	2412	16.65	≤30.00	PASS
11N20SISO		2437	16.15	≤30.00	PASS
		2462	16.80	≤30.00	PASS
11N40SISO		2422	16.88	≤30.00	PASS
	Ant1	2437	16.27	≤30.00	PASS
		2452	16.46	≤30.00	PASS

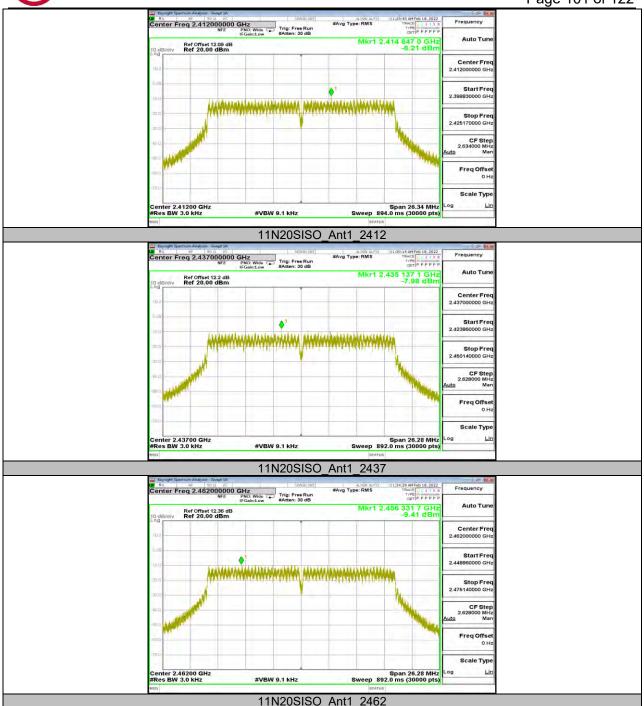
Note: 1. Conducted Power=Meas. Level+ Correction Factor

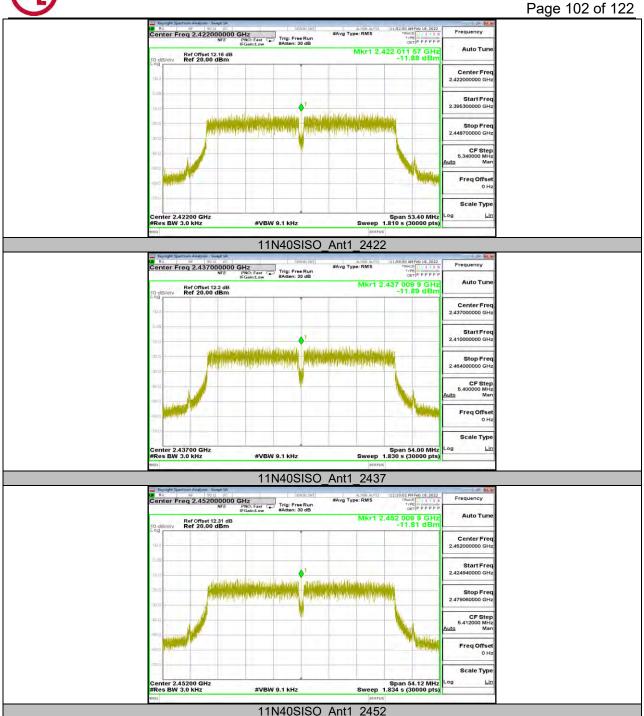
^{2.} The Duty Cycle Factor (refer to section 7.1) had already compensated to the test data.



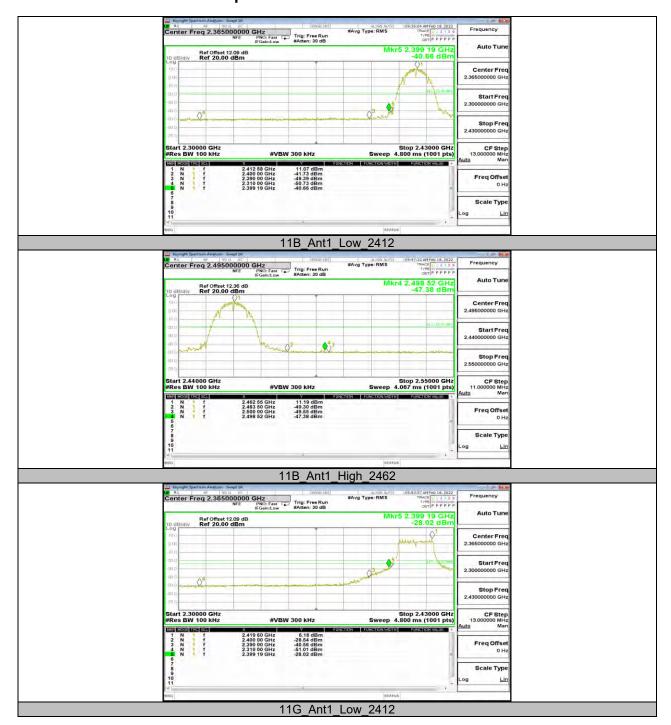

11.4. Appendix D: Maximum power spectral density 11.4.1. Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-2.02	≤8.00	PASS
11B	Ant1	2437	-2.49	≤8.00	PASS
		2462	-2.21	≤8.00	PASS
11G	Ant1	2412	-7.08	≤8.00	PASS
		2437	-8.36	≤8.00	PASS
		2462	-7.42	≤8.00	PASS
	Ant1	2412	-8.21	≤8.00	PASS
11N20SISO		2437	-7.98	≤8.00	PASS
		2462	-9.41	≤8.00	PASS
11N40SISO	Ant1	2422	-11.88	≤8.00	PASS
		2437	-11.89	≤8.00	PASS
		2452	-11.81	≤8.00	PASS

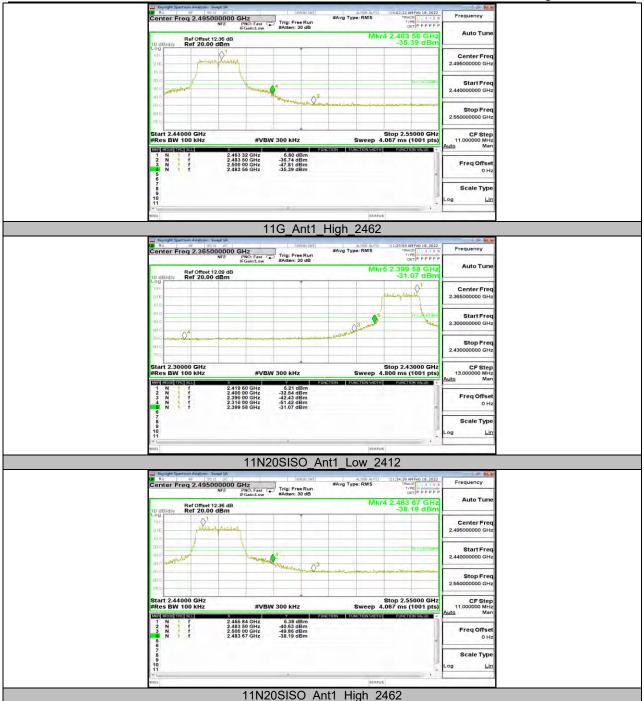


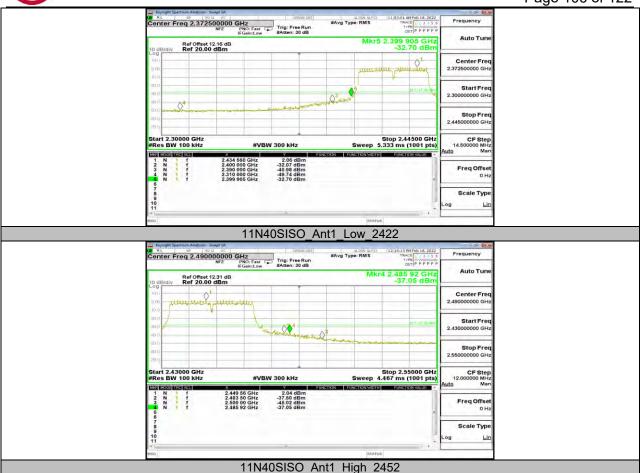

11.4.2. Test Graphs

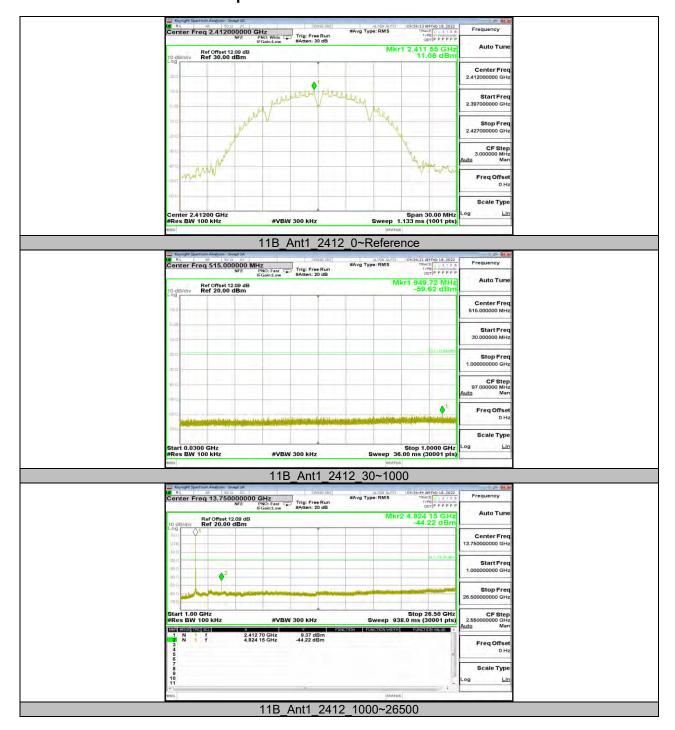
REPORT NO.: 4790283047-1 Page 101 of 122

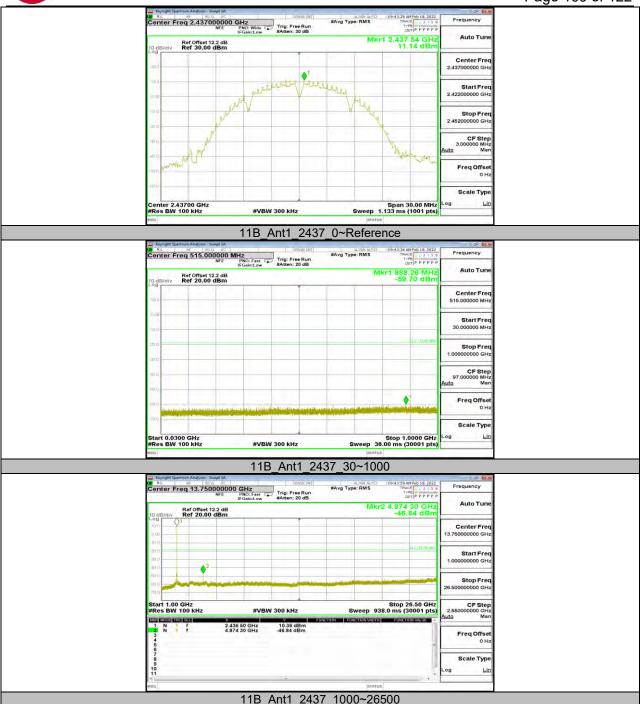


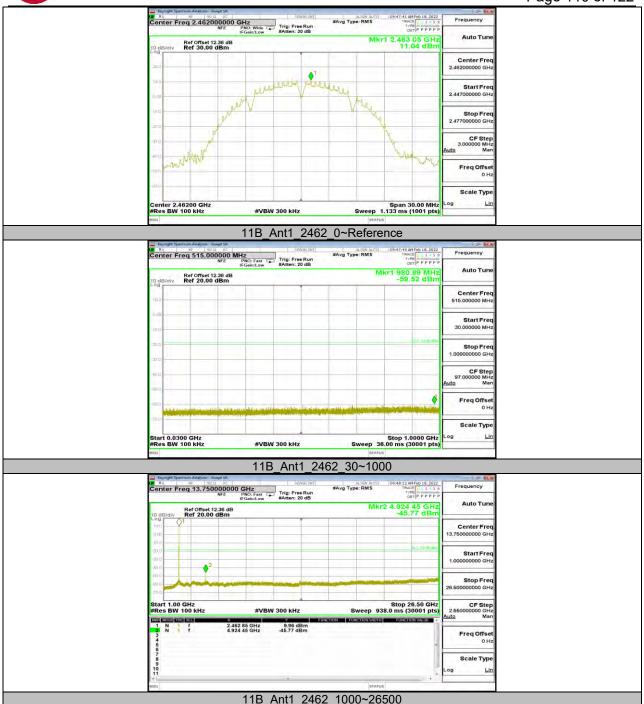
11.5. Appendix E: Band edge measurements 11.5.1. Test Result

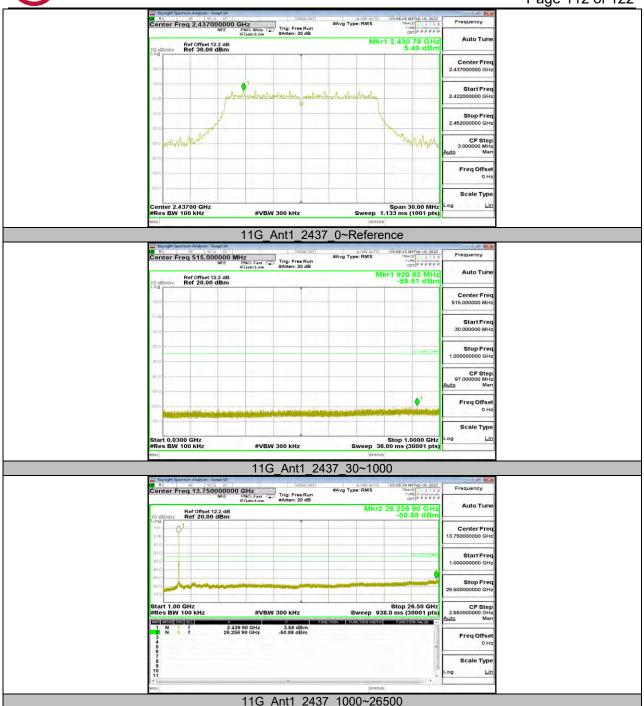

Test Mode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	Low	2412	11.07	-40.66	≤-18.94	PASS
IID	Anti	High	2462	11.19	-47.38	≤-18.81	PASS
110	440	Low	2412	6.18	-28.02	≤-23.82	PASS
11G	Ant1	High	2462	5.80	-35.39	≤-24.2	PASS
11N20SISO	Ant1	Low	2412	5.21	-31.07	≤-24.8	PASS
1111/203130	Anti	High	2462	5.38	-38.19	≤-24.62	PASS
11N40SISO	Ant1	Low	2422	2.06	-32.7	≤-27.94	PASS
1111403130	Ant1	High	2452	2.04	-37.05	≤-27.96	PASS

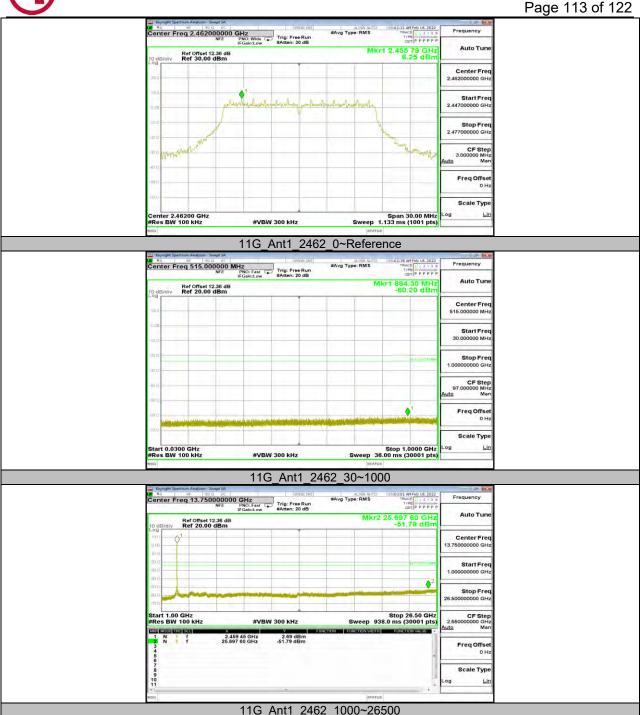

11.5.2. Test Graphs

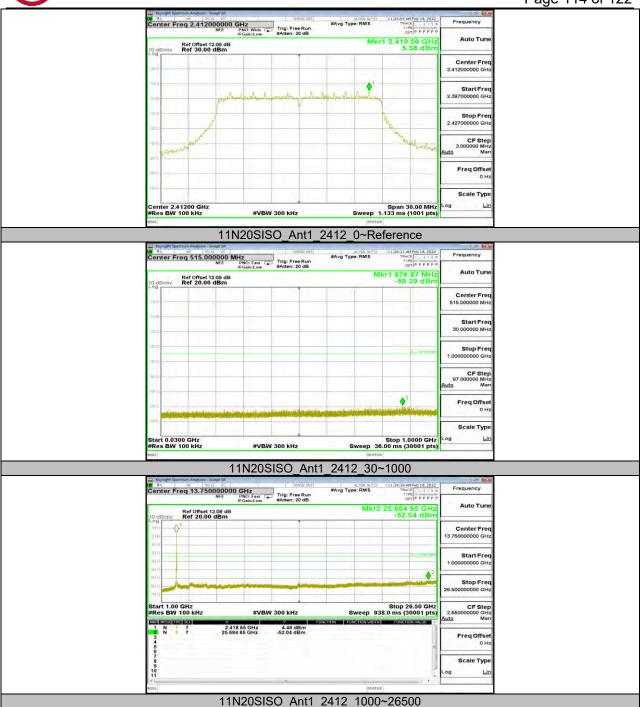


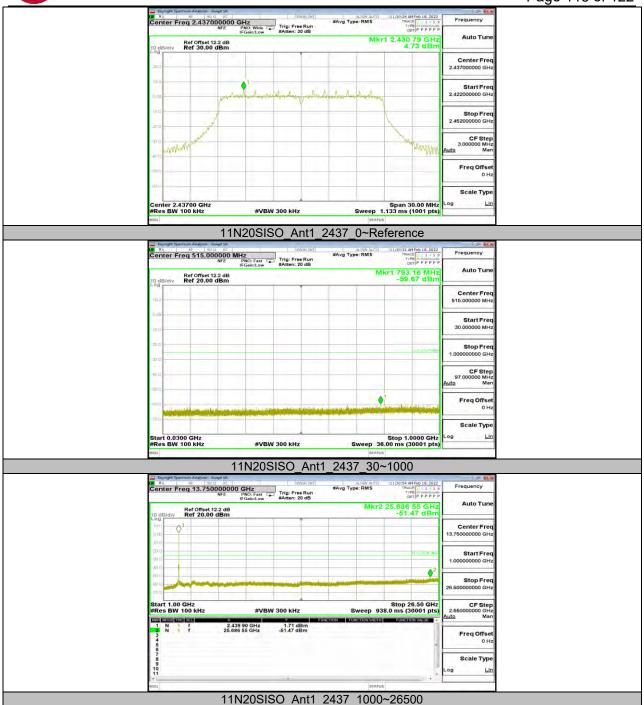

11.6. Appendix F: Conducted Spurious Emission 11.6.1. Test Result

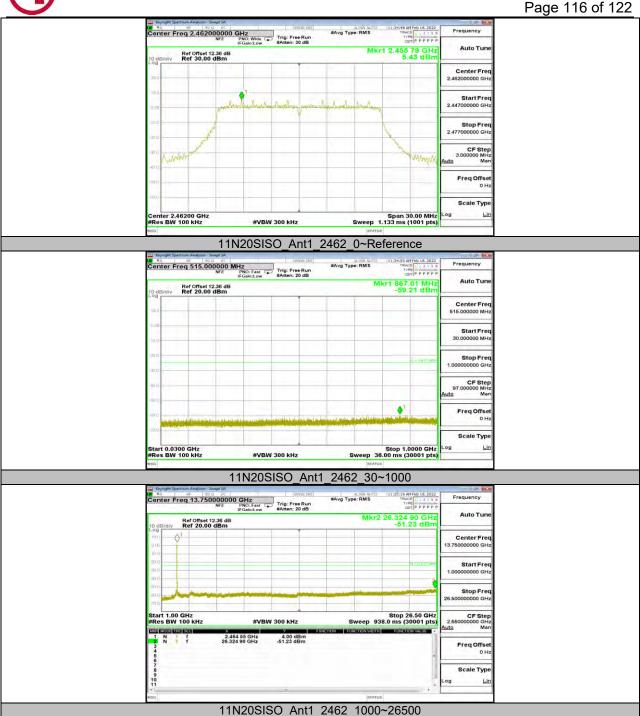

Test Mode	Antenna	Channel	FreqRange [Mhz]	Result [dBm]	Limit [dBm]	Verdict
		2412	Reference	11.06		PASS
			30~1000	-59.62	≤-18.94	PASS
			1000~26500	-44.22	≤-18.94	PASS
			Reference	11.14		PASS
11B	Ant1	2437	30~1000	-59.7	≤-18.86	PASS
			1000~26500	-46.85	≤-18.86	PASS
			Reference	11.04		PASS
		2462	30~1000	-59.52	≤-18.96	PASS
			1000~26500	-45.77	≤-18.96	PASS
			Reference	6.21		PASS
		2412	30~1000	-60.11	≤-23.79	PASS
			1000~26500	-52.58	≤-23.79	PASS
11G	Ant1		Reference	5.49		PASS
		2437	30~1000	-59.51	≤-24.51	PASS
			1000~26500	-50.88	≤-24.51	PASS
		2462	Reference	6.25		PASS
			30~1000	-60.2	≤-23.75	PASS
			1000~26500	-51.79	≤-23.75	PASS
	Ant1	2412	Reference	5.36		PASS
			30~1000	-59.39	≤-24.64	PASS
			1000~26500	-52.04	≤-24.64	PASS
		2437	Reference	4.73		PASS
11N20SISO			30~1000	-59.67	≤-25.27	PASS
			1000~26500	-51.47	≤-25.27	PASS
			Reference	5.43		PASS
		2462	30~1000	-59.21	≤-24.57	PASS
			1000~26500	-51.23	≤-24.57	PASS
			Reference	2.01		PASS
		2422	30~1000	-49.04	≤-27.99	PASS
			1000~26500	-51.67	≤-27.99	PASS
			Reference	1.63		PASS
11N40SISO	Ant1	2437	30~1000	-48.47	≤-28.37	PASS
			1000~26500	-51.67	≤-28.37	PASS
			Reference	2.08		PASS
		2452	30~1000	-47.79	≤-27.92	PASS
			1000~26500	-50.74	≤-27.92	PASS

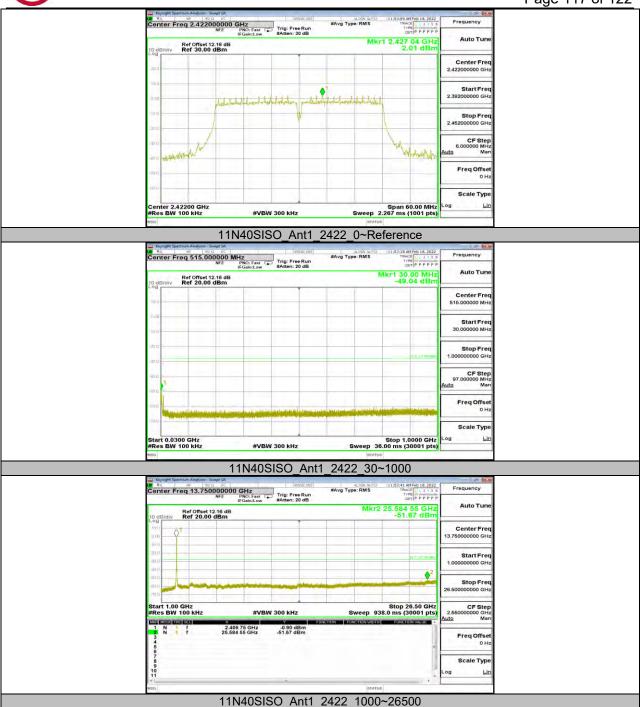

11.6.2. Test Graphs

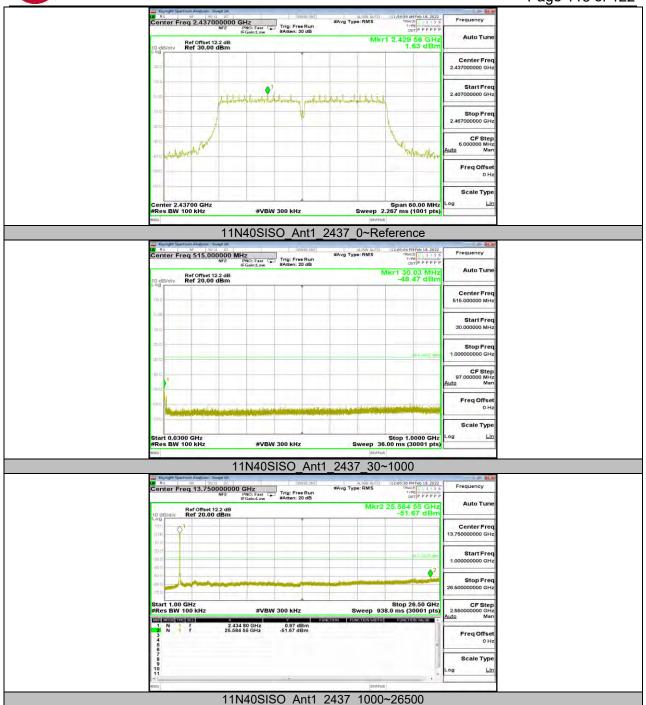


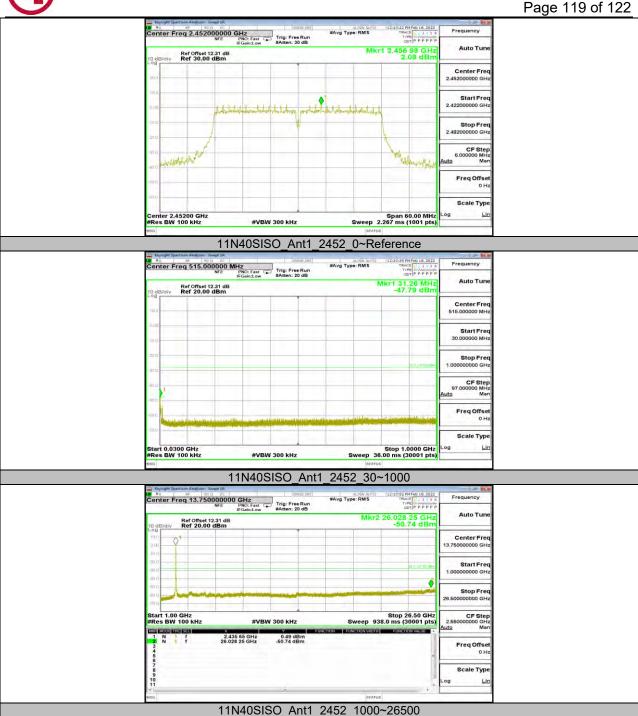


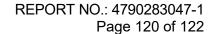












11.7. Appendix G: Duty Cycle 11.7.1. Test Result

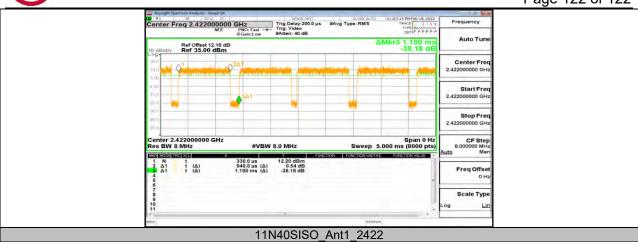
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
11B	12.42	12.53	0.9912	99.12	0.04	0.08	0.01
11G	2.06	2.23	0.9238	92.38	0.34	0.49	0.5
11N20SISO	1.92	2.07	0.9275	92.75	0.33	0.52	1
11N40SISO	0.94	1.1	0.8545	85.45	0.68	1.06	2

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time


If that calculated VBW is not available on the analyzer then the next higher value should be

used.

11.7.2. Test Graphs

END OF REPORT