FCC SAR TEST REPORT FCC ID : ZMOFB520 Equipment : CAT-M module Brand Name : Fibocom Model Name : FB520 Applicant : Fibocom Wireless Inc 1101, Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen, China Manufacturer : Fibocom Wireless Inc 1101, Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen, China **Standard** : FCC 47 CFR Part 2 (2.1093) The product was installed into Notebook Computer (Brand Name: HP, Model Name: HSN-I59C) during test. The product was received on Dec. 30, 2022 and testing was started from Dec. 31, 2022 and completed on Jan. 19, 2023. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Laboratory, the test report shall not be reproduced except in full. Approved by: Cona Huang / Deputy Manager Report No.: FA2N1807 Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan TEL: 886-3-327-3456 Page 1 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 Page 2 of 36 Issued Date : Feb. 06, 2023 # **Table of Contents** | 1. Statement of Compilance | | |---|----| | 2. Guidance Applied | | | 3. Equipment Under Test (EUT) Information | 5 | | 3.1 General Information | | | 3.2 General LTE SAR Test and Reporting Considerations | 6 | | 4. RF Exposure Limits | | | 4.1 Uncontrolled Environment | 8 | | 4.2 Controlled Environment | 8 | | 5. Specific Absorption Rate (SAR) | 9 | | 5.1 Introduction | 9 | | 5.2 SAR Definition | 9 | | 6. System Description and Setup | 10 | | 6.1 Test Site Location | 10 | | 6.2 E-Field Probe | | | 6.3 Data Acquisition Electronics (DAE) | 11 | | 6.4 Phantom | 12 | | 6.5 Device Holder | 13 | | 7. Measurement Procedures | 14 | | 7.1 Spatial Peak SAR Evaluation | | | 7.2 Power Reference Measurement | 15 | | 7.3 Area Scan | 15 | | 7.4 Zoom Scan | | | 7.5 Volume Scan Procedures | 16 | | 7.6 Power Drift Monitoring | | | 8. Test Equipment List | 17 | | 9. System Verification | 18 | | 9.1 Tissue Verification | 18 | | 9.2 System Performance Check Results | | | 10. GSM/LTE Output Power (Unit: dBm) | 20 | | 11. Antenna Location | | | 12. SAR Test Results | | | 12.1 Body SAR | | | 12.2 Repeated SAR Measurement | | | 13. Simultaneous Transmission Analysis | | | 13.1 Body Exposure Conditions | | | 13.2 SPLSR Evaluation and Analysis | | | 14. Uncertainty Assessment | | | 15. References | 36 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | TEL: 886-3-327-3456 # History of this test report Report No.: FA2N1807 | Report No. | Version | Description | Issued Date | |------------|---------|----------------------------------|---------------| | FA2N1807 | 01 | Initial issue of report | Jan. 30, 2023 | | FA2N1807 | 02 | Update section 1, 3.2, 10 and 12 | Feb. 06, 2023 | TEL: 886-3-327-3456 Page 3 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) for Fibocom Wireless Inc, CAT-M module, FB520, are as follows. Report No.: FA2N1807 | Equipment
Class | | Frequency
Band | Highest SAR Summary Body (Separation 0mm) 1g SAR (W/kg) | Highest Simultaneous
Transmission
1g SAR (W/kg) | | | |--------------------|-------------|-------------------|---|---|------|------| | | GSM | GSM850 | 1.05 | | | | | | GSIVI | GSM1900 | 1.07 | | | | | | nsed
LTE | LTE Band 12 | 0.22 | | | | | | | LTE Band 13 | 0.20 | | | | | Licensed | | | | LTE Band 14 | 0.17 | 1.46 | | | | LTE Band 2 / 25 | 0.96 | | | | | | | LTE Band 5 / 26 | 0.23 | | | | | | | LTE Band 4 / 66 | 1.02 | | | | | | | LTE Band 85 | 0.19 | | | | | Date of Testing: | | | 2022/12/31 ~ | - 2023/01/19 | | | Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation and the FCC designation No. TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications. Reviewed by: <u>Jason Wang</u> Report Producer: <u>Paula Chen</u> ## 2. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation. - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 616217 D04 SAR for laptop and tablets v01r02 - FCC KDB 941225 D01 3G SAR Procedures v03r01 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 TEL: 886-3-327-3456 Page 4 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 # 3. Equipment Under Test (EUT) Information ## 3.1 General Information | | Product Feature & Specification | | | | | |---|--|--|--|--|--| | Equipment Name | CAT-M module | | | | | | Brand Name | Fibocom | | | | | | Model Name | FB520 | | | | | | FCC ID | ZMOFB520 | | | | | | Wireless Technology ar
Frequency Range | GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 85: 698 MHz ~ 716 MHz | | | | | | Mode | GSM/GPRS/EGPRS
LTE: QPSK, 16QAM | | | | | Report No.: FA2N1807 | | Host Information | |--|--| | Equipment Name | Notebook Computer | | Brand Name | HP | | Model Name | HSN-I59C | | Integrated WLAN Module | Brand Name: Intel
Model Name: AX211D2W | | Integrated NFC Module | Brand Name: WNC
Model Name: XRAV-1 | | Wireless Technology and
Frequency Range | WLAN 2.4 GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5.2 GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.3 GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.6 GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.6 GHz Band: 5470 MHz ~ 5725 MHz WLAN 5.8 GHz Band: 5725 MHz ~ 5850 MHz WLAN 5.8 GHz Band: 5725 MHz ~ 5850 MHz WLAN 6GHz: 5925 MHz ~ 6425 MHz, 6425 MHz ~ 6525 MHz, 6525 MHz ~ 6875 MHz, 6875 MHz ~ 7125 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz NFC: 13.56 MHz | | Mode | WLAN: 802.11a/b/g/n/ac/ax HT20/HT40/VHT20/VHT40/VHT80/VHT160/HE20/HE40/HE80/HE160
Bluetooth BR/EDR/LE
NFC: ASK | | EUT Stage | Production Unit | | Domorke | | #### Remark: This device has two antenna vendors, RF exposure evaluation selects Vendor 2 as the main test, Vendor 1 will spot check worst case found in Vendor | | Antenna Information | | | | | | | | | |--|---------------------|------|-----------|-------------------------------|---|-----------|------|-----------|---| | Vendor 1
(Ant5 TX/RX)
6036B0303501
(81EABL15.G31 | Ant. Type | PIFA | Peak Gain | GSM850:-2.53
GSM1900:-0.49 | Vendor 1
(Ant5 TX/RX)
6036B0303501
(81EABL15.G31) | Ant. Type | PIFA | Peak Gain | LTE Band 2: -0.49
LTE Band 4: 0.08
LTE Band 5: -2.53
LTE Band 12: 0.11
LTE Band 13: -2.05
LTE Band 14: -2.08
LTE Band 25: -0.49
LTE Band 26: -2.41
LTE Band 66: 0.11
LTE Band 85: 0.11 | | Vendor 2
(Ant5 TX/RX)
6036B0305001
(00-2602748450 | Ant. Type | PIFA | Peak Gain | GSM850:-1.74
GSM1900:0.93 | Vendor 2
(Ant5 TX/RX)
6036B0305001
(00-2602748450) | Ant. Type | PIFA | Peak Gain | LTE Band 2: 0.93
LTE Band 4: 1.26
LTE Band 5:-1.74
LTE Band 12: -0.72
LTE Band 13: -1.47
LTE Band 14: -2.85
LTE Band 25: 0.93
LTE Band 26: -1.74
LTE Band 66: 1.26
LTE Band 85: -2.35 | TEL: 886-3-327-3456 Page 5 of 36 Issued Date : Feb. 06, 2023 FAX: 886-3-328-4978 The Intel AX211D2W WLAN/BT module is integrated into this host.
The WLAN 2.4GHz/5GHz SAR result is referenced from Intel SAR report, report No.:201120-03.TR07 / 210325-01.TR27 (FCC ID: PD9AX211D2), WLAN 6GHz SAR result refers to report No.:201120-03.TR40 (FCC ID: PD9AX211D2) and these SAR results are also used to perform solutions and solutions are also used to perform solutions. ## 3.2 General LTE SAR Test and Reporting Considerations | | Summarized necessary items addressed in KDB 941225 D05 v02r05 | | | | | | | | | | |---------|---|---|---|---|---|------------------|------------------------|---------------------|--------------------------|----------------------| | FC | CID | ZN | ZMOFB520 | | | | | | | | | Eau | uipment Name | C | CAT-M module | | | | | | | | | Оре | erating Frequency Ra
smission band | LT
LT
LT
nge of each LTE
LT
LT
LT
LT | E Band 2: 18: E Band 4: 17 E Band 5: 82: E Band 12: 6: E Band 13: 7 E Band 25: 1: E Band 26: 8 E Band 66: 1 E Band 85: 6: | 10 MHz ~ 8
4 MHz ~ 8
99 MHz ~
77 MHz ~
88 MHz ~
850 MHz
14 MHz ~
710 MHz | 1755 MHz
349 MHz
716 MHz
787 MHz
798 MHz
~ 1915 MHz
849 MHz
~ 1780 MHz | | | | | | | | annel Bandwidth | LT
LT
LT
LT
LT
LT
LT | E Band 2:1.4l E Band 4:1.4l E Band 5:1.4l E Band 12:1.4 E Band 13: 5l E Band 14: 5l E Band 25:1.4 E Band 26:1.4 E Band 85: 5l | MHz, 3MH
MHz, 3MH
4MHz, 3M
MHz
MHz
4MHz, 3M
4MHz, 3W
4MHz, 3W | Hz, 5MHz
Hz, 5MHz
1Hz, 5MHz
1Hz, 5MHz
1Hz, 5MHz | | | | | | | upli | nk modulations used | QI | PSK / 16QAM | | | | | | | | | LTE | Voice / Data requirer | ments Da | ata only | | | | | | | | | | | | Table 6.2.3
Modulation | | annel bandw
3.0
MHz | | | | | MPR (dB) | | LTE | MPR permanently by | uilt-in by design | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | | | | 16 QAM
16 QAM | ≤ 5
> 5 | ≤ 4
> 4 | ≤ 8
> 8 | ≤ 12
> 12 | ≤ 16
> 16 | ≤ 18
> 18 | ≤ 1
≤ 2 | | | | | 64 QAM | ≤ 5 | ≤ 4 | ≤8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 2 | | | | | 64 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 3 | | | | | 256 QAM | | | - 2 | ≥ 1 | | | ≤ 5 | | | E A-MPR ectrum plots for RB co | A-
(M
A
onfiguration m | the base stati
MPR during daximum TTI)
properly coreasurement; to tincluded in to M, L) channel | SAR testingured herefore, he SAR re | base station spectrum ploeport. | LTE SA
simula | R tests water was allo | used for cation and | ting on all | TTI frames and power | | | | (1.) | | LTE Bar | | | | | | | | | Bandwidth | n 1 4 MHz | | Bandwidtl | | | | Bandwi | dth 5 MHz | | | | Ch. # | Freq. (MHz) | Ch. # | | Freq. (N |
IHz) | Ch. # | | Freq. (MHz) | | | L | 18607 | 1850.7 | 18615 | | 1851. | | 18625 | | | 352.5 | | M | 18900 | 1880 | 18900 | | 1880 | | | 3900 | | 880 | | Н | 19193 | 1909.3 | 19185 | | 1908. | | | 9175 | 1 | 907.5 | | 11 | LTE Band 4 | | | | | .01.0 | | | | | | | | 1 1 MHz | | Bandwidtl | | | | Randwi | th 5 MU- | | | | Bandwidth 1.4 MHz | | | | | | | | dth 5 MHz
Freg. (MHz) | | | | Ch. # | Freq. (MHz) | Ch. # | | Freq. (N | | | h. # | | , | | L
N4 | 19957
20175 | 1710.7 | 19965 | | 1711. | | 19975
20175 | | - | 712.5 | | M
H | | 1732.5 | 20175 | | 1732. | | | | 1732.5 | | | ПП | 20393 | 1754.3 | 2038 | J | 1753. | ບ | 20 |)375 | 1. | 752.5 | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 6 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 LTE Band 5 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) 20407 824.7 20415 825.5 20425 826.5 L М 20525 836.5 20525 836.5 20525 836.5 Н 20643 848.3 20635 847.5 20625 846.5 LTE Band 12 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Freq. (MHz) Freq. (MHz) Ch. # Freq. (MHz) Ch. # Ch. # L 23017 699.7 23025 700.5 23035 701.5 М 23095 707.5 23095 707.5 23095 707.5 Н 23173 715.3 23165 714.5 23155 713.5 LTE Band 13 Bandwidth 5 MHz Channel # Freq.(MHz) 23205 779.5 М 23230 782 Н 23255 784.5 LTE Band 14 Bandwidth 5 MHz Channel # Channel # 23305 790.5 L Μ 23330 793 Н 23355 795.5 LTE Band 25 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # 26047 1850.7 26055 26065 1852.5 1851.5 Μ 1880 1880 1880 26340 26340 26340 Н 1912.5 26683 1914.3 26675 1913.5 26665 LTE Band 26 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) 26697 814.7 26705 815.5 26715 816.5 М 26865 831.5 26865 831.5 26865 831.5 847.5 Н 27033 848.3 27025 27015 846.5 LTE Band 66 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) 131979 131997 1710.7 131987 1711.5 1712.5 Μ 132322 1745 132322 1745 132322 1745 Н 132665 1779.3 132657 1778.5 132647 1777.5 LTE Band 85 Bandwidth 5 MHz Channel # Channel # 134027 700.5 L М 134092 707 134157 Н 713.5 Report No.: FA2N1807 TEL: 886-3-327-3456 Page 7 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 4. RF Exposure Limits ### 4.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA2N1807 ### 4.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | ^{1.} Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. TEL: 886-3-327-3456 Page 8 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 5. Specific Absorption Rate (SAR) ### 5.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA2N1807 ### 5.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: 886-3-327-3456 Page 9 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 6. System Description and Setup #### The DASY system used for performing compliance tests consists of the following items: Report No.: FA2N1807 - The DASY system in SAR Configuration is shown above - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is
transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running windows software and the DASY software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ### 6.1 Test Site Location The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 3786) and the FCC designation No. TW1190 and TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. | 1W 1190 and 1W3700 drider the 1 CC 2.940(e) by Matdai Necognition Agreement (WINA) in 1 CC test. | | | | | | | |--|---------------------|-----------------------|---|-------------------|--------------|--| | Test Site | EMC & Wireless Comm | unications Laboratory | aboratory Wensan Laboratory | | | | | | TW1 ² | 190 | | TW3786 | | | | Test Site Location | No.52, Huaya 1st R | d., Guishan Dist., | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., | | | | | | Taoyuan City : | 333, Taiwan | Guishan Dist. | , Taoyuan City 33 | 3010, Taiwan | | | | SAR01-HY | SAR03-HY | SAR08-HY | SAR09-HY | SAR15-HY | | | Test Site No. | SAR04-HY | SAR05-HY | SAR11-HY | SAR12-HY | SAR16-HY | | | | SAR06-HY | SAR10-HY | SAR13-HY | SAR14-HY | SAR17-HY | | TEL: 886-3-327-3456 Page 10 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 6.2 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <ES3DV3 Probe> | Construction | Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | |---------------|---|--| | Frequency | 10 MHz – 4 GHz;
Linearity: ±0.2 dB (30 MHz – 4 GHz) | | | Directivity | ±0.2 dB in TSL (rotation around probe axis)
±0.3 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g – >100 mW/g;
Linearity: ±0.2 dB | | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm | | Report No.: FA2N1807 ### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic | |---------------|---| | | solvents, e.g., DGBE) | | Frequency | 10 MHz – >6 GHz | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | ±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g – >100 mW/g | | | Linearity: ±0.2 dB (noise: typically <1 µW/g) | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 2.5 mm (body: 12 mm) | | | Typical distance from probe tip to dipole centers: 1 | | | mm | ### 6.3 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.1 Photo of DAE TEL: 886-3-327-3456 Page 11 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 6.4 Phantom #### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | |-------------------|---|-----| | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA2N1807 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | VEET I Halltonia | | | |------------------|--|--| | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. TEL: 886-3-327-3456 Page 12 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ### 6.5 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA2N1807 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones ### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops TEL: 886-3-327-3456 Page 13 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 7. Measurement Procedures The measurement procedures are as follows: (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. Report No.: FA2N1807 - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 7.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g TEL: 886-3-327-3456 Page 14 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ### 7.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor
calibration points to probe tip as defined in the probe properties. Report No.: FA2N1807 #### 7.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test | on, is smaller than the above, must be \leq the corresponding levice with at least one | TEL: 886-3-327-3456 Page 15 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 #### 7.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA2N1807 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | | |--|--------------|---|--|---|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz}: \le 4 \text{ mm}$
$4 - 5 \text{ GHz}: \le 3 \text{ mm}$
$5 - 6 \text{ GHz}: \le 2 \text{ mm}$ | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded grid | 1st two points closest | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | | between subsequent | $\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$ | | | | Minimum zoom scan volume x, y, z | | ≥ 30 mm | $3 - 4 \text{ GHz:} \ge 28 \text{ mm}$
$4 - 5 \text{ GHz:} \ge 25 \text{ mm}$
$5 - 6 \text{ GHz:} \ge 22 \text{ mm}$ | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 7.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 7.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 886-3-327-3456 Page 16 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 8. Test Equipment List | Manufacturer | Name of Equipment | Type/Model | Serial Number | Calib | ration | |---------------|---|-----------------|---------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Seriai Number | Last Cal. | Due Date | | SPEAG | 750MHz System Validation Kit ⁽²⁾ | D750V3 | 1012 | Aug. 18, 2021 | Aug. 16, 2023 | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d060 | Mar. 24, 2022 | Mar. 23, 2023 | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d167 | Nov. 24, 2022 | Nov. 23, 2023 | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1112 | Jun. 22, 2022 | Jun. 21, 2023 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d185 | Jun. 17, 2022 | Jun. 16, 2023 | | SPEAG | Data Acquisition Electronics | DAE4 | 699 | Feb. 24, 2022 | Feb. 23, 2023 | | SPEAG | Data Acquisition Electronics | DAE4 | 1647 | Nov. 18, 2022 | Nov. 17, 2023 | | SPEAG | Data Acquisition Electronics | DAE4 | 1694 | Nov. 18, 2022 | Nov. 17, 2023 | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3169 | May. 29, 2022 | May. 28, 2023 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3931 | Oct. 31, 2022 | Oct. 30, 2023 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3976 | Jan. 27, 2022 | Jan. 26, 2023 | | Testo | Hygro meter | 608-H1 | 45196600 | Nov. 02, 2022 | Nov. 01, 2023 | | Testo | Hygro meter | 608-H1 | 45207528 | Nov. 02, 2022 | Nov. 01, 2023 | | RCPTWN | Thermometer | HTC-1 | TM685-1 | Jun. 27, 2022 | Jun. 26, 2023 | | Anritsu | Radio Communication Analyzer | MT8821C | 6201341950 | Oct. 31, 2022 | Oct. 30, 2023 | | Keysight | Wireless Communication Test Set | E5515C | MY50266977 | May. 10, 2022 | May. 09, 2023 | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | Anritsu | Signal Generator | MG3710A | 6201502524 | Oct. 12, 2022 | Oct. 11, 2023 | | Keysight | ENA Network Analyzer | E5071C | MY46104758 | Sep. 22, 2022 | Sep. 21, 2023 | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Sep. 28, 2022 | Sep. 27, 2023 | | LINE SEIKI | Digital Thermometer | DTM3000-spezial | 2942 | Oct. 31, 2022 | Oct. 30, 2023 | | Anritsu | Power Meter | ML2495A | 1419002 | Aug. 16, 2022 | Aug. 15, 2023 | | Anritsu | Power Sensor | MA2411B | 1911176 | Aug. 16, 2022 | Aug. 15, 2023 | | Anritsu | Power Meter | ML2495A | 1804003 | Oct. 17, 2022 | Oct. 16, 2023 | | Anritsu | Power Sensor | MA2411B | 1726150 | Oct. 17, 2022 | Oct. 16, 2023 | | Anritsu | Spectrum Analyzer | MS2830A | 6201396378 | Jul. 21, 2022 | Jul. 20, 2023 | | Agilent | Spectrum Analyzer | E4408B | MY44211028 | Aug. 19, 2021 | Aug. 17, 2023 | | Mini-Circuits | Power Amplifier | ZVE-8G+ | 6418 | Oct. 14, 2022 | Oct. 13, 2023 | | Mini-Circuits | Power Amplifier | ZVE-8G+ | 479102029 | Sep. 15, 2022 | Sep. 14, 2023 | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | No | te 1 | | Warison | Directional Coupler | WCOU-10-50S-10 | WR889BMC4B1 | No | te 1 | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te 1 | | PE | Attenuator 2 | PE7005-10 | N/A | No | te 1 | | PE | Attenuator 3 | PE7005- 3 | N/A | No | te 1 | Report No.: FA2N1807 ### **General Note:** - 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. - 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole. TEL: 886-3-327-3456 Page 17 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 # 9. System Verification ## 9.1 Tissue
Verification The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. Report No.: FA2N1807 The liquid tissue depth was at least 15cm in the phantom for all SAR testing. #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Liquid Temp.
(°C) | Conductivity (σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------------|------------------|-----------------------------------|----------------------------|--|------------------|--------------------------------|-----------|------------| | 750 | 22.3 | 0.885 | 41.700 | 0.89 | 41.90 | -0.56 | -0.48 | ±5 | 2023/1/2 | | 750 | 22.4 | 0.881 | 41.586 | 0.89 | 41.90 | -1.01 | -0.75 | ±5 | 2023/1/19 | | 835 | 22.3 | 0.919 | 41.400 | 0.90 | 41.50 | 2.11 | -0.24 | ±5 | 2023/1/2 | | 835 | 22.3 | 0.919 | 41.400 | 0.90 | 41.50 | 2.11 | -0.24 | ±5 | 2023/1/2 | | 1750 | 22.5 | 1.350 | 40.500 | 1.37 | 40.10 | -1.46 | 1.00 | ±5 | 2023/1/3 | | 1900 | 22.5 | 1.440 | 39.000 | 1.40 | 40.00 | 2.86 | -2.50 | ±5 | 2022/12/31 | | 1900 | 22.5 | 1.430 | 38.900 | 1.40 | 40.00 | 2.14 | -2.75 | ±5 | 2023/1/3 | TEL: 886-3-327-3456 Page 18 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 9.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Test Site | Date | Frequency
(MHz) | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|------------|--------------------|------------------------|---------------|-----------------|-------------|------------------------------|------------------------------|--------------------------------|------------------| | SAR14 | 2023/1/2 | 750 | 50 | D750V3-1012 | EX3DV4 - SN3931 | DAE4 Sn1694 | 0.391 | 8.560 | 7.82 | -8.64 | | SAR08 | 2023/1/19 | 750 | 250 | D750V3-1012 | ES3DV3 - SN3169 | DAE4 Sn1647 | 2.050 | 8.560 | 8.2 | -4.21 | | SAR15 | 2023/1/2 | 835 | 50 | D835V2-4d167 | EX3DV4 - SN3976 | DAE4 Sn699 | 0.467 | 9.800 | 9.34 | -4.69 | | SAR14 | 2023/1/2 | 835 | 50 | D835V2-4d060 | EX3DV4 - SN3931 | DAE4 Sn1694 | 0.492 | 9.730 | 9.84 | 1.13 | | SAR14 | 2023/1/3 | 1750 | 50 | D1750V2-1112 | EX3DV4 - SN3931 | DAE4 Sn1694 | 1.800 | 36.900 | 36 | -2.44 | | SAR15 | 2022/12/31 | 1900 | 50 | D1900V2-5d185 | EX3DV4 - SN3976 | DAE4 Sn699 | 1.880 | 39.000 | 37.6 | -3.59 | | SAR14 | 2023/1/3 | 1900 | 50 | D1900V2-5d185 | EX3DV4 - SN3931 | DAE4 Sn1694 | 1.900 | 39.000 | 38 | -2.56 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo Report No.: FA2N1807 TEL: 886-3-327-3456 Page 19 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 10. GSM/LTE Output Power (Unit: dBm) #### <GSM Conducted Power> 1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction. Report No.: FA2N1807 2. Per KDB 941225 D01v03r01, for SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the GPRS 4Tx slots modes was selected when EUT operating without power back-off, the GPRS 4Tx slots modes was selected when EUT operating with power back-off, according to the highest source-based time-averaged output power. | GSM850 | Burst Average Power (dBm) | | | Tune-up Frame-Average Power (dBm) | | | Tune-up | | |-----------------|---------------------------|-------|-------|-----------------------------------|-------|-------|---------|-------| | TX Channel | 128 | 189 | 251 | Limit | 128 | 189 | 251 | Limit | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | (dBm) | 824.2 | 836.4 | 848.8 | (dBm) | | GPRS 1 Tx slot | 30.59 | 30.48 | 30.55 | 31.00 | 21.59 | 21.48 | 21.55 | 22.00 | | GPRS 2 Tx slots | 27.25 | 27.14 | 27.22 | 28.00 | 21.25 | 21.14 | 21.22 | 22.00 | | GPRS 3 Tx slots | 26.36 | 26.23 | 26.30 | 27.00 | 22.10 | 21.97 | 22.04 | 22.74 | | GPRS 4 Tx slots | 26.11 | 26.05 | 26.03 | 26.50 | 23.11 | 23.05 | 23.03 | 23.50 | | EDGE 1 Tx slot | 24.26 | 24.19 | 24.23 | 25.50 | 15.26 | 15.19 | 15.23 | 16.50 | | EDGE 2 Tx slots | 22.62 | 22.47 | 22.55 | 23.50 | 16.62 | 16.47 | 16.55 | 17.50 | | EDGE 3 Tx slots | 21.37 | 21.23 | 21.35 | 22.00 | 17.11 | 16.97 | 17.09 | 17.74 | | EDGE 4 Tx slots | 19.99 | 19.89 | 19.93 | 21.00 | 16.99 | 16.89 | 16.93 | 18.00 | | GSM1900 | Burst Average Power (dBm) | | | Tune-up Frame-Average Power (dBm) | | | | Tune-up | |-----------------|---------------------------|-------|--------|-----------------------------------|--------|-------|--------|---------| | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit | | Frequency (MHz) | 1850.2 | 1880 | 1909.8 | (dBm) | 1850.2 | 1880 | 1909.8 | (dBm) | | GPRS 1 Tx slot | 25.15 | 25.05 | 24.71 | 26.00 | 16.15 | 16.05 | 15.71 | 17.00 | | GPRS 2 Tx slots | 23.47 | 23.45 | 23.09 | 24.50 | 17.47 | 17.45 | 17.09 | 18.50 | | GPRS 3 Tx slots | 22.00 | 21.94 | 21.50 | 22.50 | 17.74 | 17.68 | 17.24 | 18.24 | | GPRS 4 Tx slots | 20.95 | 20.96 | 20.65 | 21.50 | 17.95 | 17.96 | 17.65 | 18.50 | | EDGE 1 Tx slot | 21.27 | 21.20 | 21.05 | 23.00 | 12.27 | 12.20 | 12.05 | 14.00 | | EDGE 2 Tx slots | 20.15 | 20.22 | 21.09 | 22.00 | 14.15 | 14.22 | 15.09 | 16.00 | | EDGE 3 Tx slots | 19.39 | 19.31 | 19.20 | 20.50 | 15.13 | 15.05 | 14.94 | 16.24 | | EDGE 4 Tx slots | 18.53 | 18.54 | 18.33 | 19.50 | 15.53 | 15.54 | 15.33 | 16.50 | TEL: 886-3-327-3456 Page 20 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 #### <LTE Conducted Power> #### **General Note:** Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. Report No.: FA2N1807 - 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 8. LTE band 2/4/5 SAR test was covered by Band 25/66/26; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if - a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion - b. the channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band TEL: 886-3-327-3456 Page 21 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 | | | | <lte e<="" th=""><th>Band 2></th><th></th><th>•</th><th></th></lte> | Band 2> | | • | | |-------------|------------|------------|--|-----------------------------|--------------------------------|------------------------------|---------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freg. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | Cha | innel | | 18625 | 18900 | 19175 | (dBm) | | | Frequen | cy (MHz) | | 1852.5 | 1880 | 1907.5 | | | 5 | QPSK | 1 | 0 | 19.56 | 19.73 | 19.85 | 24.52 | | 5 | QPSK | 1 | 5 | 19.67 | 19.58 | 19.53 | 21.50 | | 5 | QPSK | 3 | 0 | 19.62 |
19.53 | 19.85 | | | 5 | QPSK | 3 | 3 | 19.65 | 19.55 | 19.54 | 20.50 | | 5 | QPSK | 6 | 0 | 19.51 | 19.61 | 19.64 | | | 5 | 16QAM | 1 | 0 | 19.83 | 19.96 | 19.94 | 04.50 | | 5 | 16QAM | 1 | 5 | 19.60 | 19.65 | 19.64 | 21.50 | | 5 | 16QAM | 3 | 0 | 19.51 | 19.65 | 19.72 | 00.50 | | 5 | 16QAM | 3 | 3 | 19.58 | 19.71 | 19.66 | 20.50 | | 5 | 16QAM | 5 | 0 | 18.46 | 18.64 | 18.55 | 19.50 | | | Cha | ınnel | | 18615 | 18900 | 19185 | Tune-up limit | | | Frequen | cy (MHz) | | 1851.5 | 1880 | 1908.5 | (dBm) | | 3 | QPSK | 1 | 0 | 19.59 | 19.82 | 19.61 | 21.50 | | 3 | QPSK | 1 | 5 | 19.54 | 19.62 | 19.60 | 21.50 | | 3 | QPSK | 3 | 0 | 18.61 | 18.85 | 18.59 | 20.50 | | 3 | QPSK | 3 | 3 | 18.55 | 18.73 | 18.61 | 20.50 | | 3 | QPSK | 6 | 0 | 17.57 | 17.82 | 17.52 | 19.50 | | 3 | 16QAM | 1 | 0 | 18.58 | 18.89 | 18.59 | 20.50 | | 3 | 16QAM | 1 | 5 | 18.53 | 18.62 | 18.54 | 20.50 | | 3 | 16QAM | 3 | 0 | 17.59 | 17.90 | 17.64 | | | 3 | 16QAM | 3 | 3 | 17.55 | 17.77 | 17.53 | 19.50 | | 3 | 16QAM | 5 | 0 | 17.59 | 17.87 | 17.65 | | | | Cha | nnel | | 18607 | 18900 | 19193 | Tune-up limit | | | Frequen | cy (MHz) | | 1850.7 | 1880 | 1909.3 | (dBm) | | 1.4 | QPSK | 1 | 0 | 19.58 | 19.81 | 19.60 | 21.50 | | 1.4 | QPSK | 1 | 5 | 19.54 | 19.59 | 19.57 | 21.00 | | 1.4 | QPSK | 3 | 0 | 18.58 | 18.80 | 18.51 | 20.50 | | 1.4 | QPSK | 3 | 3 | 18.53 | 18.63 | 18.57 | 20.00 | | 1.4 | QPSK | 6 | 0 | 17.57 | 17.74 | 17.50 | 19.50 | | 1.4 | 16QAM | 1 | 0 | 18.50 | 18.84 | 18.57 | 20.50 | | 1.4 | 16QAM | 1 | 5 | 18.57 | 18.66 | 18.62 | 20.00 | | 1.4 | 16QAM | 3 | 0 | 17.75 | 18.00 | 17.74 | | | 1.4 | 16QAM | 3 | 3 | 17.73 | 17.93 | 17.67 | 19.50 | | 1.4 | 16QAM | 5 | 0 | 17.78 | 18.01 | 17.77 | | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 22 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 | | | | <lte e<="" th=""><th>Band 4></th><th></th><th></th><th></th></lte> | Band 4> | | | | | |-------------|------------|------------|---|-----------------------------|--------------------------------|------------------------------|---------------|--| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | | Cha | innel | | 19975 | 20175 | 20375 | (dBm) | | | | Frequen | cy (MHz) | | 1712.5 | 1732.5 | 1752.5 | | | | 5 | QPSK | 1 | 0 | 19.79 | 19.93 | 19.95 | 04.50 | | | 5 | QPSK | 1 | 5 | 19.59 | 19.70 | 19.67 | 21.50 | | | 5 | QPSK | 3 | 0 | 19.71 | 19.91 | 19.92 | | | | 5 | QPSK | 3 | 3 | 19.62 | 19.78 | 19.80 | 20.50 | | | 5 | QPSK | 6 | 0 | 19.65 | 19.83 | 19.81 | | | | 5 | 16QAM | 1 | 0 | 20.34 | 20.49 | 20.42 | 21.50 | | | 5 | 16QAM | 1 | 5 | 19.86 | 20.08 | 20.09 | 21.50 | | | 5 | 16QAM | 3 | 0 | 19.98 | 20.18 | 20.11 | 20.50 | | | 5 | 16QAM | 3 | 3 | 19.88 | 20.05 | 20.04 | 20.50 | | | 5 | 16QAM | 5 | 0 | 18.95 | 19.11 | 19.22 | 19.50 | | | | Cha | ınnel | | 19965 | 20175 | 20385 | Tune-up limit | | | | Frequen | cy (MHz) | | 1711.5 | 1732.5 | 1753.5 | (dBm) | | | 3 | QPSK | 1 | 0 | 19.82 | 19.84 | 20.00 | 21.50 | | | 3 | QPSK | 1 | 5 | 19.66 | 19.73 | 19.82 | 21.50 | | | 3 | QPSK | 3 | 0 | 18.72 | 18.77 | 18.90 | 20.50 | | | 3 | QPSK | 3 | 3 | 18.61 | 18.64 | 18.72 | 20.00 | | | 3 | QPSK | 6 | 0 | 17.56 | 17.74 | 17.70 | 19.50 | | | 3 | 16QAM | 1 | 0 | 18.69 | 18.92 | 18.88 | 20.50 | | | 3 | 16QAM | 1 | 5 | 18.58 | 18.65 | 18.78 | 20.00 | | | 3 | 16QAM | 3 | 0 | 17.82 | 17.91 | 17.93 | | | | 3 | 16QAM | 3 | 3 | 17.66 | 17.74 | 17.84 | 19.50 | | | 3 | 16QAM | 5 | 0 | 17.62 | 17.87 | 17.88 | | | | | Cha | innel | | 19957 | 20175 | 20393 | Tune-up limit | | | | Frequen | cy (MHz) | | 1710.7 | 1732.5 | 1754.3 | (dBm) | | | 1.4 | QPSK | 1 | 0 | 19.77 | 19.81 | 19.93 | 21.50 | | | 1.4 | QPSK | 1 | 5 | 19.67 | 19.70 | 19.85 | | | | 1.4 | QPSK | 3 | 0 | 18.67 | 18.69 | 18.83 | 20.50 | | | 1.4 | QPSK | 3 | 3 | 18.61 | 18.59 | 18.72 | 20.00 | | | 1.4 | QPSK | 6 | 0 | 19.35 | 19.34 | 19.49 | 19.50 | | | 1.4 | 16QAM | 1 | 0 | 18.65 | 18.73 | 18.80 | 20.50 | | | 1.4 | 16QAM | 1 | 5 | 18.53 | 18.60 | 18.78 | | | | 1.4 | 16QAM | 3 | 0 | 17.76 | 17.78 | 17.91 | | | | 1.4 | 16QAM | 3 | 3 | 17.67 | 17.71 | 17.83 | 19.50 | | | 1.4 | 16QAM | 5 | 0 | 17.69 | 17.66 | 17.83 | | | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 23 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 | | | | <lte e<="" th=""><th>Band 5></th><th></th><th>-</th><th></th></lte> | Band 5> | | - | | |-------------|------------|------------|--|-----------------------------|--------------------------------|------------------------------|---------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freg. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | Cha | innel | | 20425 | 20525 | 20625 | (dBm) | | | Frequen | cy (MHz) | | 826.5 | 836.5 | 846.5 | | | 5 | QPSK | 1 | 0 | 20.24 | 20.12 | 19.98 | 24.52 | | 5 | QPSK | 1 | 5 | 19.89 | 19.84 | 19.97 | 21.50 | | 5 | QPSK | 3 | 0 | 20.19 | 20.13 | 19.91 | | | 5 | QPSK | 3 | 3 | 20.15 | 19.98 | 19.81 | 20.50 | | 5 | QPSK | 6 | 0 | 19.07 | 18.98 | 19.97 | | | 5 | 16QAM | 1 | 0 | 20.23 | 20.38 | 19.89 | 04.50 | | 5 | 16QAM | 1 | 5 | 20.23 | 20.13 | 20.05 | 21.50 | | 5 | 16QAM | 3 | 0 | 20.31 | 20.28 | 20.00 | 00.50 | | 5 | 16QAM | 3 | 3 | 20.25 | 20.14 | 20.04 | 20.50 | | 5 | 16QAM | 5 | 0 | 19.00 | 19.18 | 18.68 | 19.50 | | | Cha | innel | | 20415 | 20525 | 20635 | Tune-up limit | | | Frequen | cy (MHz) | | 825.5 | 836.5 | 847.5 | (dBm) | | 3 | QPSK | 1 | 0 | 20.22 | 20.05 | 19.84 | 21.50 | | 3 | QPSK | 1 | 5 | 19.91 | 19.77 | 19.54 | 21.50 | | 3 | QPSK | 3 | 0 | 19.17 | 19.01 | 18.81 | 20.50 | | 3 | QPSK | 3 | 3 | 18.95 | 18.85 | 18.63 | 20.50 | | 3 | QPSK | 6 | 0 | 18.11 | 17.90 | 17.69 | 19.50 | | 3 | 16QAM | 1 | 0 | 20.12 | 19.14 | 19.68 | 20.50 | | 3 | 16QAM | 1 | 5 | 18.94 | 18.85 | 18.56 | 20.50 | | 3 | 16QAM | 3 | 0 | 18.36 | 18.19 | 17.96 | | | 3 | 16QAM | 3 | 3 | 18.15 | 18.02 | 17.77 | 19.50 | | 3 | 16QAM | 5 | 0 | 18.26 | 18.14 | 17.94 | | | | Cha | nnel | | 20407 | 20525 | 20643 | Tune-up limit | | | Frequen | cy (MHz) | | 824.7 | 836.5 | 848.3 | (dBm) | | 1.4 | QPSK | 1 | 0 | 20.21 | 20.01 | 19.78 | 21.50 | | 1.4 | QPSK | 1 | 5 | 19.83 | 19.74 | 19.64 | 21.00 | | 1.4 | QPSK | 3 | 0 | 19.20 | 18.96 | 18.82 | 20.50 | | 1.4 | QPSK | 3 | 3 | 18.98 | 18.80 | 18.59 | 20.00 | | 1.4 | QPSK | 6 | 0 | 18.09 | 17.95 | 17.71 | 19.50 | | 1.4 | 16QAM | 1 | 0 | 20.05 | 19.85 | 19.65 | 20.50 | | 1.4 | 16QAM | 1 | 5 | 19.02 | 18.75 | 18.62 | 20.00 | | 1.4 | 16QAM | 3 | 0 | 18.35 | 18.16 | 18.03 | | | 1.4 | 16QAM | 3 | 3 | 18.12 | 18.00 | 17.79 | 19.50 | | 1.4 | 16QAM | 5 | 0 | 18.32 | 18.13 | 17.84 | | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 24 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 | | | | <lte b<="" th=""><th>and 12></th><th></th><th></th><th></th></lte> | and 12> | | | | |-------------|------------|------------|---|-----------------------------|--------------------------------|------------------------------|---------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | Cha | nnel | | 23035 | 23095 | 23155 | (dBm) | | | Frequen | cy (MHz) | | 701.5 | 707.5 | 713.5 | | | 5 | QPSK | 1 | 0 | 20.00 | 19.96 | 19.98 | 21.50 | | 5 | QPSK | 1 | 5 | 19.71 | 19.74 | 19.72 | 21.50 | | 5 | QPSK | 3 | 0 | 19.92 | 19.93 | 19.86 | | | 5 | QPSK | 3 | 3 | 20.04 | 19.80 | 19.97 | 20.50 | | 5 | QPSK | 6 | 0 | 18.96 | 18.90 | 18.89 | | | 5 | 16QAM | 1 | 0 | 20.31 | 20.23 | 20.20 | 21.50 | | 5 | 16QAM | 1 | 5 | 19.97 | 20.01 | 20.03 | 21.30 | | 5 | 16QAM | 3 | 0 | 20.25 | 20.22 | 20.22 | 20.50 | | 5 | 16QAM | 3 | 3 | 20.04 | 20.00 | 19.93 | 20.30 | | 5 | 16QAM | 5 | 0 | 18.97 | 19.31 | 18.92 | 19.50 | | | Cha | nnel | | 23025 | 23095 | 23165 | Tune-up limit | | | Frequen | cy (MHz) | | 700.5 | 707.5 | 714.5 | (dBm) | | 3 | QPSK | 1 | 0 | 20.12 | 20.20 | 19.82 | 21.50 | | 3 | QPSK | 1 | 5 | 19.74 | 19.90 | 19.69 | 21.50 | | 3 | QPSK | 3 | 0 | 18.96 | 19.14 | 18.63 | 20.50 | | 3 | QPSK | 3 | 3 | 18.83 | 18.96 | 18.53 | 20.50 | | 3 | QPSK | 6 | 0 | 18.07 | 18.17 | 17.78 | 19.50 | | 3 | 16QAM | 1 | 0 | 19.13 | 19.25 | 18.79 | 20.50 | | 3 | 16QAM | 1 | 5 | 18.86 | 18.99 | 18.60 | 20.50 | | 3 | 16QAM | 3 | 0 | 18.31 | 18.32 | 17.99 | _ | | 3 | 16QAM | 3 | 3 | 17.99 | 18.07 | 17.72 | 19.50 | | 3 | 16QAM | 5 | 0 | 18.16 | 18.27 | 17.86 | | | | Cha | nnel | | 23017 | 23095 | 23173 | Tune-up limit | | | Frequen | cy (MHz) | | 699.7 | 707.5 | 715.3 | (dBm) | | 1.4 | QPSK | 1 | 0 | 20.05 | 20.18 | 19.79 | 21.50 | | 1.4 | QPSK | 1 | 5 | 19.80 | 19.83 | 19.57 | 21.00 | | 1.4 | QPSK | 3 | 0 | 19.01 | 19.09 | 18.68 | 20.50 | | 1.4 | QPSK | 3 | 3 | 18.81 | 18.94 | 18.61 | 20.00 | | 1.4 | QPSK | 6 | 0 | 18.03 | 18.19 | 17.79 | 19.50 | | 1.4 | 16QAM | 1 | 0 | 18.53 | 18.60 | 18.79 | 20.50 | | 1.4 | 16QAM | 1 | 5 | 18.89 | 18.95 | 18.58 | 20.00 | | 1.4 | 16QAM | 3 | 0 | 18.24 | 18.38 | 17.90 | | | 1.4 | 16QAM | 3 | 3 | 17.97 | 18.11 | 17.75 | 19.50 | | 1.4 | 16QAM | 5 | 0 | 18.21 | 18.31 | 17.93 | | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 25 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 | | | | <lte b<="" th=""><th>and 13></th><th></th><th></th><th></th></lte> | and 13> | | | | |-------------|------------|------------|---|-----------------------------|--------------------------------|------------------------------|---------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | Cha | nnel | | 23205 | 23230 | 23255 | (dBm) | | | Frequen | cy (MHz) |
 779.5 | 782 | 784.5 | | | 5 | QPSK | 1 | 0 | 19.60 | 19.84 | 19.78 | 21.50 | | 5 | QPSK | 1 | 5 | 19.64 | 19.58 | 19.64 | 21.50 | | 5 | QPSK | 3 | 0 | 19.49 | 19.77 | 19.63 | | | 5 | QPSK | 3 | 3 | 19.37 | 19.65 | 19.48 | 20.50 | | 5 | QPSK | 6 | 0 | 18.57 | 18.71 | 18.64 | | | 5 | 16QAM | 1 | 0 | 19.83 | 20.12 | 19.96 | 21.50 | | 5 | 16QAM | 1 | 5 | 19.69 | 19.94 | 19.88 | 21.50 | | 5 | 16QAM | 3 | 0 | 19.73 | 19.87 | 19.85 | 20.50 | | 5 | 16QAM | 3 | 3 | 19.71 | 19.76 | 19.89 | 20.50 | | 5 | 16QAM | 5 | 0 | 18.74 | 18.92 | 18.95 | 19.50 | Report No.: FA2N1807 | | | | <lte b<="" th=""><th>and 14></th><th></th><th></th><th></th></lte> | and 14> | | | | |-------------|------------|------------|---|-----------------------------|--------------------------------|------------------------------|---------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | Cha | nnel | | 23305 | 23330 | 23355 | (dBm) | | | Frequenc | cy (MHz) | | 790.5 | 793 | 795.5 | | | 5 | QPSK | | 0 | 19.92 | 20.03 | 19.71 | 21.50 | | 5 | QPSK | | 5 | 19.62 | 19.70 | 19.54 | 21.50 | | 5 | QPSK | 3 | 0 | 19.94 | 19.99 | 19.69 | | | 5 | QPSK | 3 | 3 | 19.75 | 19.76 | 19.57 | 20.50 | | 5 | QPSK | 6 | 0 | 18.95 | 18.95 | 18.65 | | | 5 | 16QAM | | 0 | 20.27 | 20.30 | 19.98 | 21.50 | | 5 | 16QAM | 1 | 5 | 19.97 | 20.00 | 19.67 | 21.50 | | 5 | 16QAM | 3 | 0 | 20.24 | 20.23 | 19.90 | 20.50 | | 5 | 16QAM | 3 | 3 | 19.92 | 20.00 | 19.67 | 20.50 | | 5 | 16QAM | 5 | 0 | 18.90 | 19.09 | 19.12 | 19.50 | TEL: 886-3-327-3456 Page 26 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 | | | | <lte b<="" th=""><th>and 25></th><th></th><th></th><th></th></lte> | and 25> | | | | |-------------|------------|------------|---|-----------------------------|--------------------------------|------------------------------|---------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | Cha | nnel | | 26065 | 26365 | 26665 | (dBm) | | | Frequen | cy (MHz) | | 1852.5 | 1882.5 | 1912.5 | | | 5 | QPSK | 1 | 0 | 19.75 | 19.63 | 19.79 | 21.50 | | 5 | QPSK | 1 | 5 | 19.58 | 19.53 | 19.61 | 21.50 | | 5 | QPSK | 3 | 0 | 19.78 | 19.75 | 19.84 | | | 5 | QPSK | 3 | 3 | 19.69 | 19.62 | 19.78 | 20.50 | | 5 | QPSK | 6 | 0 | 19.80 | 19.68 | 19.75 | | | 5 | 16QAM | 1 | 0 | 20.38 | 20.33 | 20.47 | 21.50 | | 5 | 16QAM | 1 | 5 | 20.14 | 20.10 | 20.25 | 21.50 | | 5 | 16QAM | 3 | 0 | 20.26 | 20.22 | 20.37 | 20.50 | | 5 | 16QAM | 3 | 3 | 20.20 | 20.09 | 20.16 | 20.50 | | 5 | 16QAM | 5 | 0 | 18.75 | 18.87 | 18.80 | 19.50 | | | Cha | nnel | | 26055 | 26365 | 26675 | Tune-up limit | | | Frequen | cy (MHz) | | 1851.5 | 1882.5 | 1913.5 | (dBm) | | 3 | QPSK | 1 | 0 | 19.63 | 19.87 | 19.65 | 21.50 | | 3 | QPSK | 1 | 5 | 19.59 | 19.80 | 19.57 | 21.00 | | 3 | QPSK | 3 | 0 | 18.58 | 18.80 | 18.57 | 20.50 | | 3 | QPSK | 3 | 3 | 18.64 | 18.76 | 18.51 | 20.00 | | 3 | QPSK | 6 | 0 | 17.66 | 17.79 | 17.57 | 19.50 | | 3 | 16QAM | 1 | 0 | 18.53 | 18.85 | 18.55 | 20.50 | | 3 | 16QAM | 1 | 5 | 18.52 | 18.60 | 18.57 | 20.00 | | 3 | 16QAM | 3 | 0 | 17.58 | 17.84 | 17.61 | | | 3 | 16QAM | 3 | 3 | 17.68 | 17.72 | 17.65 | 19.50 | | 3 | 16QAM | 5 | 0 | 17.52 | 17.83 | 17.56 | | | | Cha | nnel | | 26047 | 26365 | 26683 | Tune-up limit | | | Frequen | cy (MHz) | | 1850.7 | 1882.5 | 1914.3 | (dBm) | | 1.4 | QPSK | 1 | 0 | 19.62 | 19.81 | 19.58 | 21.50 | | 1.4 | QPSK | 1 | 5 | 19.59 | 19.69 | 19.57 | | | 1.4 | QPSK | 3 | 0 | 18.69 | 18.79 | 18.60 | 20.50 | | 1.4 | QPSK | 3 | 3 | 18.60 | 18.67 | 18.59 | | | 1.4 | QPSK | 6 | 0 | 17.66 | 17.90 | 17.60 | 19.50 | | 1.4 | 16QAM | 1 | 0 | 18.59 | 18.84 | 18.61 | 20.50 | | 1.4 | 16QAM | 1 | 5 | 18.68 | 18.73 | 18.65 | | | 1.4 | 16QAM | 3 | 0 | 17.52 | 17.79 | 17.59 | | | 1.4 | 16QAM | 3 | 3 | 17.55 | 17.71 | 17.64 | 19.50 | | 1.4 | 16QAM | 5 | 0 | 17.61 | 17.79 | 17.64 | | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 27 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 | | | | <lte b<="" th=""><th>and 26></th><th></th><th></th><th></th></lte> | and 26> | | | | |-------------|------------|------------|---|-----------------------------|--------------------------------|------------------------------|---------------| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | Cha | nnel | | 26715 | 26865 | 27015 | (dBm) | | | Frequen | cy (MHz) | | 816.5 | 831.5 | 846.5 | | | 5 | QPSK | 1 | 0 | 20.02 | 20.05 | 20.00 | 04.50 | | 5 | QPSK | 1 | 5 | 19.74 | 19.81 | 19.70 | 21.50 | | 5 | QPSK | 3 | 0 | 20.06 | 20.03 | 19.92 | | | 5 | QPSK | 3 | 3 | 19.84 | 19.85 | 19.73 | 20.50 | | 5 | QPSK | 6 | 0 | 19.91 | 19.92 | 19.87 | | | 5 | 16QAM | 1 | 0 | 20.24 | 20.29 | 20.22 | 21.50 | | 5 | 16QAM | 1 | 5 | 19.99 | 20.05 | 19.95 | 21.50 | | 5 | 16QAM | 3 | 0 | 20.14 | 20.19 | 20.12 | 20.50 | | 5 | 16QAM | 3 | 3 | 20.03 | 20.02 | 19.90 | 20.50 | | 5 | 16QAM | 5 | 0 | 18.92 | 19.13 | 18.34 | 19.50 | | | Cha | nnel | | 26705 | 26865 | 27025 | Tune-up limit | | | Frequen | cy (MHz) | | 815.5 | 831.5 | 847.5 | (dBm) | | 3 | QPSK | 1 | 0 | 19.84 | 19.95 | 19.63 | 21.50 | | 3 | QPSK | 1 | 5 | 19.59 | 19.72 | 19.65 | 21.50 | | 3 | QPSK | 3 | 0 | 18.73 | 18.93 | 18.70 | 20.50 | | 3 | QPSK | 3 | 3 | 18.66 | 18.70 | 18.81 | 20.00 | | 3 | QPSK | 6 | 0 | 17.79 | 17.97 | 17.61 | 19.50 | | 3 | 16QAM | 1 | 0 | 18.80 | 19.00 | 18.56 | 20.50 | | 3 | 16QAM | 1 | 5 | 18.70 | 18.82 | 18.59 | 20.00 | | 3 | 16QAM | 3 | 0 | 17.92 | 18.12 | 17.60 | | | 3 | 16QAM | 3 | 3 | 17.69 | 17.88 | 17.57 | 19.50 | | 3 | 16QAM | 5 | 0 | 17.91 | 18.07 | 17.62 | | | | Cha | nnel | | 26697 | 26865 | 27033 | Tune-up limit | | | Frequen | cy (MHz) | | 814.7 | 831.5 | 848.3 | (dBm) | | 1.4 | QPSK | 1 | 0 | 19.74 | 19.85 | 19.63 | 21.50 | | 1.4 | QPSK | 1 | 5 | 19.56 | 19.52 | 19.60 | 200 | | 1.4 | QPSK | 3 | 0 | 18.79 | 18.83 | 18.64 | 20.50 | | 1.4 | QPSK | 3 | 3 | 18.60 | 18.75 | 18.51 | | | 1.4 | QPSK | 6 | 0 | 17.78 | 17.71 | 17.57 | 19.50 | | 1.4 | 16QAM | 1 | 0 | 18.89 | 18.71 | 18.62 | 20.50 | | 1.4 | 16QAM | 1 | 5 | 18.60 | 18.73 | 18.53 | | | 1.4 | 16QAM | 3 | 0 | 17.97 | 18.17 | 17.62 | | | 1.4 | 16QAM | 3 | 3 | 17.72 | 17.77 | 17.56 | 19.50 | | 1.4 | 16QAM | 5 | 0 | 17.92 | 18.02 | 17.63 | | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 28 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## FCC SAR TEST REPORT 16QAM QPSK QPSK **QPSK** **QPSK** QPSK 16QAM 16QAM 16QAM 16QAM 16QAM Channel Frequency (MHz) | <pre><lte 66="" band=""></lte></pre> | | | | | | | | | | | | |--------------------------------------|------------------------------|--------------------------------|-----------------------------|--------------|------------|------------|-------------|--|--|--|--| | Tune-up limit | Power
High
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
Low
Ch. / Freq. | RB
Offset | RB
Size | Modulation | BW
[MHz] | | | | | | (dBm) | 132647 | 132322 | 131997 | | nnel | Cha | | | | | | | | 1777.5 | 1745 | 1712.5 | | cy (MHz) | Frequen | | | | | | | 21.50 | 19.90 | 19.66 | 19.52 | 0 | 1 | QPSK | 5 | | | | | | 21.50 | 19.81 | 19.61 | 19.58 | 5 | 1 | QPSK | 5 | | | | | | | 19.88 | 19.67 | 19.53 | 0 | 3 | QPSK | 5 | | | | | | 20.50 | 19.83 | 19.68 | 19.61 | 3 | 3 | QPSK | 5 | | | | | | | 19.72 | 19.53 | 19.56 | 0 | 6 | QPSK | 5 | | | | | | 21.50 | 19.94 | 20.02 | 19.76 | 0 | 1 | 16QAM | 5 | | | | | | 21.50 | 19.91 | 19.69 | 19.60 | 5 | 1 | 16QAM | 5 | | | | | | 00.50 | 19.99 | 19.80 | 19.59 | 0 | 3 | 16QAM | 5 | | | | | | 20.50 | 19.90 | 19.67 | 19.64 | 3 | 3 | 16QAM | 5 | | | | | | 19.50 | 18.90 | 18.77 | 18.61 | 0 | 5 | 16QAM | 5 | | | | | | Tune-up limit | 132657 | 132322 | 131987 | | nnel | Cha | | | | | | | (dBm) | 1778.5 | 1745 | 1711.5 | | cy (MHz) | Frequen | | | | | | | 04.50 | 19.88 | 19.78 | 19.79 | 0 | 1 | QPSK | 3 | | | | | | 21.50 | 19.88 | 19.75 | 19.67 | 5 | 1 | QPSK | 3 | | | | | | 20.50 | 18.83 | 18.67 | 18.64 | 0 | 3 | QPSK | 3 | | | | | | 20.50 | 18.77 | 18.56 | 18.57 | 3 | 3 | QPSK | 3 | | | | | | 19.50 | 19.44 | 19.48 | 19.39 | 0 | 6 | QPSK | 3 | | | | | | 20.50 | 18.84 | 18.72 | 18.63 | 0 | 1 | 16QAM | 3 | | | | | | 20.50 | 18.81 | 18.58 | 18.53 | 5 | 1 | 16QAM | 3 | | | | | | | 17.87 | 17.74 | 17.77 | 0 | 3 | 16QAM | 3 | | | | | | 19.50 | 17.84 | 17.71 | 17.63 | 3 | 3 | 16QAM | 3 | | | | | | | | | | | | | | | | | | 17.67 131979 1710.7 19.74 19.61 18.59 18.62 19.24 18.68 18.58 17.72 17.60 17.59 17.67 132322 1745 19.73 19.60 18.55 18.58 19.33 18.67 18.63 17.69 17.68 17.53 17.88 132665 1779.3 19.83 19.72 18.58 18.72 19.49 18.79 18.76 17.82 17.81 17.83 Tune-up limit (dBm) 21.50 20.50 19.50 20.50 19.50 | | <lte 85="" band=""></lte> | | | | | | | | | | | | |-------------|---------------------------|------------|--------------|-----------------------------|--------------------------------|------------------------------|---------------|--|--|--|--|--| | BW
[MHz] | Modulation | RB
Size | RB
Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | | | | | | | Cha | nnel | | 134027 | 134092 | 134157 | (dBm) | | | | | | | | Frequen | cy (MHz) | | 700.5 | 707 | 713.5 | | | | | | | | 5 | QPSK | 1 | 0 | 20.33 | 20.35 | 20.28 | 21.50 | | | | | | | 5 | QPSK | 1 | 5 | 20.09 | 20.08 | 20.11 | 21.50 | | | | | | | 5 | QPSK | 3 | 0 | 20.29 | 20.33 | 20.17 | | | | | | | | 5 | QPSK | 3 | 3 | 20.06 | 20.18 | 20.17 | 20.50 | | | | | | | 5 | QPSK | 6 | 0 | 19.56 | 19.64 | 19.61 | | | | | | | | 5 | 16QAM | 1 | 0 | 20.57 | 20.62 | 20.36 | 21.50 | | | | | | | 5 | 16QAM | 1 | 5 | 20.38
| 20.41 | 20.30 | 21.50 | | | | | | | 5 | 16QAM | 3 | 0 | 20.33 | 20.30 | 20.20 | 20.50 | | | | | | | 5 | 16QAM | 3 | 3 | 20.18 | 20.27 | 19.96 | 20.50 | | | | | | | 5 | 16QAM | 5 | 0 | 19.50 | 19.49 | 19.40 | 19.50 | | | | | | TEL: 886-3-327-3456 FAX: 886-3-328-4978 Template version: 211220 Page 29 of 36 Issued Date : Feb. 06, 2023 Report No.: FA2N1807 ## 11. Antenna Location Report No.: FA2N1807 The separation distance for antenna to edge: | Antenna | To Bottom of Laptop (mm) | |-------------------|--------------------------| | WWAN Antenna 5 | 9.45 | | WLAN/BT Antenna 1 | 214 | | WLAN Antenna 2 | 214 | TEL: 886-3-327-3456 Page 30 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 12. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA2N1807 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. #### **GSM Note:** 1. Per KDB 941225 D01v03r01, for SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the GPRS 4Tx slots modes was selected when EUT operating without power back-off, the GPRS 4Tx slots modes was selected when EUT operating with power back-off, according to the highest source-based time-averaged output power. #### LTE Note: - Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - LTE band 2/4/5 SAR test was covered by Band 25/66/26; according to TCB workshop, SAR test for overlapping LTE bands can be reduced if - a. The maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion. - b. The channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band. TEL: 886-3-327-3456 Page 31 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 # 12.1 Body SAR ## <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Antenna
Vendor | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-------------------|------------------|-------------|-----|----------------|-------------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 128 | 824.2 | Vendor 2 | 26.11 | 26.50 | 1.094 | -0.14 | 0.733 | 0.802 | | | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 189 | 836.4 | Vendor 2 | 26.05 | 26.50 | 1.109 | -0.1 | 0.939 | 1.042 | | 01 | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 251 | 848.8 | Vendor 2 | 26.03 | 26.50 | 1.114 | 0 | 0.945 | 1.053 | | | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 251 | 848.8 | Vendor 1 | 26.03 | 26.50 | 1.114 | 0.09 | 0.781 | 0.870 | | | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 128 | 824.2 | Vendor 1 | 26.11 | 26.50 | 1.094 | -0.03 | 0.605 | 0.662 | | | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 189 | 836.4 | Vendor 1 | 26.05 | 26.50 | 1.109 | 0.03 | 0.776 | 0.861 | | | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 661 | 1880 | Vendor 2 | 20.96 | 21.50 | 1.132 | 0.09 | 0.439 | 0.497 | | | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 512 | 1850.2 | Vendor 2 | 20.95 | 21.50 | 1.135 | -0.11 | 0.529 | 0.600 | | | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 810 | 1909.8 | Vendor 2 | 20.65 | 21.50 | 1.216 | -0.05 | 0.569 | 0.692 | | | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 661 | 1880 | Vendor 1 | 20.96 | 21.50 | 1.132 | 0.11 | 0.712 | 0.806 | | | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 810 | 1909.8 | Vendor 1 | 20.65 | 21.50 | 1.216 | -0.17 | 0.709 | 0.862 | | 02 | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 512 | 1850.2 | Vendor 1 | 20.95 | 21.50 | 1.135 | -0.02 | 0.943 | 1.070 | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 32 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## <FDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Antenna
Vendor | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|--------|----------------|-------------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 12 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 23035 | 701.5 | Vendor 2 | 20.00 | 21.50 | 1.413 | 0.01 | 0.122 | 0.172 | | 03 | LTE Band 12 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 23095 | 707.5 | Vendor 2 | 19.96 | 21.50 | 1.426 | 0.04 | 0.154 | 0.220 | | | LTE Band 12 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 23155 | 713.5 | Vendor 2 | 19.98 | 21.50 | 1.419 | 0 | 0.111 | 0.158 | | | LTE Band 12 | 5M | QPSK | 3 | 3 | Bottom of Laptop | 0mm | 23035 | 701.5 | Vendor 2 | 20.04 | 20.50 | 1.112 | -0.07 | 0.148 | 0.165 | | | LTE Band 12 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 23095 | 707.5 | Vendor 1 | 19.96 | 21.50 | 1.426 | 0.17 | 0.134 | 0.191 | | | LTE Band 13 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 23230 | 782 | Vendor 2 | 19.84 | 21.50 | 1.466 | 0.05 | 0.121 | 0.177 | | 04 | LTE Band 13 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 23230 | 782 | Vendor 2 | 19.77 | 20.50 | 1.183 | 0.13 | 0.167 | 0.198 | | | LTE Band 13 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 23230 | 782 | Vendor 1 | 19.77 | 20.50 | 1.183 | 0.06 | 0.122 | 0.144 | | | LTE Band 14 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 23330 | 793 | Vendor 2 | 20.03 | 21.50 | 1.403 | -0.17 | 0.122 | 0.171 | | 05 | LTE Band 14 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 23330 | 793 | Vendor 2 | 19.99 | 20.05 | 1.014 | -0.01 | 0.170 | 0.172 | | | LTE Band 14 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 23330 | 793 | Vendor 1 | 19.99 | 20.05 | 1.014 | 0.11 | 0.127 | 0.129 | | 06 | LTE Band 25 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 26665 | 1912.5 | Vendor 2 | 19.79 | 21.50 | 1.483 | 0 | 0.649 | 0.962 | | | LTE Band 25 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 26065 | 1852.5 | Vendor 2 | 19.75 | 21.50 | 1.496 | -0.09 | 0.493 | 0.738 | | | LTE Band 25 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 26365 | 1882.5 | Vendor 2 | 19.63 | 21.50 | 1.538 | -0.04 | 0.607 | 0.934 | | | LTE Band 25 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 26665 | 1912.5 | Vendor 2 | 19.84 | 20.50 | 1.164 | -0.07 | 0.577 | 0.672 | | | LTE Band 25 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 26065 | 1852.5 | Vendor 2 | 19.78 | 20.50 | 1.180 | -0.1 | 0.478 | 0.564 | | | LTE Band 25 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 26365 | 1882.5 | Vendor 2 | 19.75 | 20.50 | 1.189 | -0.16 | 0.599 | 0.712 | | | LTE Band 25 | 5M | QPSK | 6 | 0 | Bottom of Laptop | 0mm | 26065 | 1852.5 | Vendor 2 | 19.80 | 20.50 | 1.175 | 0.07 | 0.552 | 0.649 | | | LTE Band 25 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 26665 | 1912.5 | Vendor 1 | 19.79 | 21.50 | 1.483 |
0.11 | 0.607 | 0.900 | | 07 | LTE Band 26 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 26865 | 831.5 | Vendor 2 | 20.05 | 21.50 | 1.396 | 0.02 | 0.164 | 0.229 | | | LTE Band 26 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 26715 | 816.5 | Vendor 2 | 20.02 | 21.50 | 1.406 | 0.05 | 0.133 | 0.187 | | | LTE Band 26 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 27015 | 846.5 | Vendor 2 | 20.00 | 21.50 | 1.413 | -0.01 | 0.121 | 0.171 | | | LTE Band 26 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 26715 | 816.5 | Vendor 2 | 20.06 | 20.50 | 1.107 | -0.09 | 0.162 | 0.179 | | | LTE Band 26 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 26865 | 831.5 | Vendor 1 | 20.05 | 21.50 | 1.396 | -0.13 | 0.141 | 0.197 | | | LTE Band 66 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 132647 | 1777.5 | Vendor 2 | 19.90 | 21.50 | 1.445 | -0.09 | 0.599 | 0.866 | | | LTE Band 66 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 131997 | 1712.5 | Vendor 2 | 19.52 | 21.50 | 1.578 | 0.06 | 0.592 | 0.934 | | 80 | LTE Band 66 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 132322 | 1745 | Vendor 2 | 19.66 | 21.50 | 1.528 | -0.01 | 0.666 | 1.017 | | | LTE Band 66 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 132647 | 1777.5 | Vendor 2 | 19.88 | 20.50 | 1.153 | 0.19 | 0.565 | 0.652 | | | LTE Band 66 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 131997 | 1712.5 | Vendor 2 | 19.53 | 20.50 | 1.250 | -0.04 | 0.594 | 0.743 | | | LTE Band 66 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 132322 | 1745 | Vendor 2 | 19.67 | 20.50 | 1.211 | 0.08 | 0.639 | 0.774 | | | LTE Band 66 | 5M | QPSK | 6 | 0 | Bottom of Laptop | 0mm | 132647 | 1777.5 | Vendor 2 | 19.72 | 20.50 | 1.197 | -0.11 | 0.585 | 0.700 | | | LTE Band 66 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 132322 | 1745 | Vendor 1 | 19.66 | 21.50 | 1.528 | 0.09 | 0.639 | 0.976 | | | LTE Band 85 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 134092 | 707 | Vendor 2 | 20.35 | 21.50 | 1.303 | 0.01 | 0.122 | 0.159 | | | LTE Band 85 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 134027 | 700.5 | Vendor 2 | 20.33 | 21.50 | 1.309 | 0.02 | 0.089 | 0.117 | | | LTE Band 85 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 134157 | 713.5 | Vendor 2 | 20.28 | 21.50 | 1.324 | -0.03 | 0.098 | 0.130 | | | LTE Band 85 | 5M | QPSK | 3 | 0 | Bottom of Laptop | 0mm | 134092 | 707 | Vendor 2 | 20.33 | 20.50 | 1.040 | 0.05 | 0.110 | 0.114 | | 09 | LTE Band 85 | 5M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | 134092 | 707 | Vendor 1 | 20.35 | 21.50 | 1.303 | -0.06 | 0.146 | 0.190 | Report No.: FA2N1807 TEL: 886-3-327-3456 Page 33 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 #### 12.2 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Antenna
Vendor | Average
Power
(dBm) | | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|---------|-------------------|------------------|-------------|-----|----------------|-------------------|---------------------------|-------|------------------------------|-------|------------------------------|-------|------------------------------| | 1st | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 251 | 848.8 | Vendor 2 | 26.03 | 26.50 | 1.114 | 0 | 0.945 | - | 1.053 | | 2nd | GSM850 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 251 | 848.8 | Vendor 2 | 26.03 | 26.50 | 1.114 | 0.06 | 0.933 | 1.013 | 1.040 | | 1st | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 512 | 1850.2 | Vendor 1 | 20.95 | 21.50 | 1.135 | -0.02 | 0.943 | - | 1.070 | | 2nd | GSM1900 | GPRS (4 Tx slots) | Bottom of Laptop | 0mm | 512 | 1850.2 | Vendor 1 | 20.95 | 21.50 | 1.135 | -0.09 | 0.928 | 1.016 | 1.053 | Report No.: FA2N1807 #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated *measured SAR*. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. ## 13. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | Body | |-----|---|------| | 1. | WWAN + 2.4GHz WLAN Ant 1 + 2.4GHz WLAN Ant 2 | Yes | | 2. | WWAN + 2.4GHz WLAN Ant 2 + Bluetooth Ant 1 | Yes | | 3. | WWAN + 5G/6GHz WLAN Ant 1 +5G/6GHz WLAN Ant 2 + Bluetooth Ant 1 | Yes | #### **General Note:** - The Intel AX211D2W WLAN/BT module is integrated into this host. The WLAN 2.4GHz/5GHz SAR result is referenced from Intel SAR report, report No.:201120-03.TR07/ 210325-01.TR27 (FCC ID: PD9AX211D2), WLAN 6GHz SAR result refers to report No.:201120-03.TR40 (FCC ID: PD9AX211D2) and these SAR results are also used to perform simultaneous transmission analysis. - The Scaled SAR summation is calculated based on the same configuration and test position. 2. - Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of $[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2]$, where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - v) The SPLSR calculated results please refer to section 13.2. ## 13.1 Body Exposure Conditions | Exposure Position | 1 | 2 | 3 | 4 | 5 | 6 | Summed Stage 1g SAR 1g | Summed | 1+4+5+6
Summed
1g SAR
(W/kg) | SPLSR | Case No | |-------------------------|------------------|---------------------|---------------------|--------------------------|--------------------------|--------------------|------------------------|--------|---------------------------------------|-------|---------| | | Maximum
WWAN | WLAN2.4GHz
Ant 1 | WLAN2.4GHz
Ant 2 | WLAN
5G/6GHz
Ant 1 | WLAN
5G/6GHz
Ant 2 | Bluetooth
Ant 1 | | | | | | | | 1g SAR
(W/kg) | | | | | | | Bottom of Laptop at 0mm | 1.070 | 0.350 | 0.360 | 0.740 | 0.750 | 0.030 | 1.460 | 1.780 | 2.590 | 0.02 | Case 1 | TEL: 886-3-327-3456 Page 34 of 36 FAX: 886-3-328-4978 Issued Date : Feb. 06, 2023 ## 13.2 SPLSR Evaluation and Analysis #### **General Note:** 1. According to section11 antenna location, the minimum distance between each transmit antenna is using for SPLSR analysis Report No.: FA2N1807 - 2. SPLSR = (SAR₁ + SAR₂)¹.5 / (min. separation distance, mm). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary - 3. The detail hotspot point for each transmitter in each exposure condition are showing as below figure and the minimum 3D distance for each sum combination is used for SPLSR analysis. | | Band | Position | SAR
(W/kg) | Gap
(mm) | 3D distance
(mm) | Summed
SAR (W/kg) | SPLSR
Results | Simultaneous SAR | | |--------|---------------------|------------------|---------------|-------------|---------------------|----------------------|------------------|------------------|--| | | Maximum WWAN | Bottom of Laptop | 1.070 | 0mm | 232.0 | 1.84 | 0.01 | Not required | | | Case 1 | WLAN Ant 1+BT Ant 1 | | 0.770 | 0mm | | | | | | | | Maximum WWAN | Bottom of Laptop | 1.070 | 0mm | 147.3 | 1.82 | 0.02 | Not required | | | | WLAN Ant 2 | вошотт от сартор | 0.750 | 0mm | | | | | | | | WLAN Ant 1+BT Ant 1 | Bottom of Laptop | 0.770 | 0mm | 179.2 | 1.52 | 0.01 | Not required | | | | WLAN Ant 2 | вошотт от сартор | 0.750 | 0mm | | | | | | Test Engineer: Jeff Tsao and Chris Yang TEL: 886-3-327-3456 Page 35 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023 ## 14. Uncertainty Assessment Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\le 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report. Report No.: FA2N1807 **Declaration of Conformity:** The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers. Comments and Explanations: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. ## 15. References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [6] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015 - [7] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [8] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015 - [9] FCC
KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug - [10] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. TEL: 886-3-327-3456 Page 36 of 36 FAX: 886-3-328-4978 Issued Date: Feb. 06, 2023