

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics U.S.A, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 02/17/2020 - 02/19/2020 Test Site/Location: PCTEST, Columbia, MD, USA Test Report Serial No.: 1M2001290013-09.ZNF

Date of Issue: 03/03/2020

FCC ID: ZNFK410WM

APPLICANT: LG ELECTRONICS U.S.A, INC.

Scope of Test: Audio Band Magnetic Testing (T-Coil)

Application Type: Certification
FCC Rule Part(s): CFR §20.19(b)
HAC Standard: ANSI C63.19-2011

285076 D01 HAC Guidance v05

285076 D02 T-Coil testing for CMRS IP v03

DUT Type: Portable Handset **Model:** LM-K410WM

Additional Model(s): LMK410WM, K410WM

Test Device Serial No.: Pre-Production Sample [S/N: 08989]

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: ZNFK410WM	PCTEST* Proof to be port of @ connect	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 1 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 1 of 68

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	5
4.	METHOD OF MEASUREMENT	7
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	17
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	19
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	22
8.	FCC 3G MEASUREMENTS	25
9.	T-COIL TEST SUMMARY	26
10.	MEASUREMENT UNCERTAINTY	35
11.	EQUIPMENT LIST	36
12.	TEST DATA	37
13.	CALIBRATION CERTIFICATES	56
14.	CONCLUSION	63
15.	REFERENCES	64
16.	TEST SETUP PHOTOGRAPHS	66

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 2 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 2 01 00

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFK410WM	PCTEST Proof to be port of @ second	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 3 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 3 01 00

© 2020 PCTEST REV 3.5.1

2. **DUT DESCRIPTION**

FCC ID: ZNFK410WM

Applicant: LG Electronics U.S.A, Inc.

1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

United States

Model: LM-K410WM

Additional Model(s): LMK410WM, K410WM

Serial Number: 08989 HW Version: Rev.1.0 SW Version: K410WM07e Internal Antenna Antenna: DUT Type: Portable Handset

Table 2-1 ZNFK410WM HAC Air Interfaces

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated
	850	vo	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR
GSM	1900	VD	Yes	Yes: WIFI or BT	Constant 2	
	GPRS/EDGE	VD	Yes	Yes: WIFI OF BI	Google Duo ²	OPUS
	850 1700	VD	Yes	Yes: WIFI or BT	CMDC Vaine1	NB AMR
UMTS		VD	Yes	Yes: WIFI OF BI	CMRS Voice ¹	NB AMK
	1900 HSPA	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	700 (B12)	VD	res	res. WIFI OF BI	Google Duo	OP03
	700 (B12) 700 (B17)	-				
	780 (B17)	- 				
	850 (B5)				RT VolTE' Google Duo'	
LTE (FDD)	1700 (B4)	VD	Yes	Yes: WIFI or BT		Volte: NB AMR, WB AMR
` '	1700 (B66)			, , , , , , , , , , , , , , , , , , , ,		Google Duo: OPUS
	1900 (B2)					
	2300 (B30)					
	2500 (B7)					
WIFI	2450	VD	Yes	Yes: GSM, UMTS, or LTE	VoWIFI², Google Duo²	VoWIFI: NB AMR, WB AMR Google Duo: OPUS
BT	2450	DT	No	Yes: GSM, UMTS, or LTE	N/A	N/A
_					ation.	

I. LTE Band Selection

This device supports the following pairs of LTE bands with similar frequencies: LTE B12 & B17 and B66 & B4. These pairs of LTE bands have the same target power and share the same transmission paths. Since the supported frequency spans for the smaller LTE bands are completely covered by the larger LTE bands, only the larger LTE bands (LTE B12 and B66) were evaluated for hearing-aid compliance.

FCC ID: ZNFK410WM	PCTEST* Proud to be past of @ interest	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 4 of 60
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 4 of 68

© 2020 PCTEST **REV 3.5.M**

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

Figure 3-1
Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

Magnetic Field frequency response for wireless devices with an axial field that exceeds
-15 dB(A/m) at 1 kHz

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ named	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 5 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 5 01 00

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters		
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]		
T1	0 to 10 dB		
T2	10 to 20 dB		
Т3	20 to 30 dB		
T4	> 30 dB		
Table 3-1 Magnetic Coupling Parameters			

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ connect	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 6 of 60
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 6 of 68
© 2020 PCTEST		·		REV 3.5.M

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

Figure 4-1 Validation Setup with Helmholtz Coil

Figure 4-2 T-Coil Test Setup

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ monand	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 7 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 7 01 00

II. Scanning Mechanism

Manufacturer: TEM

Accuracy: ± 0.83 cm/meter

Minimum Step Size: 0.1 mm

Maximum speed 6.1 cm/sec

Line Voltage: 115 VAC

Line Frequency: 60 Hz

Material Composite: Delrin (Acetal)

Data Control: Parallel Port

Dynamic Range (X-Y-Z): 45 x 31.75 x 47 cm

Dimensions: 36" x 25" x 38" Operating Area: 36" x 49" x 55"

Reflections: < -20 dB (in anechoic chamber)

Figure 4-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

Manufacturer: ITU-T

Active Frequency Range: 100 Hz – 8 kHz

Stimulus Type: Male and Female, no spaces

Single Sample 20.96 seconds

Duration: 20.96 S

Activity Level: 100%

Spectral Characteristic of full P.50

Figure 4-5
Temporal Characteristic of full P.50

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 8 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage o oi oo

ABM2 Measurement Block Diagram:

Figure 4-6 Magnetic Measurement Processing Steps

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316A/m \approx -10dB(A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of $-10 \, dB(A/m)$ in the center of the Helmholtz coil which was used to validate the probe measurement at $-10 \, dB(A/m)$. This was verified to be within $\pm 0.5 \, dB$ of the $-10 \, dB(A/m)$ value (see Page 33).

FCC ID: ZNFK410WM	PCTEST* Proud to be past of @ interest	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 9 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 9 01 00

Frequency Response Validation The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the P.50 signal as shown below:

Figure 4-7 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

> Table 4-1 **ABM2 Frequency Response Validation**

	HBI, A -	HBI, A -	
f (Hz)	Measured	Theoretical	dB Var.
	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 10 01 00

Figure 4-8
ABM2 Frequency Response Validation

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and A-weighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

Table 4-2
ABM2 Power Sum Validation

WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.36	-60.2	0.16
-50	-50.19	-50.13	0.06
-40	-40.14	-40.03	0.11
-30	-30.13	-30.01	0.12
-20	-20.12	-20	0.12
-10	-10.14	-10	0.14

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 11 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 11 01 00

© 2020 PCTEST REV 3.5.M

Figure 4-10 **ABM2 Power Sum Validation**

- 3. Measurement Test Setup
 - a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-14 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 12 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 12 of 68

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE), and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (See Section 8 for more information regarding worst-case configurations for UMTS. LTE configuration information can be found in Section 5 and 7. WIFI configuration information can be found in Section 6 and 7.)
 - ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.
- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 13 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 13 01 00

V. Test Setup

Figure 4-13
Audio Magnetic Field Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 14 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 14 of 68

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes.

Table 4-3
Center Channels and Frequencies

Test frequencies & associated channels				
Channel	Frequency (MHz)			
Cellular 850				
190 (GSM) 836.60				
4183 (UMTS)	836.60			
AWS 1750				
1412 (UMTS)	1730.40			
PCS 1900				
661 (GSM)	1880			
9400 (UMTS)	1880			

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. The middle channel and supported bandwidths from the worst-case band according to Table 7-5 was additionally evaluated with OTT VoIP for each probe orientation. See Tables 9-4 to 9-10 and 9-14 for LTE bandwidths and channels.

3. WIFI

The middle channel for each IEEE 802.11 standard was tested for each probe orientation. The 2.4GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. See Tables 9-11 and 9-15 for WIFI standards and channels.

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 15 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 15 01 00

IX. Test Flow

The flow diagram below was followed (From C63.19):

Figure 4-14 C63.19 T-Coil Signal Test Process

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ minuted	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 16 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 16 of 68

© 2020 PCTEST REV 3.5.M 01/16/2020

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

Figure 5-1
Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level*. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 17 of 60
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 17 of 68

© 2020 PCTEST REV 3.5.M

II. DUT Configuration for VoLTE over IMS T-coil Testing

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

Table 5-1
VoLTE over IMS SNNR by Radio Configuration

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
12	707.5	23095	10	QPSK	1	0	7.30	-47.49	54.79
12	707.5	23095	10	QPSK	1	25	7.30	-47.42	54.72
12	707.5	23095	10	QPSK	1	49	7.30	-47.53	54.83
12	707.5	23095	10	QPSK	25	0	7.30	-47.48	54.78
12	707.5	23095	10	QPSK	25	12	7.30	-47.40	54.70
12	707.5	23095	10	QPSK	25	25	7.29	-47.32	54.61
12	707.5	23095	10	QPSK	50	0	7.28	-47.27	54.55
12	707.5	23095	10	16QAM	1	0	7.30	-46.10	53.40
12	707.5	23095	10	16QAM	1	25	7.28	-46.75	54.03
12	707.5	23095	10	16QAM	1	49	7.26	-46.44	53.70
12	707.5	23095	10	16QAM	25	0	7.25	-47.14	54.39
12	707.5	23095	10	16QAM	25	12	7.28	-47.24	54.52
12	707.5	23095	10	16QAM	25	25	7.25	-47.07	54.32
12	707.5	23095	10	16QAM	50	0	7.25	-46.97	54.22

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The NB AMR 12.2kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 5-2

AMR Codec Investigation – VoLTE over IMS

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	8.09	8.12	7.43	7.14			23095
ABM2 (dBA/m)	-45.39	-45.11	-45.09	-45.55	A.dal	Axial Band 12 10MHz	
Frequency Response	Pass	Pass	Pass	Pass	Axiai		
S+N/N (dB)	53.48	53.23	52.52	52.69			

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFK410WM	PCTEST* Proud to be part of the internet	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 18 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage to 0100

6. **VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION**

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

Figure 6-1 Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

- CO Children in Garia (Colline) Sylvana (Colline) Sylvana (Colline) Colline Children (Colline) Colline Children (Colline) Colline Children (Colline) Colline Children (Colline) Childre							
	FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager		
	Filename:	Test Dates:	DUT Type:		Page 19 of 68		
	1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 19 01 00		

© 2020 PCTEST **REV 3.5.M**

DUT Configuration for VoWIFI over IMS T-coil Testing II.

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each IEEE 802.11 standard:

> Table 6-1 IEEE 802.11b SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11b	6	DSSS	1	3.11	-42.52	45.63
IEEE 802.11b	6	DSSS	2	3.16	-42.80	45.96
IEEE 802.11b	6	CCK	5.5	3.17	-43.24	46.41
IEEE 802.11b	6	CCK	11	3.17	-43.66	46.83

Table 6-2 IEEE 802.11g SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11g	6	BPSK	6	3.14	-47.59	50.73
IEEE 802.11g	6	BPSK	9	3.12	-47.75	50.87
IEEE 802.11g	6	QPSK	12	3.10	-48.83	51.93
IEEE 802.11g	6	QPSK	18	3.12	-49.17	52.29
IEEE 802.11g	6	16QAM	24	3.12	-49.21	52.33
IEEE 802.11g	6	16QAM	36	3.07	-50.29	53.36
IEEE 802.11g	6	64QAM	48	3.06	-49.50	52.56
IEEE 802.11g	6	64QAM	54	3.07	-49.34	52.41

Table 6-3 IEEE 802.11n SNNR by Radio Configuration

				y itaaio comigaration				
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
IEEE 802.11n	20	6	BPSK	0	3.05	-49.55	52.60	
IEEE 802.11n	20	6	QPSK	1	3.06	-50.75	53.81	
IEEE 802.11n	20	6	QPSK	2	3.04	-49.70	52.74	
IEEE 802.11n	20	6	16QAM	3	3.03	-50.19	53.22	
IEEE 802.11n	20	6	16QAM	4	3.04	-50.72	53.76	
IEEE 802.11n	20	6	64QAM	5	3.04	-50.49	53.53	
IEEE 802.11n	20	6	64QAM	6	3.04	-49.99	53.03	
IEEE 802.11n	20	6	64QAM	7	3.04	-50.57	53.61	

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 20 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 20 01 00

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The NB AMR 12.2kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 6-4
AMR Codec Investigation – VoWIFI over IMS

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	7.46	7.43	3.11	2.97				6
ABM2 (dBA/m)	-41.32	-40.07	-40.05	-40.25	Avial	2.4GHz	IEEE 802.11b	
Frequency Response	Pass	Pass	Pass	Pass	Axial	2.4912	IEEE 802.11D	
S+N/N (dB)	48.78	47.50	43.16	43.22				

Mute on; Backlight off; Max Volume; Max Contrast

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 24 of 60
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 21 of 68
~				

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 75kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

Note: The green highlighted text is approved by FCC under the TCB PAG Re-Use Policy 388624 D01 IV. D. for T-Coil Testing for WI-FI calling and Google Duo.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration for each applicable data mode was used for these investigations. The 75kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Table 7-1
Codec Investigation – OTT VoIP (EDGE)

Codec Setting:	75kbps	6kbps	Orientation	Channel			
ABM1 (dBA/m)	4.48	5.13					
ABM2 (dBA/m)	-32.51	-32.32	Axial	661			
Frequency Response	Pass	Pass	Axiai				
S+N/N (dB)	36.99	37.45					

³ FCC Office of Engineering and Technology KDB. "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

	@ PCTEST			Approved by:
FCC ID: ZNFK410WM	Proud to be port of nement	HAC (T-COIL) TEST REPORT	LG LG	Quality Manager
Filename:	Test Dates:	DUT Type:		Page 22 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Fage 22 01 00

Table 7-2
Codec Investigation – OTT VoIP (HSPA)

Codec II	ivestigatic	,,, – O i i i	, on (1151)	~)	
Codec Setting:	75kbps 6kbps		Orientation	Channel	
ABM1 (dBA/m)	4.84	5.89			
ABM2 (dBA/m)	-42.73	-42.34	Axial	0.400	
Frequency Response	Pass	Pass	Axiai	9400	
S+N/N (dB)	47.57	48.23			

Table 7-3
Codec Investigation – OTT VoIP (LTE)

	400 111100		• • • • • • • • • • • • • • • • • • • 	\-:-/		
Codec Setting:	75kbps	6kbps	Orientation	Band / BW	Channel	
ABM1 (dBA/m)	4.94	5.73			00005	
ABM2 (dBA/m)	-46.54	-46.33	Axial	Band 12		
Frequency Response	Pass	Pass	- Axiai 10MHz		23095	
S+N/N (dB)	51.48	52.06				

Table 7-4
Codec Investigation – OTT VoIP (WIFI)

					<u> </u>		
Codec Setting:	75kbps	6kbps	Orientation	Band	Standard	Channel	
ABM1 (dBA/m)	4.62	5.38				6	
ABM2 (dBA/m)	-39.40	-39.06	Avial	2.4GHz	IEEE 802.11b		
Frequency Response	Pass	Pass	Axial	2.4002	IEEE 802.11b		
S+N/N (dB)	44.02	44.44					

- Mute on; Backlight off; Max Volume; Max Contrast
- · Radio Configurations can be found in Section 9.II.F

Figure 7-1
Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ connect	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 23 01 00

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE FDD band to be used for OTT VoIP testing. LTE FDD Band 5 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE bands:

Table 7-5
OTT VoIP (LTE FDD) SNNR by LTE Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
12	707.5	23095	10	16QAM	1	0	4.67	-46.53	51.20
13	782.0	23230	10	16QAM	1	0	4.65	-46.86	51.51
5	836.5	20525	10	16QAM	1	0	4.76	-46.34	51.10
66	1745.0	132322	20	16QAM	1	0	5.11	-46.74	51.85
2	1880.0	18900	20	16QAM	1	0	4.69	-48.51	53.20
30	2310.0	27710	10	16QAM	1	0	4.68	-46.47	51.15
7	2535.0	21100	20	16QAM	1	0	5.09	-46.64	51.73

FCC ID: ZNFK410WM	PCTEST Proud to be part of @ research	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 24 of 68	
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Faye 24 01 00	

8. FCC 3G MEASUREMENTS

I. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB (thick, purple data curve) was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

Figure 8-1
UMTS Audio Band Magnetic Noise

Table 8-1 Codec Investigation - UMTS

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel
ABM1 (dBA/m)	7.73	7.71	7.75		9400
ABM2 (dBA/m)	-51.67	-51.92	-51.84	Axial	
Frequency Response	Pass	Pass	Pass	Axiai	
S+N/N (dB)	59.40	59.63	59.59		

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ contend	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 25 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Fage 25 01 00

T-COIL TEST SUMMARY

Table 9-1 **Consolidated Tabled Results**

Consolidated Tabled Results												
			esponse rgin		netic / Verdict		SNNR dict	Margin from FCC Limit	C63.19-2011			
C63 10	9 Section	8.3	3.2	8.3	3.1	8.3	3.4	(dB)	Rating			
C03. 18	J GECTION	Axial	Radial	Axial	Radial	Axial	Radial					
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-7.05	Т3			
GSW	PCS	PASS	NA	PASS	PASS	PASS	PASS	-7.05	13			
EDGE	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-11.57	T4			
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS	-11.57	14			
	Cellular	PASS	NA	PASS	PASS	PASS	PASS					
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-29.53	T4			
	PCS	PASS	NA	PASS	PASS	PASS	PASS					
	Cellular	PASS	NA	PASS	PASS	PASS	PASS					
HSPA (OTT VoIP)	AWS	PASS	NA	PASS	PASS	PASS	PASS	-17.65	T4			
(0.1.10)	PCS	PASS	NA	PASS	PASS	PASS	PASS					
	B12	PASS	NA	PASS	PASS	PASS	PASS					
	B13	PASS	NA	PASS	PASS	PASS	PASS					
	B5	PASS	NA	PASS	PASS	PASS	PASS					
LTE FDD	B66	PASS	NA	PASS	PASS	PASS	PASS	-22.56	T4			
	B2	PASS	NA	PASS	PASS	PASS	PASS					
	B30	PASS	NA	PASS	PASS	PASS	PASS					
	В7	PASS	NA	PASS	PASS	PASS	PASS					
LTE FDD (OTT VoIP)	B5	PASS	NA	PASS	PASS	PASS	PASS	-18.41	T4			
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS					
WLAN	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS	-16.75	T4			
	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS					
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS					
WLAN (OTT VoIP)	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS	-14.70	T4			
(5.7.15)	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS					

FCC ID: ZNFK410WM	PCTEST* Proud to be part of @ stemant	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 26 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Fage 20 01 00

© 2020 PCTEST REV 3.5.M

I. Raw Handset Data

Table 9-2
Raw Data Results for GSM

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		128	7.99	-24.13		0.87	32.12	20.00	-12.12	T4		
	Axial	190	7.78	-23.36	-61.20	0.80	31.14	20.00	-11.14	T4	2.0, 1.8	
GSM850		251	7.92	-21.88	ľ	0.70	29.80	20.00	-9.80	Т3		
GSWIOSU		128	0.52	-30.26			30.78	20.00	-10.78	T4		
Radial	190	0.99	-27.62	-60.62	-60.62	-60.62	N/A	28.61	20.00	-8.61	Т3	2.0, 1.0
		251	0.87	-26.18				27.05	20.00	-7.05	Т3	
		512	8.23	-28.99		1.06	37.22	20.00	-17.22	T4		
	Axial	661	7.98	-28.27	-61.20	0.81	36.25	20.00	-16.25	T4	2.0, 1.8	
GSM1900		810	7.96	-29.96		0.99	37.92	20.00	-17.92	T4		
G S W 1900		512	0.87	-36.36			37.23	20.00	-17.23	T4		
Radial	661	0.93	-35.63	-60.62	N/A	36.56	20.00	-16.56	T4	2.0, 1.0		
		810	0.87	-37.18			38.05	20.00	-18.05	T4		

Table 9-3
Raw Data Results for UMTS

Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
	4132	7.61	-52.12		1.28	59.73	20.00	-39.73	T4		
Axial	4183	7.62	-52.27	-61.20	1.51	59.89	20.00	-39.89	T4	2.0, 1.8	
	4233	7.61	-51.83		1.57	59.44	20.00	-39.44	T4	Ā	
	4132	0.42	-49.11			49.53	20.00	-29.53	T4		
Radial	4183	0.44	-49.19	-60.62	N/A	49.63	20.00	-29.63	T4	2.0, 1.0	
	4233	0.43	-49.26	1		49.69	20.00	-29.69	T4		
							•				
Axial UMTS IV	1312	7.64	-51.80	-61.20	1.26	59.44	20.00	-39.44	T4	2.0, 1.8	
	1412	7.65	-52.12		1.56	59.77	20.00	-39.77	T4		
	1513	7.62	-52.05		1.52	59.67	20.00	-39.67	T4		
	1312	0.44	-49.30				49.74	20.00	-29.74	T4	
Radial	1412	0.44	-49.25	-60.62	N/A	49.69	20.00	-29.69	T4	2.0, 1.0	
	1513	0.44	-49.19	Ī		49.63	20.00	-29.63	T4		
							•				
	9262	7.68	-51.84		1.25	59.52	20.00	-39.52	T4		
Axial	9400	7.71	-51.85	-61.20	1.51	59.56	20.00	-39.56	T4	2.0, 1.8	
	9538	7.65	-51.76	1	1.55	59.41	20.00	-39.41	T4		
	9262	0.48 -49.28			49.76	20.00	-29.76	T4			
Radial	9400	0.46	-49.27	-60.62	N/A	49.73	20.00	-29.73	T4	2.0, 1.0	
	9538	0.43	-49.15	†		49.58	20.00	-29.58	T4		
	Axial Radial Axial Radial	Axial 4132 Axial 4183 4233 Radial 4183 4233 Radial 4183 4233 Axial 1312 Axial 1412 1513 Radial 1412 1513 Axial 9400 9538 9262 Radial 9400	Orientation Channel [dB(A/m)] Axial 4132 7.61 4233 7.61 4132 0.42 Radial 4132 0.42 Radial 4183 0.44 4233 0.43 Axial 1412 7.65 1513 7.62 1312 0.44 Radial 1412 0.44 1513 0.44 Axial 9262 7.68 Axial 9400 7.71 9538 7.65 9262 0.48 Radial 9400 0.46	Axial 4132 7.61 -52.12 4133 7.62 -52.27 4233 7.61 -51.83 4132 0.42 -49.11 4133 0.44 -49.19 4233 0.43 -49.26 Axial 1312 7.64 -51.80 Axial 1412 7.65 -52.12 1513 7.62 -52.05 1513 0.44 -49.30 Radial 1412 0.44 -49.25 1513 0.44 -49.19 Axial 9400 7.71 -51.85 9538 7.65 -51.76 9538 7.65 -51.76 8262 0.48 -49.28 Radial 9400 0.46 -49.27	Axial 1312 7.64 -52.12 -61.20 Axial 4132 7.61 -52.12 -61.20 4233 7.61 -51.83 -61.20 4132 0.42 -49.11 -60.62 4233 0.43 -49.19 -60.62 4233 0.43 -49.26 -61.20 Axial 1412 7.65 -52.12 -61.20 1513 7.62 -52.05 -61.20 Radial 1412 0.44 -49.30 -60.62 Axial 1513 0.44 -49.25 -60.62 Axial 9400 7.71 -51.84 -61.20 Axial 9400 7.71 -51.85 -61.20 Axial 9400 7.71 -51.85 -61.20 Radial 9400 0.48 -49.28 Radial 9400 0.46 -49.27 -60.62	Orientation Channel [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Ambient Noise [dB(A/m)] Response Margin (dB) Axial 4132 7.61 -52.12 -61.20 1.28 4233 7.61 -51.83 1.57 4132 0.42 -49.11 -60.62 NA Radial 4183 0.44 -49.19 -60.62 NA Axial 1312 7.64 -51.80 -61.20 1.56 Axial 1412 7.65 -52.12 -61.20 1.56 Radial 1312 0.44 -49.30 -60.62 NA Radial 1412 0.44 -49.25 -60.62 NA Axial 9262 7.68 -51.84 -60.62 NA Axial 9400 7.71 -51.85 -61.20 1.51 Axial 9400 7.71 -51.85 -61.20 1.51 Axial 9400 0.48 -49.28 -60.62 NA	Orientation Channel [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Amble (dB(A/m)) Response Margin (dB) \$4.00 (dB) Axial 4132 7.61 -52.12 -61.20 1.51 59.89 4233 7.61 -51.83 1.57 59.44 4132 0.42 -49.11 49.53 Radial 4183 0.44 -49.19 -60.62 N/A 49.63 4233 0.43 -49.26 1.26 59.44 Axial 1312 7.64 -51.80 1.26 59.77 49.69 -52.12 -61.20 1.56 59.77 1513 7.62 -52.12 -61.20 1.56 59.77 1312 0.44 -49.30 -60.62 N/A 49.69 Radial 1412 0.44 -49.25 -60.62 N/A 49.69 Axial 9262 7.68 -51.84 -51.84 1.25 59.52 Axial 9400 7.71 -51.85	Orientation Channel (dB(A/m)) (dB(A/m)) ABM1 (dB(A/m)) (dB(A/m)) Ambient Noise (dB(A/m)) Response (dB(A/m)) S+N/N (dB) FCC Limit (dB) Axial 4132 7.61 -52.12 1.28 59.73 20.00 4233 7.61 -51.83 1.57 59.89 20.00 Radial 4132 0.42 -49.11 49.53 20.00 Radial 4183 0.44 -49.19 -60.62 NA 49.63 20.00 Axial 1312 7.64 -51.80 -61.20 1.56 59.44 20.00 Axial 1412 7.65 -52.12 -61.20 1.56 59.77 20.00 Radial 1412 0.44 -49.30 49.74 20.00 49.63 20.00 Radial 1412 0.44 -49.25 -60.62 NA 49.69 20.00 Axial 99262 7.68 -51.84 -51.84 1.25 59.52 20.00 Axial 9400 7.71	Orientation Channel [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Amble (dB(A/m)] Response Margin (dB) S+N/N (dB) FCC Limit (dB) FCC Limit (dB) Axial 4183 7.62 -52.12 -61.20 1.28 59.73 20.00 -39.73 4233 7.61 -51.83 1.51 59.89 20.00 -39.89 Radial 4132 0.42 -49.11 49.53 20.00 -29.53 Radial 4183 0.44 -49.19 -60.62 N/A 49.63 20.00 -29.63 4233 0.43 -49.26 -60.62 N/A 49.63 20.00 -29.63 4xial 1412 7.64 -51.80 1.26 59.44 20.00 -39.44 Axial 1412 7.65 -52.12 -61.20 1.56 59.77 20.00 -39.77 Radial 1412 0.44 -49.30 -60.62 N/A 49.74 20.00 -29.69 Axial 9400	Orientation Channel (dB(A/m)) (dB(A/m)) ABM1 (dB(A/m)) (dB(A/m)) ABM2 (dB(A/m)) (dB) Response (dB) (dB) S+N/n (dB) (dB) FCC Limit (dB) C63.19-2011 (Rating) Axial 4132 7.61 -52.12 -61.20 1.28 59.73 20.00 -39.89 T4 4233 7.61 -51.83 -61.20 1.57 59.44 20.00 -39.89 T4 Radial 4132 0.42 -49.11 -60.62 N/A 49.53 20.00 -39.89 T4 Radial 4183 0.44 -49.19 -60.62 N/A 49.63 20.00 -29.63 T4 Axial 1312 7.64 -51.80 -61.20 1.56 59.77 20.00 -39.44 T4 Axial 1412 7.65 -52.12 -61.20 1.56 59.77 20.00 -39.67 T4 Radial 1412 0.44 -49.30 -60.62 N/A 49.69 20.00 -29.74 T4 Axial	

Table 9-4 Raw Data Results for LTE B12

	Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
			10MHz	23095	7.24	-46.36		1.46	53.60	20.00	-33.60	T4	
		Axial	5MHz	23095	7.24	-46.26	-61.20	1.27	53.50	20.00	-33.50	T4	2.0. 1.8
	Axiai	Axiai	3MHz	23095	7.22	-46.95	-01.20	1.48	54.17	20.00	-34.17	T4	2.0, 1.0
1.75	Band 12		1.4MHz	23095	7.20	-46.02		1.54	53.22	20.00	-33.22	T4	
	. Dallu 12		10MHz	23095	0.39	-42.72			43.11	20.00	-23.11	T4	
		Radial	5MHz	23095	0.38	-43.90	-60.62	N/A	44.28	20.00	-24.28	T4	2.0. 1.0
	Radiai	3MHz	23095	0.36	-43.13	-60.62 N/	INA	43.49	20.00	-23.49	T4	2.0, 1.0	
		1.4MHz	23095	0.35	-45.39			45.74	20.00	-25.74	T4		

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 27 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 27 01 00

Table 9-5 Raw Data Results for LTE B13

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	10MHz	23230	7.43	-46.71	-61.20	1.47	54.14	20.00	-34.14	T4	20.10
LTE Band 13		5MHz	23230	7.48	-45.87	-61.20	1.44	53.35	20.00	-33.35	T4	2.0, 1.8
LIE Band 13	Radial	10MHz	23230	0.38	-42.18	-60.62	N/A	42.56	20.00	-22.56	T4	2.0. 1.0
	Radiai	5MHz	23230	0.39	-43.59	-60.62	IVA	43.98	20.00	-23.98	T4	2.0, 1.0

Table 9-6 Raw Data Results for LTE B5

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		10MHz	20525	7.44	-45.77		1.54	53.21	20.00	-33.21	T4		
	Axial	5MHz	20525	7.46	-45.67	-61.20	1.30	53.13	20.00	-33.13	T4	2.0, 1.8	
	Axiai	3MHz	20525	7.45	-47.00	-01.20	1.53	54.45	20.00	-34.45	T4	2.0, 1.0	
LTE Band 5		1.4MHz	20525	7.46	-45.53		1.16	52.99	20.00	-32.99	T4		
LIE Ballu 5		10MHz	20525	0.38	-43.05			43.43	20.00	-23.43	T4		
	Radial	5MHz	20525	0.72	-42.86	-60.62	-60.62	N/A	43.58 20.00		-23.58	T4	2.0, 1.0
	Naulai	3MHz	20525	0.45	-43.49			IWA	43.94	20.00	-23.94	T4	2.0, 1.0
	1.4MHz	20525	0.32	-42.96			43.28	20.00	-23.28	T4			

Table 9-7 Raw Data Results for LTE B66

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates				
		20MHz	132322	7.43	-46.05		1.53	53.48	20.00	-33.48	T4					
		15MHz	132322	7.30	-46.80		1.20	54.10	20.00	-34.10	T4					
	Axial	10MHz	132322	7.42	-47.59	-61.20	1.48	55.01	20.00	-35.01	T4	2.0, 1.8				
	Axiai	5MHz	132322	7.79	-46.27	-01.20	1.50	54.06	20.00	-34.06	T4	2.0, 1.6				
		3MHz	132322	7.42	-46.78		1.31	54.20	20.00	-34.20	T4					
LTE Band 66		1.4MHz	132322	7.46	-46.17		1.63	53.63	20.00	-33.63	T4					
LIE Ballu 66		20MHz	132322	0.31	-45.89			46.20	20.00	-26.20	T4					
		15MHz	132322	0.28	-44.12			44.40	20.00	-24.40	T4					
	Radial	10MHz	132322	0.26	-44.97	-60.62 N	N/A	45.23	20.00	-25.23	T4	2.0, 1.0				
	Raulai	5MHz	132322	0.26	-45.39		-60.62	-60.62	-60.62	-60.62	IN/A	45.65	20.00	-25.65	T4	2.0, 1.0
		3MHz	132322	0.31	-45.96						46.27	20.00	-26.27	T4		
		1.4MHz	132322	0.29	-45.60			45.89	20.00	-25.89	T4					

Table 9-8 Raw Data Results for LTE B2

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates			
		20MHz	18900	7.55	-46.31		1.31	53.86	20.00	-33.86	T4				
		15MHz	18900	7.56	-47.00		1.35	54.56	20.00	-34.56	T4				
	Axial	10MHz	18900	7.54	-47.15	-61.20	1.20	54.69	20.00	-34.69	T4	2.0, 1.8			
	Axiai	5MHz	18900	7.82	-46.68	-01.20	1.26	54.50	20.00	-34.50	T4	2.0, 1.6			
		3MHz	18900	7.50	-47.03		1.19	54.53	20.00	-34.53	T4				
LTE Band 2		1.4MHz	18900	7.50	-46.51		1.27	54.01	20.00	-34.01	T4				
LIE Ballu 2		20MHz	18900	0.29	-43.33			43.62	20.00	-23.62	T4				
		15MHz	18900	0.28	-45.56			45.84	20.00	-25.84	T4				
	Radial	10MHz	18900	0.32	-43.74	-60.62 N/A	NVA	44.06	20.00	-24.06	T4	2.0, 1.0			
	radiai	5MHz	18900	0.26	-44.82		-60.62	-60.62	-60.62	IWA	45.08	20.00	-25.08	T4	2.0, 1.0
		3MHz	18900	0.29	-46.31						46.60	20.00	-26.60	T4	
		1.4MHz	18900	0.30	-44.44			44.74	20.00	-24.74	T4				

FCC ID: ZNFK410WM	PCTEST* Proud to be past of @ interest	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 28 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Fage 20 01 00

Table 9-9 **Raw Data Results for LTE B30**

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	27710	7.46	-46.25		1.34	53.71	20.00	-33.71	T4	
	Axial	5MHz	27735	7.43	-45.32	-61.20	1.46	52.75	20.00	-32.75	T4	2.0. 1.8
LTE Band 30		5MHz	27710	7.46	-45.21	-01.20	1.49	52.67	20.00	-32.67	T4	2.0, 1.6
LIE Band 30		5MHz	27685	7.42	-45.31		1.28	52.73	20.00	-32.73	T4	
	Radial	10MHz	27710	0.34	-44.80	-60.62	N/A	45.14	20.00	-25.14	T4	2.0. 1.0
	Naulai	5MHz	27710	0.35	-45.13	-00.62	IWA	45.48	20.00	-25.48	T4	2.0, 1.0

Table 9-10 Raw Data Results for LTE B7

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	21100	7.47	-48.30		1.26	55.77	20.00	-35.77	T4	
	Axial	15MHz	21100	7.45	-46.30	-61.20	1.26	53.75	20.00	-33.75	T4	2.0, 1.8
	Axiai	10MHz	21100	7.47	-46.58	-01.20	1.39	54.05	20.00	-34.05	T4	2.0, 1.6
LTE Band 7		5MHz	21100	7.49	-46.49		1.52	53.98	20.00	-33.98	T4	
LIE Ballu /		20MHz	21100	0.36	-42.70			43.06	20.00	-23.06	T4	
	Padial	15MHz	21100	0.28	-43.72	-60.62	N/A	44.00	20.00	-24.00	T4	2.0, 1.0
Radial	Naulai	10MHz	21100	0.32	-42.64	-60.62	IVA	42.96	20.00	-22.96	T4	2.0, 1.0
	5MHz	21100	0.29	-44.00			44.29	20.00	-24.29	T4		

Table 9-11 Raw Data Results for 2.4GHz WIFI

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	3.11	-42.27		1.50	45.38	20.00	-25.38	T4	
	Axial	6	3.12	-41.95	-61.20	1.52	45.07	20.00	-25.07	T4	2.0, 1.8
IEEE		11	3.09	-42.13		1.47	45.22	20.00	-25.22	T4	
802.11b		1	-3.78	-42.71			38.93	20.00	-18.93	T4	
	Radial	6	-3.74	-40.49	-60.62	N/A	36.75	20.00	-16.75	T4	2.0, 1.0
		11	-3.54	-40.63			37.09	20.00	-17.09	T4	
IEEE	Axial	6	3.04	-47.63	-61.20	1.51	50.67	20.00	-30.67	T4	2.0, 1.8
802.11g	Radial	6	-3.83	-47.03	-60.62	N/A	43.20	20.00	-23.20	T4	2.0, 1.0
IEEE	Axial	6	3.04	-49.85	-61.20	1.46	52.89	20.00	-32.89	T4	2.0, 1.8
802.11n	Radial	6	-3.81	-47.11	-60.62	N/A	43.30	20.00	-23.30	T4	2.0, 1.0

Table 9-12 Raw Data Results for EDGE (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
EDGE850	Axial	190	4.67	-28.14	-61.20	0.17	32.81	20.00	-12.81	T4	2.0, 1.8
EDGE050	Radial	190	-3.65	-35.22	-60.62	N/A	31.57	20.00	-11.57	T4	2.0, 1.0
EDGE1900	Axial	661	4.76	-32.31	-61.20	0.22	37.07	20.00	-17.07	T4	2.0, 1.8
EDGE 1900	Radial	661	-3.91	-38.52	-60.62	N/A	34.61	20.00	-14.61	T4	2.0, 1.0

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 29 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 29 01 00

Table 9-13 Raw Data Results for HSPA (OTT VoIP)

	Naw Bata Results for field A (CTT V							,			
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
HSPA V	Axial	4183	4.52	-42.35	-61.20	0.14	46.87	20.00	-26.87	T4	2.0, 1.8
nora v	Radial	4183	-3.64	-41.29	-60.62	N/A	37.65	20.00	-17.65	T4	2.0, 1.0
HSPA IV	Axial	1412	4.52	-42.29	-61.20	0.16	46.81	20.00	-26.81	T4	2.0, 1.8
HOPAIV	Radial	1412	-3.29	-41.72	-60.62	N/A	38.43	20.00	-18.43	T4	2.0, 1.0
HSPA II	Axial	9400	4.17	-42.82	-61.20	0.18	46.99	20.00	-26.99	T4	2.0, 1.8
HOPAII	Radial	9400	-3.77	-41.77	-60.62	N/A	38.00	20.00	-18.00	T4	2.0, 1.0

Table 9-14 Raw Data Results for LTE FDD B5 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
Axial		10MHz	20525	4.67	-46.55		0.13	51.22	20.00	-31.22	T4	00.40
		5MHz	20625	4.95	-46.85	-61.20	0.14	51.80	20.00	-31.80	T4	
	Avial	5MHz	20525	4.90	-46.28		0.17	51.18	20.00	-31.18	T4	
	5MHz	20425	4.75	-46.98	-61.20	0.18	51.73	20.00	-31.73	T4	2.0, 1.8	
		3MHz	20525	5.00	-47.99		0.14	52.99	20.00	-32.99	T4	
LTE Band 5		1.4MHz	20525	4.86	-47.46		0.11	52.32	20.00	-32.32	T4	
LIE Band 5		10MHz	20525	-3.59	-42.58			38.99	20.00	-18.99	T4	
		5MHz	20625	-3.18	-42.59			39.41	20.00	-19.41	T4	1
	Radial	5MHz	20525	-3.60	-42.18	-60.62	N/A	38.58	20.00	-18.58	T4	20.10
	Naulai	5MHz	20425	-3.33	-41.74	-60.62	IN/A	38.41	20.00	-18.41	T4	2.0, 1.0
		3MHz	20525	-3.43	-42.45			39.02	20.00	-19.02	T4	
		1.4MHz	20525	-2.96	-42.07			39.11	20.00	-19.11	T4	

Table 9-15 Raw Data Results for 2.4GHz WIFI (OTT VolP)

	Naw Data Results for 2.4GHz Will (OTT VOIF)										
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	5.04	-39.75		0.12	44.79	20.00	-24.79	T4	
	Axial	6	4.85	-39.31	-61.20	0.12	44.16	20.00	-24.16	T4	2.0, 1.8
IEEE		11	4.96	-39.43		0.02	44.39	20.00	-24.39	T4	
802.11b		1	-2.75	-38.67			35.92	20.00	-15.92	T4	
	Radial	6	-3.09	-39.45	-60.62	N/A	36.36	20.00	-16.36	T4	2.0, 1.0
		11	-3.13	-37.83			34.70	20.00	-14.70	T4	
IEEE	Axial	6	5.27	-42.94	-61.20	0.03	48.21	20.00	-28.21	T4	2.0, 1.8
802.11g	Radial	6	-3.18	-42.77	-60.62	N/A	39.59	20.00	-19.59	T4	2.0, 1.0
IEEE	Axial	6	4.00	-44.15	-61.20	0.11	48.15	20.00	-28.15	T4	2.0, 1.8
802.11n	Radial	6	-2.98	-41.40	-60.62	N/A	38.42	20.00	-18.42	T4	2.0, 1.0

FCC ID: ZNFK410WM	POTEST* Proud to be post of @ contract	HAC (T-COIL) TEST REPORT	L) TEST REPORT LG	
Filename:	Test Dates:	DUT Type:		Page 30 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 30 01 00

II. **Test Notes**

A. General

- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (Phone→Call Settings→Additional Settings→Hearing aids) was set to ON for Frequency Response compliance
- 4. Speech Signal: ITU-T P.50 Artificial Voice
- 5. Bluetooth and WIFI were disabled while testing 2G/3G/4G modes.
- 6. Licensed data modes and Bluetooth were disabled while testing WIFI modes.
- 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).

B. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);

C. UMTS

- 1. Power Configuration: TPC= "All 1s";
- 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);

D. LTE FDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 0RB offset
- 3. Vocoder Configuration: NB AMR 12.2kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 30 at 5MHz is the worst-case for the Axial probe orientation. LTE Band 13 at 10MHz bandwidth is the worst-case for the Radial probe orientation, however, LTE Band 13 at 10MHz only supports one channel therefore low and high channels were not evaluated.

E. WIFI

- 1. Radio Configuration
 - a. IEEE 802.11b: DSSS, 1Mbps
 - b. IEEE 802.11g: BPSK, 6Mbps
 - c. IEEE 802.11n: BPSK, MCS 0
- 2. Vocoder Configuration: NB AMR 12.2kbps
- 3. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for the Axial and Radial probe orientation.

F. OTT VolP

- 1. Vocoder Configuration: 75kbps
- 2. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
- 3. HSPA Configuration:
 - a. Release: 6

FCC ID: ZNFK410WM	PCTEST* Proud to be part of the internet	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 31 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 31 01 00

- b. 3GPP 34.121 Subtest 1
- 4. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 0RB offset
 - c. LTE Band 5 was the worst-case band from Table 7-5 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 5 at 5MHz is the worst-case for the Axial and Radial probe orientation.
- 5. WIFI Configuration:
 - a. Radio Configuration
 - i. IEEE 802.11b: DSSS, 1Mbps
 - ii. IEEE 802.11g: BPSK, 6Mbps
 - iii. IEEE 802.11n: BPSK, MCS 0
 - b. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for the Axial and Radial probe orientation.

III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 32 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 32 01 00

IV. T-Coil Validation Test Results

Table 9-16
Helmholtz Coil Validation Table of Results

Tieliillioltz G									
ltem	Target	Result	Verdict						
Axial									
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.855	PASS						
Environmental Noise	< -58 dBA/m	-61.20	PASS						
Frequency Response, from limits	> 0 dB	0.80	PASS						
Radial									
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.063	PASS						
Environmental Noise	< -58 dBA/m	-60.62	PASS						
Frequency Response, from limits	> 0 dB	0.80	PASS						

FCC ID: ZNFK410WM	PCTEST Proud to be part of @ research	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 33 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 33 01 00

ABM1 Magnetic Field Distribution Scan Overlays ٧.

Figure 9-1 **T-Coil Scan Overlay Magnetic Field Distributions**

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 24 of 60
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 34 of 68

© 2020 PCTEST **REV 3.5.M**

MEASUREMENT UNCERTAINTY 10.

Table 10-1 Uncertainty Estimation Table

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty	17.7%	0.71					
Expanded uncertainty (k=2),	Expanded uncertainty (k=2), 95% confidence level						

Notes:

- Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.
- All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 35 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 33 01 00

11. EQUIPMENT LIST

Table 11-1 Equipment List

	Equipment List										
Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number						
4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911						
Latitude E6540	SoundCheck Acoustic Analyzer Laptop	9/6/2018	Biennial	9/6/2020	2655082910						
SoundConnect	Microphone Power Supply	9/6/2018	Biennial	9/6/2020	0899-PS150						
Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	9/6/2018	Biennial	9/6/2020	23792992						
CMW500	Wideband Radio Communication Tester	2/4/2020	Annual	2/4/2021	162125						
CMW500	Radio Communication tester	5/17/2019	Annual	5/17/2020	128635						
CMW500	Wideband Radio Communication Tester	6/6/2019	Annual	6/6/2020	161662						
CMW500	Radio Communication tester	8/14/2019	Annual	8/14/2020	140144						
NC-100	Torque Wrench (8" lb)	5/10/2018	Biennial	5/10/2020	21053						
Axial T-Coil Probe	Axial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1123						
Radial T-Coil Probe	Radial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1129						
Helmholtz Coil	Helmholtz Coil Helmholtz Coil		Biennial	10/10/2020	SBI 1052						
	HAC System Controller with Software	N/A		N/A	N/A						
	HAC Positioner	N/A		N/A	N/A						

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 36 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		

12. TEST DATA

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 37 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 37 01 00

1M2001290013-09.ZNF 02/17/2020 - 02/19/2020 Portable Handset Page 37 of 68

© 2020 PCTEST REV 3.5.M 01/16/2020

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

Frequency Response

Results

Verification 1kHz Intensity	-9.855	dB	\checkmark	Max/Min	-9.5/-10.5
Verification ABM2	-61.2	dB	•	Maximum	-58.0
Frequency Response Margin	800m	dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @normed	HAC (1-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 38 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		raye 30 01 00

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

Frequency Response

Results

Verification 1kHz Intensity	-10.063	dB	\checkmark	Max/Min	-9.5/-10.5
Verification ABM2	-60.62	dB	•	Maximum	-58.0
Frequency Response Margin	800m	dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFK410WM	PCTEST* Proud to be part of @ interest	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 20 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 39 of 68

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

 Mode: GSM850 Channel: 251

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ connect	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 40 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 40 01 00

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

 Mode: GSM1900 Channel: 661

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be part of @ interest	HAC (I-COIL) IEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 41 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 41 of 68

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS Band V

Channel: 4233

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ minuted	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 42 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 42 of 68

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS Band IV

Channel: 1312

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ minuted	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 42 of 69
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 43 of 68

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS Band II

Channel: 9538

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ connect	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 44 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 44 of 66

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

 Mode: LTE FDD Band 30 Bandwidth: 5MHz Channel: 27710

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ connect	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 45 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Fage 45 01 00

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

 Mode: 2.4GHz WIFI Standard: IEEE 802.11b

Channel: 6

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be part of @ interest	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		raye 40 01 00

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

VolP Application: Google Duo

 Mode: EDGE850 Channel: 190

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFK410WM	PCTEST* Proud to be post of @ monand	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 47 01 00

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: GSM850 Channel: 251

FCC ID: ZNFK410WM	PCTEST* Proud to be part of the internet	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 48 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 46 01 06

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: GSM1900 · Channel: 661

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 49 01 00

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

. Mode: UMTS Band V Channel: 4132

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 50 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 50 of 66

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

. Mode: UMTS Band IV Channel: 1513

FCC ID: ZNFK410WM	PCTEST* Proud to be part of the internet	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 51 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 31 01 00

DUT: ZNFK410WM

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: UMTS Band II Channel: 9538

Noise Spectrum

ABM2

Minimum Maximum

0.0

SNNR

-49.15 dB 49.58 dB

Minimum

20.0

FCC ID: ZNFK410WM	POTEST: Proof to be part of @ removed	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 52 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 52 01 00

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: LTE FDD Band 13 Bandwidth: 10MHz Channel: 23230

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 53 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 55 of 66

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: 2.4GHz WIFI Standard: IEEE 802.11b

Channel: 6

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 34 01 00

Type: Portable Handset Serial: 08989

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

· VoIP Application: Google Duo

Mode: EDGE850 Channel: 190

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 55 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 55 of 66

CALIBRATION CERTIFICATES 13.

FCC ID: ZNFK410WM	PCTEST* Proud to be pet of @ clement	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 56 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 50 01 00

© 2020 PCTEST REV 3.5.M

Certificate of Calibration

for

AXIAL T COIL PROBE

Manufactured by:

TEM CONSULTING LP

Model No:

AXIAL T COIL PROBE

Serial No: Calibration Recall No: TEM-1123 29156

Submitted By:

Customer:

Andrew Harwell

Company: Address: PCTest Engineering Lab 6660-B Dobbin Road

0

Columbia MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIAL T C TEM C

Upon receipt for Calibration, the instrument was found to be:

12/4/2019

Within (X)

tolerance of the indicated specification. See attached Report of Calibration.
The information supplied relates to the calibrated item listed above.
West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by: Fc

Calibration Date:

19-Sep-18

Felix Christopher (QA Mgr.)

Certificate No:

29156 -2

West Caldwell

ISO/IEC 17025:2005

QA Doc. #1051 Rev. 2.0 10/1/01

Certificate Page 1 of 1

ACCREDITED

uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

FCC ID: ZNFK410WM

PCTEST

HAC (T-COIL) TEST REPORT

Quality Manager

Filename:

1M2001290013-09.ZNF

02/17/2020 - 02/19/2020

Portable Handset

Approved by:
Quality Manager

Page 57 of 68

© 2020 PCTEST

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab

Model No.: Axial T Coil Probe

Serial No.: TEM-1123 I. D. No.: XXXX

Calibration results: Probe Sensitivity measured with Helmholtz Coil Helmholtz Coll; Before & after data same: ... X ... the number of turns on each coil; 10 No. 0.204 Laboratory Environment: the radius of each coil, in meters; Ambient Temperature: °C 0.08 22.7 the current in the coils, in amperes.; Α Helmholtz Coil Constant; 7.09 A/m/V Ambient Humidity: % RH Helmholtz Coil magnetic field; 5.95 A/m Ambient Pressure: 99.326 Calibration Date: 19-Sep-2018 Calibration Due: Probe Sensitivity at 1000 Hт -59.89 dBV/A/m. Report Number: 29156 -2 was 1.013 mV/A/m Control Number: 29156 903 Ohms Probe resistance The above listed instrument meets or exceeds the tested manufacturer's specifications.

683/284413-14

This Calibration is traceable through NIST test numbers:

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, IŞØ)17025

Cal. Date: 19-Sep-2018

Measurements performed by:

James Zhu

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 58 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 56 01 06

HCATEMC_TEM-1123_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

for

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab

Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Test	Function	nction Tolerance			Measured values			
····					Out	Remarks		
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-59.89				
			dB					
2.0	Probe Level Linearity		6	6.03				
		Ref. (0 dB)	0	0.00				
•			-6	-6.03				
			-12	-12.05				
		***************************************	Hz					
3.0	Probe Frequency Response		100	-19.9				
			126	-17.9				
			158	-15.9				
		200	-13.9					
		251	-11.9					
		316	-9.9					
		398	-7.9					
			501	-6.0				
			631	-4.0				
		794	-2.0					
	Ref. (0 dB)	1000	0.0					
		1259	2.0					
			1585	4.0				
		1995	5.9					
		2512	7.9					
		3162	9.9					
			3981	11.9				
•		5012	13.9					
		6310	15.9					
		7943	18.0					
			10000	20.1				

Instruments used for o	alibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: ZNFK410WM	POTEST* Proud to be post of @ control	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Page 39 01 00

FCC ID: ZNFK410WM	PCTEST* Proud to be past of @ interest	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 60 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 00 01 00

© 2020 PCTEST

HCRTEMC_TEM-1129_Sep-19-2018

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

TEM Consulting LP Radial T Coil Probe ,Company: PCTest Engineering Lab

Model No.: Radial T Coil Probe

Serial No.: TEM-1129

I. D. No.: XXXX

Probe Sensitivity measured wit	h Helmhol	tz Coil			
Helmholtz Coil;			Before & after data same:	X	
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environment:		
the current in the coils, in amperes.;	0.08	Α	Ambient Temperature:	22.7	°C
Helmholtz Coil Constant;	7.09	A/m/V	Ambient Humidity:	52.1	% RH
Helmholtz Coil magnetic field;	5.95	A/m	Ambient Pressure:	99.326	kPa
			Calibration Date:	19-Sep-2018	
Probe Sensitivity at	1000	Hz.	Re-calibration Due:		
was	-60.37	dBV/A/m	Report Number:	29150	6 -1
	0.958	mV/A/m	Control Number:	29150	6
Probe resistance	886	Ohms		,	

This Calibration is traceable through NIST test numbers:

683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISQ 17025

Cal. Date: 19-Sep-2018

Measurements performed by:

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

James Zhu Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 61 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 01 01 00

HCRTEMC_TEM-1129_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab

for Model No.: Radial T Coil Probe

Serial No.: TEM-1129

	Tolerance		Measured values		
rido con constante de la const	——————————————————————————————————————		Before	Out	Remarks
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37		
		dB			
Probe Level Linearity		6	6.03		
	Ref. (0 dB)	0	0.00		
		-6	-6.03		
		-12	-12.05		
	XXX	Hz			
Probe Frequency Response			1		
			1		
	Ref. (0 dB)				
			1 1		
			18.0		
		10000	20.1		
		Probe Level Linearity Ref. (0 dB)	Probe Level Linearity Ref. (0 dB) Ref. (0 dB) -6 -12 Probe Frequency Response 100 126 158 200 251 316 398 501 631 794	Probe Level Linearity Ref. (0 dB) Ref. (0 dB)	Probe Level Linearity Ref. (0 dB) Ref. (0 dB)

Instruments used for o	alibration:		Date of Cal.	Traceability No.	Due Date
' HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: ZNFK410WM	PCTEST* Proud to be past of @ interest	HAC (L-COIL) LEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 62 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Fage 02 01 00

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFK410WM	PCTEST* Proud to be part (immerit	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 63 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		rage 03 01 00

15. REFERENCES

- ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- 2. FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify
 Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, "IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- 12. Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 19. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.

FCC ID: ZNFK410WM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 64 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		Fage 04 01 00

- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 25. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 28. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFK410WM	PCTEST Proud to be post of @ connect	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 65 of 68
1M2001290013-09.ZNF	02/17/2020 - 02/19/2020	Portable Handset		1 age 00 01 00