FCC TEST REPORT			
	FCC ID: 2BEJH-KL-YD57		
Report No.	: <u>SSP24090268-1E</u>		
Prepared For	: Shenzhen Kula Technology Co.,Ltd.		
Product Name	: Power Bank		
Model Name	: <u>KL-YD57</u>		
FCC Rule	: FCC Part 15 Subpart C		
Date of Issue	: 2024-10-09		
Prepared By	: Shenzhen CCUT Quality Technology Co., Ltd.		
	CCUT		
Shenzhen CCUT Quality Technology Co., Ltd.			
	echnology Industrial Park, Yutang Street, Guangming District, Shenzhen, a; (Tel.:+86-755-23406590 website: www.ccuttest.com)		
	above client company and the product model only. It may not be duplicated permitted by Shenzhen CCUT Quality Technology Co., Ltd.		

Test Report Basic Information

Applicant	Shenzhen Kula Technology Co., Ltd. 1001, Building 6, Hongchuang Technology Center Xikeng Community,			
Address of Applicant:	Fucheng Street Longhua District Shenzhen, Guangdong China			
Manufacturer	Shenzhen Kula Technology Co., Ltd.			
Address of Manufacturer:	1001, Building 6, Hongchuang Technology Center Xikeng Community, Fucheng Street Longhua District Shenzhen, Guangdong China			
Product Name:	Power Bank			
Brand Name	KUULAA			
Main Model	KL-YD57			
Series Models	-			
Test Standard Date of Test Test Result	FCC Part 15 Subpart C ANSI C63.10-2013 2024-09-25 to 2024-10-09 PASSED			
Tested Engineer	Colin Chen (Colin Chen) Lieber Owyang (Lieber Ouyang)			
Project Manager	Lieber Ouyang (Lieber Ouyang)			
Authorized Signatory	Lahm Peng (Lahm Peng)			
	to the above client company and the product model only. It may not be			
this test report is only applicabl	ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in e to presented test sample.			

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	8
2. Summary of Test Results	9
3. Antenna Requirement	10
3.1 Standard and Limit	10
3.2 Test Result	10
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	11
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	15
5.3 Test Data and Results	
6. Occupied Bandwidth	26
6.1 Standard and Limit	26
6.2 Test Procedure	26
6.3 Test Data and Results	26

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-10-09	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Power Bank		
Trade Name:	KUULAA		
Main Model:	KL-YD57		
Series Models:	-		
	Input: 5V=3A, 9V=2.22A, 12V=1.67A (Type-C)		
Rated Voltage:	Output: Output: 5V=3A, 9V=2.22A, 12V=1.67A (Type-C)		
	Output: 5W, 7.5W, 10W 15W (Wireless)		
Power Adapter:	-		
Battery:	10000mAh (3.85V/38.5Wh)		
Hardware Version:	V1.0		
Software Version:	V1.0		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			

Wireless Specification	
Wireless Standard:	Wireless charging
Operating Frequency:	110.5kHz-205kHz
Modulation:	ASK
Antenna Gain:	0dBi
Type of Antenna:	Coil Antenna
Type of Device:	Portable Device Device Mobile Device

1.2 Test Setup Information

List of Test Modes					
Test Mode		Description		Remark	
TM1	W	Vireless charging 15W		-	
TM2	W	vireless charging 10W			-
TM3	W	vireless charging 7.5W			-
TM4	V	Wireless charging 5W			-
TM5	Wirele	ess charging 5W+Chargiing			-
Note: All mod	Note: All modes have been tested and only the worst mode Wireless charging 15W and Wireless charging				
5W+Chargiing	5W+Chargiing data is represented in the report.				
List and Detai	List and Details of Auxiliary Cable				
Description Length (cm) Shielded/Unshielded With/Without Ferrite					
		-	-		
-				-	
List and Details of Auxiliary Equipment					
Description Manufacturer Model Serial Number			Serial Number		
Dummy	y load	load YBZ		YBZ-001	N/A
Adap	oter	PISEN		TS-C137	6902957010559

1.3 Compliance Standards

Compliance Standards		
ECC Dout 15 Subport C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
All measurements contained in this	report were conducted with all above standards	
According to standards for test	methodology	
ECC Dout 15 Submout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
	American National Standard for Methods of Measurement of Radio-Noise Emissions	
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40	
	GHz.	
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed	
ANSI C65.10-2015	Wireless Devices	
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which		
result is lowering the emission, sho	uld be checked to ensure compliance has been maintained.	

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06	
		Radiated Emissio	ons			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06	
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06	
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02	
Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06	

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty	
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB	
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB	
	30MHz ~ 1GHz	±3.32 dB	
	1GHz ~ 18GHz	±3.50 dB	
	18 GHz ~ 40 GHz	±3.66 dB	
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %	

2. Summary of Test Results

FCC Rule	Description of Test Item	Result	
FCC Part 15.203	Antenna Requirement	Passed	
FCC Part 15.207	Conducted Emissions	Passed	
FCC Part 15.209	Radiated Emissions	Passed	
FCC Part 15.215(c)	Occupied Bandwidth	Passed	
Passed: The EUT complies with the essential requirements in the standard Failed: The EUT does not comply with the essential requirements in the standard N/A: Not applicable			

3. Antenna Requirement

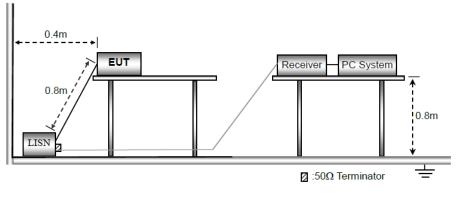
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an coil antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)									
(MHz)	Quasi-peak	Average								
0.15-0.5	66 to 56	56 to 46								
0.5-5	56	46								
5-30	60	50								
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz										
Note 2: The lower limit applies at the band edges										

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Based on all tested mode data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case TM5 as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test	Plots and Data of	f Conduct	ed Emissi	ons										
Teste	ed Mode:	1	M5											
Test	Voltage:	A	AC 120V/6	20V/60Hz										
Test	Power Line:	١	leutral											
Rem	ark:	V	Vith USB	charging										
90.0	dBuV													
80														
70														
									FCC Part15 CE-Class	s B QP				
60														
50	1								FCC Part15 CE-Class	s B_AVe				
40	1 Å													
	MMh 3			5	z									
30	2 4 March 4	~ www.hhuh	Analyneeniskees	where we have a second state of the	WWW.L.LA									
20	man t			and the law and the		MAR ALL	hand			peak				
10										AVG				
0														
-10														
	150	0.50	0		(MHz)		5.0	100		30.000				
No	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark					
1	* 0.2130	35.26	9.24	44.50	63.09	-18.59	QP	Р						
2	0.2130	14.36	9.24	23.60	53.09	-29.49	AVG	Ρ						
3	0.3300	24.01	9.39	33.40	59.45	-26.05	QP	Р						
4	0.3300	11.33	9.39	20.72	49.45	-28.73	AVG	P						
5	1.0635	23.91	9.43	33.34	56.00	-22.66	QP	P						
6 7	1.0635 1.9275	9.94 22.26	9.43 9.46	19.37 31.72	46.00 56.00	-26.63 -24.28	AVG QP	P P						
8	1.9275	7.91	9.46	17.37	46.00	-24.20	AVG	P						
9	4.4655	17.45	9.55	27.00	56.00	-29.00	QP	P	<u> </u>					
10		1.84	9.55	11.39	46.00	-34.61	AVG	P						
11		21.97	9.57	31.54	60.00	-28.46	QP	Ρ						
12	15.4410	5.12	9.57	14.69	50.00	-35.31	AVG	Ρ						

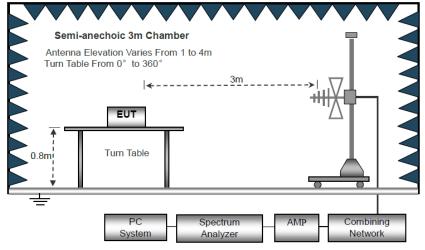
Test	Plo	lots and Data of Conducted Emissions													
Test	ed I	Mode:		TM5											
Test	Vol	tage:		AC 120V/6	120V/60Hz										
Test	Роч	wer Line:		Live											
Rem	ark	:		With USB	charging										
90.0	d	lBu¥													
80															
70															
60										FCC Part15 CE-	Class B_QP				
60															
50					5					FCC Part15 CE-	Class B_AVe				
40		1	3		×						11				
	n	mon	w.						9		μŇh.				
30			- man	multerthermol	a and the second se	and shall it	la dar ar	ասել			and the state of the				
20		~~~~			and ward ward	wheel to	PHAIMAN,	W44Mala	ΜМ			beak			
10												AVG			
0															
-10															
0.	150		0.5	600		(MHz)		5.0	00		30.000)			
No) .	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark					
1		0.2714	30.58	9.53	40.11	61.07	-20.96	QP	Р						
2		0.2714	11.90	9.53	21.43	51.07	-29.64	AVG	P						
3		0.3930	29.14	9.57	38.71	58.00	-19.29	QP	P P						
4	*	0.3930	11.14 33.81	9.57 9.58	20.71 43.39	48.00 56.00	-27.29 -12.61	AVG QP	P						
6		0.9330	14.52	9.58	24.10	46.00	-21.90	AVG	P			_			
7		1.3920	22.55	9.64	32.19	56.00	-23.81	QP	Р						
8		1.3920	14.35	9.64	23.99	46.00	-22.01	AVG	Ρ						
9		5.3970	20.22	9.76	29.98	60.00	-30.02	QP	P						
10		5.3970	2.65	9.76	12.41	50.00	-37.59	AVG	P						
11		14.6310 14.6310	27.03 4.79	9.72 9.72	36.75 14.51	60.00 50.00	-23.25 -35.49	QP AVG	P P						
	•	14.0010	1.13	5.12	10.71	00.00									

5. Radiated Emissions

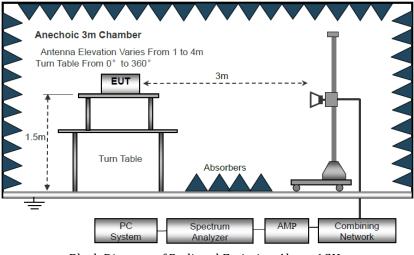
5.1 Standard and Limit

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

Frequency of Emission	Field Strength	Measurement Distance									
(MHz)	(micorvolts/meter)	(meters)									
0.009~0.490	2400/F(kHz)	300									
0.490~1.705 24000/F(kHz) 30											
1.705~30.0 30 30											
30~88	100	3									
88~216	150	3									
216~960 200 3											
Above 960 500 3											
Note: The more stringent limit applies at transition frequencies.											


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

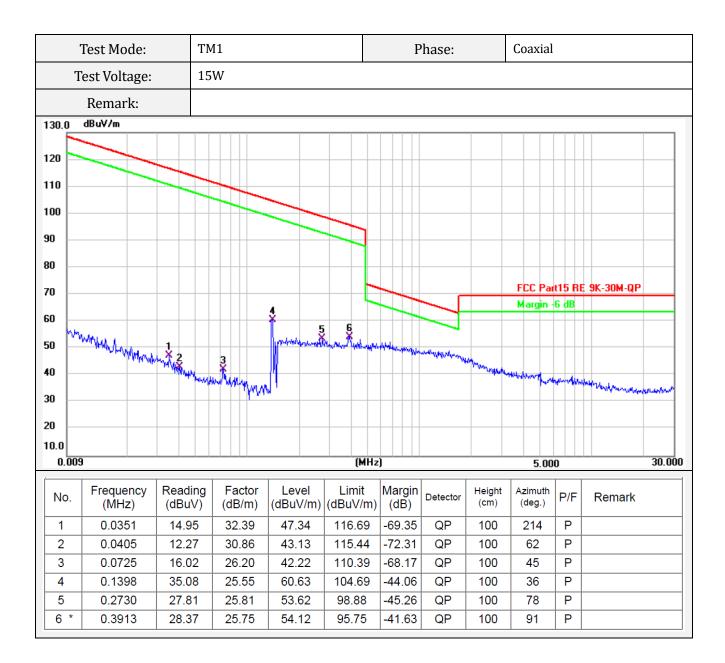
Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range below 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

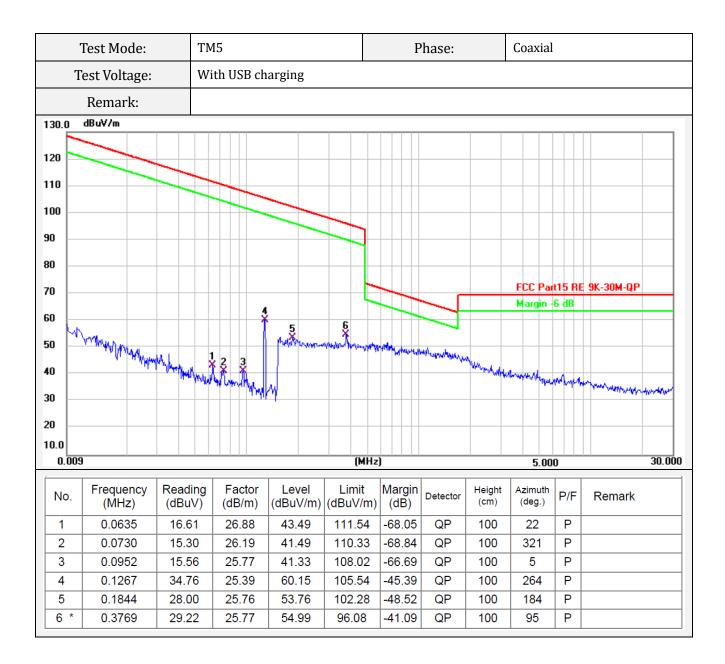
b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

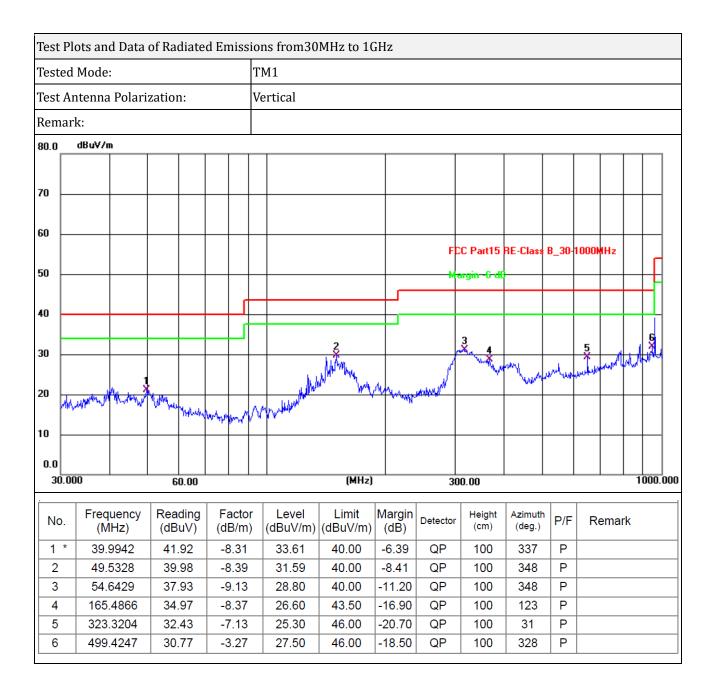

e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

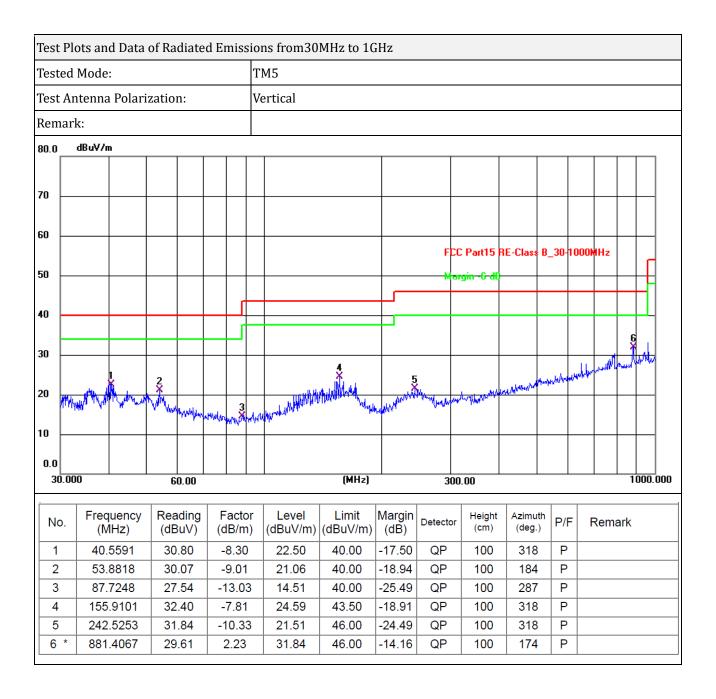
f) For the actual test configuration, please refer to the related item - EUT test photos.


5.3 Test Data and Results

Based on all mode tested data, the EUT complied with the FCC Part 15.209 standard limit for a wireless device, and with the worst case TM1 and TM5 as below:

Test l	Data of Radiated	d Emissio	ns from9k	Hz to 30M	Hz							
	Test Mode:	TM	1			Ph	ase:	C	Coplaner			
	Test Voltage:	15V	V									
	Remark:											
130.0	dBu¥/m											
120												_
110												_
100												_
90												
80												
70							_				E 9K-30M-QP	
60				3					Margin -	6 dB		_
50	www.phale.traylotrawl			antren -	6							
50	mary and to when the	maken	1		6 Nacional Antonio	and the second sec	man the start with	mm				
40		and the second	within Smy	ſI				monore	Mulumpun	winder	May Very annound	ي. المريانية المريانية المريانية الم
			.									
20												
10.0 0.0	109				(MHz	2			5.00			30.000
i												
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark	
1	0.0724 16.02		26.20	42.22	110.40	-68.18	QP	100	136	Ρ		
2	0.0995	12.13	25.72	37.85	107.64	-69.79	QP	100	91	P		
3	0.1398	35.08 28.10	25.55 25.75	60.63 53.85	104.69 101.92	-44.06 -48.07	QP QP	100 100	154 84	P P		
4	0.1922	28.10	25.75	53.85	98.88	-48.07	QP QP	100	84 325	P P		
6,		26.64	25.76	52.02	95.85	-40.20	QP	100	5	P		
	0 0.3070 20		1			1	~		-			


Test Mode: TM5 Phase: Coplaner Test Voltage: With USB charging: Semark: Semark: Remark: Semark: Semark: Semark: Semark: Semark: 100 BdW/M Semark: Semark: Semark: Semark: Semark: 100 Semark: S	Test D	Test Data of Radiated Emissions from9kHz to 30MHz											
Remark: 130.0 dBuV/m 100 dBuV/m 100 0 90 1		Test Mode:	TM	5			Ph	ase:	C	oplaner			
130.0 dBW//m 120 0 <t< td=""><td></td><td>Test Voltage:</td><td>Wit</td><td>h USB cha</td><td>arging</td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Test Voltage:	Wit	h USB cha	arging	·							
120 100 <td></td> <td>Remark:</td> <td></td>		Remark:											
II0 FCC Part15 RE 9K-30M-QP 60 60 70 60 60 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	130.0	dBu¥/m											_
100 90 80 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 7	120												
90 80 70 60 60 60 60 60 60 60 60 60 6	110												_
80 FEC Part15 RE 9K-30M-QP 60<	100												
No. Frequency (MHz) Reading (BBWV) Factor (BBWV) Level (BBWV) Limit (BBWV) Margin (BBWV) Petector (BBWV) Height (CBWV) Azimuth (CBWV) P/F Remark 1 0.0352 18.29 32.37 50.66 116.66 -66.00 QP 100 71 P 2 0.0635 18.61 26.88 45.49 111.54 -66.05 QP 100 81 P 3 0.0952 17.56 25.77 43.33 108.02 -64.69 QP 100 348 P 4 0.1267 35.76 25.39 61.15 105.54 -44.39 QP 100 20 P	90 -												_
No. Frequency (MHz) Reading (dBuV) Factor (dBm) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector (mm) Height (deg.) P/F Remark 1 0.0352 18.29 32.37 50.66 116.66 -66.00 QP 100 71 P 2 0.0635 18.61 26.88 45.49 111.54 -66.05 QP 100 81 P 3 0.0952 17.56 25.77 43.33 108.02 -64.69 QP 100 50 P 4 0.1267 35.76 25.39 61.15 105.54 -44.39 QP 100 348 P 5 0.2714 25.52 25.81 51.33 98.93 -47.60 QP 100 20 P	80 -												
60 1	70					\						9K-30M-QP	
50 1 5 5 1 1 5 5 40 30 3 4 <td>60 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Margin -</td> <td>6 dB</td> <td></td> <td>_</td>	60 -									Margin -	6 dB		_
30 20 10.0 <th< td=""><td>50</td><td>mourn</td><td>1</td><td></td><td>hell</td><td>6 X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	50	mourn	1		hell	6 X							
30 20 10.0 <th< td=""><td>40</td><td>in the work</td><td>mpth have</td><td>X 3</td><td></td><td></td><td>(TITE) ANALYA</td><td>weight and which the state of the</td><td>manual</td><td></td><td></td><td></td><td></td></th<>	40	in the work	mpth have	X 3			(TITE) ANALYA	weight and which the state of the	manual				
20 10.0 <	30		Iter Wolks	the Constitution	W					manthalite	why	an war war war war	and the second
ID.0													
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector Height (cm) Azimuth (deg.) P/F Remark 1 0.0352 18.29 32.37 50.66 116.66 -66.00 QP 100 71 P 2 0.0635 18.61 26.88 45.49 111.54 -66.05 QP 100 81 P 3 0.0952 17.56 25.77 43.33 108.02 -64.69 QP 100 50 P 4 0.1267 35.76 25.39 61.15 105.54 -44.39 QP 100 348 P 5 0.2714 25.52 25.81 51.33 98.93 -47.60 QP 100 20 P													
NO. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) P/F Reffact 1 0.0352 18.29 32.37 50.66 116.66 -66.00 QP 100 71 P 2 0.0635 18.61 26.88 45.49 111.54 -66.05 QP 100 81 P 3 0.0952 17.56 25.77 43.33 108.02 -64.69 QP 100 50 P 4 0.1267 35.76 25.39 61.15 105.54 -44.39 QP 100 348 P 5 0.2714 25.52 25.81 51.33 98.93 -47.60 QP 100 20 P	0.0	09				(MHz	:]			5.00	0		30.000
2 0.0635 18.61 26.88 45.49 111.54 -66.05 QP 100 81 P 3 0.0952 17.56 25.77 43.33 108.02 -64.69 QP 100 50 P 4 0.1267 35.76 25.39 61.15 105.54 -44.39 QP 100 348 P 5 0.2714 25.52 25.81 51.33 98.93 -47.60 QP 100 20 P	No.							Detector			P/F	Remark	
3 0.0952 17.56 25.77 43.33 108.02 -64.69 QP 100 50 P 4 0.1267 35.76 25.39 61.15 105.54 -44.39 QP 100 348 P 5 0.2714 25.52 25.81 51.33 98.93 -47.60 QP 100 20 P	1			32.37	50.66	116.66	-66.00	QP	100	71	Р		
4 0.1267 35.76 25.39 61.15 105.54 -44.39 QP 100 348 P 5 0.2714 25.52 25.81 51.33 98.93 -47.60 QP 100 20 P													
5 0.2714 25.52 25.81 51.33 98.93 -47.60 QP 100 20 P													
		0.3771	29.22	25.81	54.99	96.93	-41.08	QP	100	39	P		


Note:

Pre-scan in the all of mode, the worst case in of was recorded. Limit dBuV/m @3m = Limit dBuV/m @300m+ 80 Limit dBuV/m @3m = Limit dBuV/m @30m + 40 Margin = Reading - Limit.

Test	st Plots and Data of Radiated Emissions from30MHz to 1GHz																		
Tested Mode:								M1											
Test	An	tenna	Polari	zatio	n:		H	Horizontal											
Rem	ark	::																	
80.0	_	lBuV/m	1															_	
70																			
60												C Part15	DE Class	0 20	1000		_	_	
50							_					argin -6 dl		D_3U-		1112		f	
40																4	5	×	
30													3	mult	wither	MAN	Ť	A.	
20	MALA	anan pod	un and h	1 Milian	d market	num	ничици	prophylamologyman	2. hr/h.n.Mundun.h	un states and	volument	the the second	When a provide the second	and the second se					
0.0).000)		6	0.00				(MHz)		30)0.00					100	0.000	
					0.00														
No) .	Frequency (MHz)Reading (dBuV)Fact (dB/n)				Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	R	emai	ĸ				
1		53.5052 27.40 -8.96			18.44	40.00	-21.56	QP	100	228	P								
2		154.2786 26.94 -7.79 452.7197 27.20 -4.45			19.15	43.50	-24.35	QP	100	53	P								
3			87.8513 31.69 1.36			22.75 33.05	46.00 46.00	-23.25 -12.95	QP QP	100	32 321	P P	-						
4			3214		.09		30 15	33.03	46.00	-13.86	QP	100	248	P	-				
6			1623		.04		12	37.16	54.00	-16.84	QP	100	279	P					

Test	st Plots and Data of Radiated Emissions from30MHz to 1GHz																		
Tested Mode:								М5											
Test	An	tenna	Polari	zatio	n:		Н	Horizontal											
Rem	ark	::																	
80.0	_	lBuV/m	1														_	_	
70																			
60							_											-	
50							_			+		CC Part15 argin - G-d	HE-Class	B_30-		Hz		f	
40																4	5	×	
30													3 Martinet	ude	with	w.p.M	, and a	Ala,	
20 10	MHAN	alasa sada	har and a	1 Martindari	dreating	mm	ингира	er white the second	2 turkan Antonika An	un et aller and	helper Aleman	the the second	avren all the and						
0.0).000			6	0.00				(MHz)		30)0.00					100)0.000	
,		-			0.00				()			0.00							
No) .	Frequency Reading Fact (MHz) (dBuV) (dB/n					Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)			ĸ				
1		53.5052 27.40 -8.96			18.44	40.00	-21.56	QP	100	228	P								
2		154.2786 26.94 -7.79					-24.35	QP	100	53	P	-							
3			452.7197 27.20 -4.45 787.8513 31.69 1.36			22.75 33.05	46.00 46.00	-23.25 -12.95	QP QP	100	32 321	P P	-						
4			3214	29.99 2.15			33.05	46.00	-12.95	QP QP	100	248	P	-					
6			1623		.04		12	37.16	54.00	-16.84	QP	100	240	P					

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: For 9kHz-30MHz, Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

Note 4: Level = Reading + Factor, Margin = Level – Limit.

6. Occupied Bandwidth

6.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

6.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

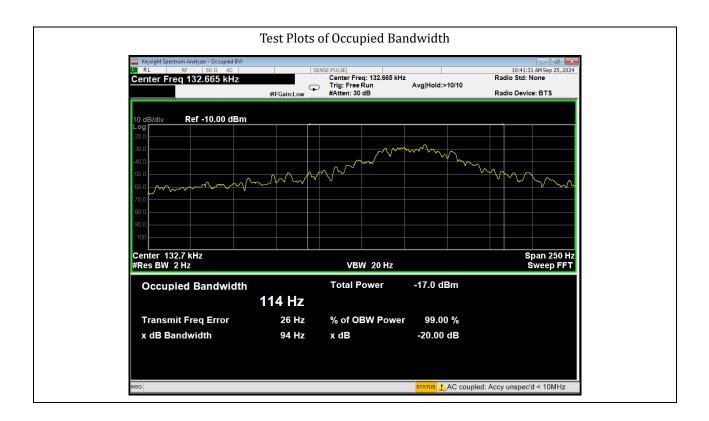
3) Set RBW = 1% of the 20 dB bandwidth, VBW = RBW.

4) Set Sweep = Auto, Detector function = peak, Trace = max hold.

5) Set a reference level on the measuring instrument equal to the highest peak value.

6) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level.

Record the frequency difference as the emission bandwidth.


All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

Test Setup Block Diagram

6.3 Test Data and Results

Test Frequency	20dB Bandwidth	99% Bandwidth
132.7kHz	94Hz	114Hz

***** END OF REPORT *****