

75 E I

8551

WS CT

W5C1

W/5/P

WSET

WSET

W5 C1

WSET

WSET

WSET

WSE

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

142576

WSE

AV/5121

WSEI

151

WSE

115/14

WSC1

TEST REPORT

WSLT

WSET

WSE

W/5/C

1696

WSEI

WSET

FCC ID: 2AXYP-OTW-323P-L Product: True Wireless Earbuds WSCT Model No.: OTW-323P Trade Mark: oraimo Report No.: WSCT-ANAB-R&E250300014A-BT Issued Date: 14 March 20255CT

Issued for: 27

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

TEL: +86-755-26996192

FAX: +86-755-86376605

AWSET

Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification & Testing Group (Shenzhen) Co., Ltd This document may be altered or revised by World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Page 1 of 75

WSET

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District. Shenzhen City, Guangdong Province, China TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com Work

深圳世标检测认证股份有限公司 World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd

VS CI

WSET

WSE7

WSET

75

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

TABLE OF CONTENTS

WSET

WS CT

	WSCT WSCT WSCT WSCT	WSCT
\sim		
<u></u> 2.	Test Result Summary	4
wsc73.	EUT Description	5
4.	Genera Information	7
	4.1. TEST ENVIRONMENT AND MODE	7
/	4.2. DESCRIPTION OF SUPPORT UNITS	
5.	Facilities and Accreditations	8
\wedge	5.1. FACILITIES	8
WSET	5.2. ACCREDITATIONS	
	5.3. MEASUREMENT UNCERTAINTY	9
	5.4. MEASUREMENT INSTRUMENTS	10
6.	Test Results and Measurement Data	11/SET
\bigvee	6.1. ANTENNA REQUIREMENT	11
\wedge	6.2. CONDUCTED EMISSION	12
WSET	6.3. CONDUCTED OUTPUT POWER	14
	6.4. 20DB OCCUPY BANDWIDTH	21
	6.5. CARRIER FREQUENCIES SEPARATION	28
/	6.6. HOPPING CHANNEL NUMBER	35 5 CT
	6.7. DWELL TIME	38
X	6.8. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
WSET	6.9. CONDUCTED BAND EDGE MEASUREMENT	
	6.10. CONDUCTED SPURIOUS EMISSION MEASUREMENT	
	6.11. RADIATED SPURIOUS EMISSION MEASUREMENT	
7.	Test Setup Photographs	. 75

ADD: Building A-B. Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-28996192 28996053 29996144 FAX: 0086-755-86376805 E-mail: fengbing wang@wscl-cert.com Http://www.wscl-cert.com World Standard zotion Certification & Testing Group(Shore)

WSET

WSET

WSET

WSC

WSE

WSET

WSET

WSEI

iona Tes

WSET

WSET

WSCT

WSE

N	VSET	WSET WSET WSET
<u>ws c</u>	World Standa	ardization Certification & Testing Group (Shenzhen) Co.,Itd.
WS Report N	O WSCT-ANAB-R	&E250300014A-BT WSCT WSCT
	Test Certif	
Pr	oduct:	True Wireless Earbuds WSCT WSCT WSCT
М	odel No.:	OTW-323P
	ditional W51	oraimo WSCT WSCT WSCT
	odel: oplicant:	ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
WSCT Ma	anufacturer: WSL	ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Da	ate of receipt:	03 March 2025
Da	ate of Test:	04 March 2025 ~ 13 March 2025 W5CT W5CT
St	oplicable andards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
		nent has been tested by World Standardization Certification & Testing
teci pro	hnical standards duct system, wh	Co., Ltd. and found compliance with the requirements set forth in the s mentioned above. The results of testing in this report apply only to the nich was tested. Other similar equipment will not necessarily produce the p production tolerance and measurement uncertainties.
X	\rangle	
WSLT	WS	CT WSCT WSCT WSCT
	Tested By:	Wang Xiang Checked By: Circhi 9
X	WSET WS	(Wang Xiang) WSET (Qin Shuiquan) WS UZSET WSET WSET WSET
WSET Ap	proved By:	(Li Huaibi) Date: March 2025
()	WSET	WSET WSET WSET WSET
WSET	WS	WSCT Str

ADD: Bulliding A-B.Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376606 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standardization Certification& Testing Group (Shenzhen) Co.,Ltd

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

VS ET

WSCT

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

WSET

WSCT[®]

WSET

Member of the WSCT Group (WSCT SA

Test Result Summary 2.

2	harrow harrow		hand			
	Requirement	CFR 47 Section	Result	WSCT		
	Antenna Requirement	§15.203/§15.247 (c)	PASS			
WSET	AC Power Line Conducted Emission	WSET §15.207 WSET	N/A	\checkmark		
	Maximum conducted output		PASS	WSET		
WSET	20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS			
	Carrier Frequencies Separation	§15.247 (a)(1)	PASS	\mathbf{i}		
	Hopping Channel Number	§15.247 (a)(1)	PASS	WSET		
\sim	Dwell Time	§15.247 (a)(1)	PASS			
WSET	Radiated Emission	§15.205/§15.209 §2.1053, §2.1057 W5 C7	PASS			
	Band Edge	§15.247(d) §2.1051, §2.1057	PASS	WISTER		
Note: 1. PASS: Test item meets the requirement. 2. Fail: Test item does not meet the requirement. 3. N/A: Test case does not apply to the test object.						
	4. The test result judgment is decide		WSET	WSET		
WISET WISET WISET WISET						
	WSET	$\langle X \rangle$	\times	7650		
WISET	WSET	WSET WSET	WSET Contraction	Group Shenzhen		
	oll'an Industrial Park.No.58 and 60, Tangtou Avenue, Shiyan S	treet, Bao'an District, Shenzhen City, Guangdong Province, China	朝世伝論測认证股份有限公司	P11-02		

Page 4 of 75

WSET

WSET

WSET

WSCT® World

WS

115

NS

75 **Г**

VSE

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

3. EUT Description

	Product Name:	True Wireless Earbuds	VSCT
/	Model :	OTW-323P	
	Trade Mark:	oraimo	/
LI	Frequency Range:	2402-2480MHz(TX/RX)	\checkmark
	Channel Separation:	1MHz	\times
	Number of Channel:	797 WSET WSET	VSET
(Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK	
C 7	Antenna Type	Chip Antenna	/
	Antenna Gain:	1,73dBi	$\overline{}$
	Operating Voltage	Li-ion Polymer Battery: 451012 Nominal Voltage: 3.7V Rated Capacity: 35mAh/0.1295Wh Charging Box: 802035 Nominal Voltage: 3.7V Capacity:500mAh/3.7V/1.85Wh	VSET
-1	Remark:	N/A.	\checkmark

WSE

WSET

WSE

15 E T

WSET

WSET

WSEI

WSE

WSET

WSEI

15 E

WSE

WSET

W5 E7

WSE

ona Tes

WSET

NS ET

Note:

WSE

WSET

WSCI

- 1. PASS: Test item meets the requirement. ws cr
- 2. Fail: Test item does not meet the requirement.

WSC

W5 []

W5[[1

WSCI

- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

WSCI

ADD: Building A-B.Baoli'an Industrial Park No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China TEL: 0086-755-28996192 29990053 29990144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard Internet Complexity Standard Internet Complexit

WSET

W5C

15 F

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., Itd.

WSET

WSCI

WSET

WSF

WSEI

WSET

150

WSE

WSE1

WSE

iona Tes

WSET

WSE

Report No.: WSCT-ANAB-R&E250300014A-BT

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK, 8DPSK

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	W05 C7	2402MHz	V20 [7	2422MHz	40	2442MHz	605 C	2462MHz
1	1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
		X		X		X		\mathbf{X}
	10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
	11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	\sim		X					
	18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
	w19_77	2421MHz	39.67	2441MHz	59	2461MHz	WSC.	7

WSET

WSET

WSE

WSE

WSE

WSET

WSET

WSC

WSET

WSE

WSE

15 E

WSE

WSET

WSEI

WSE

WSET

Remark: Channel 0, 39 &78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

WSE

WSF

WSCI

WSC

WSCI

WSCI

WSET

WSCI

WSC

WSCI

ding A-B, Baoli'an Industrial Park, No.58 a Shenzhen City, Gr OM SHE 圳世标检测认证股份有限公 TEL 0088-755-26996192 26996053 26996144 FAX:0086-755-86376605 in (WSC

Page 6 of 75

polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

C 7	Equipment	Model No.	Serial No.	FCC ID	Trade Name
	\times	\times	\times	1	Χ Ι

Note:

All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
 Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

ADD: Building A-B. Baoli'an Industrial Park No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世家檢測认正股份有限公司

Page 7 of 75

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

15 E

re r

χ-

WSE

N5 [

WSE

Report No.: WSCT-ANAB-R&E250300014A-BT

5. Facilities and Accreditations

5.1.Facilities

151

W5E

8102 28008053 28008144

All measurement facilities used to collect the measurement data are located at

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District,

Shenzhen City, Guangdong Province, China.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

re r

V5 F

Page 8 of 75

ANAB - Certificate Number: AT-3951

re r

75

75 E

FAX:0086-755-8637680

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB).Certification Number: AT-3951

World Standardization Certification & Testing Group (Shenzhen)Co., ltd.

Report No.: WSCT-ANAB-R&E250300014A-BT

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %

WSE

confidence of approximately 95 %.				
	No.	Item	MU	
WSET	٦	Conducted Emission Test WSCT WSCT	±3.2dB/5_7	$ \longrightarrow $
	2	RF power, conducted	±0.16dB	\times
	3	Spurious emissions, conducted	±0.21dB	WSET
	4	All emissions, radiated(<1GHz)	±4.7dB	
\wedge	5	All emissions, radiated(>1GHz)	±4.7dB	
WSET	6	Temperature WSCT WSCT	±0.5°CY5C7	$ \longrightarrow $
	7	Humidity	±2.0%	\times
	wst	T WSET WSET WS		WSET
$\overline{}$		\times	$\overline{\mathbf{X}}$	
WSET		WSET WSET WSET	WSET	/
200267	\mathbf{X}			\checkmark
	wst	T WSET WSET WS	ET	WSET
$\overline{\mathbf{X}}$				
WSET		WSET WSET WSET	WSET	/
	\mathbf{X}			$\overline{\mathbf{X}}$
	wst	T WSET WSET WS	T	WSET
\mathbf{X}		\times \times \times		
WSET		WSET WSET WSET	WSET	/
	$\overline{}$			\bigtriangledown
	wst	T WSET WSET WS	alione	
$\overline{\mathbf{V}}$			55	Co Group
WSET		WSET WSET WSET	WSI T	henzhen
		Park No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China 🗐 💷 🖬 👘 👘	N认证股份有限公司	ATTOD

TEL:0086-755-26996192 26996053 26996144 FAX: 0086-755-86376805 E-mail: fer Member of the WSCT Gr

15 11

Page 9 of 75

WSET

75 E

WSCT[®]

W5

175

W 5

115

WS ET

WSC

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250300014A-BT

5.4. MEASUREMENT INSTRUMENTS

WSET

							\wedge
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	SET
X	Test software	< -	EZ-EMC	CON-03A	-	X	
	Test software		MTS8310	WETT	- /		
	EMI Test Receiver	R&S	ESCI	100005	11/05/2024	11/04/2025	\checkmark
	LISN	AFJ	LS16	16010222119	11/05/2024	11/04/2025	\times
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2024	11/04/2025	SET
<	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2024	11/04/2025	
[Coaxial cable	Megalon	LMR400	N/A	11/05/2024	11/04/2025	
	GPIB cable	Megalon	GPIB	N/A	11/05/2024	11/04/2025	\checkmark
	Spectrum Analyzer	R&S	FSU	100114	11/05/2024	11/04/2025	$\overline{\ }$
_	Pre Amplifier	H.P.CT	HP8447E 57	2945A02715	11/05/2024	11/04/2025	SET
/	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2024	11/04/2025	
	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	07/29/2024	07/28/2025	
[]	9*6*6 Anechoic	CT - V	ISET	WSET	11/05/2024	11/04/2025	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2024	11/04/2025	\times
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2024	11/04/2025	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2024	11/04/2025	261
K	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R	$\overline{}$
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2024	11/04/2025	$\overline{\ }$
_	Loop Antenna	EMCO	6502 11 5 4	00042960	11/05/2024	11/04/2025	SET
/	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2024	11/04/2025	
1	Power meter	Anritsu	ML2487A	6K00003613	11/05/2024	11/04/2025	
Ľ	Power sensor	Anritsu	MX248XD	WSLIN	11/05/2024	11/04/2025	-
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2024	11/04/2025	X
						/	

WSLT

WSET

ADD: Building A-B.Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-28998192 28998053 28998144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard collon Certification& Testing Group (WSCT SA)

WSE

YS ET

Page 10 of 75

WSE

WSE

WSET

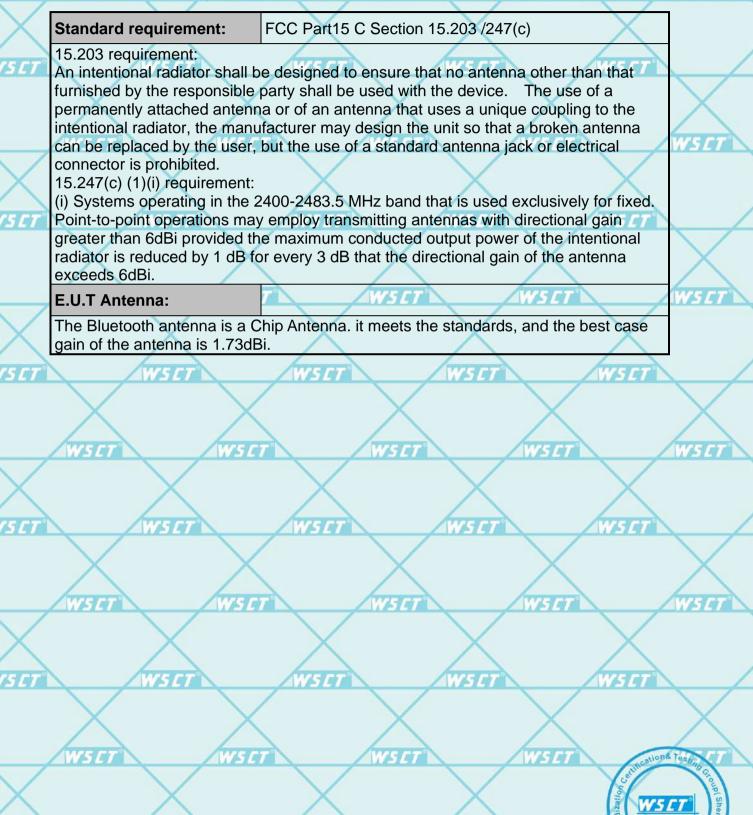
WSET

15 E

ons T

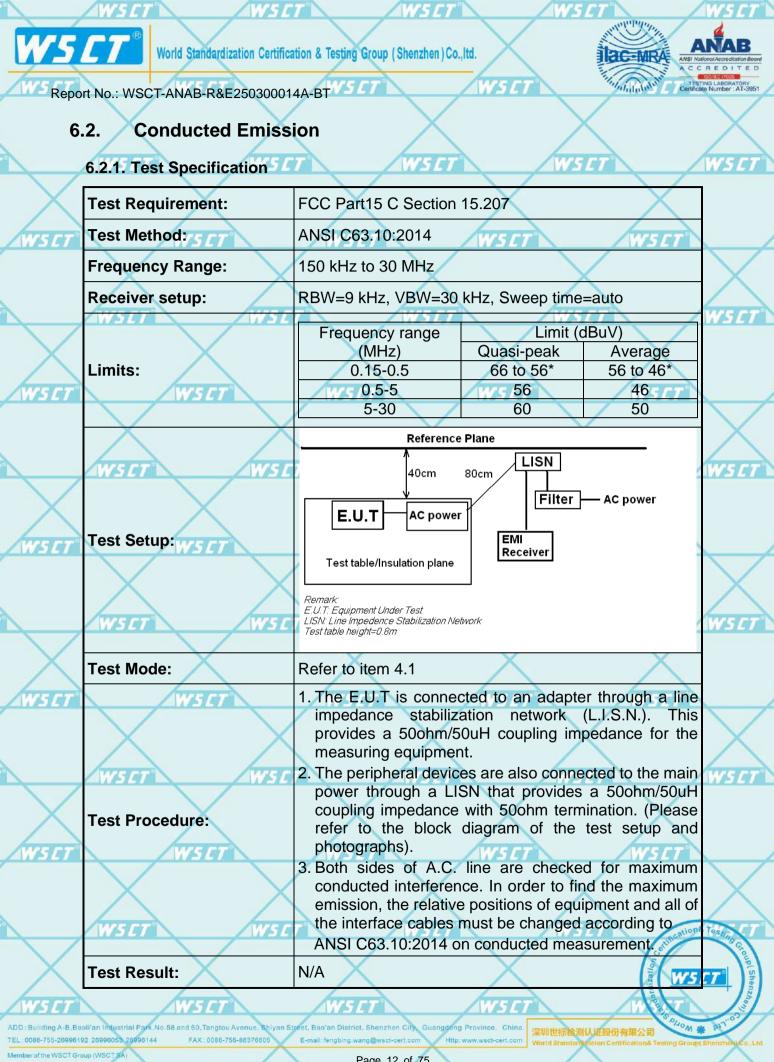
WSET

IS ET


WSET

WSC

Report No.: WSCT-ANAB-R&E250300014A-BT


6. Test Results and Measurement Data

6.1.//s Antenna requirement

WSET

ADD: Building A-B. Baoli'an Industrial Park. No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China.

Page 12 of 75

NSC

2.57

15 F

World Standardization Certification & Testing Group (Shenzhen)Co., ltd.

15117

WSE

V5 E

Report No.: WSCT-ANAB-R&E250300014A-BT

6.2.2. Test data

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is so read worst.

WSE

WSC

WSC

15 T

WSE

WSC

W51

WSE1

WSE

WSE

WSE

WSE

78

WSE

ion& Tes

WSE

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

WSE

15 E

WSE7

WSE

WSE

WSET

15 F

NS E

Test data

WSET

WSE

WSET

WSE

WSE

Note: EUT powered by battery not applicable

WSCI

/5*[*

WSE

WSE

WSE

WS CT

WSC

NSC

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26998192 26998053; 20990144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard rotion Certification& Testing Groupt Sher

17

NSE

WSET

WSE1

WSC1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

6.3. Conducted Output Power

6.3.1. Test Specification

X	X		
	Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
5 <i>CT</i> 1	Test Method:	ANSI C63.10:2014	
T	Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.	<u> </u>
_	Test Setup:	Spectrum Analyzer	WISTER
X	Test Mode:	Transmitting mode with modulation	
	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.	WISTER
	Test Result:	PASS	\bigtriangleup
	/WSLT /WSL		WSLI

WSET

WS CT

WSET

WSET

ADD: Building A-B, Baoli'an Industrial Park No.58 and 60, Tangtou Avenue, Shiyan Steet, Bao'an District, Shenzhen City, Guangdong Province, Chine, TEL: 0086-755-28998053 269980144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard Internet City Group (WSCT SA)

WSET

WSET

WSEI

WSET

WSE

WSC

15 E

WSE

ona Tes

WSET

WSET

WSET

WSCT®

W's

11/

W5C

WS ET

47**E**

WSET

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

15 E T

WSE

tiona Test

WSET

WSET

WSE

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

6.3.2. Test Data

WSET

	GFSK mode						
$\left<$	Test channel	Maximum conducted output power (dBm)	Limit (dBm)	Result			
	Lowest	-1.01	21	PASS			
5 <i>CT</i> °	Middle	-0.21	21	PASS			
	Highest	-0.62	21	PASS	\mathbf{X}		
		horas la			wsc		
-/	Pi/4DQPSK mode						
\times	Test channel	Maximum conducted output power (dBm)	Limit (dBm)	Result			
5 <i>CT</i> °	Lowest	-0.16527	215 [7]	PASS CT			
	Middle	0.65	21	PASS	\searrow		
	Highest	0.21	21	PASS			
- /	AWSET	WSET	SET W		WSE		

WSET"

WSET

	8DPSK mode						
	Test channel	Maximum conducted output power (dBm)	Limit (dBm)	Result			
	Lowest	-1.02	21	PASS	7		
	Middle	-0.21	21	PASS			
_	Highest	wscr -0.59	21	PASS			
					-		

WSET

WSET

WSE7

75 E

WSE1

W5E

WSET

WSET

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China.

WSET

WSET

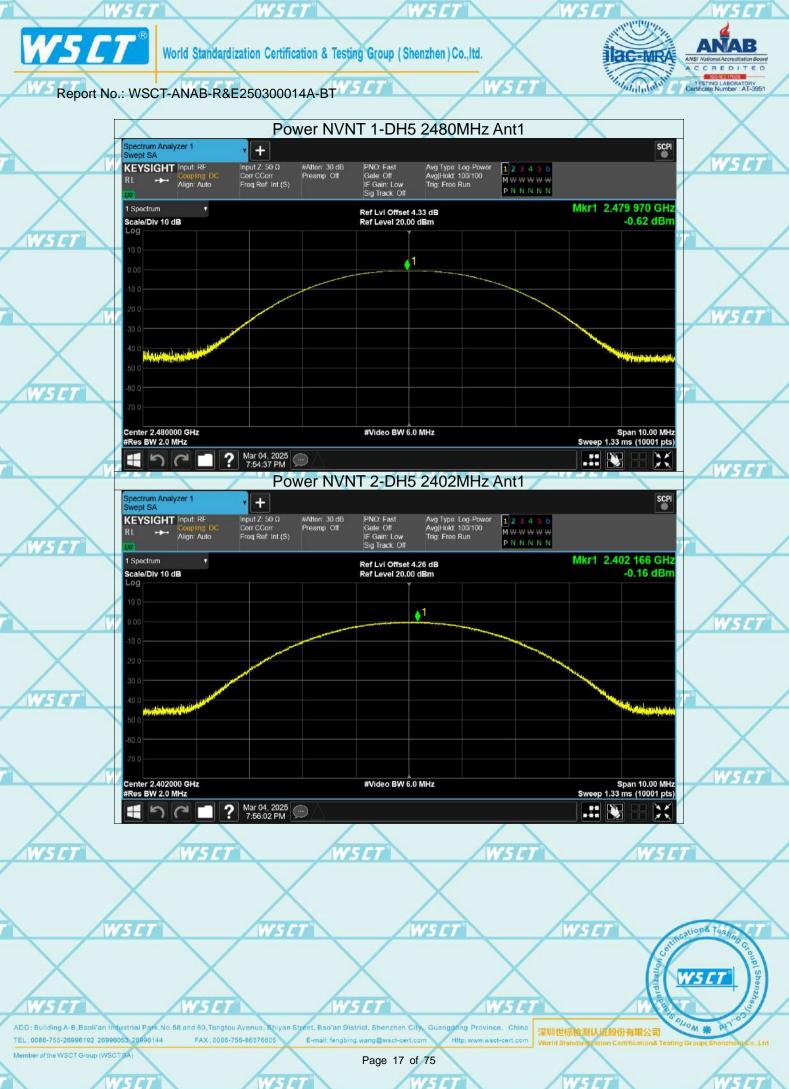
ADD : Building A-6, Baollian Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chine. TEL: 0086-755-26998192 26998053 20990144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard Fotion Certification & Ten

WSE

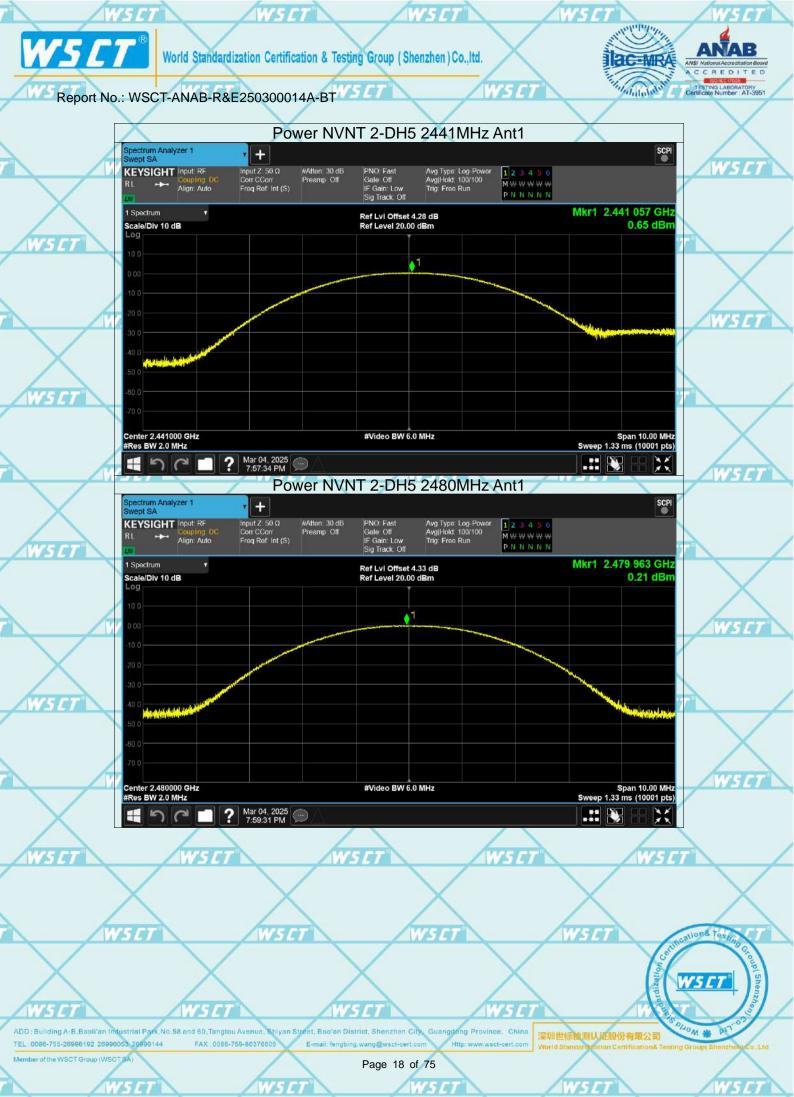
WSE

Page 16 of 75

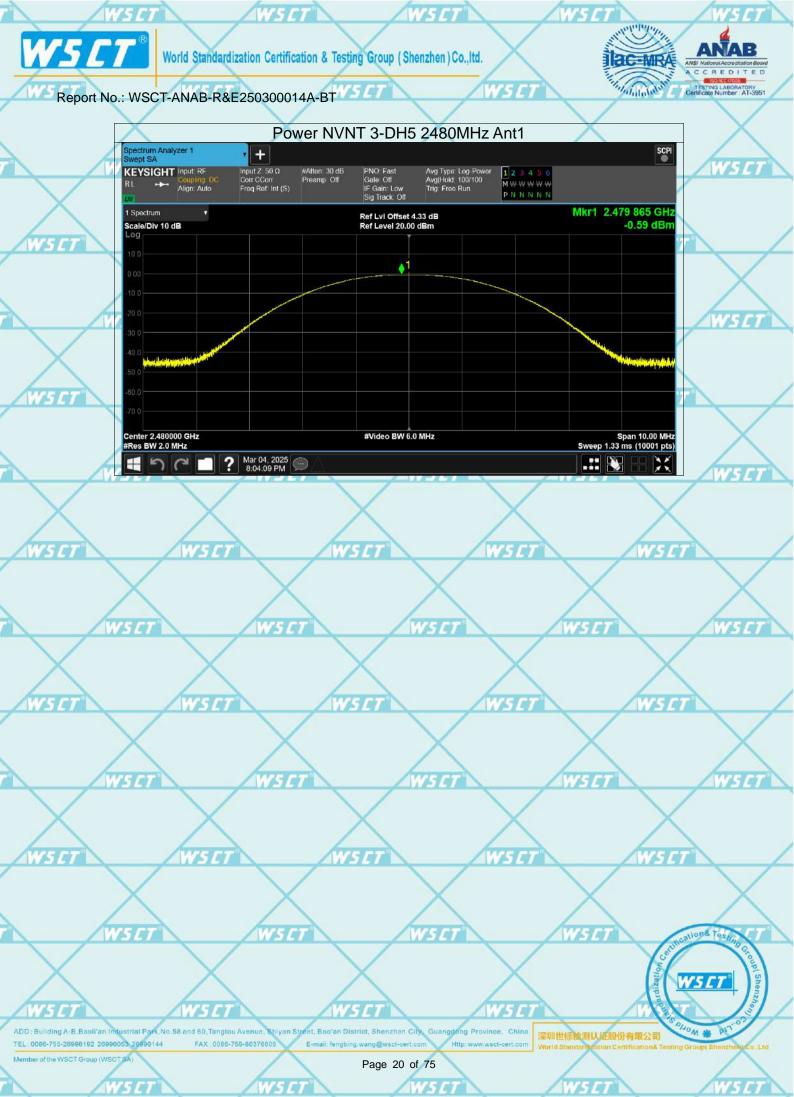
WS

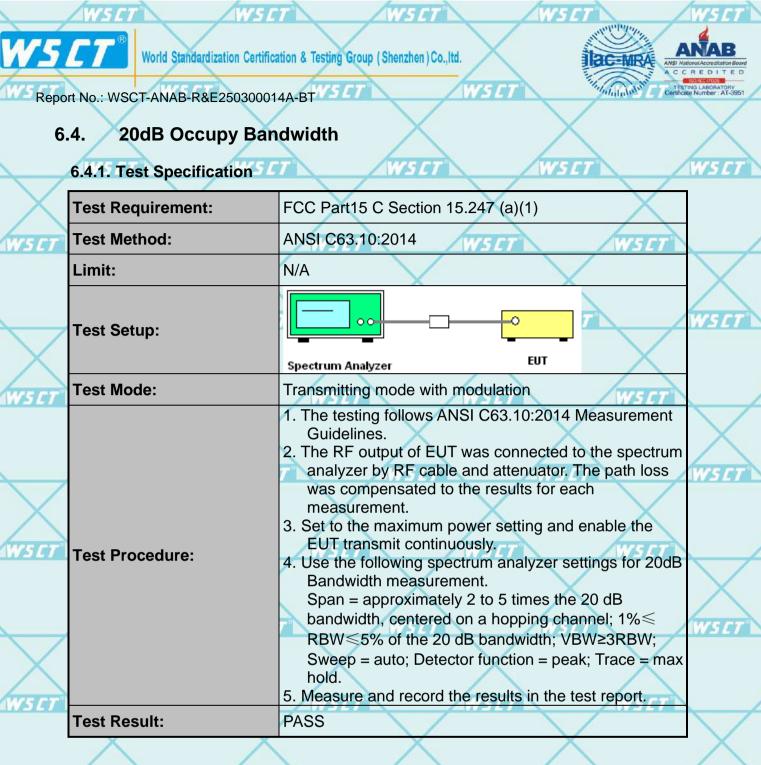

75 E

WSEI


WSC1

Mort *


15 E



15 T

WSET

WSE

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-29996192 26996053 206990144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard Joint Certifications Testing Gr

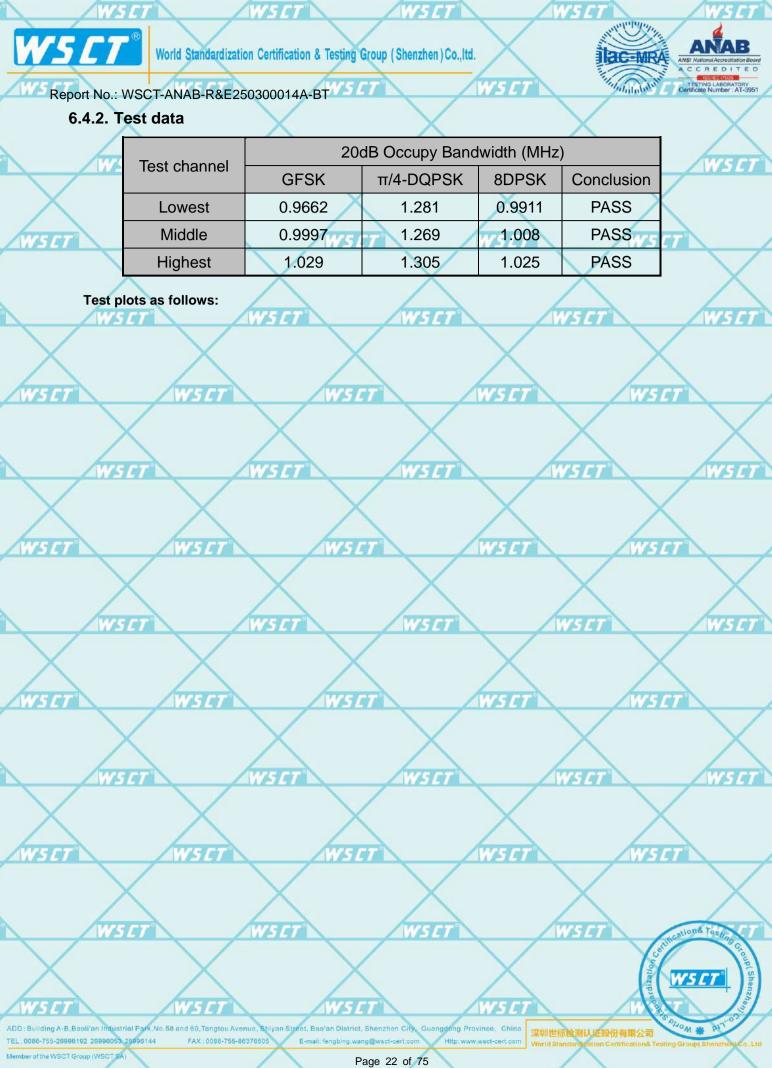
/S [

NSCI

Page 21 of 75

WSE

WSE


WSE

WSE

1-1-1

N5 [

NSE

1

WSE


WSE

SET

WSE

15 E

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

5*C1*

WSF

WSC

WSET

WSE

W5_[7

757

on8

WSET

M Ste

15 E

WSC7

Report No.: WSCT-ANAB-R&E250300014A-BT

6.5. Carrier Frequencies Separation

6.5.1. Test Specification 5 CT

\times	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
WSET	Test Method:	ANSI C63.10:2014 WSET WSET	
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.	WSET
WSET	Test Setup:	Spectrum Analyzer EUT	
	Test Mode:	Hopping mode	\bigtriangledown
WSET	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 	WSET WSET
	Test Result:	PASS	\bigvee
	WSET WSE	T WSET WSET	WSET
WSET	WISET	WSET WSET WSET	
	XX	$ \times \times $	X

ADD: Building A-B.Baoli'an Industrial Park No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China TEL: 0086-755-26998192 26998053 20598144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com Http://www.wsct-cert.com World Standard: minor Certification& Testing:

WSE

15 E

Page 28 of 75

WSE

75

WS

W5 []

WSC7

75 E

WSE

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

WSET

15 E 1

WSE

tiona Test

WSET

WSET

WSEI

WSET

WSE1

WSET

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

6.5.2. Test data

WSET

	Antonia				WSFT	
/	GFSK mode					
X	Test channel	Carrier Frequencies Separation (MHz)	Limit ((2/3*20dB BW MHz))	Result		
[7	Lowest	0.996	0.644	PASS 7		
	Middle	0.996	0.667	PASS	\times	
	Highest	1.002	0.686	PASS	$ \land $	
	AWSLI				WSLT	

WSET

WSLT

Pi/4 DQPSK mode							
Test channel	Carrier Frequencies Separation (MHz)	Limit ((2/3*20dB BW MHz))	Result				
Lowest	1.006	0.854	PASS				
Middle	1.002	0.846	PASS				
Highest	WSCT 0.998	SET 0.870	SET PASS				

	8DPSK mode					
	Test channel	Carrier Frequencies Separation (MHz)	Limit ((2/3*20dB BW MHz))	Result		
	Lowest	1.002	0.661	PASS		
	Middle	1.014	0.672	PASS	1	
/	Highest	1.004	0.683	PASS	W	

Test plots as follows:

WSCI

75 E

WSEI

WSE7

WSET

WSE1

WSET

WSE

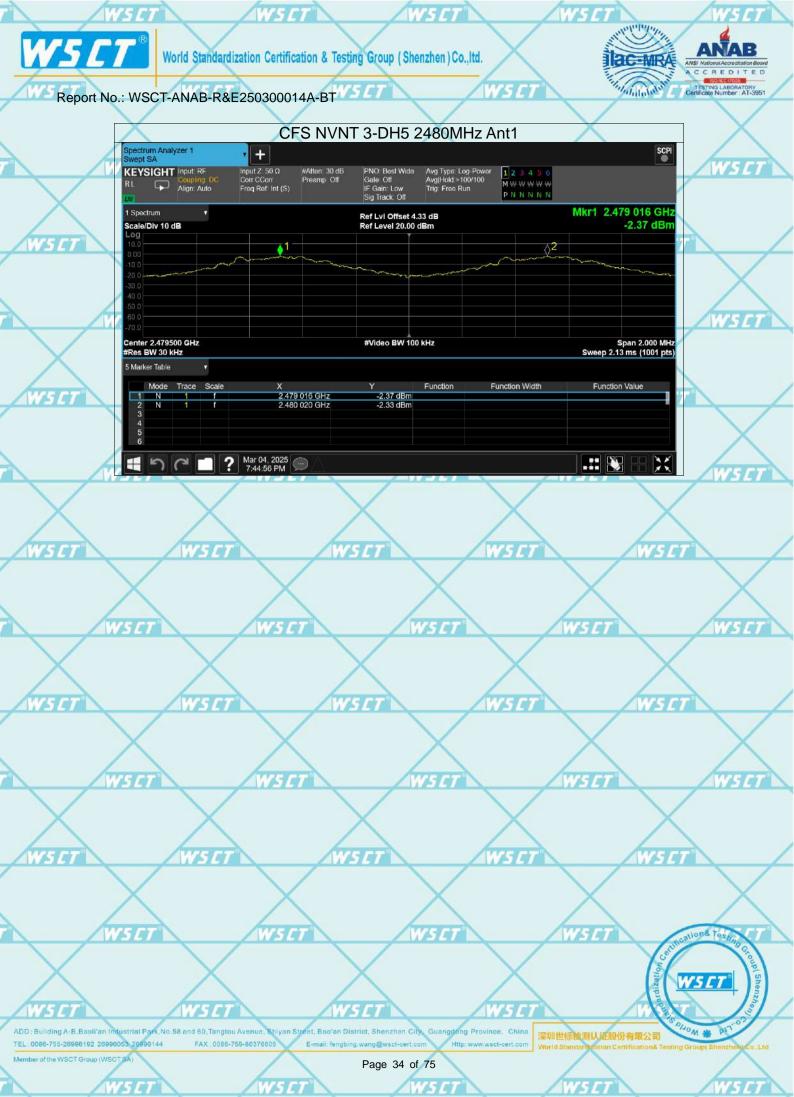
WSEI

WSET

WSE

W5E

ADD: Building A-B. Baoli'an Industrial Park. No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China TEL: 0086-755-28998192 26999053 20990144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com Http://www.wscl-cert.com World Standard other Certification& Testing Group (SCTSA)


WSE

WS

1175

WSE1

WSEI

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

15 E T

WSET

WSE

WSET

WSET

WSCT

Report No.: WSCT-ANAB-R&E250300014A-BT

6.6. Hopping Channel Number

6.6.1. Test Specification

X	X X X			
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2014			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:	Spectrum Analyzer	WSET		
Test Mode:	Hopping mode	\bigtriangledown		
Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 	WSET WSET		
Test Result:	PASS			
		ME19/		

ADD: Building A-B. Baoli'an Industrial Park No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-289980192 20999055 209980144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard rotation Certificational Testing Group (WSCT SA)

WSEI

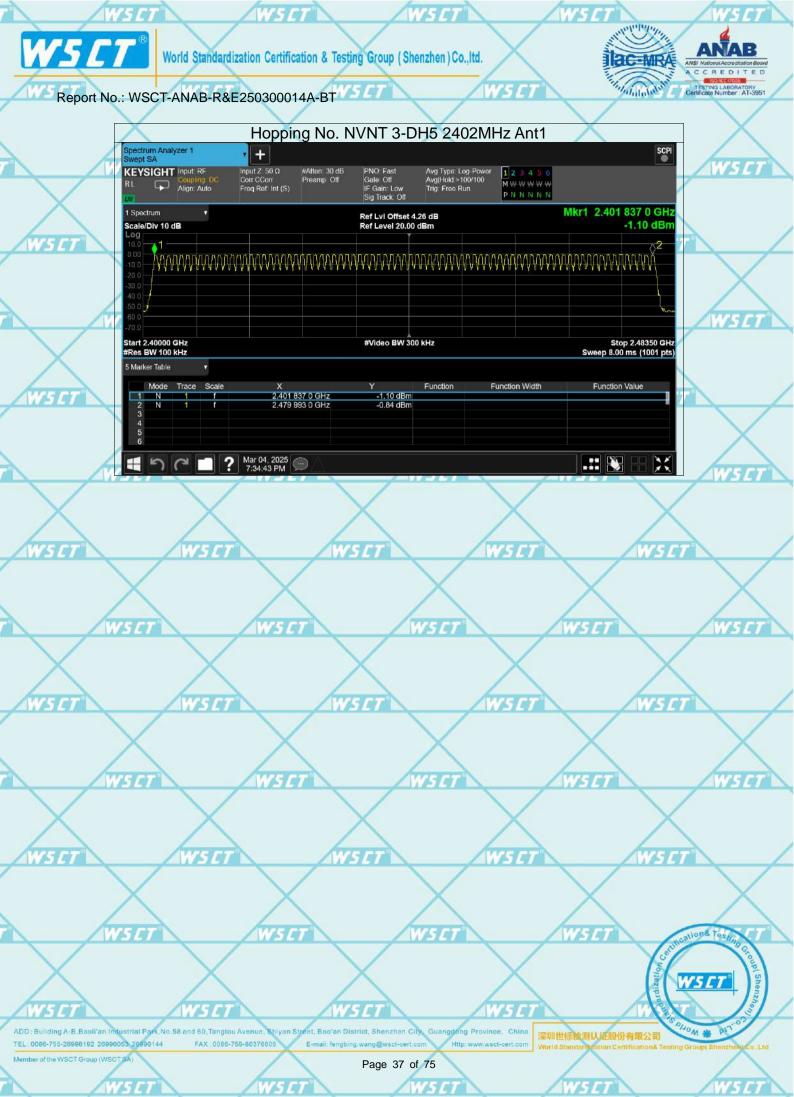
VSE1

WSET

WSE

WSE

WSET


15 E

and Ta

WSET

NSET

	ZWSET		WSET		SET N	- /	WS E7		ZWSET
W5	FT [®]	Would Obertherdired		· · ·		\sim	there:	and the state of t	ANAB
		world Standardiza	tion Certification	h & Testing Group (Shen			THE REAL PROPERTY AND ADDRESS OF ADDRES	AC-MRA	SI National Accreditation Board CCREDITED
Repo	rt No.: WSC	CT-ANAB-R&E2	50300014A	BTVSCT	- /	WSCT		"Malalabel" [] C	TESTING LABORATORY artificate Number : AT-3951
	Test dat	a	X		\times		Х		. X
	4	Mode		Hopping chan numbers	inel	Limit		Result	WSET
X	GFSK,	, P/4-DQPSK	, 8DPSK	79		15	5	PASS	
WSET		/WSLT		WSLT		WSLT		WSLT	\backslash
	Test plots	as follows:	\sim	Test Grap	he		\searrow		\sim
	\wedge	<	Hopping	No. NVNT 1-DF		MHz Ant1	\wedge		\wedge
	Swept SA		+					SCPI	WSET
	RL	Coupling DC C		imp Off Gate Off	Avg Type: Log-Pow Avg[Hold:>100/100 Trig: Free Run				
WSFT	1 Spectru Scale/Di Log		()	Ref LvI Offset 4.26 Ref Level 20.00 dE			Mkr1 2.4	01 837 0 GHz -1.11 dBm	
	10.0	1 โกลกลกทกกุลกกกุลกา	งกุลกุลกุลกุล	VANANANAN	กกกกกกกก	กกกกกกกกกก	νουκανά	<mark>2</mark> ۸۸۸۸۸۸	
6	-20.0 -30.0	141244444444444444444444444444444444444	********	KUTIKKAID RULDADAAA	C14411444	* * * * * * * * * * * * * * * *	A A A A A A A A A A	1405001	
	-40.0							- Mart	WSET
\sim	-70.0	0000 GHz		#Video BW 300 k	Hz			Stop 2.48350 GHz	
\wedge		V 100 kHz						8.00 ms (1001 pts)	
WSET		Node Trace Scale	X 2.401 837 0		Function	Function Width	Func	tion Value	\land
	2 3 4 5	N 1 f	2.479 909 5						X
		า ๙ 🗖 ? '	Mar 04, 2025	<u></u>					WSET
\sim				No. NVNT 2-DH	15 2402N	MHz Ant1			
\sim	Swept S/		+ put Ζ: 50 Ω #Ath	en: 30 dB PNO: Fast	Avg Type: Log-Pow	ver 123456		SCPI	
WSET	RL	Coupling DC C		imp Off Gate Off	Avg Hold >100/100 Trig: Free Run	M \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\land
	1 Spectru Scale/Di			Ref Lvi Offset 4.26 Ref Level 20.00 dE			Mkr1 2.4	01 837 0 GHz -2.89 dBm	
	Log 10.0	1						<u>2</u>	\wedge
	-10.0		hunnu	᠋ᢣᠺᡧᠺᡊᡘᠯᡰᠬᠯᢑᡳᡘᢌᡀᠺ᠋ᡘᠯᠵᡘ	nnhann	nnnnnnn	www.ww	mary	WSET
	-30.0								
	-60.0								
WSET		0000 GHz V 100 kHz		#Video BW 300 k	Hz			Stop 2.48350 GHz 8.00 ms (1001 pts)	
	5 Marker	Table 🔹	x	Y	Function	Function Width	Func	tion Value	
2		N 1 f N 1 f	2.401 837 0 2.479 993 0	GHz -2.89 dBm					
	4 5							(cat)	one testing Cr
X		า ๙ 🗖 ? '	Mar 04, 2025						SCT Ste
WSET		WSET		WSET	/	WSET	الريقية إريك		SLT Shenzhen
ADD: Building A-B, Ba		K.No.58 and 60, Tangtou Av		Bao'an District, Shenzhen City,	Guangoong Prov	vince, China, 🐺	世标检测认证		M # PHT 02
TEL: 0088-755-2899619 Member of the WSCT Gro	~	144 FAX : 0086-755-	80376805 E+r	nall fengbing wang@wsct-cert.com Page 36 of	X	wsct-cert.com World	Standard nation	Certification& Testing Gr	oup(Shenzhen)CoLtd
	WSET		WSET	W	SET	- /	WSET		WSET

<u>W5C7°</u>

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

WSET

WSC7

WSET

WSET

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

WSE

75 E

WSET

WSEI

6.7. Dwell Time

WSET

6.7.1. Test Specification 5

X	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
WSET	Test Method:	ANSI C63.10:2014 W5CT W5CT	
	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.	
X	Test Setup:	Spectrum Analyzer EUT	
WSET	Test Mode:	Hopping mode WSCT WSCT	
WSET WSET	Test Procedure:	 The testing follows ANSI C63.10:2014 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 	
	Test Result:	PASS	
\bigtriangledown			

ADD: Building A-B.Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, 深圳世际检测认近股份有限公司 TEL: 0086-755-28990192 2899053 28990144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard Lotton Certification& Testing Group (S

NSE

WSCT

WSET

WSET

WSE

WSE

15 E

WSE

ion& Tes

WSET

WSET

WSET

WSET

WSCT[®]

W5 [

1.11

15 E

25 A

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

WSCI

WSE

75 L

NSE

Report No.: WSCT-ANAB-R&E250300014A-BT

6.7.2. Test Data

WSET

	/			/					
	Mode	Frequency	Pulse Time	Total Dwell Time	Burst	Period Time	Limit	Verdict	
		(MHz)	(ms)	(ms)	Count	(ms)	(ms)		
/	1-DH1	2402	0.383	122.177	319	31600	400	Pass	
	1-DH1	2441	0.383	121.794	318	31600	400	Pass	
	1-DH1	2480	0.383	121.794	318	31600	400	Pass	
1	1-DH3	2402	1.639	257.323	157 🧹	31600	400	Pass	
7	1-DH3	2441	1.639 🚽	252.406	154	31600	400	Pass	
	1-DH3	2480	1.639	258.962	158	31600	400	Pass	
	1-DH5	2402	2.887	291.587	101	31600	400	Pass	
	1-DH5	2441	2.887	297.361	103	31600	400	Pass	
	1-DH5	2480	2.887	282.926	98	31600 🧹	400	Pass	

WSE

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.

For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 4 / 79) \times (0.4 \times 79) = 160$ hops

For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops

WSET

WSE

WSE

75

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

WSET

Test plots as follows:

WSET

75 F

15 F

WSE

/5*[*

WSE

WSE

WSE

WSC

75 E

WS CT

WSE

15 T

757

WSE

W5[]

WSE

WS CI

Councellone Tost

WSC1

15 E

WSE

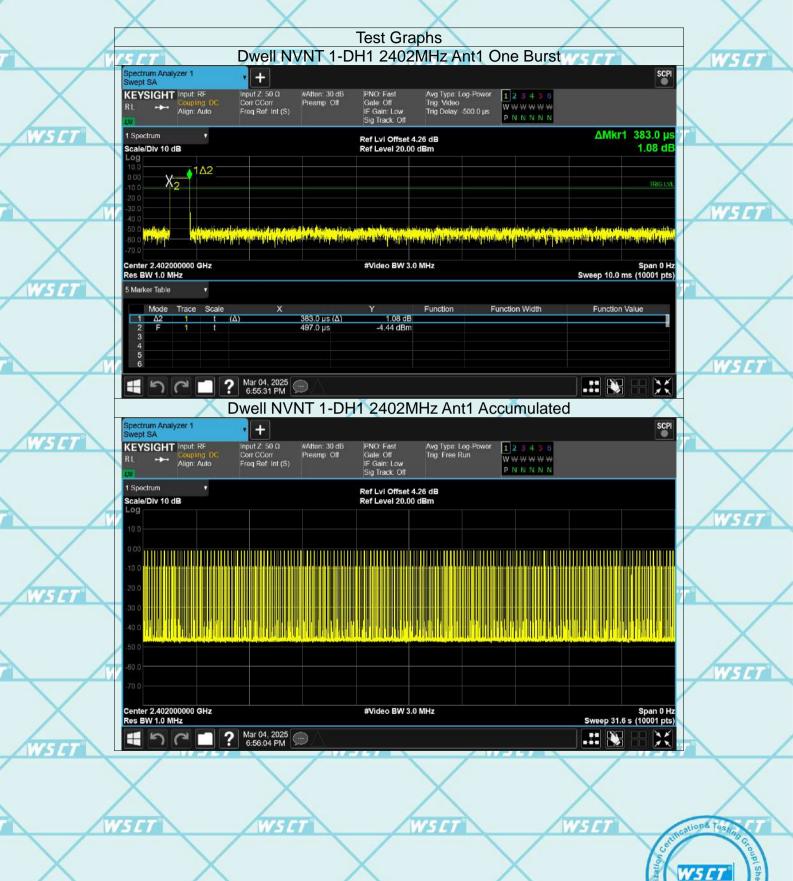
75

WSE

ADD: Building A-B.Baoli'an Industrial Park. No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26990053;26990144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard ration Certification& Testing Group! 3

Page 39 of 75

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.


/SET

WSE

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

ADD: Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26990192 26990053 26990144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard Fattor Certification& Testing Group (WSCT 3A)

Page 40 of 75

75/E

WSCI

WS

W5E

2

4

0

World Standardization Certification & Testing Group (Shenzhen)Co., ltd.

NSE

75 Ei

N5 [

73 75 77

15 E

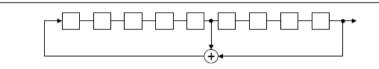
Report No.: WSCT-ANAB-R&E250300014A-BT

6.8. **Pseudorandom Frequency Hopping Sequence**

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9

• Length of pseudo-random sequence: $2^9 - 1 = 511$ bits

• Longest sequence of zeros: 8 (non-inverted signal)

75 F

Linear Feedback Shift Register for Generation of the PRBS sequence

78

1

An example of Pseudorandom Frequency Hopping Sequence as follow:

62 64

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

ADD: Building A-B. Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard inton Certification& Testing Groups

Page 49 of 75

151

TEL

SET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

WSCI

WSET

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification 5 CT

X	Test Requirement:	FCC Part15 C Section 15.247 (d)	
WSET	Test Method:	ANSI C63.10:2014 WSET WSET	
$\overline{\mathbf{X}}$	Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.	WSET
WSET	Test Setup:		\bigtriangledown
	Test Mode:	Transmitting mode with modulation	\wedge
WSET		 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. 	WS ET
\times	Test Procedure:	 Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. 	WSET
WSLT		 Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 	\mathbf{X}
	Test Result:	PASS	WSET
WSET	WSET	WSET WSET WSET	
	WSET WSE	(X X)	Testin
WISET	WISET	WSET WSET W	2
	oll'an Industrial Park.No.58 and 60, Tangtou Avenue, Shiyan S 12 26996053 28996144 FAX : 0086-755-86376805	geet, Bao'an District, Shenzhen City, Guangdong Province, China. E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard cotton Certifications Testing Groups	PHT OF
mber of the WSCT Gro		Page 50 of 75	\bigtriangleup
	WSET WSE	T WSET WSET	WSET

Page 51 of 75

15 F

75 E

45 6

T

WSCI

W51

W5

W5L

W5 L

15E

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

WSET

WSET

WSC

WSET

WSET

WSCT

Report No.: WSCT-ANAB-R&E250300014A-BT

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2014
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS
(manager a)	

WSET

WSET

WSE1

WSCI

WSET

iona Tes

WSET

WSET

WSET

WSET

ADD: Building A-8. Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-26998192 26998053 26998144 FAX: 0088-755-86378805 E-mail: fengbing.wang@wsci-cert.com Http://www.wsci-cert.com World Standard Internet Testing Group (3)

WSE

WSCT

WSET

Page 53 of 75

75 F 1

WSET

WSE

WSC

15 E

ADD: Building A-B,Bsoli'an Industrial Park No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-28996192 28990053 28990144 FAX: 0086-755-86378805 E-mail: fengbing.wang@wsci-cert.com Http://www.wsci-cert.com World Standard onton Certification& Testing Group (WSCT SA)

75 E

WSE

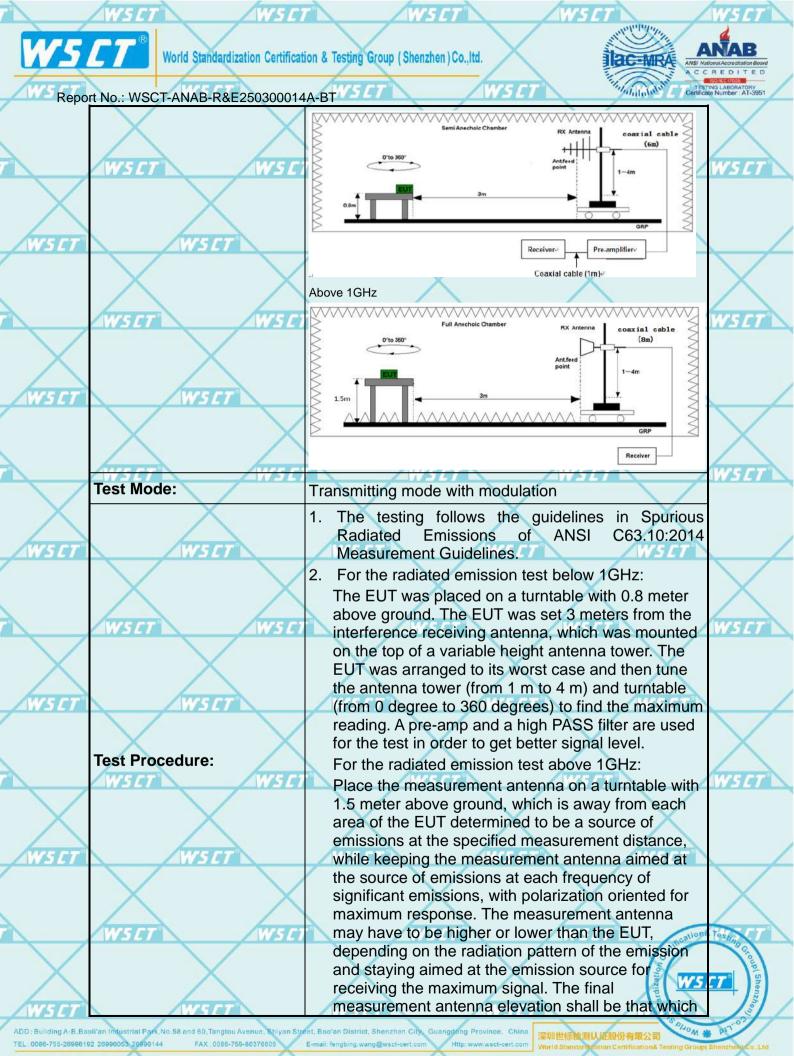
Page 54 of 75

WSC

15

T

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.



WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

6.11. Radiated Spurious Emission Measurement

			$ \land $					>
	6.11.1. Test Specification		WSET		/WSI			ws C 7
	Test Requirement:	FCC Part15 C	Section	15.209			/	
\sim	Test Method:	ANSI C63.10:2	2014	\wedge				
WSET	Frequency Range:	9 kHz to 25 G	Hz	WSCT	1	W5	CT \	
	Measurement Distance:	3 m	$\overline{\nabla}$			/		\searrow
	Antenna Polarization:	Horizontal & V	'ertical					\land
	WSET	Frequency	Detector	RBW	VBW	Remark		WSET
	\sim		Quasi-peak	200Hz	1kHz	Quasi-peak	Value	
	Dessiver Catury		Quasi-peak	9kHz	30kHz	Quasi-peak	Value	
WSET	Receiver Setup:	30MHz 30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak	/alue	
		************************************	Peak	1MHz	3MHz	Peak Valu		
	\times \times	Above 1GHz	Peak	1MHz	10Hz	Average Va	alue	\mathbf{X}
		_		Field Stre	ngth	Measurem	ent	$\langle \rangle$
	WSCT WSCT	Frequency	MSLI I	(microvolts/	meter)	Distance (me		WSET
		0.009-0.49		2400/F(K		300	/	
	X	0.490-1.70	5	24000/F(I 30	(HZ)	<u> </u>		
		30-88		100	X	3		
WSET	WSLT	88-216		150		3-7		
	Limit:	216-960		200		3		V
	\wedge	Above 960		500		3		\wedge
	WSET WSET		WS CEIL	Strength	Measurer	ment		WSET
1		Frequency		olts/meter)	Distant		ctor	and and a start of the
X	X	$- \times$		500	(meter: 3	s) Avera	age	
		Above 1GHz		5000	3	Pea		
WSET	WST	For radiated emiss	ions below 3	SOMH ₇		1115		
	\vee \vee					/		\bigvee
	\wedge	Distar	nce = 3m			Computer		\wedge
	WSET WSET	+		~				WSFT
		Į.) _	Pre -A	mplifier	/	12171
X	Test setup:	EUT	7					
			urn table		r			
WSET	WSET					eceiver	71	
			Ground F	Plane				\bigvee
	\wedge \times		Ground P	lane				\wedge
$\mathbf{\lambda}$	WATER AND	30MHz to 1GHz	WASTER		100		ujona 1	Tes. FT
				$\mathbf{\mathbf{\nabla}}$	ure		alicationa	San Cr
X	X	X		X		thow	-	2
						ardiza	W5C	7 Shenzh
WSET	WSET	WSET		AWSET	2	W		- Contraction
	oli'an Industrial Park.No.58 and 60, Tangtou Avenue, Shiyan Stri 92 26996053 28996144 FAX : 0086-755-86376605	et, Bao'an District, Shenzhen i E-mail: fengbing.wang@wsct-cer		Martin Contractor Sector Sector		遊股份有限公司	PHOM #	PT
Member of the WSCT Gro	<u> </u>	Page 63			world Standardin	ation Certification& Tes	ung Group(Si	nehzhen) Co. Li
	Australia Australia	a sign so	WSIT		Aures		1	WSFT

Page 64 of 75

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China TEL: 0086-755-28996192 28990053 28990144 FAX: 0086-755-88376805 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard totlon Certification& Testing Group (Shenz

WSE

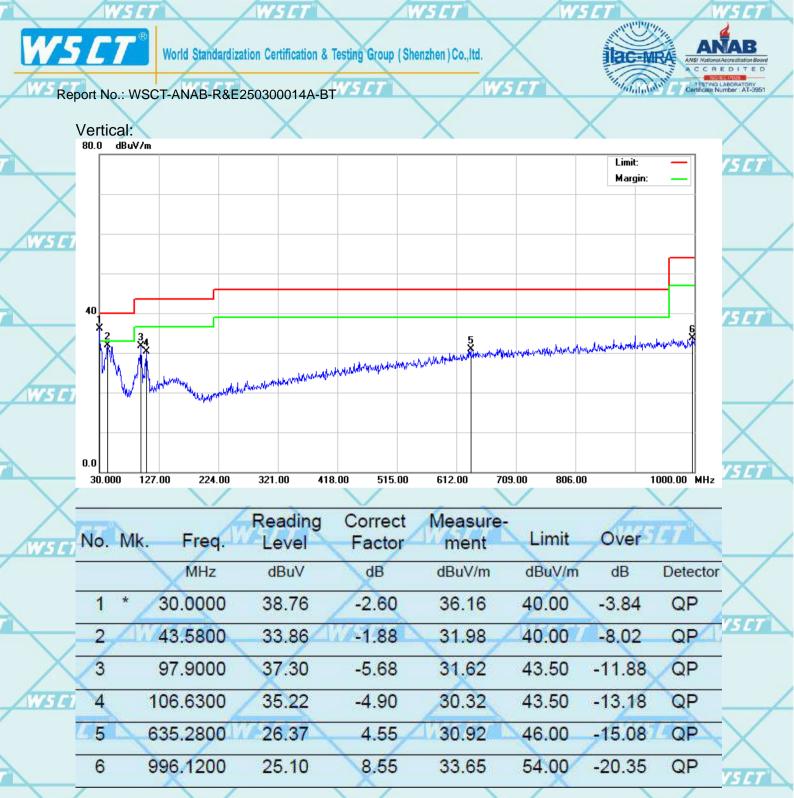
W5 E

Page 65 of 75

WSE

WSE

NSE



ADD: Building A-B.Bsoll'an Industrial Park No.58 and 60, Tangtou Avenue, Shiyan Street, Boo'an District, Shenzhen City, Guangdong Province, China TEL: 0086-755-28996192 28990053 20990144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com Http://www.wscl-cert.com World Standard otion Certification& Testing Group (St

Page 66 of 75

NSCI

75 E i

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

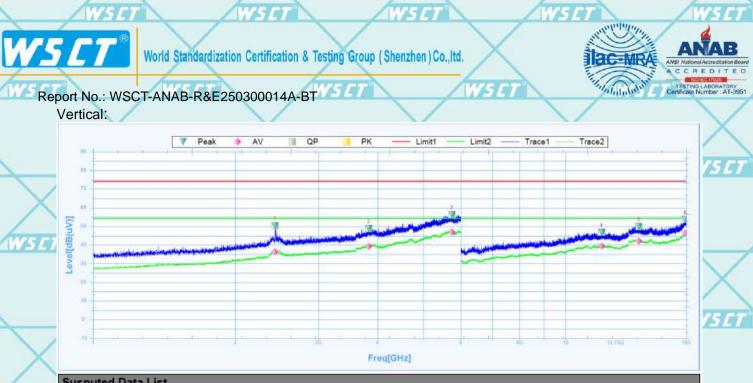
Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit $(dB\mu V) =$ Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

ADD: Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL: 0086-755-26996192 26996053 2099014 FAX: 0086-755-86376805 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard color Complexity Sectors (WSCT Sectors WSCT Sectors WSCT Sectors WSCT Sectors WSCT Sectors WSCT Sectors Secto

Page 67 of 75


WSE

NSE

ADD: Building A-B.Bsoll'an Industrial Park, No.58 and 60, Tanglou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wscl-cert.com Http://www.wscl-cert.com World Standard International Testing Group (WSCT_SA)

Page 68 of 75

	1 - 0	ited Data Lis	1								
5 <i>C1</i>	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2425.6250	50.37	7.66	42.71	74	-23.63	358.6	Vertical	PK	Pass
	1	2425.6250	36.38	7.66	28.72	54	-17.62	358.6	Vertical	AV	Pass
	2	3833.1250	48.84	11.2	37.64	74	-25.16	85.8	Vertical	PK	Pass
1	2	3833.1250	39.34	11.2	28.14	54	-14.66	85.8	Vertical	AV	Pass
\mathbf{X}	3	5742.5000	56.19	21.17	35.02	74	-17 <mark>.</mark> 81	220.8	Vertical	PK	Pass
~	3	5742.5000	46.92	21.17	25.75	54	-7.08	220.8	Vertical	AV	Pass
5 <i>C</i> 7	4	11914.5000	46.75	38.68	8.07	74	-27.25	357.1	Vertical	PK	Pass
	4	11914.5000	39.42	38.68	0.74	54	-14.58	357.1	Vertical	AV	Pass
	5	14290.5000	49.95	41.12	8.83	74	-24.05	360.1	Vertical	PK	Pass
	5	14290.5000	42.13	41.12	1.01	54	-11.87	360.1	Vertical	AV	Pass
	6	17917.5000	53.69	45.95	7.74	74	-20.31	281.4	Vertical	PK	Pass
	6	17917.5000	46.31	45.95	0.36	54	-7.69	281.4	Vertical	AV	Pass

WSET

WS ET

WSE1

WSET

WS

W/S

WSCI

WSCI

WSET

WSEI

WSET

WSET

WSET

WSE

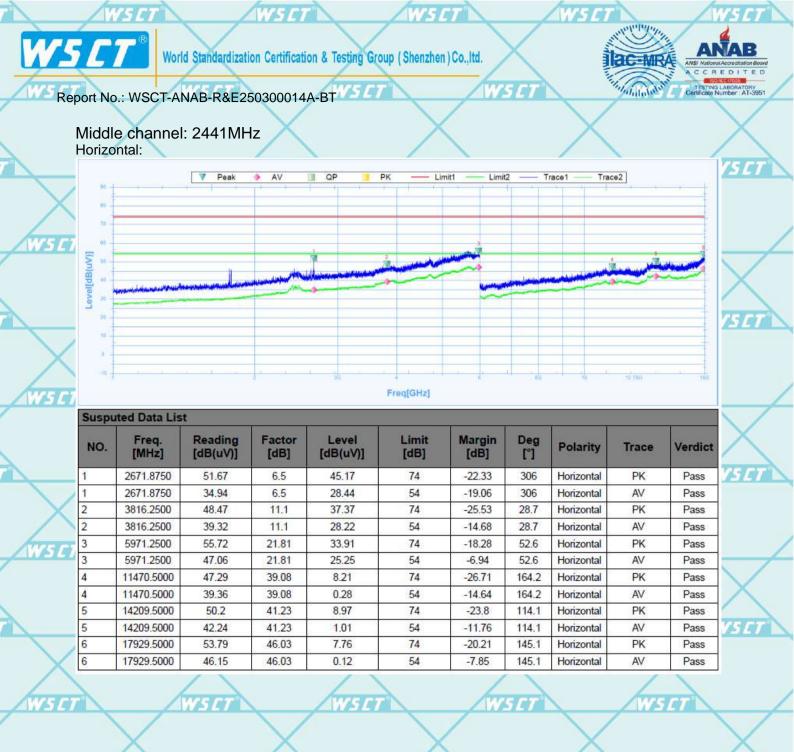
WSE

tiona Tes

WSET

WSET

75 E WSE an District, Shenzhen City, Guang 10 M # ADD : Building A-B, Baoli'an Industrial Park, No.58 an 60, Tangtou Avenu at Ba long Province, China 深圳世标检测认证股份有限公司 FAX:0086-755-86376605 TEL:0088-755-26996192 26996053 26996144 Http://www.wsct-E-mail fengbing


WSET

WSEI

Member of the WSCT Group (WSCT

47**E**

Page 69 of 75

wsc

WSE

SET

WSCT

WSE

WSE

WST

75 E

15 E

WSE

15 E

WSE

75 E

ZNELI

tion& Tes

NSE

ADD : Building A-8, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guengdong Province, China TEL: 0086-755-26996192 26996053 20996144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard rotion Certification& Testing Groupt S Member of the WSCT Group (WSCT SA)

2.-

Page 70 of 75

WSET

/S C 7

ISET

9 m

WSE

tiona Tes

WSET

Report No.: WSCT-ANAB-R&E250300014A-BT

WSET

W5

WS

W5C

WS ET

6 / E

WSET"

WSC7

Suspu	ited Data Lis	t								
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2426.2500	49.92	7.66	42.26	74	-24.08	358.8	Vertical	PK	Pass
1	2426.2500	36.49	7.66	28.83	54	-17 <mark>.</mark> 51	358.8	Vertical	AV	Pass
2	3922.5000	48.68	11.91	36.77	74	-25.32	289	Vertical	PK	Pass
2	3922.5000	39.57	11.91	27.66	54	-14.43	289	Vertical	AV	Pass
3	5739.3750	71.57	21.18	50.39	74	-2.43	358.6	Vertical	PK	Pass
3	5739.3750	46.91	21.18	25.73	54	-7.09	358.6	Vertical	AV	Pass
4	11563.5000	47.42	38.99	8.43	74	-26.58	192.9	Vertical	PK	Pass
4	11563.5000	39.13	38.99	0.14	54	-14.87	192.9	Vertical	AV	Pass
5	14286.0000	50.14	41.13	9.01	74	-23.86	190.6	Vertical	PK	Pass
5	14286.0000	42.17	41.13	1.04	54	-11.83	190.6	Vertical	AV	Pass
6	17997.0000	54.35	46.48	7.87	74	-19.65	231.2	Vertical	PK	Pass
6	17997.0000	47.08	46.48	0.6	54	-6.92	231.2	Vertical	AV	Pass

WSE

WSEI

WSCI

WS CI

WSET

WSE

WSE1

WSET

WSE

WSE

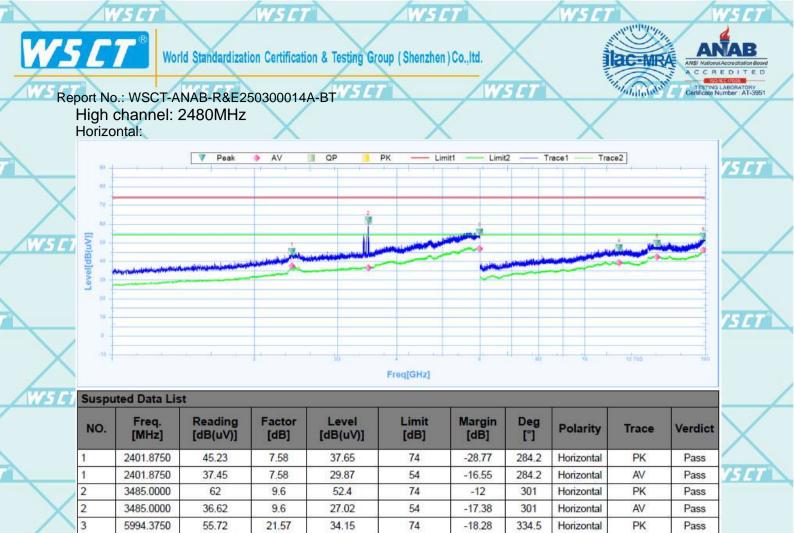
WSET

WSET

WSET

WSEI

WSE


15CT WSCT WSCT

WSET

WSEI

ADD: Building A-B. Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376805 E-mail: fengbing.wang@wsti-cert.com Http://www.wsci-cert.com World Brandard International Testing Group(Bhanzh

Page 71 of 75

5994.3750 46.88 21.57 25.31 54 -7.12 334.5 -26.73 11838.0000 47.27 38.75 8.52 74 337.6 11838.0000 39.25 38.75 0.5 54 -14.75 337.6 14230.5000 49.66 41.2 8.46 74 -24.34 218.1 14230.5000 42.44 41.2 1.24 54 -11.56 218.1 17850.0000 53.31 45.5 7.81 74 -20.69 0.4 17850.0000 46.09 45.5 0.59 54 -7.91 0.4

2-17

NSE

75

W5E

3

4

4

5

5

6

6

WSE

75

25

25

75/E

76

WSE

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

23

WSE

75 D

AV

PK

AV

PK

AV

PK

AV

Pass

Pass

Pass

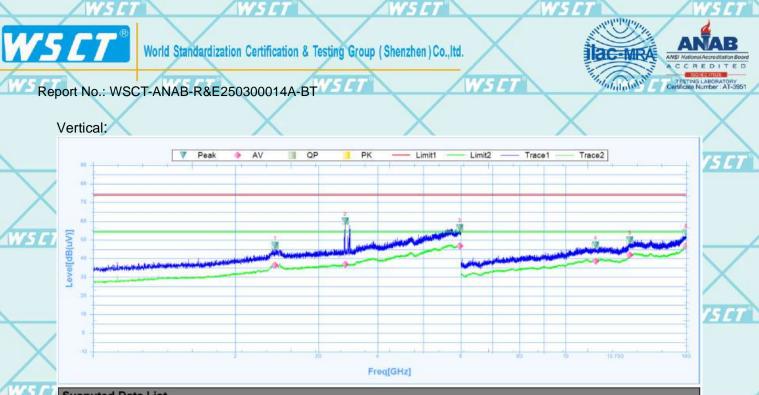
Pass

Pass

Pass

Pass

iona Tes


NSE

-6

TEL 0086-755-28996192 26996053 26996144 Member of the WSCT Group (WSC

Page 72 of 75

Suspu	uted Data Lis	st								
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdic
1	2426.2500	47.08	7.66	39. <mark>4</mark> 2	74	-26.92	350.7	Vertical	PK	Pass
1	2426.2500	36.44	7.66	28.78	54	-17.56	350.7	Vertical	AV	Pass
2	3416.8750	59.99	9,45	50.54	74	-14.01	30.8	Vertical	PK	Pass
2	3416.8750	36.81	9.45	27.36	54	-17.19	30.8	Vertical	AV	Pass
3	5966.8750	56.53	21.86	34.67	74	-17.47	269.8	Vertical	PK	Pass
3	5966.8750	46.89	21.86	25.03	54	-7.11	269.8	Vertical	AV	Pass
4	11575.5000	47.24	38.98	8.26	74	-26.76	292	Vertical	PK	Pass
4	11575.5000	38.72	38.98	-0.26	54	-15.28	292	Vertical	AV	Pass
5	13677.0000	49.81	40.66	9.15	74	-24.19	0.6	Vertical	PK	Pass
5	13677.0000	42.02	40.66	1.36	54	-11.98	0.6	Vertical	AV	Pass
6	17998.5000	53.64	46.49	7.15	74	-20.36	0.3	Vertical	PK	Pass
6	17998.5000	46.89	46.49	0.4	54	-7.11	0.3	Vertical	AV	Pass
Noto:	···	Y	**:	X		· · · · · · · · · · · · · · · · · · ·	X			V.

Note:

WSE

1514

75

1

NSCI

1.

2.

3.

75 E

W51

The emission levels of other frequencies are very lower than the limit and not show in test report. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

Data of measurement shown "-"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

15 E

15/

WSE

WSEI

5/1

15

ion& Tes

NSE

15/1

75 E

4. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

5. EUT has been tested in unfolded states, and the report only reflects data in the unfolded state (worst-case scenario)

15 E

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China, TEL. 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard fortion Certification& Texting Groupt Shen

Page 73 of 75

WSE

'SET

World Standardization Certification & Testing Group (Shenzhen) Co., Itd.

WSET

WSE

15 E

NSE

ion& Tes

WSE

5 E

Report No.: WSCT-ANAB-R&E250300014A-BT

6.11.3. **Restricted Bands Requirements**

5/6 Bluetooth (GFSK, Pi/4-DQPSK, 8DPSK)mode have been tested, and the worst result GFSK model was report as below

WSE

WSE

WSE

151

WSE

WSE

WSEI

28

65 F

15 E

757

WSE

	as below	\sim		\sim				
	Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
V5 []	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
	X		V	Low Cha	nnel 🗸		X	
	2387	62.72	-8.76	53.96	74	20.04	H	PK
	2387	54.03	-8.76	45.27	545 []	8.73	Hws	AV
	2387	63.45	-8.73	54.72	74	19.28	V	PK
X	2387	54.63	-8.73	45.90	54	8.10	V	AV
	2390	62.21	-8.76	53.45	74	20.55	Н	PK
V5 C1	2390	54.99	-8.76	46.23	54	7.77	Ĥ	AV
	2390	62.32	-8.73	53.59	74	20.41	VX	PK
	2390	57.86	-8.73	49.13	54	4.87	V	AV
_	WSET		ZWSLT	High Cha	nnel		WSL	
\searrow	2483.5	61.00	-8.17	52.83	74	21.17	Н	PK
\wedge	2483.5	53.39	-8.17	45.22	54	8.78	н	AV
V5 []	2483.5	62.41	-8.17	54.24	74	19.76	V	PK
	2483.5	53.08	-8.17	44.91	54	9.09	V	AV
	Note: Fred - E	mission frequen	ov in MHz		X			

75

/5*[*

Note: Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard

WSE

WSCI

WSE


WSE1

1514

Margin $(dB) = Level (dB\mu V) - Limits (dB\mu V)$

75

Iding A-B, Baoli'an Industrial Park, No. 58 a of Shenzhen City, G Province, China OM HE 60, Tangtou Ave 金测认证股份有限公 TEL. 0086-755-26996192 26996053 26996144 FAX:0086-755-86376605 E-mail fengbi Hiter ID IWSC

