Page 16 of 73

Report No.: STS2012165W06

5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

TEST OVERVIEW

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0 and ANSI C63.26-2015-Section 5.5.

2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.

4. The middle channel for the highest RF power within the transmitting frequency was measured.

5. The conducted spurious emission for the whole frequency range was taken.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.

TEST SETUP

TEST RESULT

Note: Test data See Appendix 6.

Shenzhen STS Test Services Co., Ltd.

5.7 BAND EDGE

TEST OVERVIEW

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0 and ANSI C63.26-2015-Section 5.7.

2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.

3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.

5. The band edges of low and high channels for the highest RF powers were measured.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.

TEST SETUP

TEST RESULT

Note: Test data See Appendix 7.

Shenzhen STS Test Services Co., Ltd.

5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT TEST OVERVIEW

Radiated spurious emissions measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas.Measurements on signals operating above 1GHz are performed using vertically and horizontally polarizedhorn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE

- 1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI C63.26-2015-Section 5.5.
- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \ge 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize

9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-E. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. PMea=S.G Level+ Ant-Cable loss; Margin=PMea-Limit.

Shenzhen STS Test Services Co., Ltd.

Page 19 of 73 Report No.: STS2012165W06

TEST SETUP

For radiated test from 30MHz to 1GHz

For radiated test from above 1GHz

TEST RESULT

Note: Test data See Appendix 8.

APPENDIX A.TESTRESULT A1. CONDUCTED OUTPUT POWER

GSM 850:

GSM 850			
Mode	Frequency (MHz)	AVG Power(dBm)	
GSM (CMSK 1 Slot)	824.2	30.39	
	836.6	30.64	
(GIVISK, I-SIUL)	848.8	30.72	
0000	824.2	30.26	
GPRS (CMSK 1 Slot)	836.6	30.08	
(GIVISK, 1-SIUL)	848.8	30.33	
CDDC	824.2	29.77	
GPRS (CMSK 2 Slot)	836.6	29.65	
(GIVISK,2-SIUL)	848.8	29.85	
CDDS	824.2	29.33	
GPRS	836.6	29.16	
(GIVISK, 3-5101)	848.8	29.36	
CDDS	824.2	28.92	
GPRO (CMSK 4 Slot)	836.6	28.72	
(GIVISK,4-SIUL)	848.8	28.87	
FCDDS	824.2	30.15	
	836.6	29.94	
(8PSK,1-Slot)	848.8	30.10	
EGPRS	824.2	29.36	
	836.6	29.19	
(0F3K,2-3101)	848.8	29.39	
FORRS	824.2	28.63	
(8PSK,3-Slot)	836.6	28.40	
	848.8	28.67	
FCDDS	824.2	27.93	
	836.6	27.68	
(8PSK,4-5101)	848.8	27.88	

Shenzhen STS Test Services Co., Ltd.

PCS 1900:

PCS 1900			
Mode	Frequency (MHz)	AVG Power(dBm)	
GSM (GMSK,1-Slot)	1850.2	27.85	
	1880.0	27.61	
	1909.8	27.63	
CDDC	1850.2	27.43	
(GMSK 1-Slot)	1880.0	27.29	
(GIMSK, 1-SIOI)	1909.8	27.55	
CDPS	1850.2	26.96	
(CMSK 2-Slot)	1880.0	26.81	
(GINISK,2-SIOI)	1909.8	27.11	
CDBS	1850.2	26.47	
(CMSK 3-Slot)	1880.0	26.37	
(GM3R,3-3101)	1909.8	26.68	
CDBS	1850.2	26.04	
(CMSK 4 Slot)	1880.0	25.88	
(91038,4-3101)	1909.8	26.19	
ECODS	1850.2	27.05	
(8DSK 1-Slot)	1880.0	27.22	
(0F3K, 1-310t)	1909.8	27.16	
ECDES	1850.2	26.28	
(PRK 2 Slot)	1880.0	26.43	
(0F3R,2-3101)	1909.8	26.45	
ECDRS	1850.2	25.55	
	1880.0	25.71	
(0F 31, 3-3101)	1909.8	25.67	
ECDBS	1850.2	24.77	
EGPRO (PDSK 4 Slot)	1880.0	24.92	
(8238,4-3101)	1909.8	24.94	

UMTS BAND V

UMTS BAND 5			
Mode	Frequency(MHz)	AVG Power	
WCDMA 850	826.4	20.82	
	836.6	21.14	
NIVIC	846.6	21.17	
	826.4	20.32	
Subtost 1	836.6	20.50	
Sublesi	846.6	20.52	
	826.4	19.82	
Subtost 2	836.6	20.10	
Sublest 2	846.6	20.04	
	826.4	19.49	
Subtost 3	836.6	19.66	
Sublest 5	846.6	19.72	
	826.4	19.01	
Subtact 4	836.6	19.25	
Sublest 4	846.6	19.26	
	826.4	20.30	
Subtoct 1	836.6	20.49	
Sublesi	846.6	20.46	
	826.4	19.41	
Subtoct 2	836.6	19.53	
Sublest Z	846.6	19.52	
	826.4	19.34	
Subtost 3	836.6	19.07	
Sublest 5	846.6	19.19	
	826.4	19.01	
Subtost 4	836.6	18.75	
	846.6	18.88	
	826.4	17.52	
Subtost 5	836.6	17.34	
Sublesi 5	846.6	17.43	

Shenzhen STS Test Services Co., Ltd.

UMTS BAND II

UMTS BAND 2		
Mode	Frequency(MHz)	AVG Power
WCDMA 1900	1852.4	21.65
	1880	21.40
RIVIC	1907.6	21.48
	1852.4	21.06
Subtoct 1	1880	21.25
Sublesi	1907.6	21.17
	1852.4	20.61
Subtact 2	1880	20.79
Sublesi Z	1907.6	20.69
	1852.4	20.24
RODPA Subtact 2	1880	20.31
Sublest 5	1907.6	20.23
	1852.4	19.94
Subtoct 4	1880	20.00
Sublest 4	1907.6	19.73
	1852.4	20.95
Rubtoot 1	1880	21.03
Sublesi	1907.6	20.88
	1852.4	19.98
RUbteet 2	1880	20.12
Sublest Z	1907.6	19.96
	1852.4	19.91
RUbtoct 2	1880	19.65
Sublesi 5	1907.6	19.54
	1852.4	19.48
NOUFA Subtost 4	1880	19.33
Sublest 4	1907.6	19.05
	1852.4	18.03
NOUFA Subtost 5	1880	17.88
Sublesio	1907.6	17.57

Shenzhen STS Test Services Co., Ltd.

A2. PEAK-TO-AVERAGE RADIO

GSM 850		
Mode	Frequency (MHz)	PAR
GSM 850	824.2	2.60
	836.6	2.60
	848.8	2.59
GPRS 850	824.2	2.60
	836.6	2.60
	848.8	2.59
EGPRS 850	824.2	5.58
	836.6	5.63
	848.8	5.48

PCS 1900		
Mode	Frequency (MHz)	PAR
PCS1900	1850.2	2.61
	1880	2.62
	1909.8	2.62
GPRS1900	1850.2	2.62
	1880	2.62
	1909.8	2.63
EGPRS1900	1850.2	5.54
	1880	5.58
	1909.8	5.52

UMTS Band 2			
Mode	Frequency (MHz)	PAR	
WCDMA 1900	1852.4	3.07	
RMC	1880	3.01	
	1907.6	2.96	
	1852.4	3.32	
HSDPA 1900	1880	3.85	
	1907.6	3.22	
	1852.4	3.71	
HSUPA 1900	1880	3.20	
Γ	1907.6	3.26	

UMTS Band 5			
Mode	Frequency (MHz)	PAR	
WCDMA 850	826.4	3.04	
RMC	836.6	3.11	
	846.6	2.99	
	826.4	3.24	
HSDPA 850	836.6	3.73	
	846.6	3.19	
	826.4	3.84	
HSUPA 850	836.6	3.08	
	846.6	3.69	

Page 25 of 73

Report No.: STS2012165W06

GPRS850_Lower

GPRS850_Middle

GSM850_Higher

GPRS850_Higher

Page 26 of 73

Report No.: STS2012165W06

Page 27 of 73

Report No.: STS2012165W06

GPRS1900_Lower

GPRS1900_Middle

GSM1900_Higher

GPRS1900_Higher

Shenzhen STS Test Services Co., Ltd.

Page 28 of 73

Report No.: STS2012165W06

Shenzhen STS Test Services Co., Ltd.

Page 29 of 73

Report No.: STS2012165W06

WCDMA B2_Low

WCDMA B2_High

HSDPA B2_Middle

WCDMA B2_Middle

HSDPA B2_Low

Page 30 of 73

Report No.: STS2012165W06

HSUPA B2_Middle

Shenzhen STS Test Services Co., Ltd.

П